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Abstract The Lorentz gas of Z
2-periodic scatterers (or the so called Sinai billiards) can

be used to model motion of electrons on a metal. We investigate the linear response for the
system under various external forces (during both the flight and the collision). We give some
characterizations under which the forced system is time-reversible, and derive an estimate of
the electrical current generated by the forced system. Moreover, applying Pesin entropy for-
mula and Young dimension formula, we get several characterizations of the non-equilibrium
steady state of the forced system.

Keywords Sinai billiards · Electrical current · Linear response · External forces · SRB
measure

1 Introduction

Lorentz gas is a popular model in mathematical physics introduced in 1905, (see [20]), in
studying the motions of a point-particle or a gas of particles (electrons) in a metallic con-
ductor. Here we consider a two-dimensional periodic Lorentz gas, that is, a particle moves
on the plane and bounces off a Z

2-periodic ray of scatterers (ions). In this case the dynamic
reduces to a dynamical billiard system on the 2-D torus T2, generated by a billiard moving
freely until it bounces off the scatterers. More precisely, let B1, . . . ,Bs be open convex do-
mains on T

2 with mutually disjoint closures, which are occupied by the Z
2-periodic ions,

and Q = T
2\⋃

Bi be the free space where the particle moves. Moreover, we assume that
the boundary of each Bi is C3 smooth with non-vanishing curvature.
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The study of classical billiard dynamics was originated in 1970 by Sinai. This model is a
Hamiltonian system, so it preserves the kinetic energy E = 1

2‖p‖2. Therefore we can restrict
the billiard flow to a 3-D submanifold M0 = {(q,p) : E(q,p) = c}, on which the Liouville
measure is also preserved by the flow. Moreover there is a 2-D global cross-section M0 ⊂
M0, which consists of the post-collision vectors: M0 = {(q,p) ∈ M0 : q ∈ ∂Q,p · n(q) ≥
0}. The Poincaré map T0 : M0 → M0 preserves a smooth measure dν0 = cst · cosϕdrdϕ,
where ϕ is the angle from the normal vector n(q) and p. The map T0 and the flow Φ0

have been shown to be uniformly hyperbolic and Bernoulli [16, 23], and many statistical
properties have been well understood and are proved, see [3, 4, 6, 11, 12, 26], and the
references therein.

Recently, much attention is shifting to the investigation of statistical properties of
nonequilibrium billiards. Nonequilibrium phenomena are characterized by the action of ex-
ternal forces or boundary conditions for transport equations that change the system and
generate a steady process that can be measured through mass transfer, energy (heat) trans-
fer, charge transfer (electrical current), entropy production, or others. The laws in equilib-
rium statistical physics are better understood and proved or almost proved in quite a few
cases. However, the apparatus of nonequilibrium statistical mechanics still relies largely on
heuristic statements or numerical results, and only very few models have been studied with
sufficient mathematical rigor. The main difficulty is that nonequilibrium billiards have sin-
gularities and unbounded derivatives, they usually do not preserve smooth measures, and
their evolution is described by steady states characterized by singular invariant measures,
of which relatively little is known in general. In addition, since Gibbs entropy is invariant
under a Hamiltonian time evolution, the study of entropy increase (the second law of ther-
modynamics) in nonequilibrium systems is far from straightforward [22]. One of the first
nonequilibrium physical models that were studied rigorously is the periodic Lorentz gas
with a constant electrical field by Chernov, Eyink, Lebowitz and Sinai [8, 9] and the famous
Ohm’s law was proved for that case. Similar studies on special nonequilibrium dynamics
were conducted by Bunimovich and Spohn [2], Gallavotti [15], Ruelle [22], and others.

Here we investigate some physical laws for Sinai billiards (or periodic Lorentz gases)
under general external forces. Let q = (x, y) be the position of a particle in a billiard table
Q := T

2 \ ∪iBi , and p = (ẋ, ẏ) be the velocity vector. We add two types of forces to the
system in the following steps:

(1) (during the flight) Let F = F(q,p) be a stationary external force on Q. The forced
billiard flow is governed by the following differential equation between collisions:

{
q̇ = p,

ṗ = F,
(1.1)

where the dot derivative refers to differentiate with respect to the time t .
(2) (at the moment of collision) Let G be an external twisting force spreading on ∂Q that

acts on each incoming trajectory right after its elastic collision with ∂Q:
(
q+(ti),p+(ti)

) = G
(
q−(ti),Rp−(ti)

)
, (1.2)

where Rp−(ti) = p−(ti) + 2(n(q−) · p−)n(q−) is the usual elastic reflection operator,
n(q) is the unit normal vector to the billiard wall ∂Q at q pointing inside of the table
Q, and q−(ti),p−(ti), q+(ti) and p+(ti) refer to the incoming and outgoing position and
velocity vectors, respectively.

Note that the twisting force G changes not only the outgoing velocity of the billiard, but also
the position of the billiard along the boundary ∂Q. The change in velocity can be thought of
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Electrical Current in Sinai Billiards Under General Small Forces 1067

as a kick, while a change in position can model a slip along the boundary at collision. These
forces indicate that the system will experience nonelastic reflections.

The type of forces we consider here are quite common in many physical models. For
example we can have a potential function U on Q, or an electromagnetic field (when the
moving billiard is an electron), see [5, 7–9]. The twisting force right after the collision is also
closely related to real-world models. The first class is the Goos-Hänchen shift in the study
of microresonators. That is, a finite wavelength of light will experience a lateral shift when
it reflects from the interface between two materials of different refractive indices, see [17,
24] for more discussions. The twisting force is also related to the so called soft scatterers.
Recall that the unforced system can be viewed as a Hamiltonian system under a potential
function U given by U(q) = 0 if q ∈ Q, and +∞ on the scatterers. In this case, the scatterers
Bi are said to be rigid (or hard). Now if we replace U by some finite potential function on
each Bi , then the resulting Bi is a soft one: a running billiard will climb up Bi and then exit
very soon. Different shapes of the scatterer result in different enter-exit relations. If we view
what happen on the scatterers as a black box, the effect can be understood as a twisting force
G right after the elastic collision. Clearly this kind of twisting forces not only preserve the
tangent collisions, and are also time-reversible. For more details, see [1, 19].

In [5, 7], Chernov considered billiards under small external forces F between collisions,
and proved several ergodic and statistical properties of the SRB measure for the perturbed
billiard system. In [14] Dolgoyat and Chernov put a constant electric field on Lorentz gases
with infinite horizon and got various characterizations of the steady state electric current
generated by the forced system with Gaussian thermostat. The systems with some simple
twist forces were considered in [27], assuming that G depends on and affects only the ve-
locity, not the position. The Green-Kubo type formula was proved, and it was shown that
the current generated by the forced flow is closely related to the strength of the force. Very
recently, Chernov and Korepanov investigated in [10] the linear response for Sinai billiards
under external forces (without twisting). In [13], they consider the dynamics of the Sinai bil-
liard on the table Q, but subject to more general forces P = (F,G) both during flight and at
collisions. Here we characterized certain properties of the SRB measure for the forced sys-
tems by obtaining the Pesin’s K-S entropy formula and Young’s expression for the fractal
dimension. Moreover, we also prove rigorously the Green-Kubo like formula and investigate
the linear response formula.

Structure of the paper This paper is organized as follows. In Sect. 2.1 we list the main
assumptions on the external forces P = (F,G), introduce some basic notations and propo-
sitions of our systems. In Sect. 2.2 we state the main theorems about the linear responses
and statistical properties of our forced billiard system. We also list quite a few examples of
the external forces and study the current generated by these forced systems. Then we divide
the analysis of the forced systems into two steps: in Sect. 3 we study the effect of the force
F during the flight, and in Sect. 4 we add the twisting effect and conclude the proof of our
main theorems.

2 Main Results

2.1 Assumptions

In this subsection we first state the assumptions on the model, which combine the assump-
tions in [5, 13, 27]. Let P = (F,G), where F and G are the two external forces during the
flight and right after the reflection, respectively. Let ΦP be the induced billiard flow on Q.
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1068 N. Chernov et al.

Assumption A1 (Invariant space) The forced flow ΦP preserve a smooth function E(q,p),
such that the level surface M := {E(q,p) = c} is a compact 3-D manifold, for some c > 0.
Moreover, ‖p‖ > 0 on M, and for each q ∈ Q and p ∈ S1, the ray {(q, tp), t > 0} intersects
the manifold M in exactly one point.

Assumption (A1) specifies an additional integral of motion, so that we only consider the
restricted systems on a compact phase space. For example, we can add a Gaussian thermo-
stat (a heat bath) to the system such that the billiard moves at a constant speed (constant
temperature if there are a large number of particles). Then M := {‖p‖ = c} is an invariant
compact level set.

Under the assumption (A1), the speed p = ‖p‖ of the billiard along any typical trajectory
on M at time t satisfies

0 < pmin ≤ p(t) ≤ pmax < ∞,

for some constants pmin ≤ pmax. Moreover, M admits a global coordinate system {(x, y, θ) :
(x, y) ∈ Q,0 ≤ θ < 2π}, where θ is the angle between p and the positive x-axis. In partic-
ular, the speed p = ‖p‖ on M can be represented as a function p = p(x, y, θ). Then the
velocity p at q is given by p = pv, where v = (cos θ, sin θ) is the unit vector in the direction
of p. So Eq. (1.1) of the dynamics between collisions can be rewritten as

ṗv + pv̇ = F. (2.1)

Multiplying v to both sides of (2.1) using dot product and cross product respectively, we
then get

ṗ = v · F, and pv × v̇ = v × F. (2.2)

Therefore, the equations in (1.1) have the following coordinate representations that, at any
(x, y, θ) ∈ M,

⎧
⎪⎨

⎪⎩

ẋ = p cos θ,

ẏ = p sin θ,

θ̇ = (−F1 sin θ + F2 cos θ)/p.

(2.3)

Consider the trajectory γ̃ ⊂ M of the flow passing through the point (x, y, θ) ∈ M, which
projects down to a smooth curve γ ⊂ Q. Let h = h(x, y, θ) be the (signed) geometric cur-
vature of γ at the base point (x, y) ∈ Q. Then we have that

h(x, y, θ) = ±‖q̇ × q̈‖
‖q̇‖3

= ±‖v × F‖
p2

= −F1 sin θ + F2 cos θ

p2
, (2.4)

where the sign should be chosen accordingly. Then combining with (2.3), we have

θ̇ = ph. (2.5)

Note that the angle θ = θ(t) experiences a discontinuity at the times of reflection. That is,
it changes from θ− to θ+. In the elastic collision case, all other quantities (x, y and p) stay
the same. For example the speed p(x, y, θ+) = p(x, y, θ−) (here (x, y) ∈ ∂Q). Under the
twisting forces, all quantities are subject to change.

For any phase point (q, θ) ∈ M for the flow, let τ(q, θ) be the time for the trajectory
from (q, θ) to its next non-tangential collision at ∂Q.
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Assumption A2 (Finite horizon) There exist τmax > τmin > 0 such that free paths between
successive reflections are uniformly bounded: τmin ≤ τ(q, θ) ≤ τmax, for all (q, θ) ∈ M with
q ∈ ∂Q. In addition, the curvature K(r) of the boundary ∂Q is also uniformly bounded for
all r ∈ ∂Q.

Assumption (A2) implies that there exists a 2-D global cross-section, the post-collision
space M , of the perturbed billiard flow (M,ΦP): M = {(q,p) ∈ M : q ∈ ∂Q,p · n(q) ≥ 0},
which consists all outgoing vectors in M based at the boundary of the billiard table Q.
Denote by TP : M → M the Poincaré map induced by the forced flow ΦP on M. More-
over, the 2-D space M can be parameterized by x = (r, s), where r is the arc-length pa-
rameter of ∂Q oriented clockwise, and a new parameter s = sinϕ, where ϕ is the an-
gle formed by the outgoing vector p and the normal vector n(q). This coordinate system
has the advantage that the Lebesgue measure dμ0 = Cstdr ds coincides with the mea-
sure dν0 = Cst cosϕdr dϕ. Using this new coordinate system, the collision time can be
written as τ(x) = τ(r, s), and the twist force G at the collision can be reformulated as
(r̄, s̄) = G(r, s) = (r, s) + (g1(r, s), g2(r, s)).

Assumption A3 (Smallness of the external forces) There exists ε > 0 small enough, such
that the forces P = (F,G) and C1+α , for some α > 0, and satisfy

‖F‖C1 < ε,‖G − IdM‖C1 < ε.

Moreover, we assume that G preserves tangential collisions: G(r,±1) = (r,±1). In other
words, gi(r,±1) = 0 for each i = 1,2.

In particular, the singularity set of T −1
P is the same as that of untwisted map T −1

F . The reg-
ularity assumption C1+α enable us to include some common physical models. For example,
Weeks-Chandler-Anderson potential, given by φ(r) = 4ε(( σ

r
)12 − ( σ

r
)6) + ε for r ≤ 21/6σ ;

and φ(r) = 0 for r > 21/6σ , which is C1+α , for some α < 1. See also [18]

Remark 1 Note that (A2) also put some constrains on the smallness of forces. In fact, the
existence of τmin not only prevents touching scatterers, but also implies the trajectory can’t
be bent too much such that the particle falls back to the same scatterer immediately.

Let I : M → M be the reversal transformation (also called involution), which is defined
by I(x, y, θ) = (x, y,π + θ). Let Φt : M → M be a general flow. The reversed flow of Φ

is defined by Φ−
t = I ◦ Φ−t ◦ I . Then the flow Φ is said to be time-reversible, if Φ−

t = Φt .
It is well known that the unforced billiard flow is time-reversible.

Assumption A4 (Time-reversibility) Both forces F and G are stationary, and the forced
billiard flow ΦP is time-reversible.

Let ε > 0, τ∗ ∈ (0,1) and F(Q, τ∗, ε) be the collection of all forced billiard maps defined
by the dynamics (1.1) and (1.2) under the external forces P = (F,G) that satisfying the
assumptions (A1)–(A4) with τ∗ ≤ τmin ≤ τmax ≤ τ−1∗ . The following lemma was proved by
Demers and Zhang in [13]:

Lemma 2.1 Each map T ∈ F(Q, τ∗, ε) preserves a unique SRB measure (the nonequilib-
rium steady state) μT that is mixing, Bernoulli and positive on open sets in M . Let H be
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1070 N. Chernov et al.

the collection of all piecewise Hölder continuous functions on M where the discontinuities
occur on the singularity sets T . Then

a. (Equidistribution) for any f ∈ H, T nμ0(f ) → μT (f ) at an exponential rate;
b. (Decay of Correlations) for any f,g ∈ H, μ0(f ◦ T n · g) → μT (f ) · μ0(g) at an expo-

nential rate.
c. (Central Limit Theorem) for any f ∈ H, fn = f + f ◦ T + · · · + f ◦ T n−1, then

fn√
n

⇒ N (μT (f ), σ 2
f ), where σ 2

f = ∑
n∈Z Cf,f (T n). Here the convergence means that the

distributions of fn√
n

converge to the normal distribution N (μT (f ), σ 2
f ).

Note that there is one-to-one correspondence between the invariant measures of the bil-
liard map and the invariant measures of the billiard flow (following the general construction
of suspension flows). Let μ̂T be the corresponding measure of μT with respect to the forced
flow Φ , which is also a mixing SRB measure.

2.2 Main Results

In this section we state the main results of this paper, the properties of forced billiard systems
under the assumptions (A1)–(A4). More precisely, let ε > 0 be small enough, τ∗ ∈ (0,1)

and P = (F,G) be an ε-small external force pair such that TP ∈ F(Q, τ∗, ε), μP be the SRB
measure on M given in Theorem 2.1. Let Q̃ be the Z

2-periodic table on the plane, T̃P be the
forced collision map on the Z

2-periodic collision space M̃ , and

�̃P(x) = (�̃x,P, �̃y,P) = π̃ ◦ T̃P(x) − π̃(x) (2.6)

be the displacement vector between collisions, where π̃ is the projection from M̃ to the base
point in Q̃. It is easy to see that �̃P is Z2-periodic, which induces a displacement function
on the collision space M , say �P. Our first theorem describes estimations on the current for
the discrete system.

Theorem 2.2 (a) The discrete-time steady state electrical current is well-defined and given
by:

JP = lim
n→∞ q̃n/n = μP(�P). (2.7)

(b) The current JP satisfies JP = εσ + o(ε), where σ = (σx, σy) is uniformly bounded and
satisfies

σa = 1

2
μ0(�a,P · H) +

∞∑

k=1

μ0

[(
�a,P ◦ T k

0

) · H ]
, a ∈ {x, y}, (2.8)

where H(r, s) = (2 − exp(
∫ τF(r,s)

0 phθ dt) − JG(r1, s1))/ε is a uniformly bounded function,
JG is the Jacobian of the twisting force G, and (r1, s1) is the intermediate position right
before the twist.
(c) As n → ∞,

q̃n − nJP√
n

⇒ N (0,DP), (2.9)

where DP is the discrete-time diffusion matrix of the Lorentz particle, which is given by:

DP =
∞∑

n=−∞

[
μP

(
�P ◦ T n

P ⊗ �P
) − μP(�P) ⊗ μP(�P)

]
(2.10)
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Moreover DP is continuous with respect to the size of the force pair P at P = 0:

DP = D0 + o(1). (2.11)

In particular, the generated current JP is comparable to the size of the external force P,
where σ resembles the electric conductivity of the forced system. Moreover, it follows from
Eq. (2.9) that the drift effect is sub-linear (of order

√
n). One may wonder if we could use

the linear approximates
∫ τF(r,s)

0 phθ dt for the function H in (b). Indeed, this may destroy
the convergence of the series (2.8) (see Remark 6 for more discussions). However, we do
use the linear term for all physical models with a Gaussian thermostat (see Proposition 2.6,
2.7 and Corollary 2.8).

Remark 2 It would be natural and elegant to replace �a,P by �a,0 in the definitions Eq. (2.8)
of σa . However, we don’t have a satisfied estimate of the dependence of �a,P on the force
P (besides Lemma 4.4, which is too rough to use here). We have a similar situation when
defining ĴP in Eq. (2.13).

The corresponding results for the continuous-time forced system is provided by the fol-
lowing theorem.

Theorem 2.3 Suppose a particle move in the domain Q̃ under the external force P =
(F,G).

(a) The steady state current generated by ΦP is well-defined and given by

ĴP = lim
t→∞ q̃(t)/t = μP(�P)/μP(τP). (2.12)

(b) The current ĴP satisfies

ĴP = ε · σ

τ̄P
+ o(ε). (2.13)

(c) As t → ∞,

q̃(t) − ĴPt√
t

⇒ N (0, D̂P), (2.14)

where D̂P is the continuous-time diffusion matrix of the Lorentz particle.
(d) The diffusion matrix is continuous with respect to the size of force pair P at P = 0:

D̂P = D̂0 + o(1) (2.15)

We also give some characterizations of the nonequilibrium steady state μP of the forced
system TP:

Theorem 2.4 (1) The measure μP satisfies the Pesin entropy formula:

hμP(TP) = λu
P, (2.16)

where λs
P < 0 < λu

P are the Lyapunov exponents for the measure μP and hμP(TP) is the
metric entropy for (TP,μP);

Author's personal copy



1072 N. Chernov et al.

(2) μP satisfies Young’s dimension formula:

HD(μP) = hμP(TP)

(
1

λu
P

− 1

λs
P

)

, (2.17)

where HD(μP) is the Hausdorff dimension of the measure μP.
(3) Let h0 = hμ0(T0) be the metric entropy of T0, then

HD(μP) = 2 − ε2 · σ 2
H

2h0
+ o

(
ε2

)
, where σ 2

H =
∞∑

k=−∞
μ0

[
H ◦ T k

0 · H ]
. (2.18)

It follows from Eq. (2.18) that 1 < HD(μP) < 2 for some small external forces P. So μP is
singular with respect to the Lebesgue measure and admits a fractal structure.

Let μ̂P be the corresponding SRB measure preserved by the forced flow Φt
P on M. The

metric entropy of the measure μ̂P is given by hμ̂P(ΦP) := hμP(TP)/μP(τP) and the fractal
dimension HD(μ̂P) = HD(μP)+ 1. Therefore similar formulas in Theorem 2.4 hold for μ̂P.

2.3 Applications

Next we provide some example of reversible external forces and give the generated currents
by the forced billiard systems.

Example 1 (Conservative forces on Q) We consider a conservative force F = −∇U(q) =
−(Ux,Uy), where U(q) is a (small) potential function on Q. The induced billiard system
ΦF preserves the total energy E = 1

2 p2 + U(q) of the system and hence satisfies Assump-
tion (A1). We restrict the dynamics to a energy level M = {(q,p) : E(q,p) = 1/2}. In
particular the speed function p2(x, y, θ) = 1 − 2U(q) is independent of θ , say p = p(x, y).
It is well known that the billiard flow ΦF is time-reversible (see also Lemma 3.1 and Re-
mark 4). Moreover, it is easy to see that the generating vector field X = 〈p cos θ,p sin θ,ph〉
is divergence-free:

div X = px cos θ + py sin θ + (Ux cos θ + Uy sin θ)/p = 1

p
(ṗ − v · F) = 0. (2.19)

In particular, the flow ΦF preserves the Lebesgue measure m on the energy level M and
μ̂F = m. Since there is no slip after the collision, the current is indeed zero (see the related
discussion in Remark 7):

JF = m(p) =
∫

Q

p(x, y)

(∫

S1
vdθ

)

dxdy = 0. (2.20)

Example 2 (Conservative twists and soft scatterers) Let B be a small scatterer on Q, U a
potential function on T

2 such that U = 0 on Q\B and U > 0 on B. We consider the energy
surface E(q,p) = 1

2‖p‖2 + U(q) = 1. So a running billiard may climb up the scatterer, and
regain its full kinetic energy whenever it exits that scatterer. If we view what happened on
the scatterer as a black box, the reduced dynamics is close to the unforced system during
its free flight. The only difference is that the exit location and direction are different from
the elastic collision (corresponding to U = +∞ on B). Therefore, the effect is equivalent
to applying a twist force G right after the collision. Clearly the perturbed flow Φ is time-
reversible. Moreover, by embedding Φ into the real Hamiltonian flow on the ambient torus,

Author's personal copy



Electrical Current in Sinai Billiards Under General Small Forces 1073

we see that ΦG preserves the canonical space M0 and the Liouville measure on M0. In
particular its current JG = 0.

To get an intuition of the vanishing currents, we consider a special case explicitly.

Proposition 2.5 Suppose all the scatterers Bi are all round disks centered at qi = (xi, yi)

of radius δi , the potential is given by U(q) = ε−1 · (δi −‖q − qi‖) on Bi , and U = 0 outside
the scatterers. Then the forced flow has vanishing current.

Proof In the case it is easy to see that the outgoing direction is the same as the hard scatterer
case, the slip does not depend on where the collision happens: G(r, s) = (r + gi(s), s). So
the Jacobian JG ≡ 1. Therefore the current must be zero. �

Example 3 (Isokinetic forces) Next we consider forces F that are always perpendicular to
the momentum. In this case, the forced billiard flow preserves the kinetic energy. Without
loss of generality, we assume ‖p‖ = 1 (as in the classical billiards), and reformulate the
force as

F = Fv⊥ = F(x, y, θ)(− sin θ, cos θ),

where F = F(x, y, θ) is a scalar function (may be negative) with ‖F‖C1 < ε. By Eq. (2.4),
the geometric curvature h(x, y, θ) satisfies

h(x, y, θ) = F(x, y, θ)
(
sin2 θ + cos2 θ

)
/p2 = F(x, y, θ). (2.21)

Not all isokinetic forced systems are time-reversible. For example, the system of an electron
moving under a constant magnetic field perpendicular to Q is not time-reversible.

In the following we assume that F satisfies F(x, y, θ + π) = −F(x, y, θ). Then the
forced billiard flow ΦF is time-reversible (see Lemma 3.1). A special feature of these isoki-
netic forces is that we can use the linear term of H to estimate the generated current:

Proposition 2.6 The discrete-time steady state current under a general isokinetic force F is
given by JF = εσ + o(ε), where σ = (σx, σy) is given by

σa = −1

2
μ0

[

�a,F ·
∫ τF(x)

0
Fθ dt/ε

]

−
∞∑

k=1

μ0

[
(
�a,F ◦ T k

0

) ·
∫ τF(x)

0
Fθ dt/ε

]

, a ∈ {x, y}.

Example 4 (Electric field with thermostat) We consider an electric field E(q) = (εe1(q),

εe2(q)) on q ∈ Q. It may generate a net velocity in the force direction and keep accelerating
the electron. We can modify the system by adding a constraining force to maintain the
system at a constant temperature (a compact level set, say E1 = {‖p‖ ≡ 1}), and to preserve
a steady state on that level. More precisely, the system of the forced equations on E1 is given
by: q̇ = p, ṗ = E − αp, where α = E · p is a thermostat. For such systems, we have the
following results.

Proposition 2.7 Let E(q) = (εe1(q), εe2(q)) be an electric field on q ∈ Q. The discrete-
time steady state electrical current under E with thermostat is given by JE = εσ + o(ε),
where σ = (σx, σy) is given by

σa = 1

2
μ0

(

�a,E ·
∫ τE

0
(e1, e2) · pdt

)

+
∞∑

k=1

μ0

[
(
�a,E ◦ T k

0

) ·
∫ τE

0
(e1, e2) · pdt

]

.
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Now we consider a constant electric field E = (εe0
1, εe

0
2) on the table Q. In this case it is

easy to see that
∫ τE(r,s)

0 (e0
1, e

0
2) · pdt = (e0

1, e
0
2) · �E(r, s). So we have

Corollary 2.8 Let E(q) = (εe0
1, εe

0
2) be a constant electric field on q ∈ Q. The discrete-time

steady state electrical current under E with thermostat is given by JE = εσ + o(ε), where
σ = (σx, σy) is given by

σa =1

2
μ0(�a,E · H) +

∞∑

k=1

μ0

[(
�a,E ◦ T k

0

) · H ]
, a ∈ {x, y},

where H(r, s) = (e0
1, e

0
2) · �E(r, s).

This is the current formula obtained in [8].

3 Preliminary Properties of TF Under the Force F

We divide our study of the forced system TP into two steps according to the nature of the
force pair P: the step of a elastic reflection under the force F, and the twisting by G right
after the collision. In this section we consider the pre-twist step, that is, the effect of the
force F between one collision. First we state the time-reversibility of the forced system:

Lemma 3.1 Let F be an external force on the table Q, p and h be the speed and the
curvature functions of the forced billiard flow ΦF. Then ΦF is time-reversible if and only if
the following conditions hold for any (x, y, θ) ∈ M:

p(x, y,π + θ) = p(x, y, θ), (3.1a)

h(x, y,π + θ) = −h(x, y, θ). (3.1b)

The proof is straightforward and omitted here. See also [5, pp. 209–210] for detailed discus-
sions.

Remark 3 There is a canonical involution I on the post-collision space M , which is given
by I : M → M , (r, s) �→ (r,−s). Let T −

F be the Poincaré map of the reversed flow Φ−
F . It is

easy to see that T −
F = I ◦ T −1

F ◦ I . So time-reversibility of the forced flow Φ−
F = ΦF implies

the time-reversibility of the forced map: T −
F = TF.

Remark 4 A special case is that the force F = F(q) depends only on the position q. For
example, for a particle moving in the gravity field and an electron moving in an electric field,
the forces do not depend on the velocity p. According to Eq. (2.4), we see that (3.1b) follows
from (3.1a). So these forced systems are time-reversible if and only if p(x, y,π + θ) =
p(x, y, θ) for any (x, y, θ) ∈ M.

Lemma 3.2 Let m be the Lebesgue measure on M , x = (r, s) and TFx = (r1, s1). Then the
Jacobian of DTF with respect to the Lebesgue measure μ0 is given by

detDxTF = exp

(∫ τF(x)

0
phθdt

)

. (3.2)
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Proof Let X(x,y, θ) = 〈p cos θ,p sin θ,ph〉 be the vector field on M that generates the
flow Φt

F. Consider the Lebesgue measure dm = dx dy dθ on M. Note that m is not neces-
sarily invariant under the forced flow ΦF, and its rate of change is given by the divergence
of the generating vector field X:

div X(x,y, θ) = px cos θ + py sin θ + pθh + phθ = (pxẋ + pyẏ + pθ θ̇)/p + phθ

= d lnp

dt
+ phθ .

Note that the force billiard flow can also be represented as a suspension of the forced
map (M,TF,μ0) with respect to the roof function τF. Along the suspension direction, the
arc length differential d� = pdt , where p is the speed of the flow. In particular, the volume
dm = dx dy dθ on M has the suspension form: dm = Cst ·dμ0 d� = Cst ·p ·dμ0 dt . Clearly
the t -direction is invariant. So we have

dT −1
F μ

dμ
(x) = p(x)

p(TFx)
exp

(∫ τF(x)

0
div X

(
Φt

Fx
)
dt

)

= exp

(∫ τF(x)

0
phθdt

)

. (3.3)

This finishes the proof of the lemma. �

4 Properties of TP = T(F,G)

We consider the twisting step of a force pair P = (F,G) satisfying the assumptions (A1)–
(A4) with ‖F‖C1 < ε and ‖G − IdM‖C1 < ε. Our main approach is to compare the combined
effect TPx = G ◦ TFx with the pre-twist map TF.

In Lemma 3.1 we gave a characterization for the forced flow ΦF to be time-reversible.
To ensure that ΦP is time-reversible, it suffices to know if the twisting process is also time-
reversible. More precisely, let S = ( 1 0

0 −1

)
, and G = ( 0 S

S 0

)
, where 0 is the 2 × 2 zero matrix.

Then we have the following result.

Lemma 4.1 Assume the condition (3.1a), (3.1b) hold. Then ΦP is time-reversible if and only
if the graph of G is G-invariant.

Proof Let TPx = G ◦ TFx be decomposition of the forced collision map, Φ−
P be the time-

reversal flow of ΦP, and T −
P be the induced Poincaré map of Φ−

P . Let I : M → M be the
involution on M and I : M → M be the induced involution on M .

Under the assumption (3.1a), (3.1b), we have that T −
F = TF and

T −
P x = I ◦ G−1 ◦ T −1

F ◦ I (x) = I ◦ G−1 ◦ I ◦ I ◦ T −1
F ◦ I (x) = G− ◦ T −

F (x) = G−(TFx),

where G− = I ◦ G−1 ◦ I . In order to have T −
P = TP, a necessary and sufficient condition is

G− = G.
Let (r̄, s̄) = G(r, s). Then G−(r̄,−s̄) = I ◦ G−1(r̄, s̄) = I (r, s) = (r,−s). So G− = G is

equivalent to G(r̄,−s̄) = (r,−s). Combining with the assumption (r̄, s̄) = G(r, s), we see
that G− = G is equivalent to the graph of G being G-invariant. �

Remark 5 In above lemma we take the Poincaré map T −
P of the time-reversed flow, which

can be viewed as the physically time-reversal of the map TP. We can also define a formally
time-reversed map of the forced map TP by T̂ −

P := I ◦ T −1
P ◦ I . Generally speaking, this
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formally reversed map T̂ −
P may not coincide with the Poincaré map T −

P of the time-reversed
flow Φ−

P (after we apply a twist force right after the elastic collision). In this paper we always
use the physically time-reversal definition.

By Assumption (A3), the twist force G preserves tangential collisions. Therefore, the
discontinuity set of TP is the same as that of TF, which comprises the preimage of S0 :=
{s = ±π/2}. Similarly, the singularity sets of T −1

P and T −1
F are the same due to (A3). But

the singular sets for higher iterates are no longer the same. Let SP±n = ∪n
i=0T

∓i
P S0,H with

n ∈ N. Then T ±n
P is smooth on all the cells of M \ SP±n.

For any phase point x = (r, s) ∈ M , let TFx = (r1, s1) and TPx = (r̄1, s̄1). According to
the discussion between (A2) and (A3), we express the twist force G in local coordinates via
two smooth functions g1 and g2 such that

(r̄1, s̄1) = G(r1, s1) = (r1, s1) + (
g1(r1, s1), g

2(r1, s1)
)
. (4.1)

Note that gi is a C1+α function whose C1 norm is uniformly bounded from above by c · ε,
for some uniform constant c > 0. Moreover gi(r,±1) = 0, i = 1,2.

According to (4.1), the differential of the twisting force G satisfies

{
dr̄1 = (1 + g1

1(r1, s1))dr1 + g1
2(r1, s1)ds1,

ds̄1 = g2
1(r1, s1)dr1 + (1 + g2

2(r1, s1))ds1,
(4.2)

where gi
1 = ∂gi/∂r and gi

2 = ∂gi/∂s. So the differential of the map TP is given by

DxTP = DTFxG ◦ DxTF. (4.3)

Note that TP may not be a C1-perturbation of TF, since TF is unbounded around the boundary
of M . However, it follows from Eq. (4.3) that

detDxTP = JG(r1, s1) · detDxTF = (
1 + ĝ(r1, s1)

) · detDxTF, (4.4)

where

ĝ(r1, s1) = JG(r1, s1) − 1

= g1
1(r1, s1) + g2

2(r1, s1) + g1
1(r1, s1)g

2
2(r1, s1) − g1

2(r1, s1)g
2
1(r1, s1). (4.5)

Note that JG is a C1 function with ĝ(r1, s1) = O(ε). So we have that

detDxTP = (
1 + ĝ(r1, s1)

) · exp

(∫ τF(x)

0
phθdt

)

= 1 +O(ε). (4.6)

Once again, let μ0 = Cstdr ds be the normalized Lebesgue measure on M , JP(x) :=
dT −1

P μ0/dμ0(x) be the density function defined by TP. Note that JP(x) = detDxTP. So we
have:

Lemma 4.2 Let P = (F,G) be an ε-small force pair, and TP the forced collision map. Let
x = (r, s) ∈ M , TFx = (r1, s1) and TPx = (r̄1, s̄1). Then the Jacobian JP(x) satisfies

1 −JP(x) = εH(x) + ε2RP, (4.7)
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where

H(r, s) = 1

ε

(

2 − exp

(∫ τF(r,s)

0
phθdt

)

−JG(TFx)

)

= 1

ε

(

1 − exp

(∫ τF(r,s)

0
phθdt

)

− ĝ(r1, s1)

)

.

Moreover, μ0(H) = 0, and both H and RP are uniformly bounded and Cα on each com-
ponent of M\ST

1 .

Proof According to Chain Rule and Lemma 3.2, we have

JP(x) = dT −1
P μ0

dμ0
(x) = dT −1

P μ0

dT −1
F μ0

(x) · dT −1
F μ0

dμ0
(x)

= JG(TFx) · detDxTF = (
1 + ĝ(r1, s1)

) · exp

(∫ τF(x)

0
phθdt

)

. (4.8)

Let H(x) = (1− exp(
∫ τF(r,s)

0 phθdt)− ĝ(r1, s1))/ε. Then we get the following expansion
for JP at P = 0:

JP(x) = J0(x) − εH(x) − ε2RP, (4.9)

where RP is the residual term (up to a factor ε2).
Now it is easy to see that μ0(H) = 0. Firstly, 1 + μ0(ĝ) = μ0(1 + ĝ) = μ0(JG) =

μ0(M) = 1. So μ0(ĝ) = 0. Secondly, we note that μ0(e
∫ τF(r,s)

0 phθ dt ) = μ0(DTF) =
μ0(TFM) = μ0(M) = 1. Therefore, we have μ0(H) = 0.

By assumptions (A1)–(A3), both H and RP are uniformly bounded on M , and are Cα

continuous functions on each component of M\SP
1 . This completes the proof. �

Let μP be the SRB measure of TP on M given by Theorem 2.1. This measure represents
the natural non-equilibrium steady state (NESS) for the system (see [22]), which might be
singular with respect to the Liouville measure on M . There are several physically interested
quantities associated to the NESS μP. For example, the current of the billiard flow on the
Z

2-periodic table Q̃ is given by

JP = μP(�P) = μo
P(�̃P),

where �P is the induced displacement vector function on M , μo
P is a copy of μP on a

fundamental domain (say M̃o) of M̃ . This current was derived in [8, 9] when the billiard
is moving in an electric field with a Gaussian thermostat. The study of the current as a
function of a general electric field was carried out in [5, 7]. In the other direction, these
results were generalized in [27] to systems where the collision rule is perturbed. Here we
study the current for billiards under more general external forces. Firstly we will prove the
linear response property for general observable with respect to the forced billiard system.

Lemma 4.3 Let P = (F,G) be an ε-small force pair, TP be the induced billiard map and
μP be the SRB measure of TP on M , H be the set of piecewise Holder continuous functions
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on M whose discontinuities occur at the singularities SP
1 . Then for any f ∈ H, we have

μP(f ) = μ0(f ) + ε ·
∞∑

k=1

μ0
[(

f ◦ T k
0

) · H ] + o(ε) (4.10)

Proof Let f ∈ H. Then for all n ≥ 1, we have the following identity:

T n
P μ0(f ) − μ0(f ) =

n∑

k=1

(
T k

P μ0(f ) − T k−1
P μ0(f )

) =
n∑

k=1

μ0

[(
f ◦ T k

P

)
(1 −JP)

]

=
n∑

k=1

μ0

[(
f ◦ T k

P

)(
εH(x) + ε2RP

)]
.

Note that T n
P μ0(f ) → μP(f ) exponentially (by Theorem 2.1-a). Passing n → ∞, we get

that

μP(f ) = lim
n→∞T n

P μ0(f ) = μ0(f ) +
∞∑

k=1

μ0
[(

f ◦ T k
P

)(
εH(x) + ε2RP

)]
. (4.11)

It follows from the fact that JP is the density function of a probability measure, that μ0(1 −
JP) = 0. Combining with the fact that μ0(H) = 0, we get that μ0(RP) = 0, too. In addition
H and RP are piecewise Cα functions whose discontinuities occur only at the singularities
of TP. Thus H and RP belong to H. Now (4.11) implies that

∞∑

k=1

μ0

[(
f ◦ T k

P

)(
εH + ε2RP

)] = ε

∞∑

k=1

μ0

[(
f ◦ T k

P

)
H

] + ε2
∞∑

k=1

μ0

[(
f ◦ T k

P

)
RP

]

= ε

∞∑

k=1

μ0

[(
f ◦ T k

0

)
H

] + ε

∞∑

k=1

μ0

[(
f ◦ T k

P − f ◦ T k
0

)
H

] + ε2
∞∑

k=1

μ0

[(
f ◦ T k

P

)
RP

]

= ε

∞∑

k=1

μ0
[(

f ◦ T k
0

)
H

] + o(ε), (4.12)

where we have used the Lebesgue Dominated Convergence Theorem in the last step, since
both

∑∞
k=1 μ0[(f ◦ T k

P )H ] and
∑∞

k=1 μ0[(f ◦ T k
0 )H ] converge exponentially fast (by The-

orem 2.1-b) and T k
P → T k

0 as P → 0. Therefore the series are dominated by o(1). This
completes the proof. �

Let (x, y) be the coordinates of the position of the particle q̃ ∈ Q̃, and

�̃P := (�x,P,�y,P) = π̃ ◦ T̃P − π̃ , (4.13)

be the displacement vector map defined on M̃ . As pointed out before, �̃P is Z2-periodic and
hence induces a well-defined, R2-valued function �P on M . Using the fact that μ0(�0) = 0
and μ0(τ0) = τ̄ , we get the following results.

Lemma 4.4 Both functions �P and τP belong to H with Holder exponent 1
2 and uniformly

bounded. Moreover,

μ0(�a,P) = O(ε) and μ0(τP) = τ̄ +O(ε)
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The proof is omitted here, since proof of Hölder continuity follows closely from [14,
Lemma 8.2] and the estimations are almost identical with the proof of Lemma 8.1 in [27].

Next we calculate the current for the moving billiards under small force depending on ε.
We only consider the case when the new system TP is time-reversible.

Theorem 4.5 Suppose the system is time-reversible under the external forces P = (F,G).
Then

JP := μP(�P) = εσ + o(ε), (4.14)

where σ = (σx, σy) is given by

σa = 1

2
μ0(�a,P · H) +

∞∑

k=1

μ0

[(
�a,P ◦ T k

0

) · H ]
, a ∈ {x, y}. (4.15)

Moreover, the current for the flow satisfies ĴP = εσ/τ̄P + o(ε), where τ̄ = μ0(τ0).

Proof We first use the invariance of μP and the Kawasaki formula (4.11) to write JP as

JP = μP(�P) = 1

2

(
μP(�P) + μP

(
�P ◦ T −1

P

))

= 1

2

(
μ0(�P) + μ0

(
�P ◦ T −1

P

) + μ0

[
�P(1 −JP)

]) +
∞∑

k=1

μ0

[(
�P ◦ T k

P

)
(1 −JP)

]
.

(4.16)

Recall that M̃ is the collision space of the Z
2-periodic table Q̃ ⊂ R

2. Let M̃o be a funda-
mental domain of M̃ , say (∂Q̃ ∩ [0,1]2) × [−1,1], and μo

0 = Cstdr ds be a copy of μ0 on
M̃o. So for any function f on M , μ0(f ) = μo

0(f̃ ), where f̃ is a Z
2-periodic lift of f on M̃ .

Since μo
0 is evenly distributed on M̃o, it is invariant under the involution I . In particular,

we have

μo
0(π̃ ◦ T̃P) = μo

0

(
π̃ ◦ T̃ −

P

) = μo
0

(
π̃ ◦ I ◦ T̃ −1

P ◦ I
) = μo

0

(
π̃ ◦ T̃ −1

P

)
. (4.17)

This implies that

μ0(�P) + μ0

(
�P ◦ T −1

P

) = μo
0(�̃P) + μo

0

(
�̃P ◦ T̃ −1

P

)

= μo
0(π̃ ◦ T̃P − π̃) + μo

0

(
π̃ − π̃ ◦ T̃ −1

P

)

= μo
0(π̃ ◦ T̃P) − μo

0

(
π̃ ◦ T̃ −1

P

) = 0.

See [8, 14] for related discussions. Then according to (4.7), the two components of the
current are given by

μP(�a,P) = 1

2
μ0

[
�a,P

(
εH + ε2R

)] +
∞∑

k=1

μ0

[(
�a,P ◦ T k

P

) · (εH + ε2R
)] = εσa + o(ε),

where

σa = 1

2
μ0(�a,P · H) +

∞∑

k=1

μ0

[(
�a,P ◦ T k

0

) · H ]
. (4.18)
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Here we use a similar argument in the last step as in (4.12), since TP → T0 as P → 0.
Denote σ = (σx, σy). So we have shown that JP = εσ + o(ε). The current of the forced

flow ΦP is given by ĴP = μP(�P)/τ̄P = εσ/τ̄P + o(ε), where τ̄P = μP(τP). This completes
the proof. �

Remark 6 It is worth to point out that μ0(H) = 0 is crucial to define σa , a ∈ {x, y}. Oth-
erwise the series in (4.18) used to define σa don’t even converge if we take the linear term
− ∫ τF(r,s)

0 phθdt . This is the main reason why we keep all nonlinear terms in Lemma 4.2.

However, we can use the linear term
∫ τF(r,s)

0 phθdt in all physical models with a Gaussian
thermostat (see [5, 8, 9, 21]). This is exactly the content in Proposition 2.6, 2.7 and Corollary
2.8.

Proof of Proposition 2.6 When restricted to the level set E1 = {‖p‖ ≡ 1}, we have
h = F . Then we only need to prove that the series (4.18) do converge with the linear
choice H = ∫ τF(x)

0 Fθ dt . By Theorem 2.1-b and Lemma 4.4, it is sufficient to show that

μ0(
∫ τF(x)

0 Fθ dt) = 0. Then according to the fact that dm = Cst · p0 · dμ0 dt = dx dy dθ , we
get

μ0

(∫ τF(x)

0
Fθ dt

)

= Cst ·
∫

M

∫ τF(x)

0
Fθ dtdμ0 =

∫

M
Fθdm

=
∫

Q

(∫

S1
Fθ dθ

)

dx dy =
∫

Q

(F |∂S1)dx dy = 0. (4.19)

This finishes the proof of Proposition 2.6. �

Proof of Proposition 2.7 Let E = (εe1(q), εe2(q)) be the electric field on Q, q̇ = p,
ṗ = E − αp be the thermostatted system. When restricted to the level set E1 = {‖p‖ ≡ 1},
the function h = −e1 sin θ + e2 cos θ , and hθ = −e1 cos θ − e2 sin θ = −(e1, e2) · p. So
H = − ∫ τF(x)

0 hθ dt = (e1, e2) ·
∫ τE(x)

0 pdt = (e1, e2) ·�E(x). This finishes the proof of Propo-
sition 2.7. �

Remark 7 There is another classical representation of the current of the billiard flow Ĵ =
μ̂(p), which may not hold for general forces. More precisely, let μ̂P be the SRB measure of
the flow ΦP, which can also be obtained as the suspension of μP on M. Then ĴP = μ̂P(p)

holds if and only if �P(x) = �F(x) := ∫ τF(x)

0 pdt , that is, there is no slip on ∂Q after each
collision. For a general twist force with slip, we would have an additional term �G(TFx) =
�P(x) − �F(x). So we have μP(�P) = ∫

Mo
(π̃(T̃Px) − π̃(T̃Fx))dμo

P + μP(�F). Since μP is
TP-invariant, we get an modified formula of the current for the forced flow

ĴP = μ̂P(p) + 1

μP(τP)

∫

Mo

(
π̃(x) − π̃

(
G−1x

))
dμo

P. (4.20)

Now we turn to the proof of (2.9) and (2.11).

Proof of Theorem 2.2 and Theorem 2.3 The convergence of the distribution q̃n−nJP√
n

to a
normal law N (0,DP) follows directly from the central limit theorem (see Theorem 2.1-c),
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since q̃n = ∑n−1
k=0 �P ◦ T k

P , where �P belongs to H by Lemma 4.4. Thus it is enough to
estimate the covariance matrix DP, which is given by the following sum of correlations

DP =
∞∑

n=−∞

[
μP

(
�P ◦ T n

P ⊗ �P
) − μP(�P) ⊗ μP(�P)

]
. (4.21)

Note that for any n ≥ 1,

lim
P→0

�P ◦ T n
P = �0 ◦ T n

0 .

Furthermore by Theorem 2.1, there exist C > 0 and θ ∈ (0,1), such that for any ε-small
force pair P and for all a, b ∈ {x, y},

∣
∣Ca,b(n)

∣
∣ = ∣

∣μP
(
�a,P ◦ T n

P · �b,P
) − μP(�a,P) · μP(�b,P)

∣
∣ ≤ Cθ |n|.

Therefore the series
∑∞

n=−∞ Ca,b(n) converges uniformly (and exponentially) for all a, b ∈
{x, y}. So the diffusion matrix varies continuously at P = 0:

DP =
∞∑

n=−∞

[
μP

(
�P ◦ T n

P ⊗ �P
) − μP(�P) ⊗ μP(�P)

]

=
∞∑

n=−∞
μ0

(
�0 ◦ T n

0 ⊗ �0

) + o(1) = D0 + o(1), (4.22)

since μ0(�0) = 0. This finishes the proof of Theorem 2.2. Theorem 2.3 follows directly
from Theorem 2.2. �

Finally we prove Theorem 2.4.

Proof of Theorem 2.4 Let λs
P < 0 < λu

P denote the Lyapunov exponents of the ergodic sys-
tem (TP,μP). The sum ξP := −(λs

P + λu
P) represents the physical entropy production rate of

the perturbed system (TP,μP). Then by Oseledets Multiplicity Ergodic Theorem, we have

ξP = −(
λs

P + λu
P

) = −μP(logJP).

Note that 1 −JP = O(ε). So we have

ξP = −μP
(
log

(
1 − (1 −JP)

)) = μP(1 −JP) + 1

2
μP

(
(1 −JP)2

) +O
(
ε3

)
.

Using the similar analysis as in (4.12) and μ0(JP) = 1, one can check that

μP(1 −JP) = μ0(1 −JP) +
∞∑

k=1

μ0
[
(1 −JP) ◦ T k

P · (1 −JP)
]

= ε2
∞∑

k=1

μ0

(
H ◦ T k

P · H ) +O
(
ε3

) = ε2
∞∑

k=1

μ0

(
H ◦ T k

0 · H ) + o
(
ε2

)
. (4.23)

In addition, we have

μP
(
(1 −JP)2

) = μ0

(
(1 −JP)2

) +
∞∑

k=1

μ0

[(
(1 −JP)2

) ◦ T k
P · (1 −JP)

]
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= ε2μ0

(
H 2

) + ε3

2

∞∑

k=1

μ0

(
H 2 ◦ T k

0 · H ) + o
(
ε3

)
, (4.24)

where we used (4.7) and (4.11) in the above estimates. Combining these facts, we get

ξP = ε2

2
μ0

(
H 2

) + ε2
∞∑

k=1

μ0

(
H ◦ T k

0 · H ) + o
(
ε2

) = ε2 · σ 2
0 (H)

2
+ o

(
ε2

)
,

where σ 2
0 (H) = ∑∞

k=−∞ μ0[H ◦ T k
0 · H ]. Being an SRB measure, the metric entropy of

μP satisfies hμP(TP) = λu
P = μP(Λu

P), by Pesin’s Entropy Formula and by Birkhoff Ergodic
Theorem, respectively, where Λu

P(x) is the local expansion rate of x ∈ M along the unstable
direction under map TP. Then according to (4.11) and the exponential decay of correlations,
we have

hμP(TP) = μ0
(
Λu

P

) +
∞∑

k=1

μ0
(
Λu

P ◦ T k
P · (1 −JP)

)

= μ0

(
Λu

0

) +
∞∑

k=1

μ0

(
Λu

0 ◦ T k
P · (εH + ε2RP

)) + o(1)

= h0 + o(1), (4.25)

since Λu
P → Λu

0 as P → 0. Here h0 := hμ0(T0) > 0 is the metric entropy of the unforced
billiard map T0. Combining the above facts and Young’s Dimension Formula (2.17) in [25],
we get

HD(μP) = hμP(TP)

(
1

λu
P

− 1

λs
P

)

= 1 − λu
P

λs
P

= 2 − ξP

hμP(TP) + ξP

= 2 − ε2 · σ 2
0 (H)/2 + o(ε2)

h0 + ε2 · σ 2
0 (H)/2 + o(1)

= 2 − ε2 · σ 2
0 (H)

2h0
+ o

(
ε2

)
.

This completes the proof of Theorem 2.4. �

Then by the suspension property, we see that the dimension of the measure μ̂P is given
by

HD(μ̂P) = HD(μP) + 1 = 3 − ε2 · σ 2
H

2h0
+ o

(
ε2

)
.

So if ε is small and σ 2
H > 0, then 1 < HD(μP) < 2 and 2 < HD(μ̂P) < 3. Therefore, both μP

and μ̂P are singular with respect to the Lebesgue measures and admit the fractal structures
if σ 2

H �= 0 under a small force pair P. Recall that μP is positive on every open set. The first
intuitive impression of μP is that it might be a smooth measure. Clearly this is not the case
under generic small forces. In fact, it is believed [9] (based on numerical evidences) that μP

should be multifractal with a continuous spectrum of fractal dimensions.
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