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Abstract

Geometric properties of multi-dimensional dispersing billiards are studied in this
paper. On the one hand, non-smooth behaviour in the singularity submanifolds
of the system is discovered (this discovery applies to the more general class of
semi-dispersing billiards as well). On the other hand, a self-contained geometric
description for unstable manifolds is given, together with the proof of important
regularity properties. All these issues are highly relevant to studying the ergodic
and statistical behaviour of the dynamics.
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1 Introduction

Let Q be an open connected domain in Rd or on the d-dimensional torus T| d. Assume that
the boundary ∂Q consists of a finite number of Ck smooth (k ≥ 3) compact hypersurfaces
(possibly, with boundary). Now let a pointwise particle move freely (along a geodesic line
with constant velocity) in Q and reflect elastically at the boundary ∂Q (by the classical
rule “the angle of incidence is equal to the angle of reflection”). This is what is commonly
refered to as a billiard dynamical system.

Billiards make an important class in the modern theory of dynamical systems. Many
classical and quantum models in physics belong to this class, most notably, the Lorentz
gas [Si] and hard ball gases studied as early as the XIX century by L. Boltzmann [Bo].

The periodic Lorentz process is obtained by fixing a finite number of disjoint convex
bodies B1, . . . , Bs ⊂ T| d with smooth boundary and putting the moving particle in the
exterior domain Q = T| d \ (∪Bi). This system models the motion of an electron among
a periodic array of molecules in a metal, as it was introduced by H. Lorentz in 1905.

Mathematical studies of billiards have begun long ago. Ya. Sinai in his seminal paper
of 1970 [Si] described the first large class of billiards with truly chaotic behavior – with
nonzero Lyapunov exponents, positive entropy, enjoying ergodicity, mixing, and (as was
later discovered by G. Gallavotti and D. Ornstein [GO]) the Bernoulli property. Sinai
billiards are defined in two dimensions (d = 2), i.e. for Q ⊂ R2 or Q ⊂ T| 2, and the
boundary of Q must be concave (i.e., convex inward Q), similarly to the Lorentz process
(where the bodies Bi are convex). Due to the geometric concavity, the boundary ∂Q

scatters or disperses bundles of geodesic lines falling upon it, see Fig. 1. For this reason,
Sinai billiards are said to be dispersing.

Lorentz processes in two dimension have been studied very thoroughly since 1970.
Many fine ergodic and statistical properties have been established by various researchers,
including P. Bleher, L. Bunimovich, N. Chernov, J. Conze, C. Dettmann, G. Gallavotti,
A. Krámli, J. Lebowitz, D. Ornstein, K. Schmidt, N. Simányi, Ya. Sinai, D. Szász, and
others (see the references). The latest major result for this model (the exponential decay
of correlations) was obtained by L.-S. Young [Y1]. The success in these studies had
significant impact on modern statistical mechanics. The methods and ideas originally
developed for the planar Lorentz process were applied to many other classes of physical
models – see recent reviews by Cohen, Gallavotti, Ruelle and Young [GC, Ru, Y2].

On the other hand, the progress in the study of the multidimensional Lorentz process
(where d > 2) has been much slower and somewhat controversial. Relatively few papers
were published covering specifically the case d > 2, especially in contrast to the big
number of works on the 2-D case. Furthermore, the arguments in the published articles
were usually rather sketchy, as in Chernov’s paper [Ch1]. It was commonly assumed that
the geometric properties of the multidimensional Lorentz process were essentially similar
to those of the 2-D system, and so the basic methods of study should be extended from
2-D to any dimension at little cost. Thus, the authors rarely elaborated on details.

Recent discoveries proved that spatial dispersing billiards are very much different
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from planar ones. Bunimovich and Reháček studies of astigmatism [BR], in the some-
what different context of focusing billiards, emphasized the known fact that the billiard
trajectories may focus very rapidly in one plane and very slowly in the orthogonal planes.
Astigmatism is unique to 3-D (and higher dimensional) billiards, it cannot occur on a
plane. It plays an improtant role in higher dimensional focusing billiards as investigated
in [BR].

In this paper we consider multidimensional dispersing billiards. We show that multi-
dimensionality has great effect on the dynamics in the dispersing case as well – the system
requires much more elaborated study than the 2D process. What is worse (cf. section 3),
the singularity manifolds in the phase space of a spatial Lorentz process have pathologies –
points exist where the sectional curvature is unbounded (blows up). Actually, singularity
manifolds are in these pathological points – which form a two-codimensional submanifolds
of them – not even differentiable (the geometry is pretty much like the classical Whitney
umbrella x2z = y2 in R3). We describe these examples in Section 3. This phenomenon
is again unique to billiards in dimension d ≥ 3. All these facts call for a revision of some
earlier arguments and results on the multidimensional Lorentz process. This is much the
more important since the studies of physically relevant multiparticle systems will require
the same methods as those used for the high-dimensional Lorentz process.

Throughout the paper we conduct a systematic study of the geometry of the Lorentz
process in any dimension d > 2, aiming at the future investigation of its ergodic and
statistical properties (in particular, the decay of correlations). First we describe our
recent discovery – pathological behavior of singularity manifolds – and show exactly
where it occurs (in order to “localize the pathology”). Then we develop tools for the
study of basic geometric properties of the dynamics – operator techniques in the Poincaré
section of the phase space. By applying these geometric tools we provide rigorous proofs
of important properties for unstable manifolds: we show absolute continuity, distorsion
bounds, curvature bounds and alignment. All these facts are absolutely important for
the studies of ergodic and statistical properties of the Lorentz gas, but strangely enough,
their proofs (in the case of dimension d > 2) have never been published before. Lastly,
we show how our results can be used in the study of the decay of correlations, which will
be done in a separate paper.

2 Preliminaries

There are two ways of considering billiard dynamics, the motion of a point particle in
a connected, compact domain Q ⊂ T| d = Rd/Zd, d ≥ 2 with a piecewise C3-smooth
boundary. The phase space of the flow can be identified with the unit tangent bundle
over Q – the configuration space is Q while the phase space is M := Q × Sd−1 (Sd−1 is
the surface of the unit d-ball). In other words, every phase point x is of the form (q, v)
where q ∈ Q and v ∈ Sd−1. We denote the flow by St : −∞ < t < ∞.

On the other hand there is a naturally defined cross-section for this flow. The phase
space of the Poincaré section map (or simply, of the billiard map) is M := ∂Q × Sd−1

+ ,
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where + means that we only take into account the hemisphere of the outgoing velocities
(for a more precise definition of the phase space, see subsection 4.1). For any x ∈ M we
set t+(x) := inf{t > 0| Stx ∈ M}, and T+x := St+(x)x ( of course, T+ : M → M). Then
the Poincaré section map T : M → M is defined as follows: Tx := T +x for x ∈ M .

We require the following properties from the system to be studied:

• Our billiard is dispersing (a Sinai-billiard): each ∂Qi is strictly convex (had we
required convexity only, our billiard would be semi-dispersing).

• The scatterers Bi are disjoint. This ensures the C3-smoothness of the boundary
∂Q, i.e. that there are no corner points.

• The condition that the horizon is finite says exactly that t+(x) < ∞ for any
x ∈ M .

Finally, some more notation. Let n(q) be the unit normal vector of the boundary
component ∂Qi at q ∈ ∂Qi directed inwards Q. Then the invariant Liouville-measure of
the discretized map is

dµ(q, v) := const.〈n(q), v〉dqdv (2.1)

where dq is the induced Riemannian measure on ∂Q whereas dv is the Lebesgue-measure
on Sd−1

+ .
Throughout the paper, unless otherwise emphasized, we are considering this dis-

cretized dynamics.

2.1 Fronts

In billiard theory, several basic constructions and concepts are based on the notion of a
local orthogonal manifold, which - for simplicity - we will call front. A front W is defined
in the whole phase space rather than in the Poincaré section. Take a smooth 1-codim
submanifold E of the whole configuration space, and add the unit normal vector v(r)
of this submanifold at every point r as a velocity, continuously. Consequently, at every
point the velocity points to the same side of the submanifold E. Then

W = {(r, v(r))|r ∈ E} ⊂ M,

where v : E → Sd−1 is continuous (smooth) and v ⊥ E at every point of E. The
derivative of this function v, called B plays a crucial role: dv = Bdr for tangent vectors
(dr, dv) of the front. B acts on the tangent plane TrE of E, and takes its values from the
tangent plane J = Tv(r)S

d−1 of the velocity sphere. These are both naturally embedded
in the configuration space Q, and can be identified through this embedding. So we just
write B : J → J . B is nothing else than the curvature operator of the submanifold E.
Yet we will prefer to call it second fundamental form (s.f.f.), in order to avoid confusion
with other curvatures that are coming up. Obviously, B is symmetric.
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Notice that fronts remain fronts during time evolution - at least locally, and apart
from some singularity lines.

When we talk about a front, we sometimes think of it as the part of the (whole) phase
space just described (for example, when we talk about time evolution under the flow),
but sometimes just as the submanifold E (for example, when we talk about the tangent
space or the curvature of the front). This should cause no confusion.

2.2 Evolution of fronts

The evolution of a front during free propagation (that is, from one collision to the other)
is described by the formula

B−
1 = ((B+)−1 + τId)−1 (2.2)

where τ is the length of the free run between the two collisions, B+ is the s.f.f. of the
front just after the first collision, and B−

1 is the s.f.f. just before the next one.
For this formula – and the next one – to make sense, we need to identify the tangent

planes of the front at different moments of time. Let T = Tr∂Q be the tangent plane
of the scatterer at a collision point r. Just like J , T is viewed together with its natural
embedding into Q. The identification of different J ’s is done in the usual way (cf. [SCh],
[KSSz]):

• by translation parallel to v from one collision to the other,

• by reflection with respect to T (or, equivalently, by projection parallel to n) from
pre-collision to post-collision moments.

Notation for the unitary operator that executes this identification is U , however, for
brevity, we will often omit U if it causes no confusion.

At a moment of collision the curvature of the front changes non-continuously (the
front is “scattered”):

B+ = B− + 2Θ = B− + 2〈n, v〉V ∗KV (2.3)

where

• B− : J → J is the s.f.f. just before collision,

• B+ : J → J is the s.f.f. just after collision,

• V : J → T is the projection parallel to v: V dv = dv − 〈dv,n〉
〈v,n〉

v ∈ T for dv ∈ J ,

• V ∗ : T → J (the adjoint of V ) is the projection parallel to n: V ∗dq = dq− 〈dr,v〉
〈n,v〉

n ∈
J for dq ∈ T ,

• K : T → T is the s.f.f. of the scatterer at the collision point,

• 〈n, v〉 = cos φ, where φ ∈ [0, π
2
] is the so-called collision angle,

• and the operator Θ : J → J : Θ = 〈n, v〉V ∗KV is the so-called collision term.
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2.3 Singularities

As it can be easily seen the billiard map T is discontinuous at pre-images of tangential
reflections. Indeed, consider the set of tangential reflections:

S0 := ∂M = {(q, v) | 〈v, n(q)〉 = 0}

(which is nothing else just the boundary of the phase space). Its pre-images are:

S(k) = T−kS0 (k > 0).

The map T is discontinuous precisely at the points of S (1). Furthermore – related to the
smallness of the term 〈n, v〉 – the derivative DT is unbounded near S (1). As a conse-
quence, to get a well-behaved dynamics, the phase space is partitioned into homogeneity
layers by introducing secondary singularities (for a detailed discussion see [BSC2] or
subsection 4.1).

To consider higher iterates of the dynamics – the maps T k (k ≥ 1) – the sets S(k) are
to be investigated. We view all these sets as (finite unioins of) topologically embedded
one codimensional compact submanifolds with boundary. They have smooth manifold
structure in the interior, however, in the multi-dimensional case (as it is demonstrated
in subsection 3.1) the behaviour at the boundary is irregular (the curvature diverges).
This behaviour is related to the fact that in the multi-dimensional case, in addition to
unbounded derivatives, the dynamics is highly non-isotropic near singularities.

3 Geometry of singularities

In several papers that appeared, singularities were assumed – either explicitely or im-
plicitely – to consist of smooth 1-codim submanifolds of the phase space. Often, even a
uniform bound on the curvature was assumed, independent of the order of the singularity.
This is true in 2-dimensional billiards. However, it is not true in higher dimensions. In
this section we present a counter-example in a 3-dimensional dispersing billiard. Already
the curvature of S(2) has no upper bound, i.e. the curvature blows up near a point where
the singularity manifold is not even differentiable.

To avoid confusion let us make one further remark. As already mentioned, billiard
dynamics has singularities: points where the billiard map is not continuous. These singu-
larities occur on one codimensional submanifolds of the phase space. The development of
the theory is based on considering connected and essentially smooth components of the
singularity manifolds. The recently discovered phenomenon described below shows that
these components are, indeed, only essentially smooth. On certain two-codimensional
submanifolds of them pathologies occur: singularities in the sence of algebraic singularity
theory. To avoid confusion we will refer to these singular two-codimensional submanifolds
as pathologies (in contrast to the singularities, the singularity manifolds of the dynamics
themselves).
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3.1 Counter-example for bounded curvature

In this section we prove that even in a 3D dispersing billiard, already the two-step
singularities have no bounded curvature. The proof is rather implicite. We start with the
indirect assumption that the curvature is bounded, and find that the two-step singularity
intersects the one-step singularity tangentially at every point of their intersection, except
for a one-codimensional degeneracy, where the intersection is not tangent. This obviously
contradicts the bounded curvature assumption.

Since this section deals with a very explicitely given billiard configuration, we will
not use the complicated notations of the other sections.

Consider the situation demonstrated on Figure 2. To perform as transparent an
argument as possible

• the parameters on the figure and in the calculations below are different,

• the first scatterer, the surface where the trajectories start out is a plane – thus it
is not strictly convex.

Nevertheless the reader can easily see that these modifications have no real significance.
We are in 3 dimensions, so take a standard 3D Cartesian coordinate system. Let the
first ’scatterer’ be the {z = 0} plane. Let the second scatterer be the sphere with
centre O1 = (0,−1, 1) and radius R = 1. Let the third scatterer be the sphere with
centre O2 = (1, 0, 2) and radius R = 1. We look at the component of the phase space
corresponding to the first scatterer, near the phase point (x0 = 0, y0 = 0, vx0 = 0, vy0 = 0).
Of course, vz0 = 1, and the trajectory is the z axis. We are interested in the singularity
manifold belonging to a tangent second collision. To describe this, let D ∈ R4 be the set
of those points (x, y, vx, vy) the trajectories of which hit the first sphere. Let r : D → R

be the distance of the trajectory and O2. That is, the singularity manifold we are looking
at is the set {(x, y, vx, vy) ∈ D|r(x, y, vx, vy) = 1}. So, if we want to construct the normal
vector of the singularity manifold, we just need to calculate the gradient of r. We will
directly calculate the partial derivatives. Since (x0, y0, vx0, vy0) = (0, 0, 0, 0) is on the
boundary of D, we can only hope to find one-side partial derivatives. What is even
worse: (x, y, vx, vy) = (x, 0, 0, 0) ∈ D only if x = 0, so we cannot differentiate with
respect to x. The same is true for vx. What we can do is take these partial derivatives
at the points (0, y, 0, vy) and than the limits

lim
y→0

lim
vy→0

∂

∂x
r(x, y, vx, vy)‖x = vx = 0.

(we will see that it is important to fix x = vx = 0).
We start with the indirect assumption that S2 has bounded curvature. This implies

that the unit normal vector of S2 is a continuously differentiable function of its base point
with bounded derivative. In this way it makes sence to define the normal vector of S2

on the boundary points of S2 as the limit of (unit) normal vectors on the interior. For
us the indirect assumption will mean that the limit
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plane

sphere1

sphere2

n1

n2

Figure 1: The studied billiard configuration

gradr(0, 0, 0, 0) := lim
(x,y,vx,vy)→(0,0,0,0)

gradr(x, y, vx, vy)

exists.
The closer a reflection is to tangential, the less effect it has on the “neutral” direction.

In our case, the refleciton on the first sphere causes “no scattering” in the x direction.
That is, let (v′

x, v
′
y, v

′
z) be the velocity after the first collision. The “x” direction being

the “neutral” direction means that

lim
y→0

∂

∂vx

v′
x(0, y, 0, 0) = 1

which implies that

lim
y→0

∂

∂vx

r(0, y, 0, 0) = −2

Similarly,

lim
y→0

∂

∂x
v′

x(0, y, 0, 0) = 0

which implies that

lim
y→0

∂

∂vx

r(0, y, 0, 0) = −1.

According to our indirect assumption, this means that

∂

∂x
r(0, 0, 0, 0) = −1

and
∂

∂vx

r(0, 0, 0, 0) = −2.
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For the other two components, fix x = vx = 0. So the trajectory is in the {x =
0} plane, the scattering is just a 2D problem. We will calculate the one-side partial
derivatives ∂

∂y
r(0, 0, 0, 0) and ∂

∂vy
r(0, 0, 0, 0).

To find out about v′
y, let φ be the angle of the first sphere’s radius at the first collision

point and the (0, 1, 0) vector. If vy = 0, then 1− cos φ = −y (y < 0, of course), which, in
leading order, gives φ =

√−2y. It can be seen that after the reflection v′
y = sin 2φ. That

is, the trajectory if far from being a line. However, it is diverted in the very direction
which - in the first order - does not affect its distance from O2. Instead, in leading terms,
r2 = 1 + (v′

y)
2.

Putting these together, we get r =
√

1 − 8y, that is,

∂

∂y
r(0, 0, 0, 0) = −4.

If we fix y = 0, the exact same consideration gives r =
√

1 − 8vy, that is,

∂

∂vy

r(0, 0, 0, 0) = −4

as well. All together, we get

gradr(0, 0, 0, 0) = (−1,−4,−2,−4).

This is (the limit of) the normal vector of the singularity at the point (x = 0, y = 0, vx =
0, vy = 0).

It is easy to see that the singularity corresponding to a tangent reflection on the first
sphere has the normal vector

gradr0(x, y, vx, vy) = (0,−1, 0,−1).

That is, the two singularities are not tangent at this point.
The previous consideration for gradr also shows that this behaviour is exceptional.

It is the result of the fact that in the first order r was unaffected by v ′
y. If the radii at

the reflection points (x, y, z) = (0, 0, 1) and (x, y, z) = (0, 0, 2) had not been orthogonal,
the result would have been

∂r

∂y
= ∞,

∂r

∂vy

= ∞,

corresponding to a normal vector (0, 1, 0, 1), meaning that the two singularities are tan-
gent. Non-tangentiallity of the two singularities is a one-codimensional degeneracy.

This obviously contradicts our indirect assumption on the boundedness of the cur-
vature. In this way we have only proven that the assumption was false. However, we
believe that the picture of the singularity suggested above is correct, the singularities
are tangent almost everywhere, and their curvature only blows up near the pathological
points described.
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3.2 Discussion

For a rigorous proof of some finer properties (such as correlation decay) of multi-dimen-
sional dispersing billiards it seems essential to characterize singularities in a systematic
way. Such a characterization should be subject to future research (some possible ideas
related to this question are discussed in [BChSzT]). In this subsection we do not plan to
give rigorous proofs; we would like to point out some analogies to and emphasize some
interesting features of the irregularities demonstrated above.

The Whitney-umbrella. Consider the one-codimensional set in R3 defined by the
polynomial equation:

{(x, y, z) ∈ R3 | x2z = y2},
the Whitney-umbrella. ‘One half’ of this set (its intersection with the quadrants xy ≥ 0)
is shown on Figure 3. For simplicity we use the notations: W2 for this ’half-umbrella’
and W1 for the {y = 0} plane. Clearly

• W2 terminates on W1 (in the points of the x-axis), thus W1 ∩ W2 = ∂W2.

• at every point of the x-axis where x 6= 0 the intersection of W2 and W1 is tangential.

• W2 has smooth manifold structure in its interior; nevertheless, near the origin its
curvature is unbounded as the normal vector changes rapidly (actually, the normal
vector does not even have a well-defined limit at the origin).

Figure 2: The Whitney Umbrella

By these properties the geometry of singularities described in subsection 3.1 is anal-
ogous to Figure 3. 1 W1 corresponds to S1, W2 corresponds to S2 while the origin

1To be precise, the situation on Figure 3. has one dimension less – in contrast to W2 the singularities
are 3-dimensional manifolds – but this has little significance to the analogy.
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corresponds to the set of those doubly tangential reflections where the two radii are
orthogonal (this set is one-codimensional in S1 ∩ S2).

Generalization I. First let us consider the first-step singularity S1. By the notations
of the previous subsection we may characterize the points of (x, y, vx, vy) belonging to
S1 easily. These are precisely those for which d(x, y, vx, vy) = 1, where d(., ., ., .) is the
distance of the point O1 = (0,−1, 1) from the line that passes through the point (x, y, 0)
and has direction specified by the velocity components vx, vy. As d is a smooth function
of its variables there is no curvature blow-up for S1 – and, for first-step singularities in
general. Thus S2 is a pre-image of a smooth one-codimensional compact submanifold,
however, the map under which the pre-image is taken has unbounded derivatives and
is highly an-isotropic. Curvature blow-up occurs only at those points of S2 (near its
intersection with S1) where the map behaves irregularly.

In correspondence with the above observation we conjecture that curvature blow-
up is not a peculiar feature of S2, it is present in the pre-images of one-codimensional
smooth submanifolds in general. Consider for example two-step secondary singularities
Γ2 – those phase points for which at the second iterate instead of tangentiality the
collision angle (〈n, v〉) is a given constant (see section 4 for more detail). In the specific
example of subsection 3.1 such secondary singular trajectories are precisely those that
touch tangentially a sphere of radius R′ (R′ < 1) at the second iterate. It is clear that
the geometry of Γ2 is completely analogous to S2.

Generalization II. Our calculations in subsection 3.1 do not use any speciality of the
explicitly given billiard configuration. Doubly tangential reflections for which the normal
vectors of the scatterers at the consecutive collisions are orthogonal can be found in any
multi-dimensional semi-dispersing billiard. Near such trajectories a similar calculation
can be performed.

Generalization III. All in all, the discovered pathology is general. In addition,
the higher step singularities S (k); (k ≥ 3) may show even wilder behaviour near their
intersections. Nevertheless, we strongly conjecture that a nice geometric characterization
– suggested by the analogy with the Whitney-umbrella in the case of S (2) – can be
performed. This question is subject to future research.

4 Geometric properties of u-manifolds

Throughout sections 4 and 5 we investigate u-manifolds (their counterparts, s-manifolds
can be treated similarly). u-manifolds are d − 1-dimensional submanifolds of the phase
space with tangent planes in the (appropriately defined) unstable cone. Possibly the most
important tools in studying ergodic and statistical properties, local unstable manifolds
(or LUMs for short) are suitable limits of u-manifolds (for details see [Y1, Ch2, Ch3]). In
contrast to the 2d−3-dimensional (one-codimensional) singularity manifolds, u-manifolds
behave in a uniformly regular way. In section 4 we introduce a natural geometrical
description that turns out to be very useful for studying multi-dimensional dispersing
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billiards. Proofs for some basic properties of u-manifolds are also included. More involved
technicalities – that play a crucial role in investigating the statistical behaviour of a
billiard system (cf. [Y1, Ch2, Ch3]) – are discussed in section 5.

4.1 The phase space

We shall work with the discrete time (collision to collision) dynamical system, thus our
phase space – which we denote by M – is the Poincaré phase space, the collection of
possible collision points supplied with outgoing velocities. Mathematically this space
is a bundle over the scatterers ∂Q, the fibers of which consist of the possible outgoing
velocities. At every base point q the fiber is the (d − 1)-dimensional hemisphere with
boundary which we shall denote by Sd−1

+ . Note that this bundle can be viewed as a
subbundle (of vectors of unit length) in the direct sum of the tangent and normal bundles
over the scatterers. Thus, by the Riemannian structure of ∂Q, there is a naturally defined
parallel translation on our bundle (see the description of the tangent plane below). Local
coordinates on our phase space will be denoted x = (q, v). Additionally we shall use all
the notations for local quantities introduced in the previous section(s) (eg. n(q), φ).

Some conventions. Throughout the paper the superscripts ’+’ and ’−’ denote
post- and precollisional values, respectively, for certain functions, operators, hyperplanes
etc. (e.g. v+ and v−). The dynamics and its derivative are denoted by T and DT ,
respectively. In correspondence with x1 = Tx (δx1 = DTδx), the subscript ’1’ means
the value of a certain quantity at the first iterate. We shall usually prime the points,
trajectories, operators etc. infinitesimally close to a reference point or trajectory.

The tangent plane. At any point x = (q, v) the tangent plane has a natural splitting
TxM = Tq∂Q + TvS

d−1
+ = T +J . The two planes J and T are related by the projection

operator V : J → T and its adjoint V ∗ (for their description see the section 2).

For two points x = (q, v) and x′ = (q′, v′) infinitesimally close, the tangent vector
pointing from x to x′ is

δx = (δq, δv) δq = q − q′; δv = Q−1
0 v′ − v

where Q0 is the rotator that takes T to T ′. Up to first order:

Q0u = u − 〈u, dn〉n + 〈u, n〉dn for u ∈ Rd; (4.1)

Q−1
0 u = u + 〈u, dn〉n − 〈u, n〉dn for u ∈ Rd (4.2)

and thus:
δv = dv − 〈v, n〉V ∗dn

Here dv = v′− v and dn = n′−n. These formulas execute (up to first order) the parallel
translation of the bundle M .
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4.2 Important submanifolds

Singularity manifolds. The dynamics T is discontinuous, the singularity manifold
is S(1) = T−1S0 where S0 = ∂M = {(q, v)|〈v, n〉 = 0} is just the boundary of the
phase space. However, as already mentioned, to get a well-behaved dynamics we should
partition the original phase space into homogeneity layers:

Ik = {(q, v) ∈ M | (k + 1)−2 < 〈v, n(q)〉 < k−2} and

I0 = {(q, v) ∈ M | 〈v, n(q)〉 > k−2
0 } (4.3)

Here the integer constant k0 is arbitrary. The boundary of this partitioned phase space,
M̄ is

Γ0 = ∂M̄ = ∪∞
k=k0

{(q, v)|〈v, n〉 = k−2}
Correspondingly, the countably many manifolds in the set Γ(1) = T−1Γ0 are the so
called secondary singularities. For a higher iterate of the dynamics, T n, the primary and
secondary singularities are, respectively:

S(n) = S(1) ∪ T−1S(1) ∪ · · ·T−n+1S(1); Γ(n) = Γ(1) ∪ T−1Γ(1) ∪ · · ·T−n+1Γ(1).

Fronts. As introduced in section 2, (d − 1)-dimensional submanifolds in Q, the
configurational space of the flow, everywhere orthogonal to the flow direction will be
referred to as fronts. When supplied with their normal vectors v (the velocities), fronts
can be viewed as submanifolds of the flow phase space M. Vectors (in the tangent bundle
over M) tangent to fronts are denoted by (dr, dv) = (dr,Bdr) where B is the second
fundamental form (s.f.f.) of our submanifold in Q (here, of course, dr ⊥ v).

Let us consider a front directly after (before) collision. It leaves a trace of velocities
on the scatterer which can be viewed either as a (unit) vector field over ∂Q or as a (d−1)-
dimensional submanifold in the Poincaré phase space. Direct calculations show that for
a vector (dr, dv) = (dr,B+dr), tangent to the post-collisional front, the corresponding
vector in the Poincaré phase space is δx = (δq, δv) where:

δq = V dr;

δv = dv − 〈v, n〉V ∗dn = dv − 〈v, n〉V ∗Kδq =

= (B+V −1 − 〈v, n〉V ∗K)δq = Fδq. (4.4)

The operator F : T → J plays an important role, it describes the tangent plane of our
(d − 1)-dimensional manifold in the Poincaré phase space.

A front will be called convex/diverging whenever B+ is positive semi-definite (B+ ≥
0). Convex fronts remain convex under time evolution. The convex cone consists of those
tangent vectors δx that are tangent to some convex front.

Lemma 4.1. There are constants m0 ∈ IN and φ0 < π
2

that depend only on the billiard
domain itself such that out of m0 consecutive reflections at least for one of them for the
collison angle φ we have: φ < φ0.
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Proof. Let us assume the contrary: there is a sequence xn of phase points which
have trajectories with n consecutive collisions, all with collision angle φ > π

2
− 1

n
. By

compactness there is a limit phase point with infinitely many consecutive tangential
reflections. This, however, contradicts the finite horizon assumption. �.

u-manifolds and homogeneous u-manifolds. We shall consider Cu
x , the m0-image

of the convex cone as our unstable cone. A manifold is a u-manifold if it has all tangent
vectors in Cu

x . u-manifolds remain u-manifolds as Cu
x is invariant under the positive

powers of T .

A u-manifold is said to be homogeneous if it is contained in one homogeneity layer.

There will be two metrics used on u-manifolds. The p-metric

|δx|p = |dr|
measures distances on the corresponding front while the Euclidean metric

|δx|e =
√

δq2 + δv2

in the Poincaré phase space. A priori the p-metric seems to be degenerate but as we
shall see it is a good metric on the cone Cu

x . Time evolution in the p-metric is given by:

|δx1|p = |dr1| = |dr + τdv| = |(I + τB+)dr| (4.5)

Some further notation. For any u-manifold W ; the quantities J p
W (x) and Je

W (x) are
the Jacobians of the dynamics in the p- and e-metrics, respectively.
Remark. All the above introduced concepts have their natural counterparts (with the
corresponding nice properties) for the reversed dynamics: concave/convergent fronts,
s-manifolds etc.

4.3 Properties of F and equivalence of metrics

Some conventions. Constants that depend only on the billiard table itself (like τmin,
φ0...) will be called global constants.
For an invertible operator O the meaning of the relations c ≺ O ≺ C is that there are
two positive global constants C1 and C2 that bound the norms of the operator and its
inverse:

‖O‖ < C1; ‖O−1‖ < C2.

Note that the operator O is not necessarily symmetric, even more, it need not be an
automorphism. The values of the constants C1 and C2 are usually irrelevant.
Two quantities f and g defined on the unstable cones will be called equivalent (f ∼ g) it
there are some global constants C1 and C2 such that C1f ≤ g ≤ C2f .

Throughout this subsection we restrict our considerations on the vectors of the un-
stable cone.

14



Sublemma 4.2. Let us consider any u-front with incoming and outgoing s.f.f.-s B− and
B+, respectively. Then c ≺ B+ and c ≺ B− ≺ C.

Proof. By the collision equations the operator B+ − B− is always positive semi-
definite, thus it is enough to prove c ≺ B− ≺ C as it implies c ≺ B+. The upper bound
is trivial by (2.2) and the lack of corner points (there is a lower bound on the free path:
τ ≥ τmin). Thus it remains to prove c ≺ B−, what is an easy consequence of Lemma 4.1.
Indeed, our submanifold is an m0-iterate of a convex front . By the lemma out of these
m0 reflections there is definitely at least one with collision angle smaller than φ0. We
shall denote the collision term that corresponds to this particular reflection by Θ0. Of
course, c ≺ Θ0 as the spectrum of Θ0 is bounded below by kmin cos φ0 (here kmin is the
lower bound on the spectrum of K – the curvature operator of the scatterers ∂Q). Now
let us consider any dr ∈ J . By the evolution equations (2.2) and (2.3):

〈dr,B−dr〉 ≥ 〈dr, ((Θ0)
−1 + m0τmaxI)−1dr) ≥ (kmin cos φ0)

−1 + m0τmax)
−1〈dr, dr〉.

Thus we have the desired lower bound. �.

Now we can formulate our most important technical lemma.

Lemma 4.3. Assume K ′ : T → T and B′ : J → J are both symmetric and c ≺
B′, K ′ ≺ C. Then:

c ≺ B′V −1 + 〈v, n〉V ∗K ′ ≺ C.

Proof. The upper bound is obvious since ||V −1|| = 1 and 〈v, n〉||V ∗|| = 1.
By the definition of V , we have

V u = u − 〈u, n〉
〈v, n〉v for u ∈ J

and
V −1u = u − 〈u, v〉v for u ∈ T

Similarly,

V ∗u = u − 〈u, v〉
〈v, n〉n for u ∈ T (4.6)

and
(V ∗)−1u = u − 〈u, n〉n for u ∈ J

It is then easy to arrive at

(V ∗)−1V −1u = u − 〈u, v〉v + 〈u, v〉〈v, n〉n

and
〈v, n〉2V V ∗u = 〈v, n〉2u + 〈u, v〉v − 〈u, v〉〈v, n〉n
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Adding the two equations above yields

(V ∗)−1V −1 + 〈v, n〉2V V ∗ = (1 + 〈v, n〉2)I (4.7)

where I is the identity operator in T .
Another useful observation: Since ||(B ′)−1|| ≤ C and ||(K ′)−1|| ≤ C for a global

constant C > 0, all the eigenvalues of B ′ and K ′ are bounded below by c′ = 1/C. Hence

〈B′u, u〉 > c′||u||2 for u ∈ J (4.8)

and
〈K ′u, u〉 > c′||u||2 for u ∈ T (4.9)

Now, let u ∈ T , ||u|| = 1. Then ||V −1u|| ≤ 1, and

〈B′V −1u + 〈v, n〉V ∗K ′u, V −1u〉 = 〈B′V −1u, V −1u〉 + 〈v, n〉〈K ′u, u〉
Here all three scalar products are positive, hence

||B′V −1u + 〈v, n〉V ∗K ′u|| ≥ c′||V −1u|| (4.10)

due to (4.8). Next, we have 〈v, n〉||V ∗u|| ≤ 1, and

〈B′V −1u + 〈v, n〉V ∗K ′u, 〈v, n〉V ∗u〉 = 〈B′V −1u, 〈v, n〉V ∗u〉 + 〈K ′u, 〈v, n〉2V V ∗u〉
Substitution of (4.7) and using (4.9) gives

||B′V −1u + 〈v, n〉V ∗K ′u|| ≥ c′||u||2 − c′′||V −1u|| = c′ − c′′||V −1u||
for some global constant c′′ > 0. Combining this with (4.10) yields

||B′V −1u + 〈v, n〉V ∗K ′u|| ≥ c

with c = c′/(1 + c′′/c′). The lower bound is proved. �

Corollary 4.4. There are global constants c and C such that for any u-front c ≺ F ≺ C.
As a consequence, for all vectors of the unstable cone, δx ∈ Cu

x the norm |δx|e is uniformly
equivalent to both |δq| and |δv|. Furthermore, the p-metric is non-degenerate on the cone
Cu

x (nonzero vectors in Cu
x have nonzero p-length).

Proof. This is an easy application of Lemma 4.3 with B ′ = B− and K ′ = K (see
also formula (4.4)). �.

Corollary 4.5. The p-metric and the e-metric are equivalent in a ’dynamical’ sense: for
any δx ∈ Cu

x : |DTδx|p ∼ |δx|e.
Proof. Indeed, by the evolution equation (4.5):

|DTδx|p = |(I + τB+)dr| = |(I + τB+)V −1δq|.
Now we may apply Lemma 4.3 with K ′ = 2K and B′ = I + τB− (remember that the
free path τ is uniformly bounded from below and above). Together with Corollary 4.4
we get:

|(I + τB+)V −1δq| ∼ |δq| ∼ |δx|e.
The two equations together give Corollary 4.5. �.
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4.4 Geometry and hyperbolicity of u-manifolds

Now we would like to turn to the hyperbolic and geometric properties of the unstable
cone. Unless otherwise stated, any vector δx mentioned is an element of the u-cone Cu

x .

Uniform hyperbolicity in the p-metric is guaranteed by the uniform bound τ >
τmin and Sublemma 4.2. Indeed:

|DTδx|p = |(Id + τB+)dr| > Λ|δx|p.

Here Λ > 1 is a global constant. On the other hand, by Sublemma 4.2 again (together
with the evolution equations) for the (d − 1) eigenvalues of the symmetric operator B+:

λ1 ∼ (cos φ)−1; λi ∼ 1, i = 2 ... d − 1.

As a consequence, for an arbitrary u-manifold W the Jacobian in the p-metric behaves
as

Jp
W (x) ∼ (cos(φ))−1.

In the e-metric we have by Corollary 4.5:

|DT nδx|e ≥ |DT nδx|p > Λn−1|DTδx|p > CΛn|δx|e. (4.11)

This implies that for a sufficiently high fixed power of the dynamics, T1 = Tm1 :

|DT1δx|e > Λ1|δx|e with Λ1 > 1 global. (4.12)

To calculate Je
W (x) for any u-manifold W consider the operator G : T → TxW that

acts by the rule δq 7→ (δq, F (δq)) = δx. Then one can easily check that in our notation

DT |W (x) = G1 ◦ V1 ◦ U1 ◦ (I + τB+) ◦ V −1 ◦ G−1

in correspondence with equation (4.5) that describes evolution in the p-metric. Now we
may get a formula for the Jacobian in the e-metric:

Je
W (x) = det G1 det V1 Jp

W (x) (det V )−1 (det G)−1. (4.13)

We observe that
(det G)2 = det(I + F ∗F ) (4.14)

Indeed, there is an orthonormal basis in T and an orthonormal basis in J such that
F : T → J is represented, in those bases, by a diagonal matrix (this follows from the
singular value decomposition theorem in linear algebra). For a diagonal matrix F , the
relation (4.14) is easily verified by direct inspection.
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Now it is easy to see that there are global constants c and C such that: c < det G < C
for the operator G at any u-manifold. Direct calculation gives:

Je
W (x) ∼ det( V1 ) ∼ (cos(φ1))

−1. (4.15)

Let us consider a further restriction of DT onto a subspace R ⊂ TxW of the tangent
plane. Applying the above argument for the restriction DT |R we get:

det( DT |R) ∼ det(V1 |R′) (4.16)

where R′ = (V −1
1 ◦ G−1

1 ◦ DT )(R).

Now we turn to some geometric properties of our submanifolds. Transversality –
the property that the stable and unstable cones are uniformly transversal – is justified
by the following theorem:

Theorem 4.6. The u-manifolds and s-manifolds in M are uniformly transversal. Pre-
cisely, there is a global constant c0 > 0 such that for any u-manifold Wu and any s-
manifold Ws at any point of intersection x ∈ Wu ∩ Ws the angle between Wu and Ws is
greater than c0.

Proof. We use the subscripts u and s to denote various quantities and operators
related to the submanifolds Wu and Ws, respectively. According to (4.4),

Fu = UB−
u U−1V −1 + 〈v, n〉V ∗K

and
Fs = B+

s V −1 − 〈v, n〉V ∗K

Note that the operator −B+
s is symmetric, positive definite and satisfies c ≺ −B+

s ≺ C
(this is the counterpart of the previously established property c ≺ B−

u ≺ C). Hence, the
operator B′ := UB−

u U−1 − B+
s is symmetric, positive definite and satisfies c ≺ B ′ ≺ C.

Now Lemma 4.3 implies
c ≺ Fu − Fs ≺ C (4.17)

Next assume that Theorem 4.6 is false. Then, by using Corollary 4.4, one can easily
conclude that for any ε > 0 there are a u-manifold Wu, an s-manifold Ws intersecting
Wu at some point x = (q, v), and a nonzero vector δq ∈ T such that

||Fu(δq) − Fs(δq)|| ≤ ε ||δq||

This clearly contradicts (4.17). Theorem 4.6 is proved. �

Remark: Observe that the above proof goes through even if instead of the s-manifold
Ws we have just an arbitrary convergent front W0. Indeed, for the crucial equation (4.17)
it is enough to have the upper bound −B+

0 ≺ C (which trivially holds for any convergent
front W0), the lower bound c ≺ −B+

s – which is only true for s-manifolds – is, however,
not essential.
As a consequence we are able to prove the so-called alignment property.
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Corollary 4.7. The u-manifolds are uniformly transversal to all the singularity manifolds
S ⊂ S(n) and S ⊂ Γ(n), n ≥ 1. Precisely, there is a global constant c0 > 0 such that for
any u-manifold Wu intersecting any manifold S ⊂ S (n) or S ⊂ Γ(n) at a point x there is
a (d− 1)-dimensional submanifold S ′ ⊂ S through x such that the angle between Wu and
S ′ is greater than c0.

Proof. We have S = T−kS0 for some 1 ≤ k ≤ n and a domain S0 ⊂ S0 (or S0 ⊂ Γ0).
Let x0 = (q0, v0) = T kx ∈ S0. Define a small (d − 1)-dimensional submanifold S ′

0 ⊂ S0

through x0 by S ′
0 = {y = (r, v) ∈ M |v = Q0v0}, where Q0 is the rotator of Rd taking

n(q0) to n(q), as defined by (4.1).
First let us discuss the primary singularities (i.e. the case S0 ⊂ S0). We claim that

S ′ = T−kS ′
0 is a limit, in C0 metric, of a sequence of convergent fronts. Indeed, we first

approximate S ′
0 by a sequence of (d − 1)-dimensional manifolds S

(i)
0 defined as follows.

Pick a sequence of vectors v
(i)
0 ∈ Sd−1 such that v

(i)
0 → v0 as i → ∞ and 〈v(i)

0 , n(q0)〉 > 0

for all i. Then we put S
(i)
0 = {y = (q, v) ∈ M : v = Q0v

(i)
0 }. For each submanifold S

(i)
0 ,

the tangent plane at every point (q, v) ∈ S
(i)
0 is characterized by δv = 0, hence F = 0

in our notation. According to (4.4), we now have UB−U−1 = −〈v, n〉V ∗KV −1, which is

a negative definite operator. So, the trajectories of S
(i)
0 , as they flow backward in time,

make a convergent front. Therefore, T−kS
(i)
0 is a convergent front for every i. As i → ∞,

these fronts converge to S ′ = T−kS ′
0, as we claimed. Now, Theorem 4.6 (in view of the

remark above) completes the proof for the case of primary singularities.
In the secondary case (i.e. S ⊂ Γ(n)) the (d − 1)-dimensional manifold S ′ = T−kS ′

0 is
a convergent front itself. Thus we may refer to the theorem and the remark directly. �

Remark. Recall that singularity manifolds are 2d−3-dimensional. The above Corol-
lary roughly states that there is a d − 1-dimensional subbundle in their tangent bundle
that lies in the stable cone field. However, the tangent space may behave wildly in
the further d − 2 directions, in correspondence with the curvature blow-up discussed in
section 3.

5 Technical bounds on u-manifolds

After introducing the basic structures and tools now we would like to turn to the dis-
cussion of some more complicated technical properties. Unless otherwise stated, all cal-
culations refer to the unstable cone (field) Cu

x and we use all other conventions from the
previous section as well (e.g. quantities corresponding to a trajectory infinitesimally close
to a reference one are primed).

Our main reference will be Lemma 4.3. Before discussing the important specific
properties in the subsections, we record a few immediate consequences of this Lemma.
For every u-manifold W , at every reflection we have

c ≺ B+V −1 ≺ C. (5.1)
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This bound has its adjoint version

c ≺ (V ∗)−1B+ ≺ C. (5.2)

Let τ be the time between the current and the next reflections (or, more generally, any
number satisfying τmin/10 < τ ≤ τmax). Then

c ≺ (I + τB+)V −1 ≺ C (5.3)

and we also have an adjoint version of (5.3)

c ≺ (V ∗)−1(I + τB+) ≺ C. (5.4)

Note that if c ≺ A ≺ C for any operator A, then also c ≺ A−1 ≺ C. Hence, all the above
inequalities remain true for the inverse operators as well. For example, we have

(I + τB+)−1V ∗ ≺ C and V (I + τB+)−1 ≺ C. (5.5)

5.1 Curvature bounds on u-manifolds

In this subsection we would like to prove that there is a uniform bound on the curvature
of u-manifolds. More precisely we prove that the tangent plane of a u-manifold is a
Lipschitz function of the base point, with a uniform (global) Lipschitz constant. The
tangent plane is described by the operator F , thus we should prove that F depends
smoothly enough on the base point.

First we will get the relevant curvature bounds in the phase space of the flow; in other
words, we investigate the smoothness of the dependence for s.f.f.-s B that describe any
front corresponding to some u-manifold (which we refer to as u-fronts for short). Let W
be any such u-front and x = (r, v) ∈ W . Let x′ = (r′, v′) ∈ W be infinitesimally close
to x, and dr = r′ − r, dv = v′ − v the infinitesimal displacement vectors in Q and Sd−1,
respectively. Clearly, dr, dv ∈ J and dv = [BW(x)](dr). Consider the evolution of the
displacement vector (drt, dvt) = St(dr, dv). If no collisions occur on an interval (t, t+∆t),
then dvt+∆t = dvt and

drt+∆t = drt + ∆t dvt = [I + ∆t Bt](drt) (5.6)

where Bt = BWt
(xt). By Sublemma 4.2 we know that 〈Btu, u〉 ≥ bmin||u||2 for all u ∈ J .

Therefore
||drt+∆t|| ≥ (1 + ∆t bmin)||drt|| (5.7)

hence
||(I + ∆t Bt)

−1|| ≤ (1 + ∆t bmin)
−1. (5.8)
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Now consider a moment of reflection. The tangent vector dxt = (drt, dvt) changes
discontinuously, in correspondence with (2.3): dr = dr+ = Udr− and dv = dv+ =
U(dv−) + Θ(dr+). The two trajectories reflect at the points q, q′ ∈ ∂Q in the time
moments t, t′ , respectively. For the infinitesimal differences we use the notations dt ∈ R,
δq ∈ T and dn = n(q′) − n(q) = Kδq ∈ T . As to their relations:

‖dr+‖ ≤ ‖δq‖; |dt| ≤ 2‖δq‖; ‖dn‖ ≤ C‖δq‖ and ‖dv‖ ≤ C‖δq‖. (5.9)

Indeed, these bounds are straight consequences of the formulas (2.3) and (4.4), the bound-
edness of K, the triangle inequality |dt| ≤ ‖dq‖ + ‖dr+‖ and our crucial Lemma 4.3.

We need to compare the operators Θ and Θ′ taken at the points (q, v) and
(q′, v′), respectively. They act in the hyperplanes J and J ′ orthogonal to v and v′,
respectively. Consider the operators V ∗, K, V entering (2.3) at the reference point (q, v)
and their counterparts (V ′)∗, K ′, V ′ at the nearby point (q′, v′). Let Q = Qv,v′ be the
rotation in Rd taking v to v′ and leaving invariant all the vectors perpendicular to v and
v′. Then Q takes J to J ′. More specifically, Q acts by the rule

Qu = u − 〈u, dv〉v for u ∈ J (5.10)

and its inverse acts by

Q−1u = u + 〈u, dv〉v for u ∈ J ′ (5.11)

where the terms of the second order in dv are dropped. Furthermore we shall use an-
other rotator, Q0, that takes T to T ′: this later one we have already introduced at the
description of the parallel translation of the tangent bundle (see (4.1), (4.2)).

Instead of V and V ∗, it is now more convenient to work with more “tame” operators
Ṽ = 〈v, n〉V and Ṽ ∗ = 〈v, n〉V ∗. They act by the rules

Ṽ u = 〈v, n〉u − 〈u, n〉v for u ∈ J (5.12)

and
Ṽ ∗u = 〈v, n〉u − 〈u, v〉n for u ∈ T (5.13)

Similar formulas hold for Ṽ ′ and (Ṽ ′)∗, where v′, n′ are substituted for v, n.
Put ∆Ṽ = Q−1

0 Ṽ ′Q − Ṽ , ∆Ṽ ∗ = Q−1(Ṽ ′)∗Q0 − Ṽ ∗ and ∆K = Q−1
0 K ′Q0 − K. Direct

calculations based on (5.12), (5.10) and (4.2) yield

[∆Ṽ ](u) = (〈dv, n〉 + 〈v, dn〉)u + (〈v, n〉〈u, dn〉 − 〈u, n〉〈v, dn〉)n − 〈u, dn〉v − 〈u, n〉dv

hence
||∆Ṽ || ≤ 2 ||dv|| + 4 ||dn|| (5.14)

Note that ∆Ṽ ∗ is the adjoint of ∆Ṽ , hence

||∆Ṽ ∗|| = ||∆Ṽ || ≤ 2 ||dv|| + 4 ||dn|| (5.15)
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Now, because ∂Q is C3 smooth we have

||∆K|| ≤ C||δq|| (5.16)

for some global constant C > 0.

Sublemma 5.1. There is a global constant C > 0 such that for any τ ∈ (τmin/10, τmax)

||(I + τB+)−1(Q−1Θ′Q − Θ)(I + τB+)−1|| ≤ C ||δq||

Proof. Recall that

Θ = 2〈v, n〉V ∗KV = 2〈v, n〉−1Ṽ ∗KṼ

and similar formulas hold for Θ′. We have, to the first order of ||δq||,

Q−1Θ′Q − Θ = 2(〈v′, n′〉 − 〈v, n〉)V ∗KV

+2〈v, n〉−1(∆Ṽ ∗KṼ + Ṽ ∗∆KṼ + Ṽ ∗K∆Ṽ ) (5.17)

Note that 〈v′, n′〉 − 〈v, n〉 = (〈dv, n〉 + 〈v, dn〉), to the first order in ||δq||. Thus we can
rewrite (5.17) in this way:

Q−1Θ′Q − Θ = 2(〈dv, n〉 + 〈v, dn〉)V ∗KV + 2(∆Ṽ ∗KV + V ∗∆KṼ + V ∗K∆Ṽ )

Now we apply (5.5) and then (5.14)-(5.16) with (5.9). This completes the proof of the
sublemma. �

After so much preparation we are ready to discuss curvature bounds for the
flow, i.e. for u-fronts W .
We need to estimate the ‘derivative’ of the second fundamental form BW(x) with respect
to x ∈ W . The operator BW(x) acts in the hyperplane J that also depends on x. For
points x′ = (r′, v′) ∈ W infinitesimally close to x, let Q = Qv,v′ be the rotator in Rd that
takes J to J ′ as defined by (5.10). Then the ‘increment’ of B is defined by Q−1B′Q−B,
where B = BW(x) and B′ = BW(x′). Now consider

DW(x) := max
dr 6=0

||Q−1B′Q − B||/||dr||

where the maximum is taken over all nonzero infinitesimal displacement vectors dr =
r′ − r.

Lemma 5.2 (Curvature bounds - I). There is a constant Dmax such that for any
divergent wave front W and x ∈ W there is a t0 = t0(W , x) such that for all t > t0 we have
the following: if no collisions occur in the interval (t− τmin/2, t), then DWt

(xt) ≤ Dmax.
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Proof. For short, we put Dt = DWt
(xt). First we show that Dt decreases during free

runs between collisions.

Sublemma 5.3. If there are no collisions in a time interval (t, t + ∆t), then

Dt+∆t ≤ (1 + ∆t bmin)
−3Dt

Proof. For short, we put B = BWt
(xt) and B1 = BWt+∆t

(xt+∆t). Similarly, we define
B′ and B′

1 at the points x′
t and x′

t+∆t. Now, if A1 and A2 are two invertible linear
operators acting in the same space, then obviously

A1 − A2 = −A1(A
−1
1 − A−1

2 )A2 (5.18)

Applying this trick twice and using (2.2) yields

Q−1B′
1Q − B1 = Q−1(I + ∆t B′)−1Q [Q−1B′Q − B] (I + ∆t B)−1

Now the sublemma easily follows, with the help of (5.7) and (5.8). �

Sublemma 5.4. If there is a collision in a time interval (t, t + τmin/4), then

Dt+τmin/2 ≤ Dt + D̄

where D̄ > 0 is a global constant.

Proof. Let s = t+τmin/2. Note that there are no collisions in the interval (t+τmin/4, s).
For short, we put B = BWs

(xs) and B′ = BWs
(x′

s). Denote by t1 and t′1 the moments of
reflection of the trajectories of the points xt and x′

t, respectively, that occur in the interval
(t, t + τmin/4). Put dt = t′1 − t1, τ = s − t1 and τ ′ = s − t′1. Note that τ > τmin/4 and
τ ′ > τmin/4. Put B+ = BWt1+0

(xt1+0) and B′+ = BW
t′
1
+0

(xt′1+0). Let Q be the rotation

of Rd that takes v = vs to v′ = v′
s. It acts on J = Jxs

by the rule (5.10). Applying the
trick (5.18) twice yields

Q−1B′Q − B = −Q−1B′Q(dt I)B

+Q−1(I + τ ′B′+)−1Q [Q−1B′+Q − B+] (I + τB+)−1 (5.19)

Note that ||B|| ≤ 1/τ ≤ 4/τmin, and likewise ||B ′|| ≤ 4/τmin. Hence,

|| − Q−1B′Q(dt I)B|| ≤ C|dt|

for a global constant C > 0. Next, we have B+ = UB−U−1 + Θ by (2.3), and, similarly
B′+ = U ′B′−U ′−1 + Θ′. Then we can further decompose the last term in (5.19):

||Q−1B′Q − B|| ≤ C|dt| + ||Q−1U ′B′−U ′−1Q − UB−U−1||
+||Q−1(I + τ ′B′+)−1Q [Q−1Θ′Q − Θ] (I + τB+)−1||
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Using Sublemma 5.1 (and its notation) gives, up to the first order in ||δq||,

||Q−1(I + τ ′B′+)−1Q [Q−1Θ′Q − Θ] (I + τB+)−1||

= ||(I + τB+)−1[Q−1Θ′Q − Θ] (I + τB+)−1|| ≤ C||δq||
Note that

||Q−1U ′B′−U ′−1Q − UB−U−1|| = ||Q−1
1 B′−Q1 − B−|| (5.20)

where Q1 = U ′−1QU is the rotator that takes the hyperplane J − = Jxt1−0
to J ′− =

Jx′

t′
1
−0

. We apply the trick (5.18) twice and act as in (5.19) and easily obtain

||Q−1
1 B′−Q1 − B−|| ≤ ||B′−|| |dt| ||B−|| + ||Q−1

1 B′
1Q1 − B1|| (5.21)

where B1 = BWt
(xt) and B′

1 = BWt
(x′

t).
Combining the above estimates gives

||Q−1B′Q − B|| ≤ C|dt| + C||δq|| + ||Q−1
1 B′

1Q1 − B1||

for some global constant C > 0. Note that drs = (I + τB+)dr+ = (I + τB+)V −1δq, and
due to (5.3) we have ||δq|| ≤ C||drs||. Lastly, |dt| ≤ 2||δq|| by (5.9) and ||drt|| < ||drs||,
which easily follows from (5.7). Therefore,

||Q−1B′Q − B||/||drs|| ≤ D̄ + ||Q−1
1 B′

1Q1 − B1||/||drt||

where D̄ is a global constant, which proves the sublemma. �

We now complete the proof of Lemma 5.2. Let t > 0 satisfy the condition of the
Lemma, and n be the number of collisions on the interval (0, t). Then combining Sub-
lemmas 5.3 and 5.4 gives

Dt ≤ λnD0 + (1 + λ + · · · + λn)D̄

where λ = (1 + τminbmin/4)
−3 < 1. Since D̄ is a global constant, the Lemma follows. �

In all that follows we will only consider u-fronts W for which DW(x) ≤ Dmax for all
x ∈ W provided the trajectory Stx, −τmin/2 < t < 0, does not collide with ∂Q. As we
are mainly interested in those u-manifolds that approximate LUM-s, this convention is
justified by Lemma 5.2. Indeed, if the front W corresponds to a LUM, than S−tW is a
divergent front for any t > 0.

Remark. A useful estimate (5.21) obtained in the proof of Sublemma 5.4 can now
be restated. Recall that |dt| ≤ 2||δq||, ||B ′−|| · ||B−|| ≤ 1/τ 2

min (a global bound) and

||Q−1
1 B′

1Q1 − B1|| ≤ Dmax||drt||

by the above convention. Also note that ||drt|| ≤ ||dr−|| = ||dr+|| = ||V −1δq|| ≤ ||δq||.
Hence,

||Q−1
1 B′−Q1 − B−|| ≤ C||dr|| (5.22)
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with a global constant C > 0.

Finally we should prove the curvature bounds on u-manifolds W in the Po-
incaré phase space, in other words, that the ‘derivative’ of F along u-manifolds is
uniformly bounded.

We will denote by distW (x, y) the distance between x, y ∈ W in the Euclidean metric
on W . Let x = (q, v) and x′ = (q′, v′) be two infinitesimally close points of a u-manifold
W , and F and F ′ the corresponding operators at x and x′. Using our previous notation,
we consider the increment of F defined by Q−1F ′Q0 − F . Here again Q0 is the rotator
taking n = n(q) to n′ = n(q′) and Q is the rotator taking v to v′.

Theorem 5.5 (Curvature bounds - II). There is a global constant C > 0 such that

||Q−1F ′Q0 − F || ≤ C ||δq||

Proof. Using the second formula in (4.4) and our earlier notation Ṽ ∗ = 〈v, n〉V ∗ gives

||Q−1F ′Q0 − F || ≤ ||Q−1Ṽ ′∗Q0Q
−1
0 K ′Q0 − Ṽ ∗K||

+||Q−1U ′B′−U ′−1QQ−1V ′−1Q0 − UB−U−1V −1||

The first term is bounded by C ||δq|| for some global constant C > 0, according to
our earlier estimates (5.15) and (5.16). To bound the second term we need two more
estimates. One is

||Q−1V ′−1Q0 − V −1|| ≤ 4 ||dv|| + 2 ||dn|| ≤ C||δq|| (5.23)

which is proved just like (5.14) and (5.15), we omit the details. The other is

||Q−1U ′B′−U ′−1Q − UB−U−1|| ≤ C||δq|| (5.24)

for a global constant C > 0. In the proof of Sublemma 5.4 we introduced the rotator
Q1 = U ′−1QU that takes the hyperplane J − to J ′−. With this, (5.24) is simply equivalent
to our early estimate (5.22). Theorem 5.5 is now proved. �

5.2 Distorsion bounds

This subsection is devoted to the question, how smoothly the volume expansion rates
vary at nearby points on the same u-manifold (distorsion bounds) and at different u-
manifolds joint by holonomy maps along s-manifolds (absolute continuity). Actually, the
reason for introducing homogeneity strips and secondary singularities (see (4.3)) is that
we would like to control these distorsions. Let us consider the evolution under T n of a
u-manifold W . Due to (4.11) distances grow exponentially in n, and the same is true for
the (d − 1)-dimensional volume of T nW . However, at almost grazing reflections, when
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〈v, n〉 ≈ 0, the expansion of u-manifolds is highly nonuniform, and so distortions are
unbounded. Nevertheless, as we shall prove in Theorem 5.7, the situation is much better
with homogeneous u-manifolds.

Throughout the subsection all metric quantities (norms, distances, volume elements,
Jacobians) are understood in the e-metric, thus we often drop the sub- or superscripts e.

Sublemma 5.6. If W is a homogeneous u-manifold, then for any two points x = (q, v)
and x̄ = (q̄, v̄) of W we have

|〈v̄, n̄〉 − 〈v, n〉| ≤ C 〈v, n〉
[

distW (x, x̄)
]1/3

where n̄ = n(q̄) and C > 0 is a global constant.

Proof. Let W ∩ Ik 6= ∅ for some k. Then

|〈v̄, n̄〉 − 〈v, n〉| ≤ C1 (k + 1)−3 (5.25)

with a global constant C1, according to our construction of Ik. Next, for any point
x′ = (q′, v′) infinitesimally close to x, we have, up to the first order in ||δx||(= |δx|e),

|〈v′, n′〉 − 〈v, n〉| = |〈dv, n〉 + 〈v, dn〉| ≤ C2||δq|| ≤ C3||δx|| (5.26)

with some global constants C2, C3, see (5.9) and Corollary 4.4. Integrating (5.26) from
x to x̄ yields

|〈v̄, n̄〉 − 〈v, n〉| ≤ C3 dist(x, x̄) (5.27)

Now (5.25) and (5.27) give

|〈v̄, n̄〉 − 〈v, n〉|3 ≤ C2
1C3 (k + 1)−6 dist(x, x̄)

Lastly, recall that 〈v, n〉 ≥ (k + 1)−2 if k > 0 and 〈v, n〉 ≥ k−2
0 if k = 0, hence 〈v, n〉 ≥

k−2
0 (k + 1)−2 for any k. Therefore,

|〈v̄, n̄〉 − 〈v, n〉|3 ≤ C2
1C3k

6
0 〈v, n〉3 dist(x, x̄)

This proves the sublemma. �

Let W be a u-manifold, x ∈ W and T n continuous at x. Denote by JW,n(x) the
expansion factor of the (d − 1)-dimensional volume of the manifold W under T n at the
point x, i.e. JW,n(x) := | det DT n |W (x)|.
Theorem 5.7 (Distorsion bounds). Let W be a small u-manifold on which T n is
continuous. Assume that Wi := T iW is a homogeneous u-manifold for each 0 ≤ i ≤ n.
Then for all x, x̄ ∈ W

| ln JW,n(x̄) − ln JW,n(x)| ≤ C ·
[

distWn
(T nx, T nx̄)

]1/3

for a global constant C > 0.
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Proof. Note that JW,n(x) =
∏n−1

i=0 JWi,1(T
ix). Hence, it is enough to prove the lemma

for n = 1, because dist(T ix, T ix̄) grows uniformly exponentially in i due to (4.11). So we
put n = 1.

Denote x1 = Tx and x̄1 = T x̄. We will also use a variable point x′ ∈ W infinitesimally
close to x, and put x′

1 = Tx′. For convenience, we will use the subscript 1 to denote
quantities (including operators, hyperplanes, etc.) related to the points x1, x̄1 and x′

1.
In a similar way, bars are used to denote quantities related to the points x̄ and x̄1, and
primes are used for quantities related to x′ and x′

1. For example, we denote by B+,
B̄+ and B′+ the second fundamental forms of the wave front (corresponding to the u-
manifold W ) at the points x, x̄, and x′, respectively. Similarly, F , F̄ , and F ′ denote the
F operator (4.4) taken at x, x̄ and x′, respectively. In a similar way, F1, F̄1, and F ′

1 are
the F operators taken at x1, x̄1 and x′

1, respectively, etc.

Note that the basic quantity, JW,1(x) was already calculated as J e
W (x) in the previous

section (formula (4.13)) where we also introduced the operator G. In view of this formula,
to prove Theorem 5.7 with n = 1, it is now enough to prove three claims:

Claim 1. | ln det V̄ − ln det V | ≤ C ·
[

distW (x, x̄)
]1/3

.

Claim 2. | ln det Ḡ − ln det G| ≤ C ·
[

distW (x, x̄)
]

.

Claim 3. | ln det(I + τ̄ B̄+) − ln det(I + τB+)| ≤ C ·
[

distTW (x1, x̄1)
]1/3

.

By C we denote some global constants. Indeed, the bounds in Claims 1 and 2 will also
hold at the points x1 and x̄1, because TW is a homogeneous u-manifold, and Theorem 5.7
will then easily follow.

Proof of Claim 1. Since det V = 〈v, n〉−1, the claim is a direct consequence of Sub-
lemma 5.6.

Our proofs of Claims 2 and 3 use the following

Sublemma 5.8. Let A be an invertible linear operator in an m-dimensional space, and
∆A an infinitesimal operator. Then, up to the first order of ||∆A||,

| ln det(A + ∆A) − ln det A| = | tr(A−1 · ∆A)| ≤ m ||A−1 · ∆A||

Proof. We have ln det(A + ∆A) = ln det A + ln det(I + A−1 · ∆A), and the rest is
straightforward. �

Proof of Claim 2. It is enough to prove

| ln det G′ − ln det G| ≤ C ||δx|| (5.28)

for infinitesimally close points x, x′ ∈ W , then the integration from x to x̄ will give the
bound in Claim 2.
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As to the value of det G, we refer to formula (4.14). Now, by Sublemma 5.8, we have

| ln det G′ − ln det G| ≤ | ln det(I + F ′∗F ′) − det(I + F ∗F )|
= | ln det(I + Q−1

0 F ′∗F ′Q0) − det(I + F ∗F )|
≤ (d − 1) ||(I + F ∗F )−1(Q−1

0 F ′∗F ′Q0 − F ∗F )||

(the introduction of Q0 defined by (4.1) was necessary to ensure that both operators act
in the same space). It is obvious that ||(I + F ∗F )−1|| ≤ 1, and by Corollary 4.4 and
Theorem 5.5 we have

||Q−1
0 F ′∗F ′Q0 − F ∗F || ≤ C ||dr||

This proves (5.28), and so Claim 2 is proved.

Proof of Claim 3. To shorten some formulas, we put R = I + τB+ (and, respectively,
define R̄ and R′ at the points x̄ and x′). It will be enough to prove that

| ln det R′ − ln det R| ≤ C|〈v′, n′〉 − 〈v, n〉| 〈v, n〉−1 + C ||δx|| + C ||δx1|| (5.29)

for infinitesimally close points x, x′ ∈ W . Note that ||δx|| ≤ C||δx1|| by (4.11). Then the
integration of (5.29) from x to x̄ (and, respectively, from x1 to x̄1) will give

| ln det R̄ − ln det R| ≤ C|〈v̄, n̄〉 − 〈v, n〉| 〈v, n〉−1 + C
[

distTW (x1, x̄1)
]

After that Claim 3 will follow by Sublemma 5.6.
We now prove (5.29). By Sublemma 5.8 we have, to the first order in ||δx||,

ln det R′ − ln det R = ln det Q−1R′Q − ln det R

= tr [R−1(τ ′Q−1B′+Q − τB+)] (5.30)

(the introduction of Q defined by (5.10) was necessary to ensure that both operators act
in the same space). Note that ||R−1|| ≤ C by (5.8). Next, we have, again to the first
order in ||δx||,

τ ′Q−1B′+Q − τB+ = dτ B+ + τ(Q−1U ′B′−U ′−1Q − UB−U−1)

+τ(Q−1Θ′Q − Θ) (5.31)

Observe that
||V R−1|| ≤ C and ||R−1V ∗|| ≤ C (5.32)

according to (5.3) and (5.4). Using (2.3) now yields

||R−1B+|| ≤ ||R−1|| ||B−|| + 2 ||R−1V ∗KṼ || ≤ C (5.33)

Now recall that |dτ | ≤ 2||δq|| + 2||δq1|| by (5.9). Hence we have, by (5.33),

| tr (dτ R−1B+) | ≤ (d − 1) |dτ | ||R−1B+|| ≤ C(||δq|| + ||δq1||)
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so the first term in the right hand side of (5.31) is properly taken care of.
Denote ∆B− = Q−1U ′B′−U ′−1Q − UB−U−1. We then have, using (5.20) and (5.22),

| tr (τ R−1 ∆B−) | ≤ (d − 1)|τ | ||R−1 ∆B−||
≤ τmax||R−1|| ||Q−1

1 B′−Q1 − B−||
≤ C ||δq||

which takes care of the second term in (5.31).
Lastly, we use (5.17) to handle the third term in (5.31):

| tr (R−1(Q−1Θ′Q − Θ)) | ≤ 2 |〈v′, n′〉 − 〈v, n〉| | tr (R−1V ∗KV )|
+2 | tr (R−1∆Ṽ ∗KV )| + 2 | tr (R−1V ∗∆KṼ )|
+2 | tr (R−1V ∗K∆Ṽ )| (5.34)

We note that

tr (R−1∆Ṽ ∗KV ) = tr (∆Ṽ ∗KV R−1) = tr (R−1V ∗K∆Ṽ )

where the first equation follows from a general formula tr(AB) = tr(BA) in linear algebra,
and the second is due to the fact that the operators ∆Ṽ ∗KV R−1 and R−1V ∗K∆Ṽ are
adjoint to each other. Using this observation, we can rewrite (5.34) as

| tr (R−1(Q−1Θ′Q − Θ)) | ≤ C |〈v′, n′〉 − 〈v, n〉| 〈v, n〉−1 ||R−1V ∗KṼ ||
+C ||∆Ṽ ∗KV R−1|| + C ||R−1V ∗∆KṼ )||

We now apply (5.32) and (5.15)-(5.16) with (5.9) and obtain

| tr (R−1(Q−1Θ′Q − Θ)) | ≤ C|〈v′, n′〉 − 〈v, n〉| 〈v, n〉−1 + C ||δx||

This completes the proof of (5.29) and hence Claim 3. Theorem 5.7 is now proved. �

After proving that the expansion factors vary nicely between nearby points on the
same u-manifold, we now investigate their behaviour at points of different u-manifolds
that lie on the same s-manifold. This is the absolute continuity property. Just like it was
with the distorsion bounds, it is important to consider homogeneous manifolds.

Theorem 5.9 (Absolute continuity). Let Ws be a small s-manifold, x, x̄ ∈ Ws, and
Wu, W̄u two u-manifolds crossing Ws at x and x̄, respectively. Assume that T k is contin-
uous on Ws and T iWs is a homogeneous s-manifold for each 0 ≤ i ≤ k. Then

| ln JWu,k(x) − ln JW̄u,k(x̄)| ≤ C

where C is a global constant.
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Proof. For any z ∈ Ws, let JWs,k(z) be the volume expansion factor of Ws under T k

at the point z, i.e. JWs,k(z) = | det DT k |Ws
(z)|. By the analogue of Theorem 5.7 for

homogeneous s-manifolds, we have

| ln JWs,k(x) − ln JWs,k(x̄)| ≤ C ′ (5.35)

for a global constant C ′.
Let |DT k(x)| denote the Jacobian of T k at a point x = (q, v) ∈ M with respect to the

Lebesgue measure δq δv on M in our local coordinates (q, v). Note that the T -invariant
measure is dν = 〈v, n〉 δq δv. Hence, |DT k(x)| = 〈v, n〉/〈vk, nk〉 where xk = (qk, vk) =
T kx and nk = n(qk). Similarly, |DT k(x̄)| = 〈v̄, n̄〉/〈v̄k, n̄k〉, where the notation is quite
clear. Since both Ws and T kWs are small homogeneous s-manifolds, Sublemma 5.6
implies that the quantity 〈v, n〉 does not vary much over either Ws or T kWs. In fact,
c < 〈v, n〉/〈v̄, n̄〉 < C and c < 〈vk, nk〉/〈v̄k, n̄k〉 < C for global constants C > c > 0.
Hence,

0 < c < |DT k(x)|/|DT k(x̄)| < C < ∞ (5.36)

for some global constants c and C. Now Theorem 5.9 follows easily from (5.35), (5.36),
and Theorem 4.6. �

6 Outlook

The results of this paper can be summarized as follows. We have some bad news (non-
smooth behaviour) related to the singularity submanifolds in multi-dimensional hyper-
bolic billiards. On the other hand, there are important good news related to the u-
manifolds in the multi-dimensional dispersing case: practically all important regular-
ity properties (uniform hyperbolicity, alignment, curvature and distorsion bounds) are
proved. In billiard theory one is mainly interested in the ergodic and statistical proper-
ties of the dynamical system. We emphasize that the above results are highly relevant
to these issues. As to the ergodic properties, a major breakthrough was achieved with
the proof of the Fundamental (or Local Ergodicity) Theorem ([SCh, KSSz]). However,
at some measure theoretic estimates the original arguments in these papers implicitly
assumed uniform curvature bounds on the singularities. Thus these proofs have to be
checked. In a separate paper ([BChSzT]) we will show that – at least, for billiards with
algebraic scatterers – the original proofs of local ergodicity remain valid if some suitable
modifications are performed.

Much less is known about statistical properties. As to the multi-dimensional dispers-
ing case, no optimal result (exponential decay of correlations) has been achieved so far.
Nevertheless, we conjecture that the rate of mixing is, indeed, exponential. The recently
developed method of Markov-returns ([Y1]) turned out to be especially powerful in the
study of decay rates for planar billiards ([Ch2, Ch3]). It is the growth of unstable man-
ifolds that is to be investigated for Youngs method to work. Essentially all important
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features of unstable manifolds have been checked in sections 4 and 5 to control growth
of LUMs, the only thing we do not know yet how to handle is the irregular behaviour
of singularities. We conjecture that, given a systematic geometric characterization of
singularities, exponential decay of correlations for multi-dimensional dispersing billiards
could be proved.
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