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Abstract

Dispersing billiards introduced by Sinai are uniformly hyperbolic
and have strong statistical properties (exponential decay of correla-
tions and various limit theorems). However, if the billiard table has
cusps (corner points with zero interior angles), then its hyperbolicity
is nonuniform and statistical properties deteriorate. Until now only
heuristic and experiments results existed predicting the decay of corre-
lations as O(1/n). We present a first rigorous analysis of correlations
for dispersing billiards with cusps.
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1 Introduction

A billiard is a mechanical system in which a point particle moves in a compact
container D and bounces off its boundary ∂D; in this paper we only consider
planar billiards, where D ⊂ R

2 or D ⊂ Tor2. The billiard dynamics preserves
a uniform measure on its phase space, and the corresponding collision map
(generated by the collisions of the particle with ∂D, see below) preserves a
natural (and often unique) absolutely continuous measure on its own phase
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space, see definitions in Section 2. The dynamical properties of a billiard are
determined by the shape of the boundary ∂D, and it may vary greatly from
completely regular (integrable) to strongly chaotic.

The first class of chaotic billiards was introduced by Ya. Sinai in 1970
[Si70]; he proved that if the boundary ∂D of a domain D ⊂ Tor2 is smooth
and strictly convex inward (with nowhere vanishing curvature), then the bil-
liard map and flow are hyperbolic (moreover, uniformly hyperbolic), ergodic,
mixing and K-mixing. He called such systems dispersing billiards, now they
are often called Sinai billiards. In 1974, Gallavotti and Ornstein [GO74]
proved that Sinai’s billiards were Bernoulli systems.

Sinai’s billiards have strong statistical properties – exponential decay of
correlations for the collision map [Y98], central limit theorem and weak in-
variance principle (for both map and flow, see [BS81, BSC91]), as well as
strong invariance principle for the map [C06b].

All these results have been extended to dispersing billiards with piecewise
smooth boundary, where corner points exist, provided the interior angles
made by the boundary at corner points are all positive [BSC91, C99].

On the contrary, dispersing billiards with corner points with zero internal
angles (‘cusps’) are much harder to investigate; the main reason is a weak
(non-uniform) hyperbolicity of the collision map. Indeed, whenever the mov-
ing particle gets deep into a cusp, it experiences a large number of rapid
collisions that do not contribute much to the expansion or contraction of
tangent vectors. Only in 1995, Reháček proved that dispersing billiards with
cusps were ergodic [R95], which implied K-mixing by a general argument, see
[Si70] and also [CM06, Chapter 6], and Bernoulli property [CH96, OW98].

Statistical properties of dispersing billiards with cusps appear to be simi-
lar to those of expanding interval maps with indifferent fixed points (see, for
example, [CGS92, CG93, Y99]). Just like a trajectory in an interval may be
trapped in a vicinity of an indifferent fixed point, the billiard particle may be
trapped in a cusp. Such phenomena result in an intermittent character of the
dynamics (switching between regularity and chaos) and they are notoriously
hard to analyze.

In 1983, Machta [Mac83] investigated the rate of the decay of correlations
for one particular billiard table made by three identical circular arcs tangent
to each other at their points of contact (Fig. 1). He argued that correlation
function Cn(f, g), see definitions in the next section, should decay as O(1/n),
which was much slower than the exponential decay then expected (and now
established) for dispersing billiards without cusps. Machta’s arguments were
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Figure 1: Billiard table with three cusps.

almost entirely heuristic (he approximated the motion of the billiard particle
in a cusp by a carefully constructed system of differential equations), but
his analysis clearly demonstrated that the dynamics in a cusp were pretty
complicated. Machta supported his conjecture by numerical experiments (see
also [MR86]).

The (rather unexpected) complexity of the dynamics in a cusp held back
the mathematical studies of such billiards for quite a while. Only now we
are able to prove Machta’s conjecture (in a slightly weaker form):

Theorem 1.1. For dispersing billiards with cusps, the correlations Cn(f, g)
for the collision map and Hölder continuous observables f, g are bounded by
|Cn(f, g)| ≤ C(ln n)2/n, where C > 0 is a constant.

In most of our paper we deal with Machta’s three-arc table shown on
Fig. 1. This allows us to present the arguments in a fairly tractable and ge-
ometrically transparent manner. In Section 6 we describe changes necessary
for proving the theorem in the general case.

Remark. Bounds on correlations similar to ours (with a logarithmic factor)
have been established for Bunimovich’s stadium and other billiard models
with polynomial decay of correlations [Mar04, CZ05a]. It is believed that
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the logarithmic factor is just an artefact of the method used, and a sharp
bound on correlations is expected to be C/n. A work is currently underway
to improve the argument and eliminate the logarithmic factor.

Remark. In the studies of hyperbolic maps, if correlations decay as O(1/n),
as in our case, the central limit theorem (CLT) usually fails. However, there
are non-classical versions of the CLT that sometimes hold [BG06].

2 Generalities

Here we provide necessary facts from the theory of chaotic billiards. For a
more detailed presentation of these and related facts see [BSC90, BSC91,
C06a], as well as our recent book [CM06].

A planar billiard is a dynamical system where a point (particle) moves
freely at unit speed in a domain D ⊂ R

2 and reflects off its boundary ∂D by
the rule “the angle of incidence equals the angle of reflection”. It is commonly
assumed that ∂D is a finite union of C3 curves (arcs). The phase space of
this system is a three dimensional manifold Ω = D × S1. The motion of the
particle generates a Hamiltonian flow on Ω preserving a Liouville measure,
which is a product of uniform measures on D and S1.

Let M = ∂D × [−π/2, π/2] be the standard cross-section of the billiard
dynamics, we call M the collision space. Canonical coordinates on M are r
and ϕ, where r is the arc length parameter on ∂D and ϕ ∈ [−π/2, π/2] is the
angle between the postcollisional velocity vector v and the inward normal
vector n to ∂D; the orientation of r and ϕ is shown on Fig. 2.
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Figure 2: Orientation of r and ϕ

The first return map F : M → M is called the collision map or the
billiard map, it preserves smooth measure dµ = cos ϕ dr dϕ on M.
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Let f, g ∈ L2
µ(M) be two functions. Correlations are defined by

(2.1) Cn(f, g) =

∫

M

(f ◦ Fn) g dµ −
∫

M

f dµ

∫

M

g dµ.

It is well known that F : M → M is mixing if and only if

(2.2) lim
n→∞

Cn(f, g) = 0 ∀f, g ∈ L2
µ(M).

The rate of mixing of F is characterized by the speed of convergence in (2.2)
for smooth enough functions f and g. We will always assume that f and g
are Hölder continuous or piecewise Hölder continuous with singularities that
coincide with those of the map Fk for some k. For example, the free path
between successive reflections is one such function.

We say that correlations decay exponentially if |Cn(f, g)| < const · e−cn

for some c > 0 and polynomially if |Cn(f, g)| < const · n−a for some a > 0.
Here the constant factor depends on f and g, but the exponent c (or a)
only depends on the map and on the Hölder exponent of the functions f
and g. Systems with strong (uniform) hyperbolicity are usually character-
ized by exponential decay of correlations; systems with weak (nonuniform)
hyperbolicity usually have slow (polynomial) mixing rates.

A general strategy for estimating the correlation function Cn(f, g) for
systems with weak hyperbolicity was developed in [CZ05a], it is based on
recent Young’s results [Y98, Y99] and [Mar04]. That scheme is particularly
convenient for billiards.

First, one needs to ‘localize’ spots in the phase space where expansion
(contraction) of tangent vectors slows down. Let M0 denote the union of
all such spots and M̂ = M \ M0. One needs to verify that the return
map F̂ : M̂ → M̂ (that avoids all the ‘bad’ spots) is strongly (uniformly)
hyperbolic. It preserves the measure µ̂ obtained by conditioning µ on M̂.
For any x ∈ M̂ we call

R(x) = min{n ≥ 1: Fn(x) ∈ M̂}

the return time.
For dispersing billiards with cusps, hyperbolicity deteriorates only as the

moving particle gets deep down a cusp, where it experiences a large number of
rapid collisions. We fix K0 � 1 and call any sequence of successive collisions
of length > K0 in a cusp a corner series. We thus define M0 to be the set
of all collision points during those corner series.
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Next the strategy developed in [CZ05a] consists of two steps; they are
fully described in [CZ05a] (as well as applied to several classes of billiards
with slow mixing rates), so we will not bring up unnecessary details here.

At the first step one proves that the return map F̂ : M̂ → M̂ has expo-
nential decay of correlations. At the second step one obtains the following
tail bound on the return time function:

(2.3) µ̂(x ∈ M̂ : R(x) > n) ≤ const · n−a

for some a > 1 and large n ≥ 1. This usually requires dividing M̂ into the
sets En = {x : R(x) = n + 1} and estimating the measure µ̂(En) for large n.

Lastly one uses the following theorem proven in [CZ05a, Section 3]:

Theorem 2.1. Suppose the map F̂ : M̂ → M̂ has exponential decay of
correlations. If the tail bound (2.3) holds for the return time R(x), then
correlations are bounded by |Cn(f, g)| ≤ const (ln n)a na−1.

3 Corner series

Here we study the geometry of corner series. We examine a billiard trajectory
entering a cusp and experiencing a large number of reflections there before
getting out. To simplify our analysis we consider here a cusp made by two
circular arcs of unit radius with a common tangent line.

Let N be the number of reflections in the corner series and (rn, ϕn),
1 ≤ n ≤ N , denote the all points of reflection in the cusp. We will also work
with more convenient coordinates: γn = π/2− |ϕn| and αn = |rn − r̄|, where
r̄ stands for the r coordinate of the vertex of the cusp (hence αn is the length
of the arc of ∂D between the vertex and the nth collision point).

Observe that γn are non-negative (in fact γn > 0 for 2 ≤ n ≤ N − 1); αn

are all positive; αn are all small; γn are initially small, then slowly grow to
about π/2 (for n ≈ N/2, as we prove below), and then again decrease and
get small for n ≈ N .

We first show that our trajectory comes closest to the vertex nearly in
the middle of the corner series. Let

αN̄ : = min
n

αn.

Lemma 3.1. We have |N̄ − N/2| ≤ 2.
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Figure 3: The bottom of a corner series (here m = N̄).

Proof. Consider two sequences of points (αN̄+j, γN̄+j) and (αN̄−j, γN̄−j) for
j = 1, 2, . . .. Both sequences are going up, away from the corner, see Fig. 3.
Without loss of generality, suppose αN̄+1 ≥ αN̄−1. Then it is clear from
Fig. 3 that γN̄+1 ≤ γN̄−1 ≤ γN̄ . It is then an elementary geometric fact that

αN̄ ≤ αN̄−1 ≤ αN̄+1 ≤ αN̄−2 ≤ αN̄+2 ≤ · · ·

and

(3.1) γN̄ ≥ γN̄−1 ≥ γN̄+1 ≥ γN̄−2 ≥ γN̄+2 ≥ · · ·

(note that this is only true if the two circles making the corner are equal).
Therefore, the number of collisions in the corner series occurring before

N̄ and after N̄ differ by no more than one, i.e. |N̄ − N/2| ≤ 2.

The two halves of the corner series, one before N̄ and the other after N̄
have very similar structure and properties. It will be enough to study in
detail the first half of the series, 0 ≤ n ≤ N̄ .
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We further subdivide the corner series into three segments. We fix a small
γ̄ ∈ (0, π/2) whose exact value is not important, say γ̄ = 10−10. Now let

N1 = max{n < N̄ : γn ≤ γ̄},

denote N2 = N̄ and put

N3 = min{n > N̄ : γn ≤ γ̄}.

Note that 0 < N1 < N2 < N3 < N . In what follows we use N2 instead of
N̄ . We call the segment [1, N1] the entering period in the corner series, the
segment [N1 + 1, N3 − 1] the turning period in it, and the segment [N3, N ]
its exiting period. It follows from (3.1) that |N1 − N3| ≤ 2.

Convention. We use the following notation: A � B means that C−1 <
A/B < C for some constant C = C(D) > 0. Also, A = O(B) means that
|A|/B < C for some constant C = C(D) > 0.

Proposition 3.2. We have

N1 � N2 − N1 � N3 − N2 � N − N3 � N,

hence all the three segments in the corner series have length of order N . Also,

(3.2) α1 � N−2/3 and αN2
� N−1,

and

(3.3) αn � n−1/3N−2/3 ∀n = 2, . . . , N1

Also,

(3.4) γ1 = O(N−2/3) and γ2 � N−2/3

and

(3.5) γn � nαn � n2/3N−2/3 ∀n = 2, . . . , N1.

Proof. We consider the first half of the series, 1 ≤ n ≤ N2. The following
equations are simple geometric facts:

(3.6) γn+1 = γn + (αn + αn+1)

8



PSfrag replacements
α1

α′
0

γ1

γ′
1

Figure 4: The first collision in a corner series.

and

(3.7) sin αn+1 = sin αn − 2 − cos αn − cos αn+1

tan(γn + αn)
.

Due to (3.6) we have

(3.8) γ2 = γ1 + α1 + α2 ≥ 2α2

and
γ1 + α1 + 2α2 + · · ·+ 2αn−2 + αn−1 = γn ≤ π/2

hence

(3.9) α1 + · · · + αn ≤ π/2

for all n ≤ N2.
At the very first collision, we have γ1 < γ′

1, where γ′
1 denotes the angle

made by the line passing through the first collision point and tangent to the
other arc (Fig. 4). If we denote by α′

0 the coordinate of the point of tangency,
then equations (3.6)–(3.7) take form

γ′
1 = α′

0 + α1, sin α1 = sin α′
0 −

2 − cos α′
0 − cos α1

tanα′
0

.

This easily gives α1/α
′
0 → 1 +

√
2, as N → ∞, hence

(3.10) γ1 < γ′
1 = (2 +

√
2 + o(1)) α1 ≤ 4α1.
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We introduce new variables:

un =
αn+1

αn
and wn =

γn

αn
,

hence

(3.11) αn = α1u1u2 · · ·un−1.

It is important to find the asymptotics for wn. Equation (3.6) yields

(3.12) wn+1 = 1 +
wn + 1

un

Since un ≤ 1, we have wn+1 ≥ wn + 2. Since w2 ≥ 2 by (3.8), we obtain a
lower bound for wn:

(3.13) wn ≥ 2n − 2.

To get an upper bound for wn, we first use (3.7) and obtain

αn+1 > αn − α3
n

6
− 2 − (1 − α2

n/2) − (1 − α2
n+1/2)

γn + αn

= αn − α3
n

6
− α2

n + α2
n+1

2(γn + αn)

This is equivalent to

(3.14) un > 1 − α2
n

6
− 1 + u2

n

2(1 + wn)
> 1 − α2

n

6
− 1

1 + wn

Combining this with (3.12) gives

wn+1 < 1 +
wn + 1

1 − α2
n

6
− 1

wn+1

Note that 1/(1 − x) < 1 + x + 2x2 for small positive x (in fact, for all
0 < x < 1/2; and we indeed have α2

n/6 + 1/(wn + 1) < 1/2 since αn are all
small and wn ≥ 2). Using this fact and making simple calculation yields

(3.15) wn+1 < wn + 3 + α2
nwn +

4

wn + 1
+ α4

n(wn + 1)
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The lower bound (3.13) now implies

wn < 3n + 2 lnn + 2

n−1
∑

i=0

α2
i wi + C

for some absolute constant C (we note that w1 ≤ 4 due to (3.10)). The
bound (3.9) implies

(3.16)

n
∑

i=1

α2
i wi =

n
∑

i=1

αiγi ≤
π

2

n
∑

i=1

αi ≤
π2

4

hence

(3.17) wn < 3n + 2 lnn + C

We will denote by C absolute constants (possibly different in different equa-
tions) whose exact values are not important. Now we have an upper bound
for wn, and the overall asymptotic is wn � n. In particular, as a result of
(3.13) and (3.17) and the obvious γN2

≈ π/2 we have

(3.18)
π

6N2 + 4 ln N2 + 2C
< αmin <

π

4N2

Next we focus on the entering period, i.e. on 1 ≤ n ≤ N1. As long as γn ≤ γ̄
we have

tan(γn + αn) < γn + αn + c̄(γn + αn)3

where c̄ > 0 is a constant determined by γ̄. Now the equation (3.7) yields

αn+1 −
α3

n+1

6
< αn − α2

n/2 − α4
n/24 + α2

n+1/2 − α4
n+1/24

γn + αn + c̄(γn + αn)3

Note that αn+1 − α3
n+1/6 > αn+1(1 − α2

n/6), hence

αn+1 <

[

αn − α2
n + α2

n+1 − α4
n/6

2(γn + αn) + 2c̄(γn + αn)3

]

/
[

1 − α2
n

6

]

or, equivalently,

(3.19) un <

[

1 − 1 + u2
n − α2

n/6

2(wn + 1) + 8c̄(wn + 1)γ2
n

]

/
[

1 − α2
n

6

]

.
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We now substitute (3.19) into (3.12) and after simple calculation arrive
at

wn+1 > 2 + wn + (1 + u2
n)/2 − 8c̄γ2

n − wnα
2
n.

Then we use the estimate (3.14) of un and, with some more simple calculation,
obtain

wn+1 > 3 + wn − (wn + 1)−1 − (wn + 1)−2 − 8c̄γ2
n − 2wnα

2
n

> 3 + wn − (2n)−1 − (2n)−2 − 8c̄γ2
n − 2wnα

2
n,(3.20)

where we also used (3.13).
We now combine (3.12), (3.20) and (3.17):

u−1
n =

wn+1 − 1

wn + 1

> 1 +
1 − (2n)−1 − (2n)−2 − 8c̄γ2

n − 2wnα
2
n

wn + 1

> 1 +
1 − (2n)−1 − (2n)−2 − 8c̄γ2

n − 2wnα
2
n

3n + 2 lnn + C
− 2α2

n

> 1 +
1

3n + 2 lnn + C
− 1

n2
− 8c̄γ2

n

n
− 2α2

n.

Observe that 1 + x > ex−x2

for small x, hence, with some simple calculation,
we obtain
(3.21)

u−1
n > exp

(

1

3n + 2 lnn + C
− 2

n2
− 8c̄γ2

n

n
− 2α2

n − 4c̄2γ2
n

n2
− 64c̄2γ4

n

n2

)

or, lastly,
(3.22)
n
∏

i=1

u−1
i > exp

(

n
∑

i=1

1

3i + 2 ln i + C
−

n
∑

i=1

2

i2
−

n
∑

i=1

8c̄γ2
i

i
− 2

n
∑

i=1

α2
i −

n
∑

i=1

100c̄2γ4
i

i2

)

Note that by (3.17) and (3.16)

n
∑

i=1

γ2
i

i
< 8

n
∑

i=1

γ2
i

wi
< 8

n
∑

i=1

αiγi < 2π2

and similarly
n
∑

i=1

γ4
i

i2
< 64

n
∑

i=1

γ4
i

w2
i

< 64

n
∑

i=1

α2
i γ

2
i < 16π2

n
∑

i=1

α2
i < 8π3.
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By a simple calculation

n
∑

i=1

1

3i + 2 ln i + C
=

1

3
ln n + ∆n

where |∆n| <const is bounded. Therefore, (3.22) has a shorter form:

(3.23)
n
∏

i=1

u−1
i > exp

(

1

3
ln n − C

)

where C > 0 is a constant. Combining this with (3.11) gives

(3.24) αn < Cn−1/3α1

for all 1 ≤ n ≤ N1.
We now estimate αn from below in a similar way. By (3.20)

wn > 3n − ln n − 2c̄

n
∑

i=1

γ2
i − C

for some constant C > 0, where (3.16) was used. For brevity, denote

Γn =
n
∑

i=1

γ2
i .

We now use (3.14) and the obvious fact (1− x)−1 < 1 + 2x for small positive
x and arrive at

(3.25) un > 1 − 1

3n
− α2

n

6
− 2 lnn

9n2
− 2C

9n2
− 4c̄Γn

9n2
.

Using another obvious fact, 1 − x > e−x−x2

(for small x), we obtain

(3.26) u1 · · ·un > exp

(

−1

3
ln n − C −

n
∑

i=1

4c̄Γi

9i2

)

.

We now show that
∑n

i=1 Γi/i
2 is bounded. Indeed,

n
∑

i=1

Γi

i2
=

n
∑

i=1

i
∑

j=1

γ2
j

i2
=

n
∑

j=1

n
∑

i=j

γ2
j

i2
< 2

n
∑

j=1

γ2
j

j
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Since γj = wjαj, using (3.17) gives

n
∑

i=1

Γi

i2
< C

n
∑

j=1

γjαj

for some constant C > 0. The last expression is bounded by (3.9).
Now combining (3.11) with (3.26) gives αn > Cn−1/3α1 for all 1 ≤ n ≤

N1, with some C > 0. Along with (3.24) this gives αn � n−1/3α1 for all n ≤
N1. Since γN1

≈ γ̄ = const, the bounds (3.13) and (3.17) give N1 � α
−3/2
1 .

We now consider the turning period, where N1 ≤ n ≤ N2, then the angle
γn grows from γ̄ to about π/2. First, note that

αn = γn/wn > γ̄/(3n + ln n + C).

By (3.6) we have

N2
∑

n=N1

(γn − γn−1) ≥
N2
∑

n=N1

C ′

3n + ln n + C
≥ C ′′ ln

N2

N1

for some constants C ′, C ′′ > 0. Therefore, N1 < N2 < CN1 for some C > 0.
We then obtain α

−3/2
1 � N2 � N , and for αN2

= minn αn we have αN2
�

N
−1/3
2 α1 � N−1/3α1. The proposition is proved.

For our future use we record some estimates obtained in the proof for the
entering period of the corner series, i.e. for 1 ≤ n ≤ N1. Due to (3.15) and
(3.20) we have

(3.27) wn+1 − wn = 3 + O(n−1 + γ2
n)

(we note that wnα2
n � n1/3N−4/3 = O(n−1), so that the term wnα2

n is ab-
sorbed by others). Observe that n−1 � γ2

n for small n but n−1 � γ2
n for

n ≈ N1, so we have to keep both parts of the O(·) term in (3.27).
Equation (3.27) immediately implies

(3.28) wn = 3n + O(ln n + Γn).

This estimate combined with (3.21) and (3.25) gives

(3.29) un = 1 − 1

3n
+ O

( ln n

n2

)

+ O
(γ2

n

n

)

+ O
(Γn

n2

)

.
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Next, the following sums were proven to be uniformly bounded (by con-
stants independent of n < N1 and N):

(3.30)
n
∑

i=1

γ2
i

i
= O(1) and

n
∑

i=1

Γi

i2
= O(1).

We will also need asymptotic formulas for the intercollision times during
a corner series. Denote by tn the time of the nth collision, 1 ≤ n ≤ N ,
and by τn = tn+1 − tn the time between successive collisions. It is a simple
geometric fact that

(3.31) τn =
2 − cos αn − cos αn+1

sin(γn + αn)

for all 1 ≤ n < N2 (when the trajectory is going down the corner). Expanding
into Taylor series and using (3.3) and (3.28)–(3.29) gives

τn =
αn

2wn

1 + u2
n + O(γ2

n)

1 + w−1
n + O(α2

nw2
n)

=
αn

wn

2 + O(1/n) + O(α2
n)

2 + O(1/n) + O(γ2
n)

= αnw−1
n

(

1 + O(1/n) + O(γ2
n)
)

� n−4/3N−2/3.(3.32)

This gives us another important relation

τn

sin γn
=

αnw−1
n

(

1 + O(1/n) + O(n2α2
n)
)

αnwn

(

1 + O(γ2
n)
)

=
1

w2
n

(

1 + O(1/n) + O(γ2
n)
)

=
1

9n2
+ O

( ln n

n3
+

γ2
n

n2
+

Γn

n3

)

(3.33)

We need to estimate the ratio of neighboring τn’s by using (3.31):

τn+1

τn
=

2 − cos αn+1 − cos αn+2

2 − cos αn − cos αn+1
× sin(γn + αn)

sin(γn+1 + αn+1)
=: F ′

n × F ′′
n .
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The first fraction behaves as

F ′
n =

α2
n+1(1 + u2

n+1) + O(α4
n+1)

α2
n(1 + u2

n) + O(α4
n)

=
u2

n(1 + u2
n+1) + O(α2

n+1)

1 + u2
n + O(α2

n)

= 1 − 2

3n
+ O

( ln n

n2
+

γ2
n

n
+

Γn

n2
+ α2

n

)

,

where we used (3.29) three times. Note that O(α2
n) = O(γ2

n/n
2), hence the

last term is actually absorbed by the others. Next

F ′′
n = 1 − sin(γn+1 + αn+1) − sin(γn + αn)

sin(γn+1 + αn+1)

= 1 − [αnun(wn+1 + 1) − αn(wn + 1)] cos θ

αnun(wn+1 + 1) + O(γ3
n)

,

where θ ∈ (γn + αn, γn+1 + αn+1) by the mean value theorem, hence

F ′′
n = 1 − un(wn+1 + 1) − (wn + 1)

un(wn+1 + 1)

(

1 + O(γ2
n)
)

.

According to (3.27), (3.28) and (3.29) the numerator behaves as

un(wn+1 + 1) − (wn + 1) = (un − 1)wn + 4un − 1 + O(n−1 + γ2
n)

= 2 + O
( lnn

n
+ γ2

n +
Γn

n

)

,

hence

F ′′
n = 1 − 2

3n
+ O

( ln n

n2
+

γ2
n

n
+

Γn

n2

)

.

Again, O(nα2
n) = O(γ2

n/n), hence the last term is actually absorbed by the
others. Combining our estimates for F ′

n and F ′′
n gives

(3.34)
τn+1

τn
= 1 − 4

3n
+ O

( ln n

n2
+

γ2
n

n
+

Γn

n2

)

for all n = 1, . . . , N1.
During the turning period, where N1 ≤ n ≤ N3, we have αn � 1/N by

(3.2) and (3.3). Since γn ≥ γ̄ > 0, we easily obtain τn � α2
n � N−2. Thus
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the time spent by the trajectory during each period in the corner series has
the same order of magnitude:

N1−1
∑

n=1

τn � 1/N and

N3
∑

n=N1

τn � 1/N.

Remark 3.3. Due to the time reversibility of billiard dynamics, all the
asymptotic formulas obtained for the entering period remain valid for the
exiting period. In particular,

(3.35) αN � N−2/3 and γN = O(N−2/3).

During the exiting period we will also use the ‘countdown’ index m = N +
1 − n, so that m = 1, . . . , N − N3; then in all our asymptotic formulas we
can simply replace n by m. For example,

(3.36) αm � m−1/3N−2/3 and γm � mαm � m2/3N−2/3

for all m = 2, . . . , N − N3, etc.

4 Expansion of unstable curves

In this section we estimate the rate of expansion of unstable vectors during
corner series. First we recall general facts about unstable tangent vectors in
dispersing billiards [BSC90, BSC91, C06a, CM06].

Let x = (r, ϕ) ∈ M. A tangent vector dx = (dr, dϕ) ∈ TxM can be
represented by an infinitesimal curve γ = γ(s) ⊂ M, where s ∈ (−ε, ε) is a
parameter, such that γ(0) = x and d

ds
γ(0) = dx.

The trajectories of the points y ∈ γ, after leaving M, make a one-
parameter family (a bundle) of directed lines in ∂D. The curvature of the
orthogonal cross-section of that bundle at x plays an important role; we de-
note it by B+ = B+(x). Similarly, the past trajectories of the points y ∈ γ
(before arriving at M) make a bundle of directed lines in ∂D whose curvature
right before the collision with ∂D at x is denoted by B−. We have

(4.1) B+ = B− +
2K

cos ϕ
,

where K = K(r) denotes the curvature of the boundary ∂D at the point
r. For dispersing billiards K is positive and bounded away from zero and
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infinity. The tangent vector dx is said to be unstable if B− > 0 (hence
B+ > 0 as well). The slope of the vector dx is

dϕ/dr = B− cos ϕ + K = B+ cos ϕ − K,

thus dϕ/dr > 0 for unstable vectors. At the next collision point x1 = F(x) ∈
M, the image vector dx1 = DxF(dx) is characterized by the (precollisional)
curvature B−

1 satisfying

(4.2) B−
1 =

1

τ +
1

B+

=
B+

1 + τB+
,

where τ is the time between collisions at the points x and F(x) (it is also
the distance between the corresponding collision points, because the moving
particle travels at unit speed). Note that B+ > 0 implies B−

1 > 0, thus the
image of an unstable vector will always be an unstable vector.

We measure tangent vectors dx ∈ TxM in the Euclidean norm

‖dx‖ =
[

(dr)2 + (dϕ)2
]1/2

For unstable vectors, it is more convenient to use the p-norm defined by

‖dx‖p = cos ϕ dr.

The p-norm corresponds to the size of the orthogonal cross-section of the
associated bundle of trajectories (it is the same before and after collision).
In the p-norm, the expansion of unstable tangent vectors is given by

(4.3)
‖DxF(dx)‖p

‖dx‖p

= 1 + τB+,

Note that this ratio is > 1, i.e. unstable vectors expand monotonically in
the p-norm (this is not necessarily true in the Euclidean norm, see [CM06,
Chapter 4]).

We return to our corner series. Again, for simplicity we analyze the
three-arc billiard table shown on Fig. 1 and we assume that the arcs have
unit radius. Let x = (r, ϕ) ∈ M̂ be a point whose trajectory {F i(x)}N

i=1 is
going down a cusp (say, A) and comes back after N reflections. In that case
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F̂(x) = FN+1(x), i.e. the return function takes value R(x) = N + 1. We
denote by

EN = {x ∈ M̂ : R(x) = N + 1}
the set of points whose trajectories go down a cusp for a corner series of
exactly N collisions. We denote by xn = (rn, ϕn) = Fn(x) the images of
the point x during the corner series, 1 ≤ n ≤ N , which corresponds to our
notation in the previous section.

Obviously, x has to start near the point D (opposite to the cusp A, see
Fig. 1) and F̂(x) = FN+1(x) has to land back near D again. At the point
x = (r, ϕ), we have ϕ ≈ 0 and 0 < c < B− < C for some constants c, C > 0.
Thus cos ϕ � 1 and 0 < dϕ/dr � 1, hence the Euclidean norm and the
p-norm are uniformly equivalent on unstable vectors at our points x ∈ EN

and F̂(x), i.e. right before and right after long corner series.
Given an unstable vector dx ∈ TxM, we denote by dxn = (drn, dϕn) =

DxFn(dx) its images. We are interested in the total expansion factor of dx

‖DxF̂(dx)‖
‖dx‖ =

‖DxFN+1(dx)‖
‖dx‖

during the corner series.

Proposition 4.1. For every x ∈ EN the total expansion factor for unstable
vectors in the course of the corner series of N collisions has lower bound

(4.4)
‖DxFN+1(dx)‖

‖dx‖ ≥ CN5/3,

where C > 0 is a constant. Its precise asymptotic is

(4.5)
‖DxFN+1(dx)‖

‖dx‖ � N5/3

(

1 +
N−2/3

cos ϕ1

)(

1 +
N−2/3

cos ϕN

)

Proof. Since the Euclidean norm and the p-norm are uniformly equivalent at
the points x ∈ EN and FN+1(x), we can safely replace ‖ · ‖ with ‖ · ‖p; then
we can use the formula (4.3) at every collision.

Let tn denote the time of collision at xn and τn = tn+1−tn the intercollision
time (note that τn is the distance between the points of the nth and (n +
1)st collisions, as the speed of the moving particle equals one). Then the
expansion factor for the vector dx under DxFn is

(4.6)
‖DxFn(dx)‖p

‖dx‖p
=

n−1
∏

i=0

(1 + τiB+
i )
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where for B+
n we have a recursive formula, due to (4.1)–(4.2):

(4.7) B+
n+1 =

2

sin γn+1
+

B+
n

1 + τnB+
n

(remember that K = 1 and γn = π/2 − |ϕn|, so cos ϕn = sin γn).
Before we proceed, let us make an important remark. Recall that (3.4)

and (3.35) only guarantee that γ1 = O(N−2/3) and γN = O(N−2/3); in fact
both γ1 and γN may be arbitrarily close to zero. Thus the expansion of
unstable vectors at the very first and the very last collision of the corner
series may be arbitrarily strong. On the other hand, (4.7) shows that Bn+1

is a monotonically increasing function of both B+
n and 1/ sin γn+1. Thus if

we increase γ1 and γN , the total expansion factor ‖DxFN+1(dx)‖/‖dx‖ will
only decrease. So we can assume that

(4.8) γ1 � N−2/3 and γN � N−2/3

and obtain an (asymptotical) lower bound on the total expansion factor. We
will actually assume (4.8) and prove that

(4.9)
‖DxFN+1(dx)‖p

‖dx‖p
� N5/3.

This will give us, in particular, (4.4) for all x ∈ EN .
For n = 0 we have B+

0 � 1 and τ0 � 1, hence 1 + τ0B+
0 � 1, so the term

i = 0 in (4.6) does not affect the asymptotics. For n ≥ 1, we put λn = τnB+
n ,

then (4.6) takes form

(4.10)
‖DxFn(dx)‖p

‖dx‖p

=
n−1
∏

i=0

(1 + λi)

and (4.7) takes form

(4.11) λn+1 =
2τn+1

sin γn+1
+

τn+1

τn

λn

1 + λn
.

Lemma 4.2. For all x ∈ EN satisfying (4.8) we have

λn � 1/n for 1 ≤ n ≤ N1 (entering period)

λn � 1/n � 1/N for N1 ≤ n ≤ N3 (turning period)

λn � 1/(N − n) for N3 ≤ n < N (exiting period)
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Proof. During the entering period, we have

λn+1 >
a

n2
+
(

1 − b

n

) λn

1 + λn

for some a, b > 0 due to (3.33) and (3.34). Assuming that λn > c/n we get

λn+1 >
a

n2
+
(

1 − b

n

) c/n

1 + c/n

=
c + (a − bc + ac/n)/n

n + c
.

If c > 0 is small enough, the expression in parentheses is positive and we
obtain λn+1 > c/(n+c) > c/(n+1), thus completing the induction. Similarly,

λn+1 <
A

n2
+
(

1 − B

n

) λn

1 + λn

for some A, B > 0 due to (3.33) and (3.34). Assuming that λn < C/n we get

λn+1 <
A

n2
+
(

1 − B

n

) C/n

1 + C/n

=
C + (A − BC + AC/n)/n

n + C
.

If C > 0 is large enough, the expression in parentheses is negative (for large
n), and we obtain λn+1 < C/(n + C) < C/(n + 1), thus completing the
induction.

Next we consider the turning period of the corner series. We just proved
that λN1

� 1/N1 � 1/N , and we noted in the previous section that τN1
�

1/N2, hence B+
N1

= λN1
/τN1

� N . Then we can use the recursive formula

B+
n+1 =

2

sin γn+1
+

B+
n

1 + τnB+
n

,

see (4.7), to estimate B+
n for n ≥ N1. Since

2 <
2

sin γn+1
<

2

sin γ̄
=: G < ∞
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for all n ∈ (N1, N3), we have B+
n+1 ≤ G +B+

n , thus B+
n ≤ BN1

+ NG � N for
N1 ≤ n ≤ N3. To get a lower bound on B+

n recall that τn ≤ D/N2 for some
D > 0. Assuming that Bn > dN for some small d > 0 we obtain

B+
n+1 ≥ 2 +

dN

1 + (D/N2)(dN)
≥ dN

for large N . Therefore, B+
n � N and λn = τnB+

n � 1/N for N1 ≤ n ≤ N3.
During the exiting period, we use the ‘countdown’ index m = N + 1 − n

(see Remark 3.3), so that (4.11) takes form

λm−1 =
2τm−1

sin γm−1
+

τm−1

τm

λm

1 + λm
.

Also, all the asymptotic formulas obtained in the previous section for the
entering period remain valid for the exiting period if one replaces n by m; in
particular,

a

m2
<

2τm−1

sin γm−1

<
A

m2
and 1 +

b

m
<

τm−1

τm

< 1 +
B

m

for some constants 0 < a < A < ∞ and 0 < b < B < ∞ and all m ≥ 3. Next
we use the ‘backward’ induction on m, going down from m = N3 to m = 1.
Assuming that λm > c/m we get

λm−1 >
a

m2
+
(

1 +
b

m

) c/m

1 + c/m

=
c + [a + bc − c − c2 + (ac − a − bc − ac/m)/m]/(m + c)

m − 1
.

If c > 0 is small enough, the expression in the brackets is positive (for
large m), and we obtain λm−1 > c/(m − 1), thus completing the induction.
Assuming that λm < C/m we get

λm−1 <
A

m2
+
(

1 +
B

m

) C/m

1 + C/m

=
C + [A + BC − C − C2 + (AC − A − BC − AC/m)/m]/(m + C)

m − 1
.

If C > 0 is large enough, the expression in the brackets is negative (for large
m), and we obtain λm−1 < C/(m − 1), thus completing the induction. The
lemma is proved.
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Remark 4.3. Observe that during the exiting period λm � 1/m and τm �
m−4/3N−2/3, cf. (3.32), hence B+

m = λm/τm � m1/3N2/3 for all m = 2, . . . , N−
N3. The case m = 1 (i.e. n = N) is not included in our estimates, because
it is the last collision in the corner series, so that τN � 1, which affects λN .
However, for points x ∈ EN satisfying (4.8) we can still use (4.7), which
gives us

B+
N � B+

N−1 � N2/3.

Lemma 4.2 implies that
∑N−1

n=1 λ2
n = O(1), i.e. this sum is bounded uni-

formly in N . Hence for any 1 ≤ N ′ < N ′′ ≤ N we have

(4.12)

N ′′−1
∏

n=N ′

(1 + λn) = exp

[N ′′−1
∑

n=N ′

ln(1 + λn)

]

� exp

[N ′′−1
∑

n=N ′

λn

]

.

In particular, during the turning period, we have
∑N3

n=N1−1 λn � 1, hence the
expansion is insignificant (it is uniformly bounded in N).

Next we estimate the expansion during the entering period.

Lemma 4.4. For all x ∈ EN satisfying (4.8) we have
∏N1

n=1(1+λn) � N1/3.

Proof. In view of (4.12), this is equivalent to
∑N1

n=1 λn = 1
3
ln N1 +∆N , where

∆N = O(1). It is enough to show that

(4.13) λn =
1

3n
+ χn, where

N1
∑

n=1

χn = O(1).

The recursive formula (4.11) can be rewritten as

(4.14) λn+1 =
2

9n2
+ an +

(

1 − 4

3n
+ bn

)

λn

1 + λn
,

where, due to (3.33),

an = O
( lnn

n3
+

γ2
n

n2
+

Γn

n3

)

and, due to (3.34),

bn = O
( ln n

n2
+

γ2
n

n
+

Γn

n2

)
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Note that |an| ≤ c/n2 and |bn| ≤ c/n for some small c > 0; in fact c > 0
can be made arbitrarily small by choosing sufficiently small γ̄ > 0. To verify
(4.13) it is convenient to change variable as

(4.15) λn =
1 + Zn

3n
.

We substitute (4.15) into (4.14) and obtain by direct calculation

Zn+1 = Rn + Zn

[

1 − 1

n
+ bn + O

( 1

n2

)

− Zn

(

1

3n
+ O

( 1

n2

)

)

+ O
(Z2

n

n2

)

]

,

where

Rn = 3nan + bn + O(1/n2)

= O
( lnn

n2
+

γ2
n

n
+

Γn

n2

)

.(4.16)

Observe that Zn > −1 because λn > 0. It is clear that Zn gets closer to zero
as n grows, but we need more precise asymptotics. If we fix a small δ > 0,
then for large enough n we have

|Zn+1| ≤ |Rn| + |Zn|
(

1 − δ

n

)

.

Without affecting the asymptotic behavior of Zn’s we can assume that the
above bound is valid for all n. Using it recurrently we obtain

|Zn| ≤ |Rn| +
n−1
∑

k=1

|Rk|
n−1
∏

i=k

(

1 − δ

i + 1

)

≤ const

n
∑

k=1

|Rk| e−
P

n

i=k
δ/(i+1)

≤ const

n
∑

k=1

|Rk|(k/n)δ.
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Now we are ready to verify (4.13):

N1
∑

n=1

|χn| ≤ const

N1
∑

n=1

|Zn|/n

≤ const

N1
∑

n=1

n
∑

k=1

|Rk|kδ/n1+δ

≤ const

N1
∑

k=1

|Rk|
N1
∑

n=k

kδ/n1+δ

≤ const

N1
∑

k=1

|Rk|.

Due to (4.16), the last sum is bounded uniformly in N . The lemma is proved.

It remains to estimate the expansion during the exiting period:

Lemma 4.5. For all x ∈ EN satisfying (4.8) we have
∏N−1

n=N3
(1+λn) � N2/3.

Proof. Our argument follows the lines of the previous proof and we again
use the countdown index m = N − n + 1. In view of (4.12), the lemma is
equivalent to

∑N−N3

m=2 λm = 2
3
ln(N − N3) + ∆N , where ∆N = O(1). It is

enough to show that

(4.17) λm =
2

3m
+ χm, where

N−N3
∑

m=2

χm = O(1)

The recursive formula (4.11) now takes form

(4.18) λm−1 =
2

9m2
+ am +

(

1 +
4

3m
+ bm

)

λm

1 + λm

,

where, due to (3.33),

am = O
( ln m

m3
+

γ2
m

m2
+

Γm

m3

)

and, due to (3.34),

bm = O
( ln m

m2
+

γ2
m

m
+

Γm

m2

)

.
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Note that |am| ≤ c/m2 and |bm| ≤ c/m for some small c > 0 (and c can be
made arbitrarily small by choosing sufficiently small γ̄). To verify (4.17) it
is convenient to change variable as

(4.19) λm = 2
1 + Zm

3m
.

We substitute (4.19) into (4.18) and obtain by direct calculation

Zm−1 = Rm +Zm

[

1− 1

m
+ bm +O

( 1

m2

)

−Zm

(

1

3m
+O

( 1

m2

)

)

+O
(Z2

m

m2

)

]

,

where

Rm = 3mam + bm + O(1/m2)

= O
( ln m

m2
+

γ2
m

m
+

Γm

m2

)

.(4.20)

If we fix a small δ > 0, then for large enough m we have

|Zm−1| ≤ |Rm| + |Zm|
(

1 − δ

m

)

.

Without affecting the asymptotic behavior of Zm’s we can assume that the
above bound is valid for all m ≥ 3. Using it recurrently we obtain

|Zm| ≤
N−N3
∑

k=m

|Rk|
k
∏

i=m

(

1 − δ

i

)

≤ const

N−N3
∑

k=m

|Rk| e−
P

k

i=m
δ/i

≤ const

N−N3
∑

k=m

|Rk|(m/k)δ.
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Now we are ready to verify (4.17):

N−N3
∑

m=2

|χm| ≤ const

N−N3
∑

m=2

|Zm|/m

≤ const

N−N3
∑

m=2

N−N3
∑

k=m

|Rk|mδ−1/kδ

≤ const

N−N3
∑

k=2

|Rk|
k
∑

m=2

mδ−1/kδ

≤ const

N
∑

k=2

|Rk|.

Due to (4.20), the last sum is bounded uniformly in N . The lemma is proved.

After the last collision, the particle leaves the cusp and flies back to the
vicinity of the point D ∈ ∂D. According to Remark 4.3, B+

N � N2/3 and
τN � 1, hence unstable vectors are additionally expanded by 1 + τNB+

N �
N2/3. Thus the total expansion factor for unstable vectors dx ∈ TxM is

‖DxFN+1(dx)‖p

‖dx‖p
� N1/3 × N2/3 × N2/3 = N5/3

for all x ∈ EN satisfying (4.8).
For points x ∈ EN where γ1 fails to satisfy (4.8), the expansion between

the first and second collisions is

‖Dx1
F(dx1)‖p

‖dx1‖p

= 1 + τ1B+
1 � 1 +

N−2/3

cos ϕ1

,

which accounts for the first extra factor in (4.5). For points x ∈ EN where
γN fails to satisfy (4.8), the expansion between the last collision at xN and
return to M̂ (near D) is

‖DxN
F(dxN)‖p

‖dxN‖p
= 1 + τNB+

N � B+
N

= 2/ cosϕN + B−
N

� [cos ϕN ]−1 + N2/3

� N2/3

(

1 +
N−2/3

cos ϕN

)

,
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which accounts for the second extra factor in (4.5).
This completes the proof of Proposition 4.1.

5 Cell structure

Here we use the results of the previous two sections to analyze the sets EN ,
which consist of points whose trajectories go down a cusp and experience
there a corner series of exactly N collisions.

We will use standard facts of the theory of dispersing billiards [BSC90,
BSC91, C99, CM06]. For example, the domains EN are bounded by singu-
larity curves of the map F̂ (which are singularity curves for the maps F i,
i = 1, . . . , N , with N = R(x)); the latter are smooth compact curves whose
slope in the rϕ coordinates is negative and bounded away from zero and
infinity, i.e.

−∞ < C1 ≤ dϕ/dr ≤ C2 < 0

for some constants C1, C2. The images FN = F̂(EN) are domains bounded
by singularity curves of the map F̂−1, which are smooth compact curves
with positive slope. Moreover, due to the time-reversibility of the billiard
dynamics, we have a handy symmetry: a point (r, ϕ) belongs in EN if and
only if (r,−ϕ) ∈ FN , hence FN is obtained by reflecting EN across the line
ϕ = 0. More generally, a point (r, ϕ) is a singularity point for the map F̂ if
and only if (r,−ϕ) is a singularity point for its inverse F̂−1.

For simplicity, we again consider the three-arc billiard table shown on
Fig. 1. There are three identical spots in M̂ from which trajectories depart
into cusps: their footpoints must be near D, E, or F (opposite to the cusps
A, B, and C, respectively), and the velocities of such trajectories must be
nearly orthogonal to ∂D.

Consider one such spot, near the point xD = (rD, 0), where rD denotes
the r-coordinate of D. A simple geometric inspection shows that xD itself
belongs to a singularity curve, call it S0 (see the thick black line on Fig. 5,
going from ‘northwest’ to ‘southeast’); it is made by trajectories whose very
first collision in the cusp is grazing. One can easily check that the slope of
the curve S0 at xD is dϕ/dr = −(3 +

√
3)/2.

The domain EN (more precisely, its part near xD) is a union of two ‘bent’
strips (colored grey on Fig. 5), we denote them by E ′

N and E ′′
N . Each strip

is bounded by an ‘outer’ curve, call it SN−1, and an ‘inner’ curve, call it SN

(as well as two short segments of S0). The curves SN and SN−1 bounding
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Figure 5: The domain EN near the point xD.

EN = E ′
N ∪E ′′

N terminate on S0. The domains EN , N > K0, make a ‘nested’
structure and shrink to xD as N → ∞ (they are schematically shown by
concentric ovals on Fig. 5). The curves SN separating the domain EN from
EN+1 are made by trajectories whose last collision in the corner series is
grazing.

Why do we have two parts (two strips) of the domain EN , one above S0

and the other below S0? It is because the first collision of a corner series of
length N may occur on either of the two arcs making the cusp (left or right),
and each strip contains points coming down onto one of these arcs (the strip
E ′′

N above S0 hits the left arc first, the strip E ′
N below S0 hits the right arc

first).
To determine the dimensions of the strips E ′

N and E ′′
N observe that their

extreme points (lying the curve S0 and located farthest from the central point
xD) are made by trajectories whose very first collision in the cusp is grazing,
see the solid lines on Fig. 6. Since the point of the first collision in the cusp
is the distance � N−2/3 from the vertex A, according to (3.2), we conclude
that the trajectory originates the distance � N−2/3 from the point D. Thus
the diameter of E ′

N and E ′′
N (i.e. the ‘length’ of these strips) is � N−2/3.

The middle parts of E ′
N and E ′′

N (closest to the point xD) are made
by trajectories starting out at angles |ϕ| � N−4/3, see the dashed lines on
Fig. 6, thus dist(EN , xD) � N−4/3. This suggests that the width of the strips
making EN is � N−7/3, but we will deduce this estimate from the results of
the previous section.

Due to the aforementioned symmetry, the image FN = F̂(EN) is congru-
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ent to EN itself, in particular it consists of two strips, F ′
N and F ′′

N of length
� N−2/3, see Fig. 7. Without loss of generality we suppose that F̂(E ′

N) = F ′
N

(this is the case when N is even, otherwise we have F̂(E ′
N) = F ′′

N ). If
W ⊂ E ′

N is an unstable curve stretching across E ′
N (from SN to SN−1),

see Fig. 7, then its image F̂(W ) will stretch ‘from top to bottom’ of F ′
N ,

so its length will be |F̂(W )| � N−2/3. Due to Proposition 4.1, we obtain
|W | � N−2/3/N5/3 = N−7/3, which is exactly the width of the strip E ′

N .
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Figure 7: An unstable curve W ′
N ⊂ E ′

N and its image F̂(W ) ⊂ F ′
N .

It is now clear that

µ̂(EN) � µ(EN) � N−2/3 × N−7/3 = N−3,

30



thus
µ̂(x ∈ M̂ : R(x) > N) � N−2,

hence (2.3) holds with a = 2. This completes the proof of Theorem 1.1,
except we have not yet verified all the conditions of Theorem 2.1: it remains
to prove the following:

Proposition 5.1. The map F̂ : M̂ → M̂ has exponential decay of correla-
tions.

Proof. According to [CZ05a], it is enough to verify a set of standard con-
ditions. These include several conditions of technical nature (distortion
bounds, absolute continuity, curvature bounds for singularity lines, etc.),
which for dispersing billiards without cusps have been verified in other pa-
pers [BSC91, C99] and in our book [CM06], and their verification for billiards
with cusps only require minor changes. We only deal with the main condition
on the expansion of unstable curves here,

Let S denote the singularity set for the map F̂ . These include the points
where F̂ is discontinuous as well as the preimages of the boundaries of ho-
mogeneity strips, see below. For any unstable curve W ⊂ M̂ denote by Wi,
i ≥ 1, the connected components of W \S. For every i let Λi be the minimal
factor of expansion of Wi under F̂ (due to the distortion bounds, this factor
does not vary much over Wi). Then the expansion condition to be verified is

(5.1) lim inf
δ→0

sup
W : |W |<δ

∑

i

Λ−1
i < 1,

where the supremum is taken over unstable curves W of length |W | < δ.
Let S1,d denote the set where the map F̂ is discontinuous. In the vicinity

of xd, the set S1,d is the union of the curve S0 and all the curves SN , N ≥ K0.

Any unstable curve W ⊂ M̂ is increasing in the rϕ coordinates, hence it
can only intersect any given discontinuity curve Si once. But it may intersect
infinitely many (or all!) of them, hence W \ S1,d may have countably many
connected components. Each component lies in one strip of EN for some
N ≥ K0, and we denote them by W ′

N = W ∩ E ′
N and W ′′

N = W ∩ E ′′
N .

Consider an arbitrary component W ′
N , N ≥ K0. It must be further

subdivided into finitely or countably many ‘homogeneous’ subcomponents in
the following way. For every i = 1, . . . , N , if the image F i(W ′

N) crosses the
boundary of a homogeneity strip (defined below) at a point y ∈ F i(W ′

N ),
then the curve W ′

N must be subdivided at the point F−i(y).
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Homogeneity strips were introduced in [BSC91] for a better control over
distortions, see also [CM06, Chapter 5]. We fix a large constant k0 � 1 and
for each k ≥ k0 define two strips H±k ⊂ M by

Hk = {(r, ϕ) : π/2 − k−2 < ϕ < π/2 − (k + 1)−2}

and
H−k = {(r, ϕ) : − π/2 + (k + 1)−2 < ϕ < −π/2 + k−2}.

Now M is divided into homogeneity strips Hk bounded by the lines

S±k = {(r, ϕ) : ± ϕ = π/2 − k−2}

for |k| ≥ k0; these are countably many horizontal lines on the rϕ coordinate
plane accumulating near the natural boundary |ϕ| = π/2, see Fig. 8.

Consider the domains Gi = F i(E ′
N) for i = 1, . . . , N . A direct geometric

inspection shows that the very first one, G1, is a strip adjacent to the bound-
ary ϕ = −π/2, see Fig. 8; its length in the ‘negative’ (northwest–southeast)
direction is � N−2/3, and its width in the ‘positive’ (northeast–southwest)
direction is � N−5/3 (this follows from our estimates on the size of E ′

N and
our analysis of expansion of unstable curves in Section 4). It crosses infinitely
many lines S−k, k ≥ kN , where k−2

N � N−2/3, hence kN � N1/3. Further im-
ages Gi, i ≥ 2, move away from the boundary |ϕ| = π/2, see Fig. 8, thus
they can only cross 2kN � N1/3 lines S±k, k ≤ kN .

When i approaches N , this picture is repeated in the reverse order: the
domains Gi, N/2 ≤ i ≤ N −1, intersect finitely many lines S±k, k ≤ kN , and
the last domain GN intersects countably many lines S−k, k ≥ kN .

Since any unstable curve has a positive slope, dϕ/dr > 0, it may only
intersect each line Sk once. Thus every line Sk can only induce one point in
the curve W ′

N where the latter must be subdivided. Most important are the
intersections of S−k, k ≥ kN , with the very first image F(W ′

N) and the very
last image FN(W ′

N). They induce a partition of W ′
N into countably many

subcomponents that we denote by

(5.2) W ′
N,k,m = W ′

N ∩ F−1(H−k) ∩ F−N(H−m),

k, m ≥ kN . Observe that cos ϕ � k−2 in the strips H±k. Thus, according to
(4.5), the map F̂ expands the subcomponent W ′

N,k,m by a factor of

ΛN,k,m � N5/3(1 + k2N−2/3)(1 + m2N−2/3).
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We now estimate from above the following sum:

(5.3)
∑

(k,m)∈ZN

Λ−1
N,k,m � N−5/3

∑

(k,m)∈ZN

(1 + k2N−2/3)−1(1 + m2N−2/3)−1,

where ZN is the set of pairs (k, m) for which the intersection (5.2) is not
empty. Observe that if the curve W ′

N is traversed from one end to the other,
then both indices k and m change monotonically.

In the case treated here (which is shown on Figs. 7 and 8) both indices
increase or both decrease depending on the direction in which the curve W ′

N is
traversed. Thus, if we join each pair of neighboring points of the set ZN ⊂ R

2

by a unit segment, we will get a monotonically increasing polygonal line in
the quadrant {k ≥ kN , m ≥ kN} starting at (kN , kN). For every n ≥ 2kN
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there is at most one pair (k, m) ∈ ZN such that k +m = n. For a fixed value
of k + m = n, by a simple application of Cauchy-Schwarz inequality we get

(1 + k2N−2/3)(1 + m2N−2/3) ≥ N−2/3n2,

thus

∑

(k,m)∈ZN

Λ−1
N,k,m ≤ const · N−5/3

∞
∑

n=2kN

N2/3n−2

� N−1

∫ ∞

2kN

dx

x2

� N−1N−1/3 = N−4/3.

In other cases (say, for W ′′
N = W ∩ E ′′

N ) it might happen that, as the
curve W ′

N is traversed from one end to the other, then the indices k and
m change in the opposite way: k increases and m decreases (or vice versa).
Then, if we join each pair of neighboring points of the set ZN ⊂ R

2 by a
unit segment, we will get a monotonically decreasing polygonal line in the
quadrant {k ≥ kN , m ≥ kN}. For every n ∈ Z there will be at most one
pair (k, m) ∈ ZN such that k − m = n. For a fixed value of k − m = n, we
obviously have

(1 + k2N−2/3)(1 + m2N−2/3) ≥ (1 + k2
NN−2/3)(1 + (kN + |n|)2N−2/3)

thus

∑

(k,m)∈ZN

Λ−1
N,k,m ≤ const · N−5/3

1 + k2
NN−2/3

∞
∑

n=kN

1

1 + n2N−2/3

� N−5/3

∫ ∞

kN

dx

1 + N−2/3x2

� N−5/3N1/3 = N−4/3.

which is the same upper bound as in the previous case.
Next, we need to add intersections of the lines S±k, k ≤ kN , with the

intermediate images F i(W ′
N), 2 ≤ i ≤ N − 1. These contribute at most 2kN

additional points of intersection, i.e. at most 2kN additional subcomponents
in W ′

N . The minimal expansion factor of the map F̂ along the curve W ′
N

is � N−5/3, thus additional 2kN subcomponents will contribute the amount
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≤ const · kN N−5/3 � N−4/3, which is of the same order of magnitude as the
sum (5.3).

Thus for every component W ′
N = W ∩ E ′

N of the original unstable curve
W the sum of the reciprocals of the minimal expansion factors over all its
subcomponents is bounded above by const ·N−4/3. It remains to sum up over
N ≥ K0:

const
∞
∑

N=K0

N−4/3 ≤ const · K−1/3
0 < 1,

which is true if K0 is chosen large enough. This proves (5.1) for unstable
curves going through long corner series. For all the other unstable curves the
dynamics is not different from that in ‘regular’ dispersing billiards (without
cusps), where (5.1) has been verified in [Y98, C99], see also [CM06, Chapter
5]. Proposition 5.1 is proved.

This completes the proof of Theorem 1.1 for the special three-arc table
shown on Fig. 1.

6 General case

In the previous sections we restricted our analysis to the three-arc billiard
table with cusps introduced by Machta [Mac83] and shown on Fig. 1. This
made our calculations relatively simple and geometrically transparent. Here
we outline changes necessary for proving Theorem 1.1 in the general case.

Let a cusp be made by two boundary components Θ1, Θ2 ⊂ ∂D. Choose
the coordinate system as shown on Fig. 9, then the equations of Θ1 and
Θ2 are, respectively, y = f1(x) and y = −f2(x), where fi are convex C3

functions, fi(x) > 0 for x > 0, and fi(0) = f ′
i(0) = 0 for i = 1, 2. We will use

Taylor polynomial for the functions fi and their derivatives:

fi(x) = 1
2
aix

2 + O(x3), f ′
i(x) = aix + O(x2), f ′′

i (x) = ai + O(x),

where ai = f ′′
i (0). Since the curvature of the boundary of dispersing billiards

must not vanish, we have ai > 0 for i = 1, 2. For the particular three-arc
table analyzed earlier, f1(x) = f2(x) = 1 −

√
1 − x2.

Consider a billiard trajectory entering the cusp and making a long series
of N reflections there. We denote reflection points by (xn, yn), where yn =
f1(xn) or yn = −f2(xn) depending on which side of the cusp the reflection
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occurs. As in Section 3, we use ϕn and γn = π/2 − |ϕn| for the angle
of reflection, but do not use αn any more (its role will be played by xn).
Generally, we will use the same symbols as in Sections 3–4 (to make our
presentations here and there comparable), but some symbols will now have
a slightly different meaning.

As in Section 3, we denote by N2 the deepest collision (closets to the
vertex of the cusp). Clearly, the collisions occur alternatively from the two
sides of the cusp, they go down the cusp monotonically, and then return back
up monotonically as well:

x1 > x2 > · · · > xN2
≤ xN2+1 < xN2+2 < · · · < xN

(possibly, two deepest collisions have equal x-coordinates).
Lemma 3.1 partially extends to the general case. Namely, let xm = xN2

be the deepest collision, and assume without loss of generality that xm+1 ≥
xm−1. Then

xm+i ≥ xm−i and γm+i ≤ γm−i

for all i = 1, 2, . . ., as long as both collisions remain in the corner series. This
implies that |N2 − N/2| = O(1).
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As in Section 3, we fix a small γ̄ > 0 and introduce N1 and N3 accordingly,
this divides the corner series into three periods: entering, turning, and exiting
ones.

Our first task is to extend Proposition 3.2 to the general case. Con-
sider two successive reflections at points (xn, yn) and (xn+1, yn+1) with an-
gles γn and γn+1. Without loss of generality, let yn = −f2(xn), hence
yn+1 = f1(xn+1). A direct geometric inspection shows that

(6.1) γn+1 = γn + tan−1 f ′
2(xn) + tan−1 f ′

1(xn+1)

and

(6.2) xn+1 = xn − f2(xn) + f1(xn+1)

tan
[

γn + tan−1 f ′
2(xn)

] ,

as long as the trajectory goes down the cusp, i.e. n < N2. Equations (6.1)–
(6.2) are analogues of the simpler relations (3.6)–(3.7) used in Section 3. All
the arguments of that section will carry over to the general case by way of
Taylor expansion of all the functions involved in (6.1)–(6.2). We only outline
main steps, the reader should have no trouble filling missing details. First,
(6.1) gives

γn+1 = γn + a2xn + a1xn+1 + O(x2
n),

and adding these up for 1 ≤ n < N2 gives

x1 + · · ·+ xN2
= O(1)

(remember that a1, a2 > 0), which is an analogue of (3.9).
Next we introduce variables:

un =
xn+1

xn

and wn =
γn

xn

.

Due to (6.1), we obtain an analogue of (3.12):

(6.3) wn+1 = a1 +
wn + a2 + O(xn)

un

and since un ≤ 1 it follows that wn ≥ 2ān + O(1), where ā = (a1 + a2)/2.
Using (6.2) and the obvious tanx > x gives

(6.4) un > 1 − ā

wn + a2

[

1 + O(xn)
]

.
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Combining (6.3) with (6.4) gives

wn+1 < a1 +
(

wn + a2 + O(xn)
)

(

1 +
ā

wn + a2

[

1 + O(xn)
]

+ O(w−2
n )

)

= wn + 3ā + O(xn) + O(w−1
n ),

therefore wn ≤ 3ān + O(ln n). So we obtain wn � n, hence γn � nαn, in
particular αN2

� 1/N2.
A more precise asymptotical formula follows from (6.2):

(6.5) un = 1 − a2 + a1u
2
n + O(xn + γ2

n)

2(wn + a2)
,

and combining (6.3) with (6.5) gives

wn+1 = wn + a1 + a2 +
a2 + a1u

2
n

2
+ O(xn + γ2

n + n−1)

= wn + 3ā + O(xn + γ2
n + n−1),(6.6)

where we used the established fact un = 1 −O(n−1). Therefore

wn = 3ān + O(ln n + Γn),

where Γn = γ2
1 + · · · + γ2

n, as in Section 3. It is easy to verify the relations
(3.30). Next, (6.3) implies

u−1
n =

wn+1 − a1

wn + a2

(

1 + O
(xn

n

)

)

= 1 +
1

3n + O(ln n + Γn)
+ O

(xn

n
+

γ2
n

n
+

1

n2

)

Multiplying over n gives

x1/xn = u−1
1 · · ·u−1

n−1 � n1/3,

hence γn � x1n
2/3. In particular, x1 � N

−2/3
1 and xN1

� 1/N1.
The analysis of the turning period is easily done as in Section 3 and gives

N1 � N and xN2
� 1/N . Note that xn = O(1/n), hence the xn’s can be

absorbed by 1/n in the previous formulas, and then we get exactly the same
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formulas (3.27), (3.28), and (3.29) as in Section 3, except we now have an
extra factor of ā in (3.27) and (3.28).

Next, the intercollision time (=distance) is

τn =
f2(xn) + f1(xn+1)

sin
(

γn + tan−1 f ′
2(xn)

)

=
xn

2wn

a2 + a1u
2
n + O(xn)

1 + a2w−1
n + O(γ2

n)

= xnw−1
n

(

ā + O(n−1 + γ2
n)
)

� xn/n � n−4/3N−2/3.

It follows that

τn

sin γn
=

ā

w2
n

(

1 + O(n−1 + γ2
n)
)

=
1

9ān2
+ O

( ln n

n3
+

γ2
n

n2
+

Γn

n3

)

.(6.7)

Next we estimate

τn+1

τn
=

f1(xn+1) + f2(xn+2)

f2(xn) + f1(xn+1)
× sin

(

γn + tan−1 f ′
2(xn)

)

sin
(

γn+1 + tan−1 f ′
1(xn+1)

) =: F ′
n × F ′′

n .

First,

F ′
N =

a1x
2
n+1 + a2x

2
n+2 + O(x3

n)

a2x2
n + a1x

2
n+1 + O(x3

n)

=
u2

n(a1 + a2u
2
n+1) + O(xn)

a2 + a1u2
n + O(xn)

= 1 − 2 + ∆

3n
+ O

( ln n

n2
+

γ2
n

n
+

Γn

n2
+ xn

)
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where ∆ = (a2 − a1)/ā. Using the same argument as in Section 3 we get

F ′′
N = 1 − sin

(

γn+1 + tan−1 f ′
1(xn+1)

)

− sin
(

γn + tan−1 f ′
2(xn)

)

sin
(

γn+1 + tan−1 f ′
1(xn+1)

)

= 1 −
[

γn+1 − γn + a1xn+1 − a2xn + O(x2
n)
] [

1 + O(γ2
n)
]

xnun(wn+1 + a1) + O(x2
n + γ3

n)

= 1 − wn(un − 1) + (3ā + a1)un − a2 + O(n−1 + γ2
n)

un(wn+1 + a1) + O(xn)

(

1 + O(γ2
n)
)

= 1 − 2 − ∆

3n
+ O

( ln n

n2
+

γ2
n

n
+

Γn

n2

)

.

Therefore,
τn+1

τn
= 1 − 4

3n
+ O

( ln n

n2
+

γ2
n

n
+

Γn

n2
+ xn

)

,

(note that ∆ cancels out!). This is almost identical to (3.34); the extra
term xn will not cause trouble as

∑

xn = O(1). In summary, all the main
formulas here are similar to those in Section 3, with a notable exception: an
extra factor of ā in the expressions for wn and in (6.7).

The extension of the results of Section 4 to the general case is pretty
straightforward, the only serious change involves the recursive formula (4.7)
which now takes form

B+
n+1 =

2Kn+1

sin γn+1
+

B+
n

1 + τnB+
n

,

where Kn+1 is the curvature of the boundary ∂D at the point (xn+1, yn+1):

Kn+1 =
f ′′

1 (xn+1)
(

1 + [f ′
1(xn+1)]2

)3/2
= a1 + O(xn+1).

The recurrence formula (4.11) changes accordingly:

(6.8) λn+1 =
2τn+1Kn+1

sin γn+1
+

τn+1

τn

λn

1 + λn
.

We observe two new elements here, as compared to (4.11) of Section 4: there
is an extra factor of ā in the denominator, due to (6.7), and an extra factor
a1 + O(xn) in the numerator due to the curvature. Of course, when the
collision occurs at the other side of the cusp, the curvature will be a2+O(xn).
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As the trajectory collides alternatively at both sides, the extra factors a1 and
a2 alternate in the numerator. Due to the additive character of (6.8), the
combined effect of the extra factors a1 and a2 in the numerator will be exactly
opposite to that of the extra factor of ā = (a1 + a2)/2 in the denominator,
so in the end all the new factors will cancel out. This proves Proposition 4.1
in the general case.

Lastly we extend the results of Section 5 to the general case. Our main
task is to describe the structure of the cells EN . Let P denote the vertex
of a cusp and L the common tangent line to the two boundary components
making the cusp. Let Q(P ) denote the other point of intersection of L with
∂D (opposite to P ). For example, on Fig. 1 we have D = Q(A).

In generic billiard tables, L intersects ∂D at Q transversally, then, just as
in Section 5, points x ∈ EN whose trajectories enter the cusp have to start
near Q and their images F̂(x) = FN+1(x) have to land back near Q again.
Of course the ϕ-coordinate of x ∈ EN and FN+1(x) ∈ FN need not be close
to zero, so the cells EN may lie far away from their images FN . But all the
estimates of Section 5 obviously remain valid.

In the exceptional case, where the line L is tangent to ∂D at the point
Q, the analysis requires modification. The boundary ∂D may be smooth at
Q (thus L makes a ‘grazing collision’ at the point Q), or Q itself may be
a corner point or even another cusp (!). For example, imagine a diamond-
looking table made by four identical circular arcs tangent to each other at
their endpoints – there are two pairs of cusps opposite to each other.

In these exceptional cases one can analyze the cell structure directly, but
this may be fairly complicated. A useful trick, however, may reduce the
analysis to the generic case, in which the line L intersects ∂D transversally.
One simply adds to ∂D a short ‘transparent’ line segment positioned inside
D so that it cuts L transversally (or even orthogonally) between the points
P and Q. We note that adding transparent walls to billiards is a standard
trick [SC87].

Now the billiard trajectories going into the cusp for long corner series must
first cross that newly added segment. They do not change their velocities (the
segment is transparent, after all), but we register the point of intersection
as an extra collision point. Therefore all the cells EN will appear on that
extra segment added to the boundary. Their parameters will be obviously
the same as described in Section 5. This allows us to prove Theorem 1.1 in
the exceptional cases.

We conclude with an open problem. We always assumed that the curva-
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ture of the boundary ∂D did not vanish, in particular we had a1, a2 > 0 in
this section. It is interesting to let the curvature vanish at the vertex of the
cusp, so that a1 = 0 or a2 = 0, or both. Would this affect the rate of the
decay of correlations?

It seems that if a1 = 0 but a2 > 0 (or vice versa), then the rate will not
change. But in the case a1 = a2 = 0 the cusp becomes very degenerate and
may trap billiard trajectories for much longer than ‘regular’ cusps treated
here. This may slow down the decay of correlations even further. A similar
phenomenon was recently discovered in [CZ05b].
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331.

[CG93] P. Collet & A. Galves, Statistics of Close Visits to the Indifferent
Fixed Point of an Interval Map, J. Statist. Phys 72 (1993), 459–478.

[GO74] G. Gallavotti & D. S. Ornstein, Billiards and Bernoulli Schemes,
Comm. Math. Phys. 38 (1974), 83-101.

[Mac83] J. Machta, Power law decay of correlations in a billiard problem, J.
Statist. Phys. 32 (1983), 555–564.

[MR86] J. Machta & B. Reinhold, Decay of correlations in the regular
Lorentz gas, J. Statist. Phys. 42 (1986), 949–959.

[Mar04] R. Markarian, Billiards with polynomial decay of correlations, Er-
god. Th. Dynam. Syst. 24 (2004), 177–197.

[OW98] D. Ornstein & B. Weiss, On the Bernoulli nature of systems with
some hyperbolic structure, Ergod. Th. Dynam. Syst. 18 (1998), 441–
456.

43
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