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We studied numerically the validity of the fluctuation relation introduced in Eeamas.[Phys. Rev.

Lett. 71, 2401-24041993 ] and proved under suitable conditions by Gallavotti and C¢HeBtat.
Phys.80, 931-970(1995] for a two-dimensional system of particles maintained in a steady shear
flow by Maxwell demon boundary conditiofi€hernov and Lebowitz, J. Stat. Phy@6, 953—990
(1997]. The theorem was found to hold if one considers the total phase space contraction
occurring at collisions with both wallst= o'+ o!. An attempt to extend it to more local quantities
o' ando!, corresponding to the collisions with the top or bottom wall only, gave negative results.
The time decay of the correlationsdri'! was very slow compared to thatef © 1998 American
Institute of Physicg.S1054-150(08)00104-9

While fluctuations in the total phase space volume con- spatial correlations predicted by computer simulations, fluc-
traction of a realistically thermostatted computer model  tuating hydrodynamics and confirmed by experiméritge
system with shear flow satisfy the Gallavotti-Cohen rela- also have no formula for computing the stationary heat flux
tion, partial ones do not. If the same phenomena occurs through a metal or plasma or the momentum flux through a
for local entropy production then the possibility of the  fluid which goes beyond linear response theory. Such a for-
fluctuation relation being observed in a macroscopic sys- mula should, like the Green-Kubo formula for linear trans-
tem becomes highly dubious. Slow decay of correlations port, depend only on the internal Hamiltonian of the system
between the partial contraction seems to be responsible and the impressed macroscopic constraints driving the sys-
for this phenomenon. tem, e.g., a specified temperature or velocity field on the
boundaries of the system.

While the usual modeling of such systems has been via
stochastic boundariéshere has been much interest recently

The microscopic structure of systems through whichin the study of SNS of particle systems evolving via entirely
there is transport of energy or momentum is a central probdeterministic dynamics in the hope that dynamical systems
lem in nonequilibrium statistical mechanics. For gases a partheory will provide new insights into nonequilibrium
tial answer to this questiofon the mesoscopic/kinetic level behavior’* As is well known the existence of such SNS in
is provided by the stationary solution of the Boltzmann equafinite systems is incompatible with the usual Hamiltonian
tion with suitable, e.g., Maxwellian, boundary conditions. evolution, believed to accurately describe the dynamics of
Going beyond kinetic theory has proven to be very difficultsystems in which quantum effects are unimportant. For such
and we still lack a full understanding of stationary nonequi-dynamics the only realizable stationary states are those
librium states(SNS on the microscopic level. which depend solely on the global constants of motion. In

This gap goes beyond that of computational complexityrealistic systems these are just the total energy @mnder
or even of technical difficulty in proving the validity of the suitable boundary conditionghe total momentum and angu-
formulas derived formally, something already present also ingr momentum.
the kinetic theory and in equilibrium statistical mechanics.  Adding externalglobally nongradientforces to the dy-
What is still missing, at the present time, are well definedngmics, e.g., a uniform field in a system with periodic
formal procedure which would, at least in principle, provide poundary conditiongsuch as would arise from a changing
answers to questions of physical relevance for SNS of magnagnetic flux crossing the surface bounded by a condyctor
roscopic systems. Thus we have no “statistical mechanicaj typically result in the system gaining energy continu-
formula” for the decay of spatial or time displaced correla- ously from the field, excluding the possibility of SNS. This
tion functions in a SNS. In particular, we have agriori  necessitates the use of non phase space volume conserving
formalism for deciding on the slow power law decay of the forces for modeling SNS. Various models of such dynamics
have been investigated through computer simulations and
dElectronic mail: bonetto@hilbert.rutgers.edu heuristic analysi4,and there have also been some math-

I. INTRODUCTION
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TABLE |. Static and dynamic quantity for the simulation.

— |
| é = f(¢)
| | 10 20 30 40
| d 3.4x10°2 3.4x1072 3.4x10°2
| to 20.6 30.6 38.1 44.4
| v 2.11 3.19 4.00 4.67
| I (a), 1.24<10°%2  1.68x10°%2  2.00x10%2  2.26x10°2
| SN N max 0.92 0.74 0.63 0.57
I
|
I
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flection rules at the top and bottom walls simulating macro-

scopic moving walls. The rules are as follows: when a par-

ticle collides with the upper wall, making an angké

ematical results motivated by physical considerations of suchetween the positive-direction and the incoming velocity

SNS°® There is, however, as already mentioned, still a verythen the outgoing velocity angke will be given by a(to be

wide gap between the mathematical and physical results olspecified reflection rulef:

tained from these models and a full theory of macroscopic

SNS. p=1(p). (2.9)
While it is not clear at present whether and how the A similar rule applies on the lower wall with the only

dynamical system approach will answer such questions IEiifference thaty and ¢ refer to the angle between the incom-

seems relasi)nablef to ex;()jlolre _the k;}_et;}av;}or .Of such dSNS‘ dTTi'ﬁg and outgoing velocity and the negatixslirection. Since
IS particularly so for models in which the imposed, modely, o o4y s of the velocity is preserved during a collision

dependent, driving and thermostating terms are confined e total kinetic energy of the system is a constant of the
the boundaries of the system while the dynamics in the inte-

rior of the system remain realistically Hamiltonian. Several We will assume that is “time reversible.” i.e. it satis-
such models of shear flow were investigated via computef;, ¢ b="f(m—f(m—¢)). Observe that if 'thi.s .’condition

simulations and some heuristic analysis in Ref. 6. Here W& olds the system is time reversible: if one inverts the veloci-

;:Ion;umifa our [[rr\]vestr;gatlon focusmlg on the tbeh;(;/lor:_ orf theties of all the particles the system traces back its past trajec-
uctuation In the phase space volume contraceonnic tory. In the numerical simulations we will consider one of
occurs at the boundaries. was found in Ref. 6 to be ap- & aflection rules introduced in Ref. 6, namely,

proximately equal, when the size of the system is sufficiently
large for it to be in local thermal equilibrium, to the hydro- y=(m+b)—(7m+b)>— ¢(p+2b), (2.2
dynamic entropy production inside the system. The same
quantity, in a different model of shear flow, was studied inwhereb is used to modulate the intensity of the shear with
Ref. 7 where an interesting relation for its large deviationgd=2> representing elastic collisiorisee Fig. 1
was experimentally found. This relation is now a rigorous  During a collision with the walls the Liouville measure
result for large deviations of phase space contraction unddg not conserved. In fact at each “reflection” there is a phase
suitable conditions on the dynamitdNhether the results space contractior equal té
hold when the conditions are not satisfied exactly is a ques-
tion of great relevance. The exploration of this and related  , _ —log
guantities is the subject of the present work.

In the next section we describe the model and the check . . - .

It is natural to consider the collisions with the walls as

of the Gallavotti-Cohen resdlfor our system. In Sec. Il we iming events for the system. This is, we can consider the

investigate fluctuations and time dependent correlations o? : . o
the volume contractions’ and o' produced by collisions unction T that associates to any poiKtin the phase space

: of the system, i.e., the energy surfake the first time at
with the top and bottom walls. which a particle collides with a wall and define the map,

FIG. 1. Schematic representation of the dynamics of the system.

SiLwf’( )) 2.3
sing ¢ '

1. NUMERICAL SIMULATIONS: THE FLUCTUATION SE—X, S(X)=F(@(X,T(X))), whereX is the set of
THEOREM points at which at least one particle is colliding with the

walls, ®(X,t) is the pointX; obtained fromX via the flow

generated by the dynamics, afdX—2 is the collision
We consider the two-dimensional shear flow model firstmap, i.e., the map that changes the velocity of the colliding

introduced in Ref. 6 and further studied in RefN8identical  particle according to the reflection rufe

disks of radiug evolve in the interior of the system accord- Given a pointX we define

ing to Hamiltonian dynamics with hard core interaction

among them while Maxwell demons at the walls drive the i

system away from equilibrium. More specifically the par- aT(X)=i:;T/2] a(S(X)) 2.4

ticles move on the surface of a cylindge., the system has

periodic boundary conditions on the vertical sidegth re- and

A. The model

[7/2]-1
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FIG. 2. Graphs ok (p) for =100, 400, 600, and 800 fdi=20. The arrows represents the value 1 plus or minus the standard deviatign of

a(X) per particleey=(1/2N)=N ,v2=0.5. In Table | we give
o(X)= (a),’ (2.9 some of the interesting dynamical quantities associated with
o _ the system.
where([t] is the biggest integer less than(- ), refer to the Heret, is the mean time between successive collisions
mean with respect to the forward invariant distribution. Ca”W|th the wallls for a given partic'e’, is the number of binary
m(p) the distribution function ofr, and let collisions (i.e., collisions between two particledetween
1 two consecutive collisions with the walls for a given particle
-~ m(p) _ : :
XAp)= (@) 100 —p) (260  and{a), is the mean phase space contraction rate. Finally
T AP we give the maximum Lyapunov exponent of the nfap
then the chaotic hypothesis of Ref. 5 implies that The data, given without error estimates, are intended to give

limx.(p)=p. 2.7) a rough image of the dynamics.

T—®

To check numerically this relation simulations were car-B' The fluctuation law

ried out on systems oN=10, 20, 30 and 40 particles of The check of the fluctuation theorem was done as in Ref.
radiusR=1 in a “square” box of sizeL=/dN, whered 9. A long trajectory of 5 10° collisions with the walls was
=N/L? is the number density kept constant tb=3.4 simulated and the phase space contraction was recorded for
X 1072, and with the parametdy=25. The initial configu- every 100 collisions. The main difference with Ref. 9 is that
ration was chosen randomly in such a way that the energwe did not attempt to decorrelate the adjacent data segment
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FIG. 3. Behavior ofy, as a function ofr for N=10, 20, 30, and 40.

by leaving out a fixed number of collisions between them. In  The analysis of the fluctuation law requires the construc-
fact in Ref. 9 this was possible because the self-correlation dfon of the whole distribution functiomr(p). But asrgrows
the phase space contraction was decaying rapidly enough tig fluctuations become more and more improbable and it is
leave out just a few collisions. In the present system we findmpossible to construck,(p) for 7>1000. To go further
that while the total phase space contraction rate has rapidlyith ~ we can observe that, starting with=5, the distribu-
decaying correlation the partial onés be defined precisely tion 7 (p) look very much like a Gaussian. Observe that if
and studied in the next sectipfave a very slow decay. we assume that the system is Anosov the central limit theo-
Hence we would have to discard too many collisions torem implies a Gaussian behavior near the maximum of the
decorrelate the adjacent data segments, and we therefore ahstribution but the observed agreement goes, in our opinion,
cided to discard no collisions also for the total phase spacbeyond the prediction of the central limit theorem. Neverthe-
contraction to have a consistent analysis. less it must be noted that the distribution cannot be Gaussian
In Fig. 2 we show the graph of (p) for N=20 and because it is easy to observe that(X)| is bounded. Figure
several values of. As we can see already far=400 the 4 shows the comparison with a GaussianMer 20 and sev-
agreement between the theoretical prediction and the experral values ofr.
ment is very good. Assuming thatr . is a Gaussian immediately implies that
To better follow the behavior of the fluctuation we have x.(p) is linear inp and, callingC, the covariance of,, i.e.,
constructed the functior.(p) for N=10, 20, 30 and 40 for C,=(o?)—1, we have that
several values ofr from 1 to 1000. We have then used a
least-squares-fit to fit the experimental data with a law of the
form x.(p)=x.p. We chose a one parameter fit because
X,(0)=0. The results are shown in Fig. 3. As can be easily
seen the evaluateg, contain 1 within their error-bars start-
ing from a quite small value of. Moreover, one appears to The covarianc€ . can be easily computed from the data
be the asymptotical value of;. and permits us to go beyond the limit 100 met before.

2

Xr= e, (2.9
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FIG. 4. Comparison between the distributiery(p) for N=20 and several values ef and a Gaussian with the same variance and mean. The error-bars are
smaller than the dimension of the points.

As a further check we show the value gf as computed preted as a rapid decay of the correlation for the phase space
from the best fit and from the Gaussian hypothesis for aontraction of the system. We will see that this behavior
small value ofrin Fig. 5. changes greatly when we consider partial phase space con-
The agreement is very good and justifies the use of Eqtractions.
(2.9) for large value ofr. The evaluated behavior gf, for a
large value ofr from the Gaussian hypothesis is shown in
Fig. 6.
In all cases the values gf, are very close to 1 and we
can therefore say that the prediction of the fluctuation law  An interesting question is whether one can give a local
appears to be verified by our numerical simulations. version of the fluctuation theorem. To this extent observe

Finally observe that the approach to 1yaf can be con-  that we can writen (X) = al(x)+ aﬁ(X) where
nected to the decay property of the autocorrelatift)

lll. LOCAL FLUCTUATIONS

= L. . — (2] . .
<0'(S( ))0'( )> 1. In fact we have al(X)= 2[/2] a(SI(X)))(T(SI(X)) (31)
2 < 2 < 1=-lr
C(n)= ;t;T D(t)— ;t;T [t[D(1). (29  and y!(x)=1 if X corresponds to a collision of a particle

with the upper wall and 0 otherwise. An analogous definition
The fast approach of, to its limit can thus be inter- holds foraﬁ(X).
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FIG. 5. Comparison between the valuexgfcomputed directly and using the Gaussian hypothesiblfeB0. Similar result are found fad= 10, 20, and 40.
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The generalized version of the fluctuation theorem ofdecay slowly) It is easy to see that if we suppose them
Ref. 10 gives independent, both of them will separately satisfy the fluctua-

. tion theorem:
1 777' (p11p2)

lim lo

() + gwli( ~P1,—P2)
where 7!'(p;,p,) is the joint distribution of o'l(X)
=al(X)/{a]), andoL(X)=al(X)/(a'), . Duetothe sym- Where
metry of the problem the two variables/(X) and o}(X) .
can be assumed to be identically distributédthough this x(p)= 1 log 72(P)
is well verified numerically it is not evident from a theoret- T <a1>+ 771(— p)
ical point of view. It is in fact easy to see that if the particles
do not interact, i.e., they do not collide, the mean momentunThis can be checked as we did fer(x). In Fig. 7 we show
of the center of mass is, generically, not zero and this willthe graph ofxl(p) for N=20 and several values of
probably create asymmetry between the two walls. This phe- Observe that here we are able to construct the distribu-
nomenon is probably destroyed by the “mixing” behavior tion function 7, up to 7=2000. This is not surprising con-
generated by the binary collisions. It must be neverthelessidering thatal(X) is, in the mean, the sum af2 nonzero
noted that for small systems, like ours, the fluctuations of theerms so that it can be expected to have fluctuations roughly
center of mass momentum are quite big and its correlationsimilar to those ofw 5(X).

“Putpz, (33 lim x.(p)=p, (33

T—®©

(3.9
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FIG. 8. Behavior ofy! as a function ofr for N=10, 20, 30, and 40.
As before we can look at the best fitnff( p) of the form This suggests that the higher order correlations 'o&ind
xl(p)=XLp. The results are shown in Fig. 8. o' are small compared to the second order correlation.

It is clear that foN= 10 and 20 the fit goes significantly Moreover the distribution functiom! is again very well ap-
below 1 at a value of for which y, is very near its theoret- proximated by a Gaussian as can be seen in Fig. 10.
ical value of 1. Moreove;s(l does not seem to have reached  As in the previous section we can assume that the pair
a limiting value whiley, reaches its limiting value of 1 quite (¢',o') represents a bidimensional Gaussian variable with
soon. mean(1,1) and covariance matrix:

The caseN=30 and 40 are less clear because we are

T Tl

unable to construct the distribution function for large C G
enough to have a clear idea of the limiting valuexgf But C=\clt cl| (3.9
it seems reasonable to deduce from the graph that also in this
casey, will became smaller than 1. where

Considering the argument at the beginning of this sec- CT:<(0-T)2>—1 C1:<(01)2>_1' (3.6)
tion it is interesting to look at the cross correlation between T T T T
ol ando! given by From now on we will suppose th&!=C!. This is well

R verified in the experiment and seems natural from the sym-
C,=(o,07)+—1 metry properties of the systertGee, however, the comment
whose graph is plotted in Fig. 9. at the beginning of Sec. Il BWith the above Gaussian hy-
It is interesting to note that, if we disregard the value ofPothesis we can again try to follow the behaviorydffor a
C!! for a small value ofr, we have that the behavior /'  large value ofr using the expression
is linked to that ofy,. In particular we can see that when
C!'=0 we havey,=1. This is particularly clear in the cases XLZ—T- (3.7)
N=10 and 20. (ah)rC]
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Figure 11 shows the results of this evaluation. If B is smaller than 2 the third term dominates in the
Finally we observe that we can write asymptotic behavior on the second one. One can try {6 fit
looking at the log-log plot ofy! and then using a least-
C‘Trlzzcr_cl_ (3.9 g g-log p X~ g

squares fit to find the other coefficient. Unfortunately the
Hence if we assume Gaussianity and talkerge enough log-log plot does not give a precise answer, so we can only

that we can considey,= 1, this gives say thatB is probably less than 2. This implies that the ap-
cll proach to the limit ofy ' is very slow and its limiting value
K.=yl—1=—2. (3.9 changes considerably depending whjétone uses. At the
T cl end we are unable to give a quantitative estimatg./of and

o . . we can just say that it is nonzero and increases With
We can conclude this discussion by observing that, for J y

finite N, the fluctuation law seems to be invalid if we take
into consideration only half of the entropy production. Nev- IV. CONCLUSION

ertheless it is interesting to note thdt'(p) still look linear Our numerical results show that the fluctuation theorem,
and that the slopg!'! seems to reach a finite limit asgoes  Eq. (2.5), is well verified if we consider the total phase space
to infinity. Moreover this limit is very small for smaN and  contractiono of the model described in Sec. | A. Feismall
seems to increase witN. It would be interesting to fit the enough we were able to construct the distributioiip) and
curve in Fig. 11 to give an estimate of the limiting value of check directly the validity of E¢(2.5). For higherr we used
x| as 7. We observe that, as foy,, we can relate the a Gaussian hypothesis to compute the slgpef x.(p) ob-
approach to a limiting value of! with the decay properties taining again a very good agreement with the theoretical pre-
of DI(t)=(c'(S'(-))a'(-))—1. In fact an equation identi- diction. We observe that if we interpret the Gaussianity of
cal to(2.9) holds forCl with D1(t) in the place oD(t). A 7(p) as a central limit theorem effect we get thafp) is
comparison of Figs. 6 and 11 immediately shows that thdinear but no conclusion can be drawn on the slgpe The
decay of correlations of is much slower that ofr. If we  validity of the fluctuation theorem predictions, together with
assume thab'(t)=t"#, with >0, we get that: the Gaussian hypothesis, imply a Green-Kubo formula out of
. t equilibrium as can be seen by combining E@s8) and(2.9)
XLZXLJF A X _ (see also Ref. )9 In this sense we can think that our results
T A depend in part on the fact that we are not very far from
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FIG. 10. Comparison between the distributioh(p) and a Gaussian with the same variance and mean. The errorbars are smaller than the dimension of the

points.

equilibrium. Increasing the shear makes the experimenﬂmdaﬁ. This correlation can be roughly estimatedras so
much harder because the probability of observing negativéhat it probably cannot account for the slow behavior found
fluctuations decreases very rapidly with the shear. Moreovein Sec. lll. That behavior shows a strong correlation between
we expect that the Gaussianity of(p) will be destroyed. the two walls probably due to the slow decay of fluctuation
We think, however, that if the shear is not too big, i.e., if theof the density near the walls. We do not have a clear under-
attractor can still be considered dense in phase sfse® standing of this phenomenon and we hope to come back on it
Ref. 1), then the fluctuation theorem will ho[dee Ref. 12 in a forthcoming work.
for a situation in whichs(p) is clearly not Gaussidn (2) The limiting valuey.'! in not easy to estimate but is
We also checked the validity of the fluctuation theoremclearly smaller than 1. Although it seems to increase with the
for the partial phase space contractioh and o!. In this  number of particles we do not have enough data to draw any
situation we see thatr''! is still well approximated by a conclusion on its behavior wittN. Nevertheless the exis-
Gaussian so thaxli(p) appears to be linear. The slope tence of a limiting nonzero value suggests the validity of a
x!'*, however, behaves in a different way from what one*“local fluctuation theorem” in which the slope 1 is replaced
would expect. Two interesting features of this behavior areby some other value. This behavior may have relations to the
(1) It saturates very slowly. The fact that we consideredrecent experimental result on the local entropy production
in the definition ofo’! !, a fixed number of collisions with  (supposed to be the equivalent of a phase space contraction
both walls clearly creates a negative correlation betwebn in a fluid moving in a convective celf They find there a
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FIG. 11. Behavior ofy! as a function ofr for N=10, 20, 30, and 40.
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