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Abstract

We study Anosov diffeomorphisms on surfaces in which some small ‘holes’ are
cut. The points that are mapped into those holes disappear and never return. We
assume that the holes are arbitrary open domains with piecewise smooth boundary,
and their sizes are small enough. The set of points whose trajectories stay away
from holes in the past is a Cantor-like union of unstable fibers. We establish the
existence and uniqueness of a conditionally invariant measure on this set, whose
conditional distributions on unstable fibers are smooth. This generalizes previous
works by Pianigiani, Yorke, and others.

AMS classification numbers: 58F12, 58F15, 58F11

Keywords: conditionally invariant measures, Anosov diffeomorphisms, repellers, scatter-
ing theory, chaotic dynamics.

1 Introduction

1.1. Let T̂ : M̂ → M̂ be a topologically transitive Anosov diffeomorphism of class C1+α

of a compact Riemannian surface M̂ . Let H ⊂ M̂ be an open set with a finite number
of connected components.

We denote M = M̂ \H. For any n ≥ 0 we put

Mn = ∩n
i=0T̂

iM and M−n = ∩n
i=0T̂

−iM, (1.1)

and also
M+ = ∩n≥1Mn, M− = ∩n≥1M−n, Ω = M+ ∩M− (1.2)
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All these sets are closed, T̂−1M+ ⊂ M+, T̂M− ⊂ M− and T̂Ω = T̂−1Ω = Ω. The set
M+ (resp., M−) consists of points whose trajectories stay away from H in the past (the
future). The set Ω consists of points whose trajectories never enter H.

In this paper, we study the structure of the sets M± and Ω and the dynamics of the
map T̂ on these sets. We think of the connected components of H as holes (one can also
think of H as an absorbing region). The trajectories that fall into H will no longer be
considered – they disappear. So we may call Ω the set of nonwandering points in M̂ .

We denote by T the restriction of T̂ on M , which means that for any set A ⊂ M and
n ≥ 1 we put T nA = T̂ n(A ∩M−n) and T−nA = T̂−n(A ∩Mn).

1.2. The concept of a chaotic dynamical system with holes in its phase space and
related problems have been formulated by Pianigiani and Yorke in 1979 [11] by way of
the following pictorial example.

Imagine a Sinai billiard table (with dispersing boundary), so that the dynamics of
the ball are strongly chaotic. Let one or more holes be cut in the table, so that the
ball can fall through. In particular, one can place those holes at the corners of the
table and make ‘pockets’. Let the initial position of the ball be chosen at random with
some smooth probability distribution (which may be the equilibrium distribution for the
original system, without holes). Denote by p(t) the probability that the ball stays on the
table for at least time t and, if it does, by µ(t) its (normalized) distribution in the phase
space at time t. Natural questions are: does p(t) converge to zero at some exponential
rate, as t →∞? is there a limit probability distribution µ+ = limt→∞ µ(t); is that limit
distribution independent of the initial distribution µ(0)?

These questions still remain open. However, since the pioneering work [11], substantial
progress has been made in the study of certain classes of chaotic dynamical systems with
holes.

Expanding (noninvertible) maps S with holes have been studied in [11] and later by
Collet, Mart́ınez and Schmitt [7], where the analogues of the above questions have been
answered positively. They called the limit probability distribution µ+ a conditionally
invariant measure [11]. The measure µ+ is not invariant under S; it cannot be because of
the holes. Instead, its image under S is proportional to itself: µ+(S−1A) = λ+µ+(A) for
any Borel set A, with some constant λ+ ∈ (0, 1). The constant λ+ is called the eigenvalue
of µ+ [4, 5]. Another constant, γ+ = − ln λ+, is known as the escape rate. The paper [7]
also constructed a related S-invariant measure η+ on the set of nonwandering points Ω
for S and established the important escape rate formula, γ+ = χ+−h(η+), where χ+ was
the sum of positive Lyapunov exponents on Ω and h(η+) the Kolmogorov-Sinai entropy
of η+.

In 1981-86 Čencova [3, 4] studied a class of invertible chaotic transformations with
holes, namely smooth Smale’s horseshoes. She also answered the analogues of the above
questions positively. She constructed the invariant measure η+ on the set of nonwandering
points Ω by pulling the conditionally invariant measure µ+ backward in time.

Lopes and Markarian in [9] studied an open billiard system – a particle bouncing
off several convex scatterers placed sufficiently far apart on a plane, so that they do
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not cast shadow on each other (this is called the ‘no eclipse’ condition). Here almost
every trajectory eventually escapes through the openings between the scatterers. In [9],
a conditionally invariant measure and a related invariant measure were constructed, the
latter was shown to be a Gibbs measure, and the escape rate formula was also proved.

Open billiards and other open Hamiltonian systems have become very popular in
physics in the past ten years. They have been studied numerically and heuristically, see
the survey [8] and the references therein. Physicists call this chaotic scattering theory.
Very few results of it, however, are proved mathematically.

Recently, two of us (N.Ch. and R.M.) in [5, 6] studied C1+α transitive Anosov diffeo-
morphisms T̂ : M̂ → M̂ with what we called rectangular holes. For an arbitrary finite
Markov partition R1, . . . , RI′ of M̂ we defined H to be the union of the interiors of some
rectangles, say, H = int RI+1∪· · ·∪ int RI′ , for some I < I ′. Even though such holes look
quite special, the systems studied in [5, 6] generalize both horseshoes studied in [3, 4]
and open billiards of the paper [9].

In [5], we assumed an additional ‘mixing condition’: there is a k0 ≥ 1 such that (in
the notations of 1.1) intRi∩ T̂ k0(Rj ∩M−k0) 6= ∅ for all i, j ≤ I. We proved the existence
and uniqueness of a conditionally invariant measure and a related invariant measure,
established the escape rate formula, and generalized other results of [7, 4, 9, 13], including
formulas for the fractal dimension of the invariant measure. In the next paper [6], we
relaxed the mixing condition and extended the results of [5] to nonmixing and nonergodic
cases.

The subject of this paper is the study of Anosov maps with rather arbitrary open
holes, not necessarily rectangles. Our key assumptions are that the holes are small
enough, and dim M̂ = 2. While the latter is assumed only to simplify the arguments,
the former is essential – for large holes the conditionally invariant measure is obviously
not unique. Our main result is the existence and uniqueness of a conditionally invariant
measure µ+ on M+. We plan to study the invariant measure η+ on Ω in a separate paper,
since that would require essentially new approach.

1.3. Here we state necessary definitions and conventions.
For any point x ∈ M̂ we denote by W u

x and W s
x the local unstable and stable fibers

containing x. We denote by Ju
x and Js

x the Jacobians of the map T̂ restricted to W u
x and

W s
x , respectively, at the point x. We put

Λmin = min
x∈M̂

{Ju
x , 1/Js

x} > 1 and Λmax = max
x∈M̂

{Ju
x , 1/Js

x} < ∞

Let φ0 > 0 be the minimum angle between stable and unstable fibers in M̂ . Recall that
for any two points x, y ∈ W s a holonomy map hx,y : W u

x → W u
y is defined by sliding

the points of W u
x along local stable fibers (symmetrically, hx,y : W s

x → W s
y is defined for

x, y ∈ W u).
A rectangle R ⊂ M̂ is a sufficiently small set such that for any x, y ∈ R we have

W u
x ∩W s

y ∈ R. We consider only closed connected rectangles. Those are bounded by two
stable and two unstable fibers (called stable and unstable sides of R). Segments of local
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unstable and stable fibers inside R that terminate, respectively, on the stable and unstable
sides of R are called R-fibers. They are ‘full-size’ local fibers in R stretching completely
across it. Any subrectangle R′ ⊂ R whose stable (unstable) sides are on the stable
(unstable) sides of R is called a u-subrectangle (s-subrectangle). Any u-subrectangle
(s-subrectangle) in R is a union of unstable (resp. stable) R-fibers.

Convention. We say that a measure µ on M̂ is smooth if its conditional measures on
local unstable fibers W u ⊂ M̂ are absolutely continuous with respect to the Riemannian
length, and their densities are Hölder continuous with Hölder exponent α, which is the
same as for the class of smoothness of the map T̂ .

Recall that every transitive Anosov diffeomorphism has a unique Sinai-Bowen-Ruelle
(SBR) measure [14, 2, 12]. It is an invariant measure, whose conditional distributions
on local unstable fibers are smooth in the above sense. Motivated by this, we will call
these conditional distributions u-SBR measures on unstable manifolds. Equivalently, for
any local unstable fiber W u its u-SBR measure is a probability measure νu on W u whose
density ρ(x) with respect to the Riemannian length satisfies the equation [1]

ρ(x)

ρ(y)
= lim

n→∞

Ju
T−1y · · · Ju

T−ny

Ju
T−1x · · · Ju

T−nx

(1.3)

The u-SBR measures are T̂ -invariant, i.e. the image of νu on W u under T̂ is a u-SBR
measure on the fiber T̂W u.

We introduce bounds on distorsions as follows. For any r > 0 we denote by D1(r) ≥ 1
the supremum of all ratios ρ(x)/ρ(y) in (1.3) for all x, y ∈ W u on all fibers W u of length
r (length always means the Riemannian length). Next, D2(r) denotes the supremum of
all the Jacobians of holonomy maps hx,y for points x, y ∈ W u,s at distance ≤ r (measured
along W u,s). We put D(r) = max{D1(r), D2(r)}. One can think of D(r) as a general
upper bound on distorsions within the distance r in M̂ . Obviously, D(r) → 1 as r → 0.
For linear Anosov maps D(r) ≡ 1.

For any finite Borel measure µ on M we define its norm by ||µ|| = µ(M). We denote
by T∗ the adjoint operator on the class of Borel measures on M defined by (T∗µ)(A) =
µ(T−1(A∩M1)) for any A ⊂ M . Due to the holes, the operator T∗ does not preserve norm.
We also denote by T+ the (nonlinear) operator on the space of probability measures on
M defined by T+µ = T∗µ/||T∗µ||, whenever ||T∗µ|| 6= 0.

Definition. A measure µ on M is said to be conditionally invariant under T if there
is a λ > 0 such that T∗µ = λµ. The factor λ is the eigenvalue of µ.

Obviously, any conditionally invariant measure µ is supported on M+, and we have
µ(T−1A ∩M+) = λµ(A ∩M+).

1.4. Here we make preliminary assumptions on the holes.
The holes (the connected components of H) are domains that satisfy the following

regularity condition. There is a constant B0 > 0 such that for any local unstable fiber W u

and any local stable fiber W s that intersect only one hole H ′ ⊂ H the sets W u \H ′ and
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W s \H ′ consist of not more than B0 smooth components. In particular, if the holes are
convex and the curvature of their boundary is greater than that of unstable and stable
fibers, then B0 = 2. Also, if the holes are rectangles bounded by stable and unstable
fibers, then again B0 = 2.

Let NH be the number of holes. We denote by d0 the minimum distance between the
holes, if there is more than one hole, NH > 1. We also assume that d0 is smaller than a
quarter of the length of the shortest closed geodesic on M̂ . In the case NH = 1 this will
be the definition of d0.

We fix D = D(2d0), which will be the only bound on distorsions that we use. Non-
linearity of the map T̂ will result in additional factors, all ≤ D, in various estimates.

For certain technical reasons, we will assume that Λmin > 64D2. This is not a restric-
tive assumption, because it can be always fulfilled by taking higher iterates of T̂ . (The
constant D is determined by the stable and unstable fibers in M̂ , so it is the same for all
iterates of T̂ ).

We denote by h the maximal size of holes defined as follows. For any hole H ′ ⊂ H
its size is

sup
x∈H′

{diam W u
x ∩H ′, diam W s

x ∩H ′}

where the diameter is measured along the fibers W u,s
x . We will need h to be small enough

compared to d0, i.e. h < h0(T̂ , d0, B0). There will be four specific upper bounds on h
assumed in Sections 2 and 3. They are always clearly stated.

1.5. The structure of the paper is as follows. In Section 2 we study the evolution
of an arbitrary unstable fiber W u under T . We estimate the fractions of the images of
the u-SBR measure on W u that are and are not ‘eaten’ by the holes. In Section 3 we
prove the existence of sufficiently long unstable fibers in M+ and study their properties.
In Section 4 we define a sequence of approximations of the holes H by unions of rectan-
gles of increasingly fine Markov partitions of M̂ . Accordingly, we obtain a sequence of
conditionally invariant measures, µ

(k)
+ , for those rectangular holes based on the results of

[5, 6]. In Sections 5 we prove the existence of the conditionally invariant measures µ+ by

taking the weak limit points of the sequence of measures µ
(k)
+ . In Section 6 we establish

the uniqueness of µ+.

2 Evolution of u-SBR measures

In this section we study the evolution of unstable fibers and u-SBR measures on them
under T . This requires the following assumption on h.

Assumption H1. h < d0/9.

Additional cuts. For certain technical reasons, in this section it will be convenient to
limit the length of the unstable fibers in M by 2d0. This will be done by subdividing
all maximal unstable fibers W u ⊂ M (terminating on ∂H) whose length is > 2d0 into
subfibers of length between d0 and 2d0. This can be accomplished by making a finite
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number of cuts in M along some local stable fibers. The choice of those stable fibers will
not be important, and they will not be actually removed from M . They just determine
the way we do the bookkeeping of unstable fibers. Obviously, any long unstable fiber in
M will be cut into subfibers that are still longer than d0, and we never cut the fibers of
length ≤ 2d0.

We now consider an unstable fiber W u ⊂ M and a u-SBR measure νu on it. Its images
under the iterates of the map T are cut by holes and our additional cuts. Whenever a
smooth component of T nW u is cut into subcomponents, the further images of those
under the iterates of T are treated separately. So, for every n ≥ 1 the image T nW u =
T̂ n(W u ∩M−n) will consists of many smooth unstable fibers, which carry the image of
the measure νu under T n

∗ , which we denote by νu
n . We do not normalize it. Denote

the components of T nW u by W u
n,i. Let ε > 0. For every component W u

n,i we denote by
W u

n,i(ε) the ε-neighborhood of its endpoints within W u
n,i.

Theorem 2.1 Let W u be long enough, of length > Λ−1
mind0. Then for every n ≥ 0 and

any ε > 0 we have
νu

n(∪iW
u
n,i(ε))

νu
n(T nW u)

≤ C1ε (2.1)

where C1 = 48D/d0.

Proof. We fix an ε ∈ (0, C−1
1 ) (the theorem is trivial for ε > C−1

1 ). The components
W u

n,i are divided into three groups – long, medium and short. We say that a component

W u
n,i is long if the length of its complete image T̂W u

n,i on the original manifold M̂ is ≥ d0.
The other components W u

n,i are said to be short if their lengths are < (2D)−1ε, otherwise
they are said to be medium.

We put

sn,i =
νu

n(W u
n,i(ε))

νu
n(W u

n,i)

and

s′n,i =

∑
j νu

n(T−1W u
n+1,j(ε))

νu
n(W u

n,i)

where the sum is taken over j such that W u
n+1,j ⊂ TW u

n,i.
If a component W u

n,i is long, then its image TW u
n,i has length d ≥ d0 and can be

subdivided by holes and our additional cuts into no more than d/d0 + 2 subcomponents.
Then we have

s′n,i ≤ 2D(d/d0 + 2)d−1ε ≤ C ′
1ε (2.2)

with C ′
1 = 6D/d0.

If a component W u
n,i is a medium one of length d′, then its image TW u

n,i can intersect
just one hole. In this case we have

s′n,i ≤
4D

Λmind′
ε
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and
sn,i ≥ min{1, 2(Dd′)−1ε}

Since we have a medium component, d′ > (2D)−1ε, and we have

s′n,i ≤ 8D2Λ−1
minsn,i (2.3)

For any short component W u
n,i we have sn,i = 1 and s′n,i ≤ 1.

The proof of the theorem goes by induction on n. Its validity for the current value of
n means that ∑

i sn,iν
u
n(W u

n,i)∑
i νu

n(W u
n,i)

≤ C1ε (2.4)

It is then sufficient to show that, under this assumption, we have∑
i s
′
n,iν

u
n(W u

n,i)∑
j νu

n+1(W
u
n+1,j)

≤ C1ε (2.5)

We split each of the two sums in (2.4) into three parts, corresponding to long, medium
and short components. Those parts we denote by xn, yn, zn for the top sum and pn, qn, rn

for the bottom one, respectively. The two sums in (2.5) are also split into three groups
each, corresponding to the images of long, medium and short components of T nW u.
(Note the difference in the way we split these sums!) We denote by x′n, y

′
n, z

′
n the three

parts of the top sum in (2.5) and p′n, q
′
n, r

′
n those for the bottom sum, respectively. Note

that these quantities depend on ε, but for brevity we suppress this dependence.
It is clear from (2.2) and (2.3) that

x′n + y′n + z′n ≤ C ′
1εpn + 8D2Λ−1

minyn + rn

We have, from (2.4), that
yn ≤ C1ε(pn + qn + rn)

Note that all the short components W u
n,i lie within ∪iW

u
n,i(ε

′), where ε′ = (4D)−1ε. We
certainly can assume that (2.4) is true for all ε > 0, in particular for ε′. This implies that

rn = rn(ε) ≤ νu
n(∪iW

u
n,i(ε

′)) ≤ C1ε
′νu

n(∪iW
u
n,i)

= C1(4D)−1ε(pn + qn + rn)

Combining the above bounds gives

x′n + y′n + z′n ≤ (C ′
1 + 8D2Λ−1

minC1)εpn

+ 8D2Λ−1
minC1ε(qn + rn) + C1(4D)−1ε(pn + qn + rn)

We now recall that Λmin > 64D2 and C1 = 8C ′
1. Then we get

x′n + y′n + z′n ≤
1

2
C1ε(pn + qn + rn)
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In order to complete the proof of the theorem, it is enough to show that

p′n + q′n + r′n ≥
1

2
(pn + qn + rn) (2.6)

i.e. the holes cannot eat up more than 50% of the images of curves W u
n,i under T ,

combined. It is clear that if a component W u
n,i is of length > 4DΛ−1

minh, then no more
than 25% of its image under T can be eaten up by holes. Applying the assumption (2.4)
with ε = 4DΛ−1

minh to the other components W u
n,i shows that their total νu

n-measure does

not exceed 4C1DΛ−1
minh(pn + qn + rn). Assumption H1 implies that

4C1DΛ−1
minh = 192D2(d0Λmin)

−1h < 1/3

Then (2.6) follows, and the proof of the theorem is completed.

Remark. A time-symmetric version of Theorem 2.1 also holds for the backward itera-
tions of stable fibers, T−nW s, n ≥ 1. A precise statement of that is obvious. (Of course,
additional cuts of stable fibers in M along a finite number of local unstable fibers can be
done in a completely similar way.)

Remark. We have actually proved more than Theorem 2.1 says. Recall that the proof
was done by induction on n: we assumed that the measure νu

n on T nW u satisfied (2.1)
and deduced the same inequality for νu

n+1 = T∗ν
u
n . The measure νu

n was supported on a
finite union of unstable fibers in Mn, on each of which it was proportional to the u-SBR
measure, but we never used the fact that those fibers were images of one original fiber
W u under T n. Therefore, we have proved the following:

Let µ be a finite measure supported on a finite union of unstable fibers in M , such
that its conditional distributions on those fibers are proportional to the u-SBR measures.
Let the relative µ-measure of the union of ε-neigborhoods of the endpoints of those fibers
be ≤ C1ε for all ε > 0. Then the same property holds for T∗µ.

The estimate on the amount of T nW u eaten up by holes under the action of T obtained
in the proof of the above theorem can be greatly improved.

Theorem 2.2 Under the conditions of Theorem 2.1, for every n ≥ 0 we have

νu
n((T nW u) ∩M−1)

νu
n(T nW u)

≥ λh
def
= 1− C2h (2.7)

where
C2 = C1D(Λmax/Λmin + 1) = 48D2(Λmax/Λmin + 1)/d0

Consequently,
νu(W u ∩M−n)

νu(W u)
≥ λn

h (2.8)

8



Proof. We prove (2.7), which is equivalent to

νu
n((T nW u) ∩ T̂−1H)

νu
n(T nW u)

≤ C2h (2.9)

Every component W u
n,i of T nW u has length ≤ 2d0 due to our additional cuts. Its image

under T̂ has length ≤ 2Λmaxd0. So, it may intersect no more than 2Λmax + 1 holes. The
intersection with every hole has length ≤ h on T̂W u

n,i, so that the total length of the

subset W u
n,i ∩ T̂−1H on the curve W u

n,i is less than Λ−1
min(2Λmax + 1)h. The νu

n measure
of that subset does not exceed the νu

n measure of the (Λmax/Λmin + 1)h-neighborhood of
the endpoints of W u

n,i times the nonlinearity correction factor D. Now the bound (2.9)
follows from Theorem 2.1.

From now on, we remove the additional cuts of unstable fibers introduced in this
section. In the theorems just proved this will amount to gluing together the components
of T nW u that have been artificially cut. Clearly, both theorems will hold after we glue
together any components of T nW u.

3 The structure of the sets M+, M− and Ω

On every unstable fiber W u, the set of points whose forward images never fall through
holes has νu-measure zero, because the original Anosov diffeomorphism T̂ is ergodic.
However, it follows from Theorem 2.1 that every fiber W u of length > d0/Λmin contains
points whose forward images never escape (belong in M−), and the set of those points is
a Cantor-like set on W u. Furthermore, it follows from Theorem 2.1 that for every n ≥ 1
the set Mn contains unstable fibers of length ≥ 2C−1

1 = (24D)−1d0. Indeed, the theorem
implies that for any ε < C−1 the set T nW u \ ∪iW

u
n,i(ε) is not empty, so that there are

components W u
n,i ⊂ T nW u ⊂ Mn of length ≥ 2ε. Moreover, since Λmin > 64D2, the

images of those components of T nW u will contain components of T n+1W u ⊂ Mn+1 of
length ≥ d0. Since M+ = ∩nMn, the closed set M+ also contains such fibers. Since the
forward and backward dynamics are symmetric, we immediately get

Proposition 3.1 The set M+ and M− are not empty. Moreover, the set M+ contains
some unstable fibers of length ≥ d0, and the set M− contains some stable fibers of length
≥ d0.

We say that an unstable fiber W u ⊂ M is eventually long if for some n ≥ 1 its image
T nW u contains a component of length ≥ d0. Otherwise the fiber W u is said to be forever
short.

Lemma 3.2 Every fiber W u ⊂ M of length ≥ d1, where

d1 =
h

Λmin − 3

is eventually long.
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Proof. The curve T̂W u has length ≥ Λmind1. If it intersects more than one hole, it
has a component of length ≥ d0 already. If it intersects one hole, the intersection consists
of curves whose union has diameter ≤ h. Then TW u = (T̂W u) \H necessarily contains
a component of length (Λmind1 − h)/2 = 3

2
d1. Thus, the maximal length of components

of T nW u will grow with n until it necessarily exceeds d0, hence the lemma.

Fibers that are forever short may exist, but their influence on our results will be
negligible in view of the following lemma.

Lemma 3.3 Let W u be a fiber of length d > 0 that is forever short, and let νu be the
u-SBR measure on W u. Then for every n ≥ 1 we have

νu(W u ∩M−n)

νu(W u)
≤ Bn

0 d1D

Λn
mind

Proof. For every i ≥ 0 the set T iW u consists of short unstable fibers, whose lengths are
< d1. Any such fiber can intersect just one hole. Therefore, the number of components in
T iW u can only increase by a factor of B0 at every iteration. The set T nW u then consists
of ≤ Bn

0 curves of length < d1. Their preimages under T−n have lengths < d1/Λ
n
min, so

their total length within W u is less than Bn
0 d1/Λ

n
min. Hence the lemma.

Assumption H2. h < (1−B0/Λmin)/C2, so that λh > B0/Λmin.

Under this assumption, Lemma 3.3 shows that the images of any forever short fiber
fall through holes at a higher rate than those of eventually long ones, cf. (2.8). Due to
this, only fibers that are eventually long will be essential in our study.

We are now going to prove that all sufficiently long unstable and stable fibers con-
tained in M+ and M−, respectively, form a sort of connected ‘net’ in M . The following
lemma is a key argument.

Lemma 3.4 On any unstable fiber W u ⊂ M̂ of length ≥ d2, where

d2 =
DΛmind1

sin φ0

=
DΛminh

(Λmin − 3) sin φ0

there is a closed uncountable Cantor-like subset W u
− ⊂ W u such that for every x ∈ W u

−
there is a stable fiber W s

x ⊂ M− containing x whose endpoints are the distance ≥ d0/3
away from x.

Proof. For any δ ∈ (0, d0/3] let Hs
δ be the union of all stable fibers of length δ

intersecting the set H. In other words, we ‘stretch’ each hole by the distance δ in the
stable directions. We further enlarge these holes so that if x, y belong in one hole (one
connected component of Hs

δ ) and lie on one local unstable fiber, then the segment of
that fiber between x and y is also included in the hole. The union of these stretched and
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enlarged holes is denoted by Ĥs
δ . Thus, any local unstable fiber intersects any hole in Ĥs

δ

in at most one interval. The length of that interval does not exceed Dh/ sin φ0.
We set δ = d0/3. We now consider iterations T̂ nW u, n ≥ 0, of the given fiber W u,

but at the nth iteration we erase all the points of T̂ nW u that fall into the larger holes Ĥs
δ

rather than H. If, for a point x ∈ W u, none of its forward images T̂ nx, n ≥ 0, is erased,
then clearly x ∈ W u

−.
On any fiber W u of length d2 we erase at most one curve of length < Dh/ sin φ0. Then

the remaining part of that fiber necessarily contains two disjoint subcurves of length

1

3

(
d2 −

Dh

sin φ0

)
=

Dh

(Λmin − 3) sin φ0

that do not intersect Ĥs
δ . Their images under T̂ have lengths > d2, and we can apply

the same argument to each of them. Continuing iterating and doubling such subcurves
of length > d2 gives, in the limit, an uncountable subset of points x ∈ W u

−. Lemma 3.4
is proved.

Assumption H3. h < (10D)−1d0 sin φ0, so that d2 ≤ d0/9.

Then Lemma 3.4 says that any unstable fiber of length d2 is crossed by much longer
stable fibers in M−. Due to the symmetry, the dual statement is true for any stable fiber
of length d2. Since the phase space M is compact and connected, we get the following.

Theorem 3.5 Denote by M±(d2) the union of all fibers in M± (unstable or stable,
respectively) of length > d2. Then the set M+(d2) ∪ M−(d2) is connected. The set
M+(d2) ∩M−(d2) is a subset of Ω, and it makes a (2d2)-net in the manifold M̂ .

So far we have obtained some local properties of the map T on M . The next theorem
is the only one in this section requiring a global argument.

Theorem 3.6 If h is small enough (i.e, it satisfies assumption H4 below), then there
is a k1 ≥ 1 such that for every two fibers W u, W s ⊂ M of length d0 there is a smooth
component of T k1W u = T̂ k1(W u ∩ M−k1) intersecting W s. Moreover, the endpoints of
that smooth component are at least a distance d0 away from W s.

Proof. First, we enlarge our holes so that if x, y belong in one hole and lie on one
local stable or unstable fiber, then the segment of that fiber between x and y lies in the
hole, too. Thus, any local fiber intersect any hole in at most one interval.

Let Pk(W
u, W s) be the number of points of intersection between T̂ kW u and W s. It

easily follows from the general theory of Anosov diffeomorphisms that the sequence

Pk(d0) = inf
W u,W s

Pk(W
u, W s)

(infimum being taken over all fibers of length d0) grows exponentially in k. More precisely,
Pk(d0) grows asymptotically as ekhtop , where htop > 0 is the topological entropy of T̂ . We
then put

k1 = min{k : Pk(d0) > NHk}

11



We now have to show that at least one point in T̂ k1W u ∩W s is not covered by the
set ∪k1−1

i=1 T̂ iH. The image of every hole under T̂ i, 1 ≤ i < k1, covers on the curve T̂ k1W u

one or more intervals. The theorem will follow if we show that

(i) such an interval is unique for every hole and every i = 1, . . . , k1 − 1;
(ii) every interval has length < dt/3, in particular, it intersects the fiber W s at most
once;

Here dt denotes the minimum length of a stable (unstable) fiber for T̂ in M̂ whose
both endpoints lie on any one unstable (stable) fiber of length d0. Note that d0 + dt is
greater than the length of the shortest closed geodesic on M̂ , and then dt/3 > d0.

Assumption H4. h < 1
3
dt Λ−k1

max sin φ0.

This assumption implies (ii) immediately. To prove (i), assume that some hole in H
intersects the curve T̂ iW u for some 1 ≤ i ≤ k1−1 in two intervals. Then there is a stable
fiber W s

1 of length ≤ 2h/ sin φ0 whose both endpoints lie on T̂ iW u. Taking its preimage
T̂−iW s

1 leads to a contradiction with Assumption H4. The theorem is proved.

Remark. Of course, the above theorem has a time-symmetric counterpart: for any
two fibers W u, W s ⊂ M of length d0 there is a smooth component of T−k1W s intersecting
W u, and its endpoints are at least a distance d0 away from W u.

4 Markov approximation

To further study the dynamics of T on M we will define a sequence of approximations of
the holes H by unions of ‘rectangular’ holes, H(k), k ≥ 1. To this end we take a sequence
R̂(k) of increasingly fine Markov partitions of M̂ , and define H(k) to be the union the
interiors of all rectangles in R̂(k) that intersect H. Our previous results [5, 6] provide us

with conditionally invariant measures µ
(k)
+ for the map T̂ with holes H(k). As k → ∞,

the ‘rectangular’ holes H(k) will be arbitrarily close to the original holes H. This enables
us to construct the conditionally invariant measure µ+ as a weak limit of µ

(k)
+ as k →∞.

Let R̂ = {R1, . . . , RI} be an arbitrary Markov partition of M̂ . We assume that the
rectangles Ri ∈ R̂ are of sufficiently small diameter so that symbolic dynamics are defined
[2]. Also, we can assume that every rectangle Ri is closed and connected [10], i.e., every
Ri is a curvilinear quadrilateral bounded by two unstable and two stable sides.

The union of stable fibers bounding the rectangles R ∈ R̂ is invariant under T̂ , while
the union of unstable fibers is invariant under T̂−1. Therefore, all these fibers lie on the
global stable and unstable fibers of a finite number of periodic points, whose union is
called the core of the given Markov partition.

We call a generic fiber any stable or unstable fiber in M̂ that is not a part of the
global fiber of a core point of R̂. There are then only a countable number of nongeneric
R-fibers in the rectangles R ∈ R.

12



For any k ≥ 1 the partition

R̂(k) =
k∨

i=−k

T̂ iR̂

is also Markov and consists of connected rectangles.
We put

R(k) = {R ∈ R̂(k) : R ∩H = ∅}

and M (k) = ∪R∈R(k)R, and H(k) = M̂ \M (k). Clearly, H(1) ⊃ H(2) ⊃ · · · and ∩kH
(k) = H,

so that the sets H(k) approximate the holes H ‘from outside’. In this section we assume
that k is large enough, k ≥ k0(R, d0, h), so that the set H(k) consists of small open holes
satisfying the assumptions H1-H4. Therefore, all the results of the previous section apply
to the map T̂ restricted to M (k) for k ≥ k0

For every k ≥ k0 the set M (k) is a finite union of Markov rectangles. We put,
analogously to (1.1) and (1.2)

M (k)
n = ∩n

i=0T
iM (k), M

(k)
−n = ∩n

i=0T
−iM (k)

M
(k)
+ = ∩n≥0M

(k)
n , M

(k)
− = ∩n≥0M

(k)
−n , Ω(k) = M

(k)
+ ∩M

(k)
−

The set M
(k)
+ is a union of some unstable R-fibers in the rectangles R ∈ R(k). Likewise,

M
(k)
− is a union of some stable R-fibers in the rectangles R ∈ R(k). The set Ω(k) is a closed

Cantor-like set, which has a direct product structure inside every rectangle R ∈ R(k).
We denote by T (k) the map T̂ restricted to M (k). A detailed study of Anosov maps

with ‘rectangular’ holes, which are some rectangles of one Markov partition, was per-
formed in [5, 6]. In particular, it was shown that the map T (k) always has a conditionally

invariant measure µ
(k)
+ with an eigenvalue λ

(k)
+ . The conditional distributions of µ

(k)
+

on unstable fibers of M
(k)
+ are u-SBR measures. While the eigenvalue λ

(k)
+ is uniquely

determined by T (k), the measure µ
(k)
+ may be not unique.

The study in [5, 6] was technically simpler than the one we present here. Yet, the
properties of the map T (k) on M (k) greatly depend on the structure of allowed transitions
between the rectangles R ∈ R(k).

To describe the above structure, we invoke the language of symbolic dynamics. The
Markov partition R̂(k) of M̂ defines a symbolic representation of T̂ in terms of a subshift
of finite type, which is topologically mixing because so is T̂ . This shift restricted to
R(k) is also a subshift of finite type. That one need not be topologically mixing or
even transitive. It generally consists of several ergodic components, on each of which
the subshift either is topologically mixing or cyclically permutes several subcomponents,
there may be one-way connections between ergodic components and some nonrecurrent
rectangles as well, see [6]. The influence of every ergodic component, E

(k)
j , on invariant

and conditionally invariant measures on Ω(k) is determined by its eigenvalue, λ
(k)
j ∈

(0, 1) related to the escape rate γ
(k)
j = − ln λ

(k)
j . In fact, the eigenvalue λ

(k)
+ of T (k) is

the largest eigenvalue λ(k)
max = maxj λ

(k)
j of its ergodic components. Furthermore, only
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the ergodic components with the largest eigenvalue λ(k)
max (i.e., with the smallest escape

rate) determine the conditionally invariant measure µ
(k)
+ [6]. We call them dominating

ergodic components. If there is more than one dominating component in the system, their
influences on µ

(k)
+ are determined by the structure of one-way connections between them,

see [6] for more detail.
The next few lemmas show that if h is small enough, then there exists a unique

dominating ergodic component, on which the subshift is topologically mixing.

Lemma 4.1 There is an ergodic component E
(k)
j with eigenvalue λ

(k)
j ≥ λh (the latter

was introduced by (2.7)).

The lemma immediately follows from Theorem 2.2.

Lemma 4.2 Let a rectangle R ∈ R(k) belong to an ergodic component E
(k)
j with λ

(k)
j ≥

λh. Then its interior contains T (k)-eventually long unstable fibers and T (k)-eventually
long stable fibers.

Proof. If every unstable R-fiber W u ⊂ int R were forever short, then according to
Lemma 3.3 the eigenvalue λ

(k)
j could not exceed B0/Λmin, which would contradict to

Assumption H2.
Now let every stable R-fiber W s ⊂ int R be forever short. As it was also shown in

Lemma 3.3, the preimage [T (k)]−nW s consists of not more than Bn
0 short fibers. So,

[T (k)]−nR∩R consists of not more than Bn
0 connected subrectangles. Hence, the topolog-

ical entropy of the subshift on the ergodic component E
(k)
j is ≤ ln B0. Then the invariant

measure η
(k)
j on the component E

(k)
j has measure-theoretic entropy h(η

(k)
j ) ≤ ln B0. Its

positive Lyapunov exponent χ
(k)
j is definitely ≥ ln Λmin. Now, recall [5, 6] that these

quantities satisfy the escape rate formula

χ
(k)
j = h(η

(k)
j )− ln λ

(k)
j

This immediately leads to a contradiction with Assumption H2. The lemma is proved.

Lemma 4.3 Let a rectangle R1 ∈ R(k) contain an eventually long unstable fiber W u ⊂
int R1 and a rectangle R2 ∈ R(k) contain an eventually long stable fiber W s ⊂ int R2.
Then there is an m0(R1, R2) ≥ 1 such that transitions from R1 to R2 are allowed in any
number of steps m ≥ m0(R1, R2).

Proof. Once the image [T (k)]m1W u contains a component of length ≥ d0, every further
image [T (k)]mW u, m ≥ m1, will contain such components. The same is true for all
[T (k)]−mW s, m ≥ m2, if only [T (k)]−m2W s contains a long component. Then the lemma
follows from Theorem 3.6, and m0(R1, R2) = m1 + m2 + k1.

Corollary 4.4 There is just one ergodic component, E
(k)
+ with eigenvalue > λh. On this

component the subshift is topologically mixing.
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Let T
(k)
∗ be the adjoint operator on Borel measures on M (k), i.e. (T

(k)
∗ µ)(A) =

µ([T (k)]−1(A ∩ M
(k)
1 )) for any Borel A ⊂ M̂ . Let T

(k)
+ be the operator on probability

measures on M (k) such that T
(k)
+ µ = T

(k)
∗ µ/||T (k)

∗ µ||, where the norm of a measure µ on
M (k) is set to be ||µ|| = µ(M (k)).

The next theorem follows from the results of [5, 6].

Theorem 4.5 For all sufficiently large k (k ≥ k0(R, d0, h)) we have the following:

(i) the map T (k) on M (k) has a conditionally invariant probability measure µ
(k)
+ supported

on M
(k)
+ , i.e. T

(k)
∗ µ

(k)
+ = λ

(k)
+ µ

(k)
+ for some constant λ

(k)
+ ∈ (0, 1);

(ii) the measure µ
(k)
+ conditioned on any unstable R-fiber W u

R(x) ⊂ M
(k)
+ , R ∈ R(k) is the

u-SBR measure on that fiber;
(iii) for any smooth1 measure µ on M (k) the measures [T

(k)
+ ]nµ weakly converge, as n →

∞, to µ
(k)
+ ;

(iv) for any smooth measure µ on M (k) there is a constant cµ > 0 such that the measures

cµ[λ
(k)
+ ]−n[T

(k)
∗ ]nµ weakly converge to µ

(k)
+ . If µ is a probability measure, then cµ is bounded

away from 0 and ∞.

5 Approximation of the conditionally invariant mea-

sure

Here we define the conditionally invariant measure µ+ for the map T as a weak limit of

the measures µ
(k)
+ .

Since M (1) ⊂ M (2) ⊂ · · ·, we have λ
(1)
+ ≤ λ

(2)
+ ≤ · · ·, so that there is a limit

lim
k→∞

λ
(k)
+ = λ+ ∈ (λh, 1) (5.1)

The measures µ
(k)
+ are all supported on the compact set M+, hence the sequence of

these measures has at least one weak limit point. Let µ+ be any weak limit point of this
sequence, it will be a probability measure on M+. We will first investigate the properties
of any such µ+. In the next section we will show that there cannot be two distinct limit

points, so that the sequence µ
(k)
+ weakly converges to µ+. In this section, we denote by

µ+ an arbitrary weak limit point of the sequence {µ(k)
+ }.

Proposition 5.1 The measure µ+ is conditionally invariant under T with eigenvalue
λ+, i.e. T∗µ+ = λ+µ+.

This follows directly from Theorem 4.5 and (5.1).

Proposition 5.2 The measure µ+ conditioned on any generic unstable fiber W u ⊂ M+

is a u-SBR measure on W u.
1We remind that our convention on smoothness, cf. Introduction, is still valid.
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Proof. For any k ≥ k0 we put W
u,(k)
+ = W u∩M

(k)
+ . The diameter of the set T−nW

u,(k)
+

converges exponentially to zero as n →∞. Either this set lies in one rectangle R ∈ R(k)

for every sufficiently large n, or it intersects more than one rectangle for every n. In the
latter case, T−nW

u,(k)
+ converges, as n → ∞, to the periodic orbit of a core point of the

Markov partition R̂, so it is not generic. In the former case, the measure µ
(k)
+ conditioned

on T−nW
u,(k)
+ is the u-SBR measure on it. Since µ

(k)
+ is conditionally invariant, it is also

a u-SBR measure on W
u,(k)
+ . Taking the limit as k →∞ proves the proposition.

It also follows from the above proof that if a finite number of generic unstable fibers
in M+ lie on one global unstable fiber of the original Anosov diffeomorphism T̂ , then the
measure µ+ conditioned on their union is also a u-SBR measure on that union.

Proposition 5.3 The µ+-measure of the union of nongeneric fibers is zero.

Proof. Since there are countably many nongeneric fibers, it is enough to show that
the µ+-measure of every one is zero. If a fiber W u ⊂ M+ is nongeneric, then according
to the proof of Proposition 5.2 it can be divided into two subsegments on each of which
the conditional µ+-measure is u-SBR. The fiber W u belongs to a global unstable fiber,
Γu, of a core periodic point, which is invariant under some iterate of T̂ , say, under T̂ k.
Now, if the set Γu ∩M+ has positive µ+-measure, the map T̂ k stretches Γu by a factor
≥ Λk

min decreasing µ+ on Γu ∩M+ by at least Λ−k
min. On the other hand, Proposition 5.1

says that the measure µ+ under the action of T k decreases by the factor of λk
+. Since

Λ−1
min < λ+ due to Assumption H2, we get a contradiction proving Proposition 5.3.

Combining the last two propositions shows that the measure µ+ conditioned on any
unstable fiber is a u-SBR measure. Also, we can extend the last proposition showing
that any unstable fiber in M+ has zero µ+-measure.

Our next step is to extend Theorem 2.1 to the measures µ
(k)
+ and µ+. For any x ∈ M

(k)
+

let W
u,(k)
x,+ be the largest segment of the unstable fiber in M

(k)
+ containing x. Likewise,

W u
x,+ is the largest segment of the unstable fiber in M+ containing x ∈ M+. For any

ε > 0 we put
U (k)

ε = {x ∈ M
(k)
+ : dist(x, ∂W

u,(k)
x,+ ) < ε}

where the distance is measured along the unstable fiber W
u,(k)
x,+ . Removing the superscript

(k) in the above formula will define Uε.

Lemma 5.4 For any k ≥ k0 and ε > 0 the set M
(k)
+ \ U (k)

ε is compact (it may be empty
for large ε). The same holds for the set M+ \ Uε.

Proof. Let xl ∈ M
(k)
+ \ U (k)

ε be a sequence of points converging to a point x ∈ M̂ .
Since the map T̂ is smooth and the holes H(k) are open, it is easy to verify that the
segment of the unstable fiber through x of length 2ε centered at x belongs in M

(k)
+ (in

other words, its preimages under T̂−n, n ≥ 0, never cross holes). This proves the lemma.
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Corollary 5.5 Suppose that a sequence of probability measures {νl} on M
(k)
+ converges,

as l →∞, to a probability measure ν. Suppose that νl(U
(k)
ε ) ≤ p for some p ≥ 0 and for

all l ≥ l0. Then ν(U (k)
ε ) ≤ p. The same holds for Uε.

Theorem 5.6 For any k ≥ k0 and ε > 0 we have µ
(k)
+ (U (k)

ε ) ≤ C1ε, where C1 = 48D/d0.

Proof. Let W u ∈ M
(k)
+ be an unstable fiber whose endpoints are on two stable fibers

bounding some rectangles in R(k). Let νu be a u-SBR probability measure supported on
W u. It follows from [5] that the measure νu

n = [T
(k)
+ ]nνu weakly converges, as n →∞, to

the measure µ
(k)
+ .

Proposition 3.1 applies to the map T (k) on M (k) for all k ≥ k0. Based on it, we can
find a fiber W u ⊂ M

(k)
+ longer than d0. Theorem 2.1 then implies that νu

n(U (k)
ε ) ≤ C1ε.

Using Corollary 5.5 now completes the proof of Theorem 5.6.

Theorem 5.7 For any ε > 0 we have µ+(Uε) ≤ C1ε.

Proof. Obviously, Uε ∩M
(k)
+ ⊂ U (k)

ε for any k. Therefore, µ
(k)
+ (Uε) ≤ C1ε. Applying

Corollary 5.5 to Uε and the subsequence of measures µ
(k)
+ that converges to µ+ proves

the theorem.

Corollary 5.8 For any ε > 0 let Vε be the union of all maximal unstable fibers in M+

of length < ε. Then µ+(Vε) = o(ε) as ε → 0.

Our last step in this section is to estimate measures of rectangles that are sufficiently
long in the stable direction. Denote by B the set of closed rectangles R ⊂ M̂ such that

(i) every stable R-fiber has length between d0 and 2d0;
(ii) every unstable R-fiber has length ≤ d0.

We denote by µSBR the SBR measure on M̂ . For any rectangle R let du
min(R) and

du
max(R) be the minimal and maximal length of unstable R-fibers. General properties of

SBR measures imply that

C ′ du
max(R) ≤ µSBR(R) ≤ C ′′ du

min(R) (5.2)

for some constants C ′, C ′′ depending only on T̂ .

Lemma 5.9 There is a constant C ′
3 > 0 such that for every R ∈ B, every unstable fiber

W u ⊂ M̂ of length d0 and every k ≥ k0 we have

[T (k)
∗ ]k1νu(R) ≥ C ′

3 du
min(R)

Here νu is the u-SBR measure on W u, and the constant k1 appears in Theorem 3.6.
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The lemma readily follows from Theorem 3.6 with (C ′
3)
−1 = d0DΛk1

max.
Combining this lemma with Theorems 5.6 and 5.7 gives the following:

Corollary 5.10 There is a constant C3 > 0 such that for every R ∈ B and every k ≥ k0

we have
µ

(k)
+ (R) ≥ C3 µSBR(R) and µ+(R) ≥ C3 µSBR(R)

Lemma 5.11 There is a constant C4 > 0 such that for every R ∈ B and every k ≥ k0

we have
µ

(k)
+ (R) ≤ C4 µSBR(R) and µ+(R) ≤ C4 µSBR(R)

Proof. Put ε = du
max(R)/2. Let W u be an unstable fiber in M

(k)
+ (respectively, M+),

and νu the u-SBR measure on W u. Then νu(W u ∩ R) ≤ Dνu(W u ∩ Uε). Applying
Theorems 5.6 and 5.7 proves the lemma with C4 = DC1/(2C

′).

6 Uniqueness of the conditionally invariant measure

This section is devoted to the following theorem:

Theorem 6.1 There is a unique measure µ+ on M+ with the following properties:
(i) µ+ is a conditionally invariant probability measure with the eigenvalue λ+;
(ii) the conditional distributions of µ+ on unstable fibers in M+ are u-SBR measures;
(iii) for any ε > 0 we have µ+(Uε) ≤ C1ε.
(iv) for any R ∈ B we have C3 µSBR(R) ≤ µ+(R) ≤ C4 µSBR(R).

Before proving it, we will make some additional constructions.
Let µ+ be an arbitrary measure satisfying the assumptions of this theorem. Let W s ⊂

M̂ be a stable fiber and R a rectangle whose one side is W s. Denote by R+ the union of
all unstable R-fibers that entirely belong in M+, i. e. R+ = {x ∈ R : W u

x ∩R ⊂ M+}.
There are two finite limits then,

D1,2(µ+, W s) = lim∗ µ+(R+)

µSBR(R)
(6.1)

Here lim∗ is taken as the rectangle R shrinks in the unstable direction, so that its stable
side opposite to W s approaches W s. The two values, D1 and D2 correspond to two pos-
sible locations of R, which may be placed on either side of the curve W s (the subscripts,
1 and 2, are assigned arbitrarily). The existence of the finite limits in (6.1) follows from
Propositions 5.2 and 5.3 and Corollary 5.8. Note also that Corollary 5.8 implies that

µ+(R+) = µ+(R) + o(du
min(R)) = µ+(R) + o(µSBR(R)) (6.2)
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Convention. In this section, for any rectangle R we will denote by R+ the union
of unstable R-fibers that entirely belong in M+. Then, for a rectangle denoted by Rn

or Rk,l, for example, we denote by Rn,+ and Rk,l,+, respectively, the union of unstable
Rn-fibers or Rk,l-fibers belonging entirely in M+.

The values of D1,2(µ+, W s) for the given measure µ+ and all the stable fibers W s ⊂ M̂
characterize the distribution of µ+ in the stable direction.

Note that, although R is a rectangle, the preimages of R under T−n, after the re-
moval of holes, are no longer rectangles. They are some domains adjacent to the smooth
components of T−nW s, where W s is a stable side of the original rectangle R. Since the
connected components of T−nR are not rectangles, it would be difficult to compute with
them. Instead, we consider R+, which has the following invariance property. For any
n ≥ 1 let Rn,i, i = 1, 2, . . ., be u-subrectangles in T̂−nR whose stable sides are the smooth
components of T−nW s. Then

T−nR+ = ∪iRn,i,+ (6.3)

This property is easy to verify by induction on n. Note that, according to (6.2), the loss
of measure incurred by the replacement of R by R+ is relatively small as the rectangle
R shrinks in the unstable direction.

We call a fiber W s essential for the measure µ+ if D1,2(µ+, W s) > 0. We will see later,
cf. Corollary 6.5, that this is equivalent to µ+(R+) > 0 for at least one (and then for
every sufficiently narrow) rectangle R adjacent to W s. As a result, if a fiber W s contains
a piece that is essential, then W s itself is an essential fiber.

It follows immediately from Corollary 5.10 and Lemma 5.11 that if a fiber W s has
length ≥ d0, then it is essential and

0 < C3 ≤ D1,2(µ+, W s) ≤ C4 < ∞ (6.4)

Assume that there are two distinct measures, µ1 and µ2, on M+ satisfying the as-
sumptions of this theorem. We want to compare µ1 and µ2 quantitatively. Since their
distributions along unstable fibers coincide by the assumption (ii), it is enough to com-
pare their distributions along stable directions. For any stable fiber W s ⊂ M̂ that is
essential for both µ1 and µ2 (see also Corollary 6.5 below) and j = 1, 2 there exists a
finite positive limit

Dj(µ1, µ2, W
s) = lim∗µ1(R+)

µ2(R+)
(6.5)

Note that Dj(µ1, µ2, W
s)·Dj(µ2, µ1, W

s) = 1. It is easy to see that if Dj(µ1, µ2, W
s) =

1 for all essential fibers W s and j = 1, 2, then µ1 = µ2.
We then put

D(µ1, µ2) = sup{Dj(µ1, µ2, W
s) : W s is essential and j = 1, 2}

and
D∗(µ1, µ2) = sup{Dj(µ1, µ2, W

s) : W s has length ≥ d0 and j = 1, 2}
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We now sketch the proof of Theorem 6.1. It is enough to prove that D(µ1, µ2) = 1.
Our first goal is to prove that D(µ1, µ2) and D∗(µ1, µ2) are equal (Lemma 6.3). This

means that it is enough to compare µ1 and µ2 along stable fibers of length ≥ d0.
Our second -and more difficult- goal is to prove that this common value is one

(Lemma 6.6). Since W s in the definition of D∗(µ1, µ2) is longer than d0 we can effectively
use the global Theorem 3.6.

First we show that if D∗(µ1, µ2) > 1, then there are two fibers W s
1 , W s

2 crossing a
fixed unstable fiber W̃ u ⊂ M̂ of length d0 such that the Dj-values defined by (6.5) for
W s

1 and W s
2 approximate the values of D∗(µ1, µ2) > 1 and D∗(µ2, µ1) < 1 arbitrarily well

(Sublemma 6.7).
Next we consider the rectangles whose stable sides belong in long components of

T−nW s
i , i = 1, 2, respectively, and which are related by the holonomy map in M (pro-

jections along unstable directions). These sides are getting closer and closer as n grows,
which allows us to show that the Dj-values for W s

1 and W s
2 must be arbitrarily close.

This contradiction will prove Lemma 6.6.
We now begin the proof of Theorem 6.1.

Lemma 6.2 We have
1 ≤ D∗(µ1, µ2) ≤ C4/C3

The lower bound is obvious since µ1 and µ2 are probability measures. The upper
bound immediately follows from (6.4).

Lemma 6.3 We have
D(µ1, µ2) = D∗(µ1, µ2)

Proof. Let W s be a stable fiber of length < d0, and R a rectangle whose one side
is W s. Since both measures µ1 and µ2 are conditionally invariant, we have µi(R+) =
λ−n

+ T n
∗ µi(R+) = λ−n

+ µi(T̂
−nR+) for i = 1, 2 and all n ≥ 1. Therefore,

µ1(R+)

µ2(R+)
=

µ1(T
−nR+)

µ2(T−nR+)

Let W s
1,i, i = 1, 2, . . ., be the smooth components of T−1W s. For every i let R1,i be the

rectangle whose one side is W s
1,i and the opposite side belongs to T̂−1(∂R). Note that

T−1R+ = ∪iR1,i,+ according to (6.3).
Some of the curves W s

1,i may have length already larger than d0, then the adjacent

rectangles R1,i are not iterated backward any further. If not, we pull them back under T̂−1

and construct rectangles R2,i adjacent to the smooth components of T−2W s in the same
way, etc. At every iteration n ≥ 1, we hold the obtained rectangles Rn,p, p = 1, 2, . . .,
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which are adjacent to a smooth component of T−nW s of length ≥ d0, and map the
other (shorter) rectangles further under T̂−1. Note that if we map all the eventually held
(larger) rectangles Rn,p (for all n, p) back on R under T̂ n, then we get a collection of
disjoint u-subrectangles in R, which we denote by R′

j, j ≥ 1. In this way we obtain a
finite or countable collection of disjoint u-subrectangles R′

j ⊂ R, such that for every j
there is a nj ≥ 1 for which R′

j ⊂ Mnj
and the length of the stable side of the rectangle

R′′
j = T−njR′

j that belongs in T−njW s is ≥ d0.

Sublemma 6.4 The union ∪jR
′
j essentially covers the set R ∩M+, i.e.

µi(R+) =
∑
j

µi(R
′
j ∩R+) =

∑
j

λ
−nj

+ µi(T
−nj(R′

j ∩R+))

=
∑
j

λ
−nj

+ µi(R
′′
j,+) (6.6)

for i = 1, 2. In other words, the measure µi on R+ is supported on the u-subrectangles
R′

j that are ‘eventually long’ in the past.

Proof. In the iterative process of construction of rectangles R′
j, at every step n ≥ 1 we

may have some ‘unfortunate’ rectangles R′′′
n,p ⊂ R, p = 1, 2, . . ., whose preimages T−iR′′′

n,p

for all i = 1, . . . , n belong in shorter rectangles, i.e., those adjacent to smooth components
of T−iW s of length < d0. Now, by repeating the main argument of the proof of Lemma 3.3
one can see that for every n ≥ 1 the number of those short rectangles T−nR′′′

n,p does not
exceed Bn

0 . The µi-measure of every short rectangle T−nR′′′
n,p is smaller than const·Λ−n

min,
because its width in the unstable direction is less than const·Λ−n

min. Therefore,

µi(∪pR
′′′
n,p) ≤ const ·

(
B0

λ+Λmin

)n

(6.7)

which exponentially approaches zero as n → ∞ due to our Assumption H2. The sub-
lemma is proved.

Now, since all the rectangles T−njR′
j are long, the decomposition (6.6) completes the

proof of Lemma 6.3. Here we made use of a simple fact that

(c1 + c2 + · · ·)/(d1 + d2 + · · ·) ≤ max
i
{ci/di} (6.8)

for positive ci, di.

The proof of Sublemma 6.4 justifies the following corollary:

Corollary 6.5 A stable fiber W s is essential to µ+ if and only if it is eventually long
in the past, i.e. for some n ≥ 1 a smooth component of T−nW s is of length ≥ d0. It
also follows from (6.7) that for every nonessential fiber W s we have µi(R+) = 0 for all
adjacent rectangles R and i = 1, 2.
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This corollary is an analogue of Lemma 3.3. Since the property of being eventually
long in the past does not refer to any measure, a fiber W s in our definition (6.5) is
essential either for both µ1 and µ2 or for neither.

Lemma 6.6 We have
D(µ1, µ2) = D∗(µ1, µ2) = 1

Proof. Assume that D(µ1, µ2) = D∗(µ1, µ2) > 1. Then for any δ > 0 we can find a
stable fiber W s of length between d0 and 2d0 such that

Dj(µ1, µ2, W
s) > (1− δ)D∗(µ1, µ2)

for j = 1 or j = 2.
Next, we introduce additional cuts of stable fibers in the same way as we cut unstable

fibers in Sect. 2. That is, we fix a finite number of local unstable fibers so that every
maximal stable fiber in M (terminating on ∂H) with length > 2d0 is cut into segments
of length between d0 and 2d0. None of the maximal stable fibers of length ≤ 2d0 should
be cut.

Now, for any n ≥ 1 the set T−nW s consists of a finite number of stable fibers, say,
W s

n,q, q = 1, 2, . . .. (These are defined just like the components W u
n,i in Sect. 2). Denote

by Qn the number of these fibers. It follows from our construction and the definition of
B0 that

Qn ≤ 4B0Λ
n
max (6.9)

Let R be a sufficiently narrow rectangle whose one side is W s. For every q let Rn,q be
a narrow rectangle such that (i) one side of it is W s

n,q and (ii) its opposite side belongs in

T̂−n(∂R). Then T−nR+ = ∪qRn,q,+ (here Rn,q,+ is the union of the unstable Rn,q-fibers
that belong in M+). Since the measures µ1 and µ2 are conditionally invariant with the
same eigenvalue, we have

µ1(R+)

µ2(R+)
=

∑
q µ1(Rn,q,+)∑
q µ2(Rn,q,+)

> (1− 2δ)D∗(µ1, µ2) (6.10)

The last inequality is ensured if the rectangle R is thin enough in the unstable direction
for the given n, which will be our standing assumption in the proof of this lemma. Then
we also have

µ1(Rn,q,+)

µ2(Rn,q,+)
≤ (1 + δ)Dj(µ1, µ2, W

s
n,q) ≤ (1 + δ)D(µ1, µ2) = (1 + δ)D∗(µ1, µ2) (6.11)

for every q such that the fiber W s
n,q is essential. For nonessential fibers, both measures

in (6.11) are zero, cf. Corollary 6.5.

22



Note that, according to (6.2), µi(Rn,q,+) ≥ µi(Rn,q)/2 for i = 1, 2. If for some q0 the
curve W s

n,q0
has length ≥ d0, then the assumption (iv) of Theorem 6.1 and (5.2) imply

that

µi(Rn,q0,+) ≥ 1

2
µi(Rn,q0) ≥

C ′C3

2
du

max(Rn,q0)

≥ C ′C3

2
Λ−n

max du
min(R) ≥ C ′C3

2D
Λ−n

max du
max(R)

≥ C ′C3

2D

(
Λmin

Λmax

)n

max
q
{du

max(Rn,q)}

≥ C ′C3

2DC ′′C4

(
Λmin

Λmax

)n

max
q
{µi(Rn,q)}

≥ C ′C3

8DC ′′C4B0

(
Λmin

Λ2
max

)n ∑
q 6=q0

µi(Rn,q,+) (6.12)

for i = 1, 2, where in the last line we have used the bound (6.9). Denote

Gn =
C ′C3

8DC ′′C4B0

(
Λmin

Λ2
max

)n

It is a simple calculation to combine the above estimates (6.10) and (6.11) that gives

µ1(Rn,q0,+) ≥ (1− 2δ)D∗(µ1, µ2) µ2(Rn,q0,+)− 3δD∗(µ1, µ2)
∑
q 6=q0

µ2(Rn,q,+)

Here we used again the simple fact (6.8). Now, applying the bound (6.12) with i = 2
gives

µ1(Rn,q0,+)

µ2(Rn,q0,+)
≥ (1− 2δ − 3G−1

n δ)D∗(µ1, µ2)

Taking a limit as R shrinks in the unstable direction gives

Dj(µ1, µ2, W
s
n,q0

) ≥ (1− 2δ − 3G−1
n δ)D∗(µ1, µ2) (6.13)

We now fix an unstable fiber, W̃ u ⊂ M̂ of length ≥ d0. According to Theorem 3.6
(see also the remark after it), there is a curve W s

k1,q0
intersecting W̃ u whose endpoints are

at least a distance d0 away from W̃ u. By choosing δ sufficiently small we can make the
right hand side of (6.13) with n = k1 arbitrary close to D∗(µ1, µ2). We can also switch µ1

and µ2 and repeat the above construction. As a result, we get the following sublemma.

Sublemma 6.7 Let W̃ u ⊂ M̂ be an unstable fiber of length d0. For any δ > 0 there are
two stable fibers, W s

1 and W s
2 crossing W̃ u, whose endpoints are at least a distance d0

away from W̃ u, such that

(1− δ)D∗(µ1, µ2) ≤ Dj1(µ1, µ2, W
s
1 ) ≤ D∗(µ1, µ2) (6.14)
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and
(1− δ)D∗(µ2, µ1) ≤ Dj2(µ2, µ1, W

s
2 ) ≤ D∗(µ2, µ1) (6.15)

for some j1, j2 ∈ {1, 2}.

Recall that Dj2(µ1, µ2, W
s
2 ) = 1/Dj2(µ2, µ1, W

s
2 ). Thus, by choosing δ sufficiently

small we can make the difference

Dj1(µ1, µ2, W
s
1 )−Dj2(µ1, µ2, W

s
2 )

arbitrary close to the fixed positive value

∆ = D∗(µ1, µ2)− 1/D∗(µ2, µ1) > 0

We now have two stable fibers, W s
1 and W s

2 , which are long (longer than 2d0), and by
sliding one of them along unstable fibers (applying a holonomy map) a distance less than
Dd0 we can cover at least 2D−1d0 of the other fiber. We now iterate both fibers backward,
and erase the parts of their preimages that fall through holes. Also, whenever a part of
the preimage of one fiber is erased, its image under the holonomy map on the preimage
of the other fiber is erased, too. It is also convenient to make additional cuts, like in
the proof of Lemma 6.6, to ensure that the preimages consist of smooth components of
length ≤ 2d0. Then, for any n ≥ 1 on the curves T−nW s

1 and T−nW s
2 we obtain a finite

number of subsegments, W s
1,n,l and W s

2,n,l (l = 1, 2, . . .), respectively, such that W s
1,n,l is

the image of W s
2,n,l under the holonomy map for every l.

It follows from Theorem 2.1 (see the first remark after it) that the larger n the more
of the segments W s

1,n,l and W s
2,n,l are long, i.e. have length ≥ d0. More precisely, there is

a sequence Nn (independent of the choice of the fibers W s
1 and W s

2 ) such that Nn →∞
as n → ∞ and the number of long pairs of unstable fibers W s

1,n,l, W s
2,n,l is larger than

Nn. We denote by L∗n the set of indices {l} for which both fibers W s
1,n,l and W s

2,n,l are
long. Then card L∗n ≥ Nn.

The distance between each W s
1,n,l and its counterpart W s

2,n,l in the unstable direction
is less than d0DΛ−n

min. For any given n we can argue like in the proof of Sublemma 6.7
and choose δ small enough to make the value of Dj1(µ1, µ2, W

s
1,n,l) arbitrarily close to

D∗(µ1, µ2) and the value of Dj2(µ1, µ2, W
s
2,n,l) arbitrarily close to 1/D∗(µ2, µ1) for all

l ∈ L∗n. Therefore, for every n there is a δn > 0 such that for any δ ≤ δn we have

Dj1(µ1, µ2, W
s
1,n,l)−Dj2(µ1, µ2, W

s
2,n,l) ≥ ∆/2

for all l ∈ L∗n. Equivalently,

Dj1(µ1, W
s
1,n,l)

Dj1(µ2, W s
1,n,l)

−
Dj2(µ1, W

s
2,n,l)

Dj2(µ2, W s
2,n,l)

≥ ∆

2
(6.16)

for all l ∈ L∗n.
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We represent the left hand side of (6.16) by a/b − c/d. Then, according to (6.4) we
have

ad− bc

bd
=

(a− c)d + (d− b)c

bd
≤ |a− c|C4 + |d− b|C4

C2
3

This gives the following alternative: For every l ∈ L∗n either

|Dj1(µ1, W
s
1,n,l)−Dj2(µ1, W

s
2,n,l)| ≥

1

4
∆ C2

3/C4 (6.17)

or

|Dj1(µ2, W
s
1,n,l)−Dj2(µ2, W

s
2,n,l)| ≥

1

4
∆ C2

3/C4 (6.18)

We put ∆1 = 1
4
∆ C2

3/C4 > 0. Denote by L(1)
n and L(2)

n the sets of indices in L∗n for which
(6.17) and (6.18) hold, respectively. Note that L(1)

n ∪L(2)
n = L∗n. Without loss of generality,

we assume that for some infinite sequence {nm} of indices we have card L(1)
nm
≥ Nnm/2.

Let l ∈ L(1)
n . Denote the rectangle whose two stable sides are W s

1,n,l and W s
2,n,l

by R̂n,l. Its width in the unstable direction is smaller than d0DΛ−n
min. Let Rn,l be a

rectangle containing R̂n,l as an s-subrectangle, such that its unstable sides are at distance

du
max(R̂n,l)/100 from those of R̂n,l. Now let R1 and R2 be two very thin rectangles adjacent

to W s
1,n,l and W s

2,n,l as prescribed by the indices j1 and j2, respectively. In particular,
R1, R2 ⊂ Rn,l. For i = 1, 2 we put Ri,++ = Ri ∩Rn,l,+ and

D+
ji
(µ1, W

s
i,n,l) = lim∗µ1(Ri,++)

µSBR(Ri)

similarly to (6.1). Note that the sets R1,++ and R2,++ consist of pieces unstable fibers
that lie on the same Rn,l-fibers. It is then a direct calculation with the help of the uniform
continuity of the u-SBR density (1.3) and the jacobian of the holonomy map that

|D+
j1

(µ1, W
s
1,n,l)−D+

j2
(µ1, W

s
2,n,l)| ≤ g(du

max(Rn,l)) ≤ g(2d0DΛ−n
min) (6.19)

where the function g(x) → 0 as x → 0 depends on T̂ only. Let γn = g(2d0DΛ−n
min).

For large n = nm such that γn < ∆1 and for any l ∈ L(1)
nm

, the inequality (6.17) can
only hold due to the contribution from the sets Ri,+\Ri,++, i = 1, 2, which lie on unstable
fibers in M+ terminating inside Rnm,l.

Sublemma 6.8 Let nm be so large that γnm < ∆1/2. Then for any l ∈ L(1)
nm

and small
ε > 0 (i.e., ε < ε0(nm, l)) we have

µ1(Rnm,l ∩ Uε) ≥
1

3
C ′D−1∆1ε (6.20)

where C ′ > 0 appears in (5.2).
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Proof. Let δ > 0. If the rectangles R1 and R2 are thin enough (in the unstable
direction), it follows from (6.17) and (6.19) that∣∣∣∣∣µ1(R1,+ \R1,++)

µSBR(R1)
− µ1(R2,+ \R2,++)

µSBR(R2)

∣∣∣∣∣ ≥ ∆1(1− δ)/2

Now, without loss of generality we can assume that

µ1(R1,+ \R1,++)

µSBR(R1)
≥ ∆1(1− δ)/2

Due to (5.2), we have

µ1(R1,+ \R1,++) ≥ C ′du
max(R1)∆1(1− δ)/2

Let ε = du
max(R1) (this is not a restrictive choice, since R1 is an arbitrary sufficiently

narrow rectangle adjacent to W s
1,n,l). The set R1,+ \ R1,++ is a union of unstable R1-

fibers that belong in M+. They all have length ≥ du
min(R1) ≥ D−1ε. Moreover, the

continuations of these fibers in M+ terminate within our rectangle Rnm,l (otherwise those
fibers would be in R1,++). We now slide every fiber in this set along the fiber in M+

that contains it, down to the endpoint of the latter lying in Rnm,l. We then get another
fiber, of the same length, which is between ε and D−1ε, so that the new fiber lies in Uε.
By sliding the fiber we may change its measure, but at most by a factor of D (actually,
very little since the rectangle Rnm,l is also thin in the unstable direction). Therefore, the
union of the new fibers has measure ≥ εD−1C ′∆1(1− δ)/2. Sublemma 6.8 is proved.

Now note that the number of rectangles Rnm,l satisfying (6.20) is ≥ Nnm/2.

Claim. The number of disjoint rectangles satisfying (6.20) can be made arbitrarily
large by increasing nm.

Proof. Assume that the number of disjoint rectangles satisfying (6.20) is uniformly
bounded, say ≤ K0. For large nm we have card L(1)

nm
≥ Nn/2 � K0, so that the rectangles

Rnm,l, l ∈ L(1)
nm

, have to form ≤ K0 clusters, and they necessarily converge to a finite union
of some stable curves W̄ s

k ⊂ M , 1 ≤ k ≤ K0. For any r ≥ 1 denote by N̄r the number of
smooth components of the set T−r(∪kW̄

s
k ). It follows from the time-symmetric version

of Theorem 2.1, cf. a remark after it, that N̄r →∞ as r →∞. Under our assumptions
on the sequence {nm} there is an infinite sequence {rl} such that at least N̄rl

/2 smooth
components of T−rl(∪kW̄

s
k ) must be also curves to which some clusters of rectangles

Rnm,l, l ∈ L(1)
nm

, converge as nm →∞. This proves the claim.
The existence of arbitrarily many disjoint rectangles Rnm,l satisfying (6.20) clearly

contradicts Theorem 5.7. The proof of Lemma 6.6 is completed. Theorem 6.1 now
readily follows.

Corollary 6.9 The sequence of measures µ
(k)
+ converge weakly, as k → ∞, to a unique

measure µ+ satisfying all the assumptions of Theorem 6.1.
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Lastly, note that the conditionally invariant measure µ+ for the map T is also such
for any iteration T k, k ≥ 2, of the map T , with eigenvalue λk

+. Moreover, it is fairly
straighforward that all our arguments apply to any iteration of T . Therefore, the measure
µ+ is the only conditionally invariant measure for the map T k for every k ≥ 2.
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