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Abstract

We study theoretical and computational aspects of the least squares fit (LSF) of
circles and circular arcs. First we discuss the existence and uniqueness of LSF and
various parametrization schemes. Then we evaluate several popular circle fitting
algorithms and propose a new one that surpasses the existing methods in reliability.
We also discuss and compare direct (algebraic) circle fits.

1 Introduction

Fitting simple contours (primitives) to experimental data is one of the basic problems in
pattern recognition and computer vision. The simplest contours are linear segments and
circular arcs. The need of approximating scattered points by a circle or a circular arc
arises in physics [1, 2, 3], biology and medicine [4, 5, 6], archeology [7], industry [8, 9, 10],
etc. The problem was studied since at least early sixties [11], and attracted much more
attention in recent years due to its importance in image processing [12, 13].

We study the least squares fit (LSF) of circles and circular arcs. This method is
based on minimizing the mean square distance from the circle to the data points. Given
n points (xi, yi), 1 ≤ i ≤ n, the objective function is defined by

F =
n∑

i=1

d2
i (1.1)

where di is the Euclidean (geometric) distance from the point (xi, yi) to the circle. If the
circle satisfies the equation

(x− a)2 + (y − b)2 = R2 (1.2)

where (a, b) is its center and R its radius, then

di =
√

(xi − a)2 + (yi − b)2 −R (1.3)
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The minimization of (1.1) is a nonlinear problem that has no closed form solution. There
is no direct algorithm for computing the minimum of F , all known algorithms are either
iterative and costly or approximative by nature.

The purpose of this paper is a general study of the problem. It consists of three parts.
In the first one we address fundamental issues, such as the existence and uniqueness of
a solution, the right choice of parameters to work with, and the general behavior of the
objective function F on the parameter space. These issues are rarely discussed in the
literature, but they are essential for understanding of advantages and disadvantages of
practical algorithms. The second part is devoted to the geometric fit – the minimization
of the sum of squares of geometric distances, which is given by F . Here we evaluate three
most popular algorithms (Levenberg-Marquardt, Landau, and Späth) and develop a new
approach. In the third part we discuss an algebraic fit based on approximation of F by a
simpler algebraic function that can be minimized by a direct, noniterative algorithm. We
compare three such approximations and propose some more efficient numerical schemes
than those published so far.

Additional information about this work can be found on our web site [14].

2 Theoretical aspects

The very first questions one has to deal with in many mathematical problems are the
existence and uniqueness of a solution. In our context the questions are: Does the
function F attain its minimum? Assuming that it does, is the minimum unique? These
questions are not as trivial as they may appear.

2.1 Existence of LSF. The function F is obviously continuous in the circle parameters
a, b, R. According to a general principle, a continuous function always attains a minimum
(possibly, not unique) if it is defined on a closed and bounded (i.e., compact) domain.
Our function F is defined for all a, b and all R ≥ 0, so its domain is not compact. For
this reason the function F fails to attain its minimum in some cases.

For example, let n ≥ 3 distinct points lie on a straight line. Then one can approximate
the data by a circle arbitrarily well and make F arbitrarily close to zero, but since no
circle can interpolate n ≥ 3 collinear points, we will always have F > 0. Hence, the least
squares fit by circles is, technically, impossible. For any circle one can find another circle
that fits the data better. The best fit here is given by the straight line trough the data
points, which yields F = 0. If we want the LSF to exist, we have to allow lines, as well
as circles, in our model, and from now on we do this.

One can prove now that the function F defined on circles and lines always attains its
minimum, and so the existence of the LSF is guaranteed. A detailed proof is available in
[14].

We should note that if the data points are generated randomly with a continuous
probability distribution (such as normal or uniform), then the probability that the LSF
returns a line, rather than a circle, is zero. This is why lines are often ignored and one
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practically works with circles only. On the other hand, if the coordinates of the data
points are discrete (such as pixels on a computer screen), then lines may appear with a
positive probability and have to be reckoned with.

2.2 Uniqueness of LSF. This question is not trivial either. Even if F takes its minimum
on a circle, the best fitting circle may not be unique, as several other circles may minimize
F as well. We could not find such examples in the literature, so we provide our own here.

Examples of multiple minima. Let four data points (±1, 0) and (0,±1) make a square
centered at the origin. We place another k ≥ 4 points identically at the origin (0, 0) to
have a total of n = k +4 points. This configuration is invariant under a rotation through
the right angle about the origin. Hence, if a circle minimizes F , then by rotating that
circle through π/2, π, and 3π/2 we get three other circles that minimize F as well.

Thus, we get four distinct best fitting circles, unless either (i) the best circle is centered
at the origin or (ii) the best fit is a line. So we need to show that neither is the case.
This involves some simple calculations. If a circle has radius r and center at (0, 0), then
F = 4(1− r2) + kr2. The minimum of this function is attained at r = 4/(k + 4), and it
equals F0 = 4k/(k + 4). Also, the best fitting line passes through the origin and gives
F1 = 2. On the other hand, consider the circle passing through three points (0, 0), (0, 1),
and (1, 0). It only misses two other points, (−1, 0) and (0,−1), and it is easy to see that
it gives F < 2, which is less than F1 and F0 whenever k ≥ 4. Hence, the best fit is a
circle not centered at the origin, and so our construction works.
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Figure 1: A data set (left) for which the objective function (right) has four minima.

Figure 1 illustrates our example, it gives the plot of F with four distinct minima (the
plotting method is explained below). By changing the square to a rectangle one can
make F have exactly two minima. By replacing the square with a regular m-gon and
increasing the number of identical points at (0, 0) one can construct F with exactly m
minima for any m ≥ 3, see details in [14].

Of course, if the data points are generated randomly with a continuous probability
distribution, then the probability that the objective function F has multiple minima is
zero. In particular, small random perturbations of the data points in our example on
Fig. 1 will slightly change the values of F at its minima, so that one of them will become
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a global (absolute) minimum and three others – local (relative) minima.
We note, however, that while the cases of multiple global minima are indeed exotic,

they demonstrate that the global minimum of F may change discontinuously if one slowly
moves data points.

2.3 Local minima of the objective function. Generally, local minima are undesir-
able, since they can trap iterative algorithms and lead to false solutions.

We have investigated how frequently the function F has local minima (and how
many). In our experiment, n data points were generated randomly with a uniform dis-
tribution in the unit square 0 < x, y < 1. Then we applied the Levenberg-Marquard
algorithm (described below) starting at 1000 different, randomly selected initial condi-
tions. Every point of convergence was recorded as a minimum (local or global) of F . If
there were more than one point of convergence, then one of them was the global minimum
and the others were local minima. Table 1 shows the probabilities that F had 0,1,2 or
more local minima for n = 5, . . . , 100 data points.

5 10 15 25 50 100

0 0.879 0.843 0.883 0.935 0.967 0.979
1 0.118 0.149 0.109 0.062 0.031 0.019

≥ 2 0.003 0.008 0.008 0.003 0.002 0.002

Table 1. Probability of 0, 1, 2 or more local minima of F when n = 5, . . . , 100 points
are randomly generated in a unit square.

We see, surprisingly, that local minima only occur with probability < 15%. The more
points are generated, the less frequently the function F has any local minima. Multiple
local minima turn up with probability even less than 1%. The maximal number of local
minima we observed was four, it happened only a few times in almost a million random
samples we tested.

Generating points with a uniform distribution in a square produces completely “chaotic”
samples without any predefined pattern. This is, in a sense, the worst case scenario. If
we generate points along a circle or a circular arc (with some noise), then local minima
virtually never occur. For example, if n = 10 points are sampled along a 90o circular arc
of radius R = 1 with a Gaussian noise at level σ = 0.05, then the probability that F has
any local minima is as low as 0.001.

Therefore, in typical applications the objective function F is very likely to have a
unique (global) minimum and no local minima. Does this mean that a standard iterative
algorithm, such as the steepest descent or Gauss-Newton or Levenberg-Marquardt, would
converge to the global minimum from any starting point? Unfortunately, this is not the
case, as we demonstrate next.

2.4 Plateaus and valleys on the graph of the objective function. In order to
examine the behavior of F we found a way to visualize its graph. Even though F(a, b, R)
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is a function of three parameters, it happens to be just a quadratic polynomial in R when
the other two variables are fixed. So it has a unique global minimum in R that can be
easily found. If we denote

ri =
√

(xi − a)2 + (yi − b)2 (2.1)

then the minimum of F with respect to R is attained at

R̂ = r̄ :=
1

n

n∑

i=1

ri (2.2)

This allows us to eliminate R and express F as a function of a, b:

F =
n∑

i=1

(ri − r̄)2 (2.3)

A function of two variables can be easily plotted. This is exactly how we did it on Fig. 1.

0

0.5

1

–1 1

Figure 2: A simulated data set of 50 points.

Now, Fig. 2 presents a typical random sample of n = 50 points generated along a
circular arc (the upper half of the unit circle x2 +y2 = 1) with a Gaussian noise added at
level σ = 0.01. Fig. 3 shows the graph of F plotted by MAPLE in two different scales.
One can clearly see that F has a global minimum around a = b = 0 and no local minima.
Fig. 4 presents a flat grey scale contour map, where darker colors correspond to deeper
parts of the graph (smaller values of F).
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Figure 3: The objective function F for the data set shown on fig. 2: a large view (left)
and the minimum (right).
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Fig. 3 shows that the function F does not grow as a, b →∞. In fact, it is bounded, i.e.
F(a, b) ≤ Fmax < ∞. The boundedness of F actually explains the appearance of large
nearly flat plateaus and valleys on Fig. 3 that stretch out to infinity in some directions.
If an iterative algorithm starts somewhere in the middle of such a plateau or a valley
or gets there by chance, it will have hard time moving at all, since the gradient of F
almost vanishes there. We indeed observed conventional algorithms getting “stuck” on
flat plateaus or valleys in our tests. The new algorithm we propose below does not have
this drawback.
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a

Figure 4: A grey-scale contour map of the objective function F . Darker colors
correspond to smaller values of F . The minimum is marked by a cross.

Second, there are two particularly interesting valleys that stretch roughly along the
line a = 0 on Figs. 3 and 4. One of them, corresponding to b < 0, has its bottom point
at the minimum of F . The function F slowly decreases along the valley as it approaches
the minimum. Hence, any iterative algorithm starting in that valley or getting there by
chance should, ideally, find its way downhill and arrive at the minimum of F .

The other valley corresponds to b > 0, it is separated from the global minimum of
F by a ridge. The function F slowly decreases along this valley as b grows. Hence, any
iterative algorithm starting in this valley or getting there “by accident” will be forced to
move up along the b axis, away from the minimum of F , all the way to b = ∞.

If an iterative algorithm starts at a randomly chosen point, it may go down into
either valley, and there is a good chance that it descends into the second valley and
then escapes to infinity. For the sample on Fig. 2, we applied the Levenberg-Marquardt
algorithm starting at a randomly selected point in the square 5 × 5 about the centroid
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xc = 1
n

∑
xi, yc = 1

n

∑
yi of the data. We found that the algorithm escaped to infinity

with probability about 50%.
Unfortunately, such “escape valleys” are inevitable. We have proved [14] that for

almost every data sample there was a pair of valleys stretching out in opposite directions,
so that one valley descends to the minimum of F , while the other valley descends toward
infinity.

We now summarize our observations. There are three major ways in which conven-
tional iterative algorithms may fail to find the minimum of F :

(a) when they converge to a local minimum;

(b) when they slow down and stall on a nearly flat plateau or in a valley;

(c) when they diverge to infinity along a decreasing valley.

We will not attempt here to deal with local minima of F causing the failure of type
(a), since local minima occur quite rarely. But the other two types of failures (b) and
(c) can be drastically reduced, if not eliminated altogether, by adopting a new set of
parameters, which we introduce next.

2.5 Choice of parametrization. The trouble with the natural circle parameters a, b, R
is that they become arbitrarily large when the data are approximated by a circular arc
with low curvature. Not only does this lead to a catastrophic loss of accuracy when two
large nearly equal quantities are subtracted in (1.3), but this is also ultimately responsible
for the appearance of flat plateaus and descending valleys that cause failures (b) and (c)
in iterative algorithms.

We now adopt a parametrization used in [15, 16], in which the equation of a circle is

A(x2 + y2) + Bx + Cy + D = 0 (2.4)

Note that this gives a circle when A 6= 0 and a line when A = 0, so it conveniently
combines both types of contours in our model. The parameters A,B, C, D must satisfy
the inequality B2+C2−4AD > 0 in order to define a nonempty circle or a line. Since the
parameters only need to be defined up to a scalar multiple, we can impose a constraint

B2 + C2 − 4AD = 1 (2.5)

If we additionally require that A ≥ 0, then every circle or line will correspond to a unique
quadruple (A,B,C,D) and vice versa. For technical reasons, though, we do not restrict
A, so that circles have a duplicate parametrization, see (2.7) below. The conversion
formulas between the natural parameters and the new ones are

a = − B

2A
, b = − C

2A
, R =

1

2|A| (2.6)

and

A = ± 1

2R
, B = −2Aa, C = −2Ab, D =

B2 + C2 − 1

4A
(2.7)
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The distance from a point (xi, yi) to the circle can be expressed, after some algebraic
manipulations, as

di = 2
Pi

1 +
√

1 + 4APi

(2.8)

where
Pi = A(x2

i + y2
i ) + Bxi + Cyi + D (2.9)

One can check that 1 + 4APi ≥ 0 for all i, see below, so that the function (2.8) is well
defined.

The formula (2.8) is somewhat more complicated than (1.3), but the following advan-
tages of the new parameters can outweigh the higher cost of computations.

First, the is no need to work with arbitrarily large values of parameters anymore.
One can effectively reduce the parameter space to a box

{|A| < Amax, |B| < Bmax, |C| < Cmax, |D| < Dmax} (2.10)

where Amax, Bmax, Cmax, Dmax can be determined explicitly [14]. This conclusion is
based on some technical analysis, and we only outline the main steps. Given a sample

(xi, yi), 1 ≤ i ≤ n, let dmax = maxi,j

√
(xi − xj)2 + (yi − yj)2 denote the maximal distance

between the data points. Then we observe that (i) the distance from the best fitting line
or circle to the centroid of the data (xc, yc) does not exceed dmax. It also follows from
(2.2) that (ii) the best fitting circle has radius R ≥ dmax/n, hence |A| ≤ n/2dmax. Thus
the model can be restricted to circles and lines satisfying the two conditions (i) and (ii).
Under these conditions, the parameters A,B, C, D are bounded by some constants Amax,
Bmax, Cmax, Dmax. A detailed proof of this fact is contained in [14].

The effective boundedness of the parameters A,B,C,D renders them a preferred
choice for numerical calculations. In particular, when the search for a minimum is re-
stricted to a closed box (2.10), it can hardly run into vast nearly flat plateaus that we
have seen on Fig. 3.

Second, the objective function is now smooth in A,B, C, D on the parameter space.
In particular, no singularities occur as a circular arc approaches a line. Circular arcs
with low curvature correspond to small values of A, lines correspond to A = 0, and the
objective function and all its derivatives are well defined at A = 0.

Third, recall the two valleys shown on Figs. 3-4, which we have proved to exist for
almost every data sample [14]. In the new parameter space they become two halves
of one valley stretching continuously across the hyperplane A = 0 and descending to
the minimum of F . Therefore, any iterative algorithm starting anywhere in that (now
unique) valley would converge to the minimum of F (maybe crossing the plane A = 0 on
its way). There is no escape to infinity anymore.

As a result, the new parametrization can effectively reduce, if not eliminate com-
pletely, the failures of types (b) and (c). This will be confirmed experimentally in the
next section.
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3 Geometric fit

3.1 Three popular algorithms. The minimization of the nonlinear function F cannot
be accomplished by a finite algorithm. Various iterative algorithms have been applied to
this end. The most successful and popular are

(a) the Levenberg-Marquardt method.

(b) Landau algorithm [17].

(c) Späth algorithm [18, 19]

Here (a) is a short name for the classical Gauss-Newton method with the Levenberg-
Marquardt correction [20, 21]. It can effectively solve any least squares problem of type
(1.1) provided the first derivatives of di’s with respect to the parameters can be computed.
The Levenberg-Marquardt algorithm is quite stable and reliable, and it usually converges
rapidly (if the data points are close to the fitting contour, the convergence is nearly
quadratic). Fitting circles with the Levenberg-Marquardt method is described in many
papers, see, e.g. [22].

The other two methods are circle-specific. The Landau algorithm employs a simple
fixed-point iterative scheme, nonetheless it shows a remarkable stability and is widely used
in practice. Its convergence, though, is linear [17]. The Späth algorithm makes a clever
use of an additional set of (dummy) parameters and is based on alternating minimization
with respect to the dummy parameter set and the real parameter set (a, b, R). At each
step, one set of parameters is fixed, and a global minimum of the objective function F
with respect to the other parameter set is found, which guarantees (at least theoretically)
that F decreases at every iteration. The convergence of Späth’s algorithm is, however,
known to be slow [13].

The cost per iteration is about the same for all the three algorithms: the Levenberg-
Marquardt requires 12n+41 flops per iteration, Landau takes 11n+5 flops per iteration
and for Späth the flop count is 11n + 13 per iteration (in all cases, a prior centering of
the data is assumed, i.e. xc = yc = 0).

We have tested the performance of these three algorithms experimentally, and the
results are reported in Section 3.3.

3.2 A new algorithm for circle fitting. In Section 2.5 we introduced parameters
A, B, C, D subject to the constraint (2.5). Here we show how the Levenberg-Marquardt
scheme can be applied to minimize the function (1.1) in the parameter space (A,B,C,D).

First, we introduce a new parameter – an angular coordinate θ defined by

B =
√

1 + 4AD cos θ, C =
√

1 + 4AD sin θ,

so that θ replaces B and C. Now one can perform an unconstrained minimization of F =∑
d2

i in the three-dimensional parameter space (A,D, θ). The distance di is expressed by
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(2.8) with

Pi = A(x2
i + y2

i ) +
√

1 + AD (xi cos θ + yi sin θ) + D

= Azi + Eui + D

where we denote, for brevity, zi = x2
i + y2

i , E =
√

1 + 4AD, and ui = xi cos θ + yi sin θ.
The first derivatives of di with respect to the parameters are

∂di/∂A = (zi + 2Dui/E)Ri − d2
i /Qi

∂di/∂D = (2Aui/E + 1)Ri

∂di/∂θ = (−xi sin θ + yi cos θ)ERi

where Qi =
√

1 + 4APi and

Ri =
2(1− Adi/Qi)

Qi + 1

Then one can apply the standard Levenberg-Maquardt scheme, see details in [14]. The
resulting algorithm is more complicated and costly than the methods described in 3.1, it
requires 39n+40 flops and one trigonometric function call per iteration. But it converges
in a fewer iterations than other methods, so that its overall performance is rather good,
see the next section.

This approach has some pitfalls – the function F is singular (its derivatives are dis-
continuous) when 1 + 4APi = 0 for some i or when 1 + 4AD = 0. We see that

1 + 4APi =
(xi − a)2 + (yi − b)2

R2

This quantity vanishes if xi = a and yi = b, i.e. when a data point coincides with the
circle’s center, and this is extremely unlikely to occur. In fact, it has never happened in
our tests, so that we did not use any security measures against the singularity 1+4APi =
0.

On the other hand, we see that

1 + 4AD =
a2 + b2

R2

which vanishes whenever a = b = 0. This singularity turns out to be more serious – when
the circle’s center computed iteratively approaches the origin, the algorithm often gets
stuck because it persistently tries to enter the forbidden area 1 + 4AD < 0. We found a
simple remedy: whenever the algorithm attempts to make 1+4AD negative, we shift the
origin by adding a vector (u, v) to all the data coordinates (xi, yi), and then recompute
the parameters (A,D, θ). The vector (u, v) should be of size comparable to the average
distance between the data points, and its direction can be chosen randomly. The shift
had to be applied only occasionally and its cost was negligible.
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Remark. Another convenient parametrization of circles (and lines) was proposed by
Karimäki [3]. He uses three parameters: the signed curvature (ρ = ±1/R), the distance
of closest approach (d) to the origin, and the direction of propagation (ϕ) at the point
of closest approach. Karimäki’s parameters ρ, d, ϕ are similar to ours A, D, θ, and can
be also used in the alternative Levenberg-Marquardt scheme.

3.3 Experimental tests. We have generated 10000 samples of n points randomly with
a uniform distribution in the unit square 0 < x, y < 1. For each sample, we generated
1000 initial guesses by selecting a random circle center (a, b) in a square 5×5 around the
centroid (xc, yc) of the sample and then computing the radius R by (2.2). Every triple
(a, b, R) was then used as an initial guess, and we ran all the four algorithms starting at
it.

For each sample and for each algorithm, we have determined the number of runs,
from 1000 random initial guesses, when the iterations converged to the global minimum
of F . Dividing that number by the total number of generated initial guesses, 1000,
we obtained the probability of convergence to the minimum of F . We also computed
the average number of iterations in which the convergence took place. At this stage,
the samples for which the function F had any local minima, in addition to the global
minimum, were eliminated. The fraction of such samples was less than 15%, as one can
see in Table 1. The remaining majority of samples were used to compute the overall
characteristics of each algorithm: the grand average probability of convergence to the
minimum of F and the grand mean number of iterations the convergence took. We note
that, since samples with local minima are eliminated, the probability of convergence will
be a true measure of the algorithm’s reliability. All failures to converge will occur when
the algorithm falters and cannot find any minima, which we consider as the algorithm’s
fault.

This experiment was repeated for n = 5, 10, . . . , 100. The results are presented on
Figures 5 and 6, where the algorithms are marked as follows: LAN for Landau, SPA for
Späth, LMC for the canonical Levenberg-Maquardt in the (a, b, R) parameter space, and
LMA for the alternative Levenberg-Maquardt in the (A,D, θ) parameter space.

LAN

n

SPA
LMC
LMA
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100
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Figure 5: The probability of convergence to the minimum of F starting at a random
initial guess.
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Figure 5 shows the probability of convergence to the minimum of F , it clearly demon-
strates the superiority of the LMA method. Figure 6 presents the average cost of conver-
gence, in terms of flops per data point, for all the four methods. The fastest algorithm
is the canonical Levenberg-Marquardt (LMC). The alternative Levenberg-Marquardt
(LMA) is almost twice as slow. The Späth and Landau methods happen to be far more
expensive, in terms of the computational cost, than both Levenberg-Marquardt schemes.

LAN

SPA

LMC
LMA

0

1000

2000

3000

4000

5000

20 40 60 80 100

Figure 6: The average cost of computations, in flops per data point.

The poor performance of the Landau and Späth algorithms is illustrated on Fig. 7.
It shows a typical path taken by each of the four procedures starting at the same initial
point (1.35, 1.34) and converging to the same limit point (0.06, 0.03) (the global minimum
of F). Each dot represents one iteration. For LMA and LMC, subsequent iterations are
connected by grey lines. One can see that LMA (hollow dots) heads straight to the target
and reaches it in about 5 iterations. LMC (solid dots) makes a few jumps back and forth
but arrives at the target in about 15 steps. On the contrary, SPA (square dots) and LAN
(round dots) advance very slowly and tend to make many short steps as they approach
the target (in this example SPA took 60 steps and LAN more than 300). Note that LAN
makes an inexplicable long detour around the point (1.5, 0). Such tendencies account for

12



the overall high cost of computations for these two algorithms as reported on Fig. 6.

LMCLMA
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Figure 7: Paths taken by the four algorithms on the ab plane, from the initial guess at
(1.35, 1.34) marked by a large cross to the minimum of F at (0.06, 0.03) (a small cross).

Next, we have repeated our experiment with a different rule of generating data sam-
ples. Instead of selecting points randomly in a square we now sample them along a
circular arc of radius R = 1 with a Gaussian noise at level σ = 0.01. We set the number
of points to 20 and vary the arc length from 5o to 360o. Otherwise the experiment pro-
ceeded as before, including the random choice of initial guesses. The results are presented
on Figures 8 and 9.

(in degrees)
arc lengthLANSPA

LMC

LMA
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Figure 8: The probability of convergence to the minimum of F starting at a random
initial guess.

We see that the alternative Levenberg-Marquardt method (LMA) is very robust –
its displays a remarkable 100% convergence across the entire range of the arc length.
The reliability of the other three methods is high (up to 95%) on full circles (360o) but
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degrades to 50% on half-circles. Then the conventional Levenberg-Marquardt (LMC)
stays on the 50% level for all smaller arcs down to 5o. The Späth method breaks down
on 50o arcs and the Landau method breaks down even earlier, on 110o arcs.

Figure 9 shows that the cost of computations for the LMA and LMC methods remains
low for relatively large arcs, but it grows sharply for very small arcs (below 20o). The
LMC is generally cheaper than LMA, but, interestingly, becomes more expensive on arcs
below 30o. The cost of the Späth and Landau methods is, predictably, higher than that
of the Levenberg-Marquardt schemes, and it skyrockets on arcs smaller than half-circles
making these two algorithms prohibitively expensive.

LANSPA

LMC
LMA
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400
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800

1000
1200
1400
1600
1800
2000

50 100 150 200 250 300 350

Figure 9: The average cost of computations, in flops per data point.

We emphasize, though, that our results are obtained when the initial guess is just
picked randomly from a large square. In practice one can always find more sensible ways
to choose an initial guess, so that the subsequent iterative schemes would perform much
better than they did in our tests. We devote the next section to various choices of the
initial guess and the corresponding performance of the iterative methods.

4 Algebraic fit

Generally, iterative algorithms for minimizing nonlinear functions like (1.1) are quite
sensitive to the choice of the initial guess. As a rule, one needs to provide an initial guess
close enough to the minimum of F in order to ensure a rapid convergence.

The selection of an initial guess requires some other, preferably fast and non-iterative,
procedure. In mass data processing, where speed is a factor, one often cannot afford
relatively slow iterative methods, hence a non-iterative fit is the only option.

A fast and non-iterative approximation to the LSF is provided by the so called alge-
braic fit, or AF for brevity. We will describe three different versions of the AF below.

4.1 “Pure” algebraic fit. The first one, we call it AF1, is a very simple and old method,
it has been known since at least 1972, see [8, 9], and then rediscovered and published
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independently by many people [23, 1, 10, 24, 25, 26, 18]. In this method, instead of
minimizing the sum of squares of the geometric distances (1.1)–(1.3), one minimizes the
sum of squares of algebraic distances

F1(a, b, R) =
n∑

i=1

[(xi − a)2 + (yi − b)2 −R2]2

=
n∑

i=1

(zi + Bxi + Cyi + D)2 (4.11)

where zi = x2
i + y2

i (as before), B = −2a, C = −2b, and D = a2 + b2 − R2. Now,
differentiating F1 with respect to B, C, D yields a system of linear equations:

MxxB + MxyC + MxD = −Mxz

MxyB + MyyC + MyD = −Myz

MxB + MyC + nD = −Mz

where Mxx,Mxy, etc. denote moments, for example Mxx =
∑

x2
i , Mxy =

∑
xiyi. Solving

this system (by Cholesky decomposition or another matrix method) gives B,C, D, and
finally one computes a, b, R.

The AF1 algorithm is very fast, it requires 13n+31 flops to compute a, b, R. However,
it gives an estimate of (a, b, R) that is not always statistically optimal in the sense that
the corresponding covariance matrix may exceed the Rao-Cramer lower bound, see [27].
This happens when data points are sampled along a circular arc, rather than a full
circle. Moreover, when the data are sampled along a small circular arc, the AF1 is very
biased and tends to return absurdly small circles [2, 15, 16]. Despite these shortcomings,
though, AF1 remains a very attractive and simple routine for supplying an initial guess
for iterative algorithms.

4.2 Gradient-weighted algebraic fit (GWAF). In the next subsections we will show
how the “pure” algebraic fit can be improved at a little extra computational cost. First,
we use again the circle equation (2.4) and note that the minimization of (4.11) is equiv-
alent to that of

F1(A,B, C, D) =
n∑

i=1

(Azi + Bxi + Cyi + D)2 (4.12)

under the constraint A = 1. We will show that some other constraints lead to more
accurate estimates.

The best results are achieved with the so called gradient-weighted algebraic fit, or
GWAF for brevity. In its general form it goes like this. Suppose one wants to approximate
scattered data with a curve described by an implicit polynomial equation P (x, y) = 0,
the coefficients of the polynomial P (x, y) playing the role of parameters. The “pure”
algebraic fit is based on minimizing

Fa =
n∑

i=1

[P (xi, yi)]
2
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where one of the coefficients of P must be set to one to avoid the trivial solution in which
all the coefficients turn zero. Our AF1 is exactly such a scheme. On the other hand, the
GWAF is based on minimizing

Fg =
n∑

i=1

[P (xi, yi)]
2

‖∇P (xi, yi)‖2
(4.13)

here ∇P (x, y) is the gradient of the function P (x, y). There is no need to set any co-
efficient of P to one, since both numerator and denominator in (4.13) are homogeneous
quadratic polynomials of parameters, hence the value of Fg is invariant under the multi-
plication of all the parameters by a scalar. The reason why Fg works better than Fa is
that we have, by the Taylor expansion,

|P (xi, yi)|
‖∇P (xi, yi)‖ = di +O(d2

i )

where di is the geometric distance from the point (xi, yi) to the curve P (x, y) = 0. Thus,
the function Fg is simply the first order approximation to the classical objective function
F in (1.1).

The GWAF is known since at least 1974 [28]. It was applied specifically to quadratic
curves (ellipses and hyperbolas) by Sampson in 1982 [29], and recently became standard
in computer vision industry [30, 31, 32]. This method is well known to be statistically
optimal, in the sense that the covariance matrix of the parameter estimates satisfies the
Rao-Cramer lower bound [33]. We plan to investigate the statistical properties of the
GWAF for the circle fitting problem in a separate paper, here we focus on its numerical
implementation.

In the case of circles, P (x, y) = A(x2 + y2) + Bx + Cy + D and ∇P (x, y) = (2Ax +
B, 2Ay + C), hence

‖∇P (xi, yi)‖2 = 4Az2
i + 4ABxi + 4ACyi + B2 + C2

= 4A(Azi + Bxi + Cyi + D) + B2 + C2 − 4AD (4.14)

and the GWAF reduces to the minimization of

Fg =
n∑

i=1

[Azi + Bxi + Cyi + D]2

[4A(Azi + Bxi + Cyi + D) + B2 + C2 − 4AD]2
(4.15)

This is a nonlinear problem that can only be solved iteratively, see some general schemes
in [32, 31]. However, there are two approximations to (4.15) that lead to simpler and
noniterative solutions.

4.3 Pratt’s approximation to GWAF. If data points (xi, yi) lie close to the circle,
then Azi + Bxi + Cyi + D ≈ 0, and we approximate (4.15) by

F2 =
n∑

i=1

[Azi + Bxi + Cyi + D]2

B2 + C2 − 4AD
(4.16)
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The objective function F2 was proposed by Pratt in 1987 [15], who clearly described its
advantages over the “pure” algebraic fit. Pratt proposed to minimize F2 by using matrix
methods, see below, which were computationally expensive. We describe a simpler yet
absolutely reliable numerical algorithm below.

Converting the function F2 back to the original circle parameters (a, b, R) gives the
minimization problem

F2(a, b, R) =
1

4R2

n∑

i=1

[x2
i + y2

i − 2axi − 2byi + a2 + b2 −R2]2 → min (4.17)

In this form it was stated and solved by Chernov and Ososkov in 1984 [2]. They found a
stable and efficient noniterative algorithm that did not involve expensive matrix compu-
tations. Since 1984, this algorithm has been used in experimental nuclear physics. We
propose an improvement of their algorithm below. The objective function (4.17) was
also derived by Kanatani in 1998 [33], but he did not suggest any numerical method for
minimizing it.

The minimization of (4.15) is equivalent to the minimization of the simpler function
(4.12) subject to the constraint B2 + C2 − 4AD = 1. We write the function (4.12) in
matrix form as F1 = ATMA, where A = (A,B, C, D)T is the vector of parameters and
M is the matrix of moments:

M =




Mzz Mxz Myz Mz

Mxz Mxx Mxy Mx

Myz Mxy Myy My

Mz Mx My n


 (4.18)

Note that M is symmetric and positive semidefinite (actually, M is positive definite unless
the data points are interpolated by a circle or a line). The constraint B2 +C2−4AD = 1
can be written as ATBA = 1, where

B =




0 0 0 −2
0 1 0 0
0 0 1 0

−2 0 0 0


 (4.19)

Now introducing a Lagrange multiplier η we minimize the function

F∗ = ATMA− η(ATBA− 1)

Differentiating with respect to A gives MA − ηBA = 0. Hence η is a generalized
eigenvalue for the matrix pair (M,B). It can be found from the equation

det(M− ηB) = 0 (4.20)

Since Q4(η) := det(M − ηB) is a polynomial of the fourth degree in η, we arrive at a
quartic equation Q4(η) = 0 (note that the leading coefficient of Q4 is negative). The
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matrix B is symmetric and has four real eigenvalues {1, 1, 2,−2}. In the generic case,
when the matrix M is positive definite, by Sylvester’s law of inertia the generalized
eigenvalues of the matrix pair (M,B) are all real and exactly three of them are positive.
In the special case when M is singular, η = 0 is a root of (4.20). To determine which root
of Q4 corresponds to the minimum of F2 we observe that F2 = ATMA = ηATBA = η,
hence the minimum of F2 corresponds to the smallest nonnegative root η∗ = min{η ≥
0 : Q4(η) = 0}.

The above analysis uniquely identifies the desired root η∗ of (4.20), but we also need
a practical algorithm to compute it. Pratt [15] proposed matrix methods to extract
all eigenvalues and eigenvectors of (M,B), but admitted that those make his method a
costly alternative to the “pure algebraic fit”. A much simpler way to solve (4.20) is to
apply the Newton method to the corresponding polynomial equation Q4(η) = 0 starting
at η = 0. This method is guaranteed to converge to η∗ by the following theoretical result:

Theorem 1 The polynomial Q4(η) is decreasing and concave up between η = 0 and the
first nonnegative root η∗ of Q4. Therefore, the Newton algorithm starting at η = 0 will
always converge to η∗.

A full proof of this theorem is provided in [14]. The resulting numerical scheme is
more stable and efficient than the original Chernov-Ososkov solution [2]. We denote the
above algorithm by AF2.

The cost of AF2 is 16n + 16m + 80 flops, here m is the number of steps the Newton
method takes to find the root of (4.20). In our tests, 5 steps were enough, on the average,
and never more than 12 steps were necessary. Hence the average cost of AF2 is 16n+160.

4.4 Taubin’s approximation to GWAF. Another way to simplify (4.15) is to average
the variables in the denominator:

F3 =
n∑

i=1

[Azi + Bxi + Cyi + D]2

[4A2〈z〉+ 4AB〈x〉+ 4AC〈y〉+ B2 + C2]2
(4.21)

where

〈z〉 =
1

n

n∑

i=1

zi =
1

n
Mz, 〈x〉 =

1

n
Mx, 〈y〉 =

1

n
My

This idea was first proposed by Agin [34, 35] but became popular after a publication by
Taubin [30], and it is known now as Taubin method.

The minimization of (4.21) is equivalent to the minimization of F1 defined by (4.12)
subject to the constraint

4A2Mz + 4ABMx + 4ACMy + B2n + C2n = 1 (4.22)

This problem can be expressed in matrix form as F1 = ATMA, see 4.3, with the con-
straint equation ATCA = 1, where

C =




4Mz 2Mx 2My 0
2Mx n 0 0
2My 0 n 0

0 0 0 0


 (4.23)
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is a symmetric and positive semidefinite matrix. Introducing a Lagrange multiplier, η as
in 4.3, we arrive at the equation

det(M− ηC) = 0 (4.24)

Here is an advantage of Taubin’s method over AF2: unlike (4.20), (4.24) is a cubic
equation for η, we write it as Q3(η) = 0. It is easy to derive from Sylvester’s law of
inertia that all the roots of Q3 are real and positive, unless the data points belong to a
line or a circle, in which case one root is zero. As in 4.3, the minimum of F3 corresponds
to the smallest nonnegative root η∗ = min{η ≥ 0 : Q3(η) = 0}.

Taubin [30] used matrix methods to extract eigenvalues and eigenvectors of the ma-
trix pair (M,C). A simpler way is to apply the Newton method to the corresponding
polynomial equation Q3(η) = 0 starting at η = 0. This method is guaranteed to converge
to the desired root η∗ since Q3 is obviously decreasing and concave up between η = 0 and
η∗ (note that the leading coefficient of Q3 is negative). We denote the resulting algorithm
by AF3.

The cost of AF3 is 16n + 14m + 40 flops, here m is the number of steps the Newton
method takes to find the root of (4.24). In our tests, 5 steps were enough, on the average,
and never more than 13 steps were necessary. Hence the average cost of AF3 is 16n+110.
This is 50 flops less than the cost of AF2.

4.5 Nonalgebraic (heuristic) fits. Some experimenters also use various simplistic
procedures to initialize an iterative scheme. For example, some pick three data points
that are sufficiently far apart and find the interpolating circle [12]. Others place the
initial center of the circle at the centroid of the data [13]. Even though such “quick and
dirty” methods are generally inferior to the algebraic fits, we will include two of them in
our experimental tests for comparison. We call them TRI and CEN:

- TRI: Find three data points that make the triangle of maximum area and construct
the interpolating circle.

- CEN: Put the center of the circle at the centroid of the data and then compute the
radius by (2.2).

We note that our TRI actually requires O(n3) flops and hence is far more expensive than
any algebraic fit. In practice, though, one can often make a faster selection of three
points based on the same principle [12].

4.5 Experimental tests. Here we combine the fitting algorithms in pairs: first, an
algebraic (or heuristic) algorithm prefits a circle to the data, and then an iterative algo-
rithm uses it as the initial guess and proceeds to minimize the objective function F . Our
goal here is to evaluate the performance of the iterative methods described in Section 3
when they are initialized by various algebraic (or heuristic) prefits, thus ultimately we
determine the quality of those prefits. We test all 5 initialization methods – AF1, AF2,
AF3, TRI, and CEN – and all 4 iterative schemes – LMA, LMC, SPA, and LAN (in the
notation of Section 3) – a total of 5× 4 = 20 pairs.

19



We conduct two major experiments, as we did in Sect. 3.3. First, we generate 10000
samples of n points randomly with a uniform distribution in the unit square 0 < x, y < 1.
For each sample, we determine the global minimum of the objective function F by running
the most reliable iterative scheme, LMA, starting at 1000 random initial guesses, as we did
in Section 3.3. This is a credible (though, expensive) way to locate the global minimum
of F . Then we apply all 20 pairs of algorithms to each sample. Note that no pair needs
an initial guess, since the first algorithm in each pair is just designed to provide one.

After running all N = 10000 samples, we find, for each pair [ij] of algorithms (1 ≤ i ≤
5 and 1 ≤ j ≤ 4), the number of samples, Nij, on which that pair successfully converged
to the global minimum of F (recall that the minimum was predetermined at an earlier
stage, see above). The ratio Nij/N then represents the probability of convergence to
the minimum of F for the pair [ij]. We also find the average number of iterations the
convergence takes, for each pair [ij] separately.
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Figure 10: The probability of convergence to the minimum of F for 20 pairs of
algorithms. The bar on the right explains color codes.

This experiment was repeated for n = 10, 20, 50, and 100 data points. The results
are presented on Figures 10 and 11 by grey-scale diagrams. The bars of the right explain
our color codes. For brevity, we numbered the algebraic/heuristic methods:

1 = AF1, 2 = AF2, 3 = AF3, 4 = TRI, and 5 = CEN

and labelled the iterative schemes by letters:

a = LMA, b = LMC, c = SPA, and d = LAN

Each small square (cell) represents a pair of algorithms, and its color corresponds to a
numerical value according to our code.

Fig. 10 shows the probability of convergence to the global minimum of F . We see
that all the cells are white or light grey, meaning the reliability remains close to 100%
(in fact, it is 97-98% for n = 10, 98-99% for n = 20 and almost 100% for n ≥ 50.)
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We conclude that for completely random samples filling the unit square uniformly, all
five prefits are sufficiently accurate, so that any subsequent iterative method has little
trouble converging to the minimum of F .
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Figure 11: The cost in flops per data point. The bar on the right explains color codes.

Fig. 11 shows the computational cost for all pairs of algorithms, in the case of con-
vergence. Colors represent the number of flops per data point, as coded by the bar on
the far right. We see that the cost remains relatively low, in fact it never exceeds 700
flops per point (compare this to Figs. 6 and 9). The highest cost here is 684 flops per
point for the pair TRI+LAN and n = 10 points, marked by a cross.

The most economical iterative scheme is the conventional Levenberg-Marquardt (LMC,
column b), which works well in conjunction with any algebraic (heuristic) prefit. The
alternative Levenberg-Marquardt (LMA), Späth (SPA) and Landau (LAN) methods are
slower, with LMA leading this group for n = 10 and trailing it for larger n. There is
almost no visible difference between the algebraic (heuristic) prefits in this experiment,
except the TRI method (row 4) performs slightly worse than others, especially for n = 100
(not surprisingly, since TRI is only based on 3 selected points).

One should not be deceived by the overall good performance in the above experiment.
Random samples with a uniform distribution are, in a sense, “easy to fit”. Indeed, when
the data points are scattered chaotically, the objective function F has no pronounced
minima or valleys, and so it changes slowly in the vicinity of its minimum. Hence, even
not very accurate initial guesses allow the iterative schemes to converge to the minimum
rapidly.
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Figure 12: The probability of convergence to the minimum of F for 20 pairs of
algorithms. The bar on the right explains color codes.

21



We now turn to the second experiment, where data points are sampled, as in Sect. 3.3,
along a circular arc of radius R = 1 with a Gaussian noise at level σ = 0.01. We set
the number of points to n = 20 and vary the arc length from 20o to 180o. In this case
the objective function has a narrow sharp minimum or a deep narrow valley, and so the
iterative schemes depend on an accurate initial guess.

The results of this second experiment are presented on Figures 12 and 13, in the same
fashion as those on Figs. 10 and 11. We see that the performance is quite diverse and
generally deteriorates as the arc length decreases. The probability of convergence to the
minimum of F sometimes drops to zero (black cells on Fig. 12), and the cost per data
point exceeds our maximum of 2000 flops (black cells on Fig. 13).

First, let us compare the iterative schemes. The Späth and Landau methods (columns
c and d) become unreliable and too expensive on small arcs. Interestingly, though, Lan-
dau somewhat outperforms Späth here, while in earlier experiments reported in Sect. 3.3,
Späth fared better. Both Levenberg-Marquartd schemes (columns a and b) are quite re-
liable and fast across the entire range of the arc length from 180o to 20o.
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Figure 13: The cost in flops per data point. The bar on the right explains color codes.

This experiment clearly demonstrates the superiority of the Levenberg-Marquardt
algorithm(s) over fixed-point iterative schemes such as Späth or Landau. The latter
two, even if supplied with the best possible prefits, tend to fail or become prohibitively
expensive on small circular arcs.

Lastly, we extend this test to even smaller circular arcs (of 5 to 15 degrees) keeping
only the two Levenberg-Marquardt schemes in our race. The results are presented on
Figure 14. We see that, as the arc gets smaller, the conventional Levenberg-Marquardt
(LMC) gradually loses its reliability but remains quite efficient, while the alternative
scheme (LMA) gradually gives in speed but remains very reliable. Interestingly, both
schemes take about the same number of iterations to converge, for example, on 5o arcs
the pair AF2+LMA converged in 19 iterations, on average, while the pair AF2+LMC
converged in 20 iterations. The higher cost of the LMA seen on Fig. 14 is entirely due
to its complexity – one iteration of LMA requires 39n + 40 flops compared to 12n + 41
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for LMC, see Sect. 3. Perhaps, the new LMA method can be optimized for speed, but
we did not pursue this goal here. In any case, the cost of LMA per data point remains
moderate, it is nowhere close to our maximum of 2000 flops (in fact, it always stays below
1000 flops).
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Figure 14: The probability of convergence (left) and the cost in flops per data point
(right) for the two Levenberg-Marquardt schemes.

We finally compare the algebraic (heuristic) methods. Clearly, AF1, TRI, and CEN
are not very reliable, with CEN (the top row) showing the worst performance of all.
Our winners are AF2 and AF3 (rows 2 and 3) whose characteristics seem to be almost
identical, in terms of both reliability and efficiency.

The best pairs of algorithms in all our tests are these:

(a) AF2+LMA and AF3+LMA, which surpass all the others in reliability.

(b) AF2+LMC and AF3+LMC, which beat the rest in efficiency.

For small circular arcs, the pairs listed in (a) are somewhat slower than the pairs listed
in (b), but the pairs listed in (b) are slightly less robust than the pairs listed in (a).

In any case, our experiments clearly demonstrate the superiority of the AF2 and
AF3 prefits over other algebraic and heuristic algorithms. The slightly higher cost of
these methods themselves (compared to AF1, for example) should not be a factor here,
since this difference is well compensated for by the faster convergence of the subsequent
iterative schemes.

Our experiments were done on Pentium IV personal computers and a Dell Power Edge
workstation with 32 nodes of dual 733MHz processors at the University of Alabama at
Birmingham. The C++ code is available on our web page [14].
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