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„Global and local … fluctuations of phase space contraction in deterministic
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We studied numerically the validity of the fluctuation relation introduced in Evanset al. @Phys. Rev.
Lett. 71, 2401–2404~1993!# and proved under suitable conditions by Gallavotti and Cohen@J. Stat.
Phys.80, 931–970~1995!# for a two-dimensional system of particles maintained in a steady shear
flow by Maxwell demon boundary conditions@Chernov and Lebowitz, J. Stat. Phys.86, 953–990
~1997!#. The theorem was found to hold if one considers the total phase space contractions
occurring at collisions with both walls:s5s↑1s↓. An attempt to extend it to more local quantities
s↑ ands↓, corresponding to the collisions with the top or bottom wall only, gave negative results.
The time decay of the correlations ins↑,↓ was very slow compared to that ofs. © 1998 American
Institute of Physics.@S1054-1500~98!00104-9#
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While fluctuations in the total phase space volume con-
traction of a realistically thermostatted computer model
system with shear flow satisfy the Gallavotti-Cohen rela-
tion, partial ones do not. If the same phenomena occurs
for local entropy production then the possibility of the
fluctuation relation being observed in a macroscopic sys-
tem becomes highly dubious. Slow decay of correlations
between the partial contraction seems to be responsible
for this phenomenon.

I. INTRODUCTION

The microscopic structure of systems through wh
there is transport of energy or momentum is a central pr
lem in nonequilibrium statistical mechanics. For gases a p
tial answer to this question~on the mesoscopic/kinetic leve!
is provided by the stationary solution of the Boltzmann eq
tion with suitable, e.g., Maxwellian, boundary condition
Going beyond kinetic theory has proven to be very diffic
and we still lack a full understanding of stationary noneq
librium states~SNS! on the microscopic level.

This gap goes beyond that of computational complex
or even of technical difficulty in proving the validity of th
formulas derived formally, something already present also
the kinetic theory and in equilibrium statistical mechani
What is still missing, at the present time, are well defin
formal procedure which would, at least in principle, provi
answers to questions of physical relevance for SNS of m
roscopic systems. Thus we have no ‘‘statistical mechan
formula’’ for the decay of spatial or time displaced corre
tion functions in a SNS. In particular, we have noa priori
formalism for deciding on the slow power law decay of t
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spatial correlations predicted by computer simulations, fl
tuating hydrodynamics and confirmed by experiments.1 We
also have no formula for computing the stationary heat fl
through a metal or plasma or the momentum flux throug
fluid which goes beyond linear response theory. Such a
mula should, like the Green-Kubo formula for linear tran
port, depend only on the internal Hamiltonian of the syst
and the impressed macroscopic constraints driving the
tem, e.g., a specified temperature or velocity field on
boundaries of the system.

While the usual modeling of such systems has been
stochastic boundaries2 there has been much interest recen
in the study of SNS of particle systems evolving via entire
deterministic dynamics in the hope that dynamical syste
theory will provide new insights into nonequilibrium
behavior.3,4 As is well known the existence of such SNS
finite systems is incompatible with the usual Hamiltoni
evolution, believed to accurately describe the dynamics
systems in which quantum effects are unimportant. For s
dynamics the only realizable stationary states are th
which depend solely on the global constants of motion.
realistic systems these are just the total energy and~under
suitable boundary conditions! the total momentum and angu
lar momentum.

Adding external~globally nongradient! forces to the dy-
namics, e.g., a uniform field in a system with period
boundary conditions~such as would arise from a changin
magnetic flux crossing the surface bounded by a conduc!,
will typically result in the system gaining energy contin
ously from the field, excluding the possibility of SNS. Th
necessitates the use of non phase space volume conse
forces for modeling SNS. Various models of such dynam
have been investigated through computer simulations
heuristic analysis,4 and there have also been some ma
© 1998 American Institute of Physics
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ematical results motivated by physical considerations of s
SNS.5 There is, however, as already mentioned, still a v
wide gap between the mathematical and physical results
tained from these models and a full theory of macrosco
SNS.

While it is not clear at present whether and how t
dynamical system approach will answer such question
seems reasonable to explore the behavior of such SNS.
is particularly so for models in which the imposed, mod
dependent, driving and thermostating terms are confine
the boundaries of the system while the dynamics in the in
rior of the system remain realistically Hamiltonian. Seve
such models of shear flow were investigated via compu
simulations and some heuristic analysis in Ref. 6. Here
continue our investigation focusing on the behavior of
fluctuation in the phase space volume contractions which
occurs at the boundaries.s was found in Ref. 6 to be ap
proximately equal, when the size of the system is sufficien
large for it to be in local thermal equilibrium, to the hydro
dynamic entropy production inside the system. The sa
quantity, in a different model of shear flow, was studied
Ref. 7 where an interesting relation for its large deviatio
was experimentally found. This relation is now a rigoro
result for large deviations of phase space contraction un
suitable conditions on the dynamics.5 Whether the results
hold when the conditions are not satisfied exactly is a qu
tion of great relevance. The exploration of this and rela
quantities is the subject of the present work.

In the next section we describe the model and the ch
of the Gallavotti-Cohen result5 for our system. In Sec. III we
investigate fluctuations and time dependent correlations
the volume contractionss↑ and s↓ produced by collisions
with the top and bottom walls.

II. NUMERICAL SIMULATIONS: THE FLUCTUATION
THEOREM

A. The model

We consider the two-dimensional shear flow model fi
introduced in Ref. 6 and further studied in Ref. 8:N identical
disks of radiusr evolve in the interior of the system accor
ing to Hamiltonian dynamics with hard core interactio
among them while Maxwell demons at the walls drive t
system away from equilibrium. More specifically the pa
ticles move on the surface of a cylinder~i.e., the system has
periodic boundary conditions on the vertical sides! with re-

FIG. 1. Schematic representation of the dynamics of the system.
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flection rules at the top and bottom walls simulating mac
scopic moving walls. The rules are as follows: when a p
ticle collides with the upper wall, making an anglef
between the positivex-direction and the incoming velocity
then the outgoing velocity anglec will be given by a~to be
specified! reflection rulef :

c5 f ~f!. ~2.1!

A similar rule applies on the lower wall with the onl
difference thatc andf refer to the angle between the incom
ing and outgoing velocity and the negativex-direction. Since
the modulus of the velocity is preserved during a collisi
the total kinetic energy of the system is a constant of
motion.

We will assume thatf is ‘‘time reversible,’’ i.e., it satis-
fies f5 f (p2 f (p2f)). Observe that if this condition
holds the system is time reversible: if one inverts the velo
ties of all the particles the system traces back its past tra
tory. In the numerical simulations we will consider one
the reflection rules introduced in Ref. 6, namely,

c5~p1b!2A~p1b!22f~f12b!, ~2.2!

whereb is used to modulate the intensity of the shear w
b5` representing elastic collisions~see Fig. 1!.

During a collision with the walls the Liouville measur
is not conserved. In fact at each ‘‘reflection’’ there is a pha
space contractiona equal to6

a52 logS sinc

sinf
f 8~f! D . ~2.3!

It is natural to consider the collisions with the walls
timing events for the system. This is, we can consider
function T that associates to any pointX in the phase space
of the system, i.e., the energy surfaceS, the first time at
which a particle collides with a wall and define the ma

S:S→S̃, S(X)5F„F(X,T(X))…, where S̃ is the set of
points at which at least one particle is colliding with th
walls, F(X,t) is the pointXt obtained fromX via the flow

generated by the dynamics, andF:S̃→S̃ is the collision
map, i.e., the map that changes the velocity of the collid
particle according to the reflection rulef .

Given a pointX we define

at~X!5 (
i 52[ t/2]

[ t/2]21

a~Si~X!! ~2.4!

and

TABLE I. Static and dynamic quantity for the simulation.

10 20 30 40

d 3.431022 3.431022 3.431022

t0 20.6 30.6 38.1 44.4
n 2.11 3.19 4.00 4.67
^a&1 1.2431022 1.6831022 2.0031022 2.2631022

lmax 0.92 0.74 0.63 0.57
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FIG. 2. Graphs ofxt(p) for t5100, 400, 600, and 800 forN520. The arrows represents the value 1 plus or minus the standard deviation ofst .
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st~X!5
at~X!

^at&1
, ~2.5!

where@t# is the biggest integer less thant, ^•&1 refer to the
mean with respect to the forward invariant distribution. C
pt(p) the distribution function ofst , and let

xt~p!5
1

^at&1
log

pt~p!

pt~2p!
~2.6!

then the chaotic hypothesis of Ref. 5 implies that

lim
t→`

xt~p!5p. ~2.7!

To check numerically this relation simulations were c
ried out on systems ofN510, 20, 30 and 40 particles o
radiusR51 in a ‘‘square’’ box of sizeL5AdN, whered
5N/L2 is the number density kept constant tod53.4
31022, and with the parameterb525. The initial configu-
ration was chosen randomly in such a way that the ene
l

-

y

per particlee05(1/2N)( i 50
N v i

250.5. In Table I we give
some of the interesting dynamical quantities associated w
the system.

Here t0 is the mean time between successive collisio
with the walls for a given particle,n is the number of binary
collisions ~i.e., collisions between two particles! between
two consecutive collisions with the walls for a given partic
and ^a&1 is the mean phase space contraction rate. Fin
we give the maximum Lyapunov exponent of the mapS.
The data, given without error estimates, are intended to g
a rough image of the dynamics.

B. The fluctuation law

The check of the fluctuation theorem was done as in R
9. A long trajectory of 53108 collisions with the walls was
simulated and the phase space contraction was recorde
every 100 collisions. The main difference with Ref. 9 is th
we did not attempt to decorrelate the adjacent data segm
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FIG. 3. Behavior ofxt as a function oft for N510, 20, 30, and 40.
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by leaving out a fixed number of collisions between them.
fact in Ref. 9 this was possible because the self-correlatio
the phase space contraction was decaying rapidly enoug
leave out just a few collisions. In the present system we fi
that while the total phase space contraction rate has rap
decaying correlation the partial ones~to be defined precisely
and studied in the next section! have a very slow decay
Hence we would have to discard too many collisions
decorrelate the adjacent data segments, and we therefor
cided to discard no collisions also for the total phase sp
contraction to have a consistent analysis.

In Fig. 2 we show the graph ofxt(p) for N520 and
several values oft. As we can see already fort5400 the
agreement between the theoretical prediction and the ex
ment is very good.

To better follow the behavior of the fluctuation we ha
constructed the functionxt(p) for N510, 20, 30 and 40 for
several values oft from 1 to 1000. We have then used
least-squares-fit to fit the experimental data with a law of
form xt(p)5xtp. We chose a one parameter fit becau
xt(0)[0. The results are shown in Fig. 3. As can be eas
seen the evaluatedxt contain 1 within their error-bars star
ing from a quite small value oft. Moreover, one appears t
be the asymptotical value ofxt .
n
of
to
d
ly

de-
e

ri-

e
e
y

The analysis of the fluctuation law requires the constr
tion of the whole distribution functionpt(p). But ast grows
big fluctuations become more and more improbable and
impossible to constructxt(p) for t.1000. To go further
with t we can observe that, starting witht.5, the distribu-
tion pt(p) look very much like a Gaussian. Observe that
we assume that the system is Anosov the central limit th
rem implies a Gaussian behavior near the maximum of
distribution but the observed agreement goes, in our opin
beyond the prediction of the central limit theorem. Neverth
less it must be noted that the distribution cannot be Gaus
because it is easy to observe thatuat(X)u is bounded. Figure
4 shows the comparison with a Gaussian forN520 and sev-
eral values oft.

Assuming thatpt is a Gaussian immediately implies th
xt(p) is linear inp and, callingCt the covariance ofst , i.e.,
Ct5^st

2&21, we have that

xt5
2

^at&Ct
. ~2.8!

The covarianceCt can be easily computed from the da
and permits us to go beyond the limit oft5100 met before.
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FIG. 4. Comparison between the distributionpt(p) for N520 and several values oft, and a Gaussian with the same variance and mean. The error-ba
smaller than the dimension of the points.
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As a further check we show the value ofxt as computed
from the best fit and from the Gaussian hypothesis fo
small value oft in Fig. 5.

The agreement is very good and justifies the use of
~2.8! for large value oft. The evaluated behavior ofxt for a
large value oft from the Gaussian hypothesis is shown
Fig. 6.

In all cases the values ofxt are very close to 1 and w
can therefore say that the prediction of the fluctuation l
appears to be verified by our numerical simulations.

Finally observe that the approach to 1 ofxt can be con-
nected to the decay property of the autocorrelationD(t)
5^s(St(•))s(•)&21. In fact we have

C~t!5
2

t (
t52t

t

D~ t !2
2

t2 (
t52t

t

utuD~ t !. ~2.9!

The fast approach ofxt to its limit can thus be inter-
a

q.

preted as a rapid decay of the correlation for the phase s
contraction of the system. We will see that this behav
changes greatly when we consider partial phase space
tractions.

III. LOCAL FLUCTUATIONS

An interesting question is whether one can give a lo
version of the fluctuation theorem. To this extent obse
that we can writeat(X)5at

↑(X)1at
↓(X) where

at
↑~X!5 (

i 52@t/2#

@t/2#

a~Si~X!!x↑~Si~X!! ~3.1!

and x↑(x)51 if X corresponds to a collision of a particl
with the upper wall and 0 otherwise. An analogous definiti
holds forat

↓(X).
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FIG. 6. Value ofxt obtained from the Gaussian hypothesis for larget.

FIG. 5. Comparison between the value ofxt computed directly and using the Gaussian hypothesis forN530. Similar result are found forN510, 20, and 40.
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FIG. 7. Graphs ofxt
↑(p) for t5100, 800, 1400, and 2000 forN520. The arrows represents the value 1 plus or minus the standard deviation ofst
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The generalized version of the fluctuation theorem
Ref. 10 gives

lim
t→`

1

^at
↑&1

log
pt
↑↓~p1 ,p2!

pt
↑↓~2p1 ,2p2!

5p11p2 , ~3.2!

where pt
↑↓(p1 ,p2) is the joint distribution of st

↑(X)
5at

↑(X)/^at
↑&1 andst

↓(X)5at
↓(X)/^at

↓&1 . Due to the sym-
metry of the problem the two variablesst

↑(X) and st
↓(X)

can be assumed to be identically distributed.~Although this
is well verified numerically it is not evident from a theore
ical point of view. It is in fact easy to see that if the particl
do not interact, i.e., they do not collide, the mean moment
of the center of mass is, generically, not zero and this w
probably create asymmetry between the two walls. This p
nomenon is probably destroyed by the ‘‘mixing’’ behavi
generated by the binary collisions. It must be neverthe
noted that for small systems, like ours, the fluctuations of
center of mass momentum are quite big and its correlat
f

m
ll
e-

ss
e
s

decay slowly.! It is easy to see that if we suppose the
independent, both of them will separately satisfy the fluct
tion theorem:

lim
t→`

xt
↑~p!5p, ~3.3!

where

xt
↑~p!5

1

^at
↑&1

log
pt
↑~p!

pt
↑~2p!

. ~3.4!

This can be checked as we did forat(x). In Fig. 7 we show
the graph ofxt

↑(p) for N520 and several values oft.
Observe that here we are able to construct the distr

tion function pt up to t52000. This is not surprising con
sidering thatat

↑(X) is, in the mean, the sum oft/2 nonzero
terms so that it can be expected to have fluctuations roug
similar to those ofat/2(X).
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FIG. 8. Behavior ofxt
↑ as a function oft for N510, 20, 30, and 40.
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As before we can look at the best fit ofxt
↑(p) of the form

xt
↑(p)5xt

↑p. The results are shown in Fig. 8.
It is clear that forN510 and 20 the fit goes significantl

below 1 at a value oft for which xt is very near its theoret
ical value of 1. Moreoverxt

↑ does not seem to have reach
a limiting value whilext reaches its limiting value of 1 quite
soon.

The casesN530 and 40 are less clear because we
unable to construct the distribution function fort large
enough to have a clear idea of the limiting value ofxt . But
it seems reasonable to deduce from the graph that also in
casext will became smaller than 1.

Considering the argument at the beginning of this s
tion it is interesting to look at the cross correlation betwe
st
↑ andst

↓ given by

Ct
↑↓5^st

↑st
↓&121

whose graph is plotted in Fig. 9.
It is interesting to note that, if we disregard the value

Ct
↑↓ for a small value oft, we have that the behavior ofCt

↑↓

is linked to that ofxt . In particular we can see that whe
Ct
↑↓50 we havext51. This is particularly clear in the case

N510 and 20.
e

his

-
n

f

This suggests that the higher order correlations ofs↑ and
s↓ are small compared to the second order correlati
Moreover the distribution functionpt

↑ is again very well ap-
proximated by a Gaussian as can be seen in Fig. 10.

As in the previous section we can assume that the
(s↑,s↓) represents a bidimensional Gaussian variable w
mean~1,1! and covariance matrix:

Ct5S Ct
↑ Ct

↑↓

Ct
↑↓ Ct

↓ D , ~3.5!

where

Ct
↑5^~st

↑!2&21, Ct
↓5^~st

↓!2&21. ~3.6!

From now on we will suppose thatCt
↑5Ct

↓ . This is well
verified in the experiment and seems natural from the sy
metry properties of the system.~See, however, the commen
at the beginning of Sec. II B.! With the above Gaussian hy
pothesis we can again try to follow the behavior ofxt

↑ for a
large value oft using the expression

xt
↑5

2

^a↑&tCt
↑ . ~3.7!
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FIG. 9. Behavior ofCt
↑↓ as a function oft for N510, 20, 30, and 40.
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Figure 11 shows the results of this evaluation.
Finally we observe that we can write

Ct
↑↓52Ct2Ct

↑ . ~3.8!

Hence if we assume Gaussianity and taket large enough
that we can considerxt51, this gives

Kt5xt
↑215

Ct
↑↓

Ct
↑ . ~3.9!

We can conclude this discussion by observing that,
finite N, the fluctuation law seems to be invalid if we tak
into consideration only half of the entropy production. Ne
ertheless it is interesting to note thatxt

↑,↓(p) still look linear
and that the slopext

↑,↓ seems to reach a finite limit ast goes
to infinity. Moreover this limit is very small for smallN and
seems to increase withN. It would be interesting to fit the
curve in Fig. 11 to give an estimate of the limiting value
xt
↑ as t→`. We observe that, as forxt , we can relate the

approach to a limiting value ofxt
↑ with the decay properties

of D↑(t)5^s↑(St(•))s↑(•)&21. In fact an equation identi
cal to ~2.9! holds forCt

↑ with D↑(t) in the place ofD(t). A
comparison of Figs. 6 and 11 immediately shows that
decay of correlations ofs↑ is much slower that ofs. If we
assume thatD↑(t).t2b, with b.0, we get that:

xt
↑5x`

↑1
x↑8

t
1

x↑9

tb21
.

r

-

e

If b is smaller than 2 the third term dominates in t
asymptotic behavior on the second one. One can try to fib
looking at the log-log plot ofxt

↑ and then using a least
squares fit to find the other coefficient. Unfortunately t
log-log plot does not give a precise answer, so we can o
say thatb is probably less than 2. This implies that the a
proach to the limit ofxt

↑,↓ is very slow and its limiting value
changes considerably depending whichb one uses. At the
end we are unable to give a quantitative estimate ofx`

↑,↓ and
we can just say that it is nonzero and increases withN.

IV. CONCLUSION

Our numerical results show that the fluctuation theore
Eq. ~2.5!, is well verified if we consider the total phase spa
contractions of the model described in Sec. I A. Fort small
enough we were able to construct the distributionpt(p) and
check directly the validity of Eq.~2.5!. For highert we used
a Gaussian hypothesis to compute the slopext of xt(p) ob-
taining again a very good agreement with the theoretical p
diction. We observe that if we interpret the Gaussianity
pt(p) as a central limit theorem effect we get thatxt(p) is
linear but no conclusion can be drawn on the slopext . The
validity of the fluctuation theorem predictions, together w
the Gaussian hypothesis, imply a Green-Kubo formula ou
equilibrium as can be seen by combining Eqs.~2.8! and~2.9!
~see also Ref. 9!. In this sense we can think that our resu
depend in part on the fact that we are not very far fro
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FIG. 10. Comparison between the distributionpt
↑(p) and a Gaussian with the same variance and mean. The errorbars are smaller than the dimensio
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equilibrium. Increasing the shear makes the experim
much harder because the probability of observing nega
fluctuations decreases very rapidly with the shear. Moreo
we expect that the Gaussianity ofpt(p) will be destroyed.
We think, however, that if the shear is not too big, i.e., if t
attractor can still be considered dense in phase space~see
Ref. 11!, then the fluctuation theorem will hold@see Ref. 12
for a situation in whichpt(p) is clearly not Gaussian#.

We also checked the validity of the fluctuation theore
for the partial phase space contractions↑ and s↓. In this
situation we see thatp↑,↓ is still well approximated by a
Gaussian so thatxt

↑,↓(p) appears to be linear. The slop
xt
↑,↓ , however, behaves in a different way from what o

would expect. Two interesting features of this behavior a
~1! It saturates very slowly. The fact that we consider

in the definition ofst
↑,↓ , a fixed number of collisionst with

both walls clearly creates a negative correlation betweenst
↑

nt
e

er

,

andst
↓ . This correlation can be roughly estimated ast21 so

that it probably cannot account for the slow behavior fou
in Sec. III. That behavior shows a strong correlation betwe
the two walls probably due to the slow decay of fluctuati
of the density near the walls. We do not have a clear und
standing of this phenomenon and we hope to come back o
in a forthcoming work.

~2! The limiting valuex`
↑,↓ in not easy to estimate but i

clearly smaller than 1. Although it seems to increase with
number of particles we do not have enough data to draw
conclusion on its behavior withN. Nevertheless the exis
tence of a limiting nonzero value suggests the validity o
‘‘local fluctuation theorem’’ in which the slope 1 is replace
by some other value. This behavior may have relations to
recent experimental result on the local entropy product
~supposed to be the equivalent of a phase space contrac!
in a fluid moving in a convective cell.13 They find there a
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FIG. 11. Behavior ofxt
↑ as a function oft for N510, 20, 30, and 40.
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clear linear behavior but the slope seems to be different f
one. The results are, however, still unclear and no real c
parison can be made.
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