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Abstract

We study smooth hyperbolic systems with singularities and their SRB measures.
Here we assume that the singularities are submanifolds, the hyperbolicity is uniform
aside from the singularities, and one-sided derivatives exist on the singularities.
We prove that the ergodic SRB measures exist, are finitely many, and mixing SRB
measures enjoy exponential decay of correlations and a central limit theorem. These
properties have been proved previously only for two-dimensional systems.
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1 Introduction

Let M be an open connected domain in a d-dimensional C∞ Riemannian manifold, such
that M̄ is compact, and let Γ ⊂ M̄ be a closed subset. Assume that S := Γ∪∂M is a finite
union of smooth compact submanifolds of codimension one, possibly with boundary. We
denote by S1,S2, . . .Sr the smooth components of S. We consider a map T : M \S → M
such that

(H1) T is a C2 diffeomorphism of M \ S onto its image. We also assume that T
and T−1 are twice differentiable up to the boundaries of their domains (only one-sided
derivatives are required at the boundary).

The set S will be referred to as the singularity set for T . For n ≥ 1 denote by

S(n) = S ∪ T−1S ∪ · · · ∪ T−n+1S
0AMS subject classification: 58F15
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the singularity set for T n. Define

M+ = {x ∈ M : T nx /∈ S, n ≥ 0}, M− = ∩n≥0T
n(M \ S(n))

and
M0 = ∩n≥0T

n(M+) = M+ ∩M−

The sets M+ and M− consist, respectively, of points were all the future and past iterations
of T are defined, and M0 is the set of points where all the iterations of T are defined. We
denote by ρ the Riemannian metric in M and by Vol(·) the Lebesgue measure (volume)
in M .

Three most interesting classes of maps are

1. Conservative case: volume-preserving maps, or, more generally, maps with an
absolutely continuous invariant measure (a.c.i.m.).

2. Dissipative case: no a.c.i.m. exist, yet T (M \ S) is dense in M . In this case, like
in the previous one, M0 has full Lebesgue measure.

3. Attractor case: when the closure of T (M \ S) is a proper subset of M . In this
case Vol(M0) <Vol(M), and often Vol(M0) = 0. The set M0 is then called an
attractor.

Below we list our additional assumptions on T .

(H2) T is uniformly hyperbolic, i.e. there exist two families of cones Cu
x and Cs

x in
the tangent spaces TxM , x ∈ M̄ , such that DT (Cu

x ) ⊂ Cu
Tx and DT (Cs

x) ⊃ Cs
Tx whenever

DT exists, and
|DT (v)| ≥ Λmin|v| ∀v ∈ Cu

x

|DT−1(v)| ≥ Λmin|v| ∀v ∈ Cs
x

with some constant Λmin > 1. These families of cones are continuous on M̄ and the angle
between Cu

x and Cs
x has a positive lower bound.

Technically, the families of cones Cu,s
x are specified by two continuous families of

linear subspaces P u,s
x ⊂ TxM such that P u

x ⊕ P s
x = TxM , and two continuous functions

αu,s(x) > 0. The cones Cu,s
x are defined by

6 (v, P u,s
x ) := min

w∈P u,s
x

6 (v, w) ≤ αu,s(x) ∀v ∈ Cu,s
x

The angle between the cones Cu
x and Cs

x is set to min{ 6 (v, w) : v ∈ Cu
x , w ∈ Cs

x}. We
denote du,s = dimP u,s

x (these are independent of x, since P u,s
x are continuous and M is

connected, and du + ds = d = dimM).
Denote Λmax = max{supx ||DT (x)||, supx ||DT−1||}. In plain words, Λmin and Λmax

are lower and upper bounds on the expansion factor of unstable vectors and contraction
factor of stable vectors.

2



For any submanifold W ⊂ M we denote by ρW the metric on W induced by the
Riemannian metric in M , and by νW the Lebesgue measure on W generated by ρW . We
call U a u-manifold if it is a smooth du-dimensional submanifold in M of finite diameter
(in the inner metric ρU) and at every x ∈ U the tangent space TxU lies in Cu

x . Any
u-manifold is expanded (locally) by T in every direction by a factor between Λmin and
Λmax. Similarly, s-manifolds are defined.

(H3) The angle between S and Cu has a positive lower bound.

Technically, the angle between S and Cu
x at x ∈ S is defined to be max{0, 6 (P u

x , TxS)−
αu(x)}. Here 6 (P u

x , TxS) = maxv∈P u
x

minw∈TxS 6 (v, w).
As a consequence of (H3), any u-manifold intersects S transversally, and the angle

between them has a positive lower bound.
It is convenient to assume that for every Si ⊂ Γ we have ∂Si ⊂ ∪j 6=iintSj ∪ ∂M , i.e.

every interior singularity manifold with boundary terminates on some other singularity
manifolds or on ∂M . This is not a restrictive assumption, since if this is not the case for
some Si ⊂ Γ, we can extend Si until it terminates on other hypersurfaces of S or on the
boundary of M .

A point x ∈ S(m) of the singularity set S(m) of Tm is said to be multiple if it belongs
to l ≥ 2 smooth components of S(m), and then l is called the multiplicity of x in S(m).

(H4) There are K0 ≥ 1 and m ≥ 1 such that the multiplicity of any point x ∈ S(m)

does not exceed K0, and K0 < Λm
min − 1.

This is a standard assumption which ensures that the singularity manifolds of S(m)

do not pile up too fast anywhere as m grows. The expansion of any u-manifold U under
Tm is hereby guaranteed to be stronger than the cutting (shredding) of U inflicted by
S(m). We make this claim precise below in Section 2. The necessity of an assumption of
this kind is explained in [13].

It is also standard to assume that m = 1 here, which we do, since we can simply
consider Tm instead of T . (The assumptions (H1)-(H3) obviously hold for all Tm, m ≥ 1.)

For any x ∈ M+ and y ∈ M− we set

Es
x = ∩n≥0DT−n(Cs

T nx), Eu
y = ∩n≥0DT n(Cu

T−ny)

respectively. It is standard, see, e.g., [9], that
(a) Es

x, Eu
x are linear subspaces in TxM , dimEu,s

x = du,s, and Es
x⊕Eu

x = TxM for x ∈ M0;
(b) DT (Eu,s

x ) = Eu,s
Tx , and DT expands vectors in Eu

x and contracts vectors in Es
x;

(c) the subspaces Eu
x and Es

x are continuous in x (on M− and M+, respectively), and the
angle between them on M0 has a positive lower bound.

As a consequence, there can be no zero Lyapunov exponents on M0. The space Eu
x is

spanned by all vectors with positive Lyapunov exponents, and Es
x by those with negative

Lyapunov exponents.
We call a submanifold W u ⊂ M a local unstable manifold (LUM), if T−n is defined

and smooth on W u for all n ≥ 0, and ∀x, y ∈ W u we have ρ(T−nx, T−ny) → 0 as n →∞
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exponentially fast. Similarly, local stable manifolds (LSM), W s, are defined. Obviously,
dimW u,s = du,s, and at any point x ∈ W u,s the tangent space TxW

u,s coincides with
Eu,s

x . We denote by W u(x), W s(x) local unstable and stable manifolds containing x,
respectively. The existence and abundance of LUM’s and LSM’s in M is proved in
Sect. 3.

We state our main result, with necessary definitions following it.

Theorem 1.1 Let T satisfy (H1)-(H4). Then
(a) Existence: T admits a Sinai-Ruelle-Bowen (SRB) measure µ;
(b) Ergodic properties: any SRB measure µ has a finite number of ergodic components,

on each of which it is, up to a finite cycle, mixing and Bernoulli;
(c) Statistical properties: if (T n, µ) is ergodic ∀n ≥ 1, then (T, µ) has exponential de-

cay of correlations and satisfies the central limit theorem for Hölder continuous functions
on M .

Definition 1. A T -invariant measure µ concentrated on M0 is called a Sinai-Ruelle-
Bowen (SRB) measure if the conditional measures of µ on local unstable manifolds are
absolutely continuous with respect to the Lebesgue measures on those manifolds.

The part (b) of the theorem means that µ has a finite number of ergodic components
M0

1 , . . . ,M0
s , and on each M0

i the map (T, µ|M0
i ) either is mixing and Bernoulli, or else

M0
i is further decomposed into a finite number of subcomponents M0

i = M0
i,1∪ · · ·∪M0

i,si

which are permuted cyclicly by T . In the latter case the map (T si , µ|M0
i,j) is mixing

and Bernoulli for every M0
i,j. The part (c) of the theorem applies to the dynamical

system (T si , µ|M0
i,j) for each M0

i,j. It is also standard that any SRB measure on M0

is a weighted sum of (unique) ergodic SRB measures concentrated on the components
M0

1 , . . . ,M0
s . Thus, all the SRB measures for T make an s-dimensional simplex, whose

vertices are ergodic SRB measures.

SRB measures are the only physically observable invariant measures for smooth or
piecewise smooth hyperbolic dynamical systems. In the conservative case (Case 1 above),
any a.c.i.m. is an SRB measure automatically, and vice versa. In the dissipative and
attractor cases 2 and 3, SRB measures are weak Cesaro limits of iterations of smooth
measures on M . Furthermore, for any ergodic SRB measure µ there is a positive volume
set consisting of µ-generic points, i.e. points x ∈ M such that 1

n

∑n−1
i=0 f ◦ T i(x) →

∫
f dµ

for all continuous functions f : M → IR, see, e.g., [13]. (This property is sometimes taken
as the definition of SRB measures.) In the dissipative case 2, µ is typically singular, i.e.
Vol(M0) = 0, but the support of µ can coincide with M̄ , i.e. the µ-measure of every open
set may be positive. That happens to typical transitive Anosov diffeomorphisms [12] and
some nonequilibrium stationary distributions studied in modern statistical physics [7].
In the attractor case (3), the support of µ normally has zero volume, the best studied
examples here being Lorenz, Lozi and Belykh attractors [1].

Now, let Hη be the class of Hölder continuous functions on M with exponent η > 0:

Hη = {f : M → IR | ∃C > 0 : |f(x)− f(y)| ≤ Cρ(x, y)η, ∀x, y ∈ M}
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Definition 2. We say that (T, µ) has exponential decay of correlations for Hölder
continuous functions if ∀η > 0 ∃γ = γ(η) ∈ (0, 1) such that ∀f, g ∈ Hη ∃C = C(f, g) > 0
such that ∣∣∣∣∫

M
(f ◦ T n)g dµ−

∫
M

f dµ
∫

M
g dµ

∣∣∣∣ ≤ Cγ|n| ∀n ∈ ZZ

Definition 3. We say that (T, µ) satisfies a central limit theorem (CLT) for Hölder
continuous functions if ∀η > 0, f ∈ Hη, with

∫
f dµ = 0, ∃σf ≥ 0 such that

1√
n

n−1∑
i=0

f ◦ T i distr−→ N (0, σ2
f )

Furthermore, σf = 0 iff f = g ◦ T − g for some g ∈ L2(µ)

History. The study of SRB invariant measures for smooth hyperbolic dynamical
systems with singularities was initiated by Pesin [9] who proved the existence of SRB
measures under some general assumptions, see (H5)-(H6) in our Section 3. In general,
SRB measures may have countably many ergodic components. Under some more re-
strictive assumptions, see (H5) and (H7), Sataev [10] showed that SRB measures have
finitely many ergodic components (the so called finitude). We prove in Sect. 3 that our
assumptions (H1)-(H4) imply (H5)-(H7), hence the existence and finitude of SRB mea-
sures. Such a verification was previously done only in the 2-D case (first in ref. [9] under
a more restrictive assumption than our (H4) and then in ref. [1] under the one equivalent
to (H4)). We do that verification in any dimensions.

The main results of this paper, however, are statistical prperties – the exponential
bound on correlations and the central limit theorem. Recently, Young [13] developed new
techniques for proving exponential decay of correlations and CLT for hyperbolic systems.
We apply her results and some techniques developed earlier in the context of billiards in
ref. [5] to obtain exponential bounds on correlations under our assumptions (H1)-(H4).
This has been previously done only in the 2-D case, first by Liverani [8] and then by
Young [13]. A weaker bound (the so called “stretched exponential”) on correlations was
obtained earlier in two cases: 2-D hyperbolic attractors [1] and multidimensional Lorentz
gases with finite horizon [5].

Applications. The interest to hyperbolic systems with singularities is due to certain
popular physical models, such as billiards [3, 5] and attractors [1]. In particular, the
realistic 3-D Lorentz gas and multiparticle systems, such as gases of hard balls, are mul-
tidimensional hyperbolic systems with singularities. While three most popular hyperbolic
attractors – Lorentz, Lozi and Belykh attractors [1] – are two-dimensional, one can study
arbitrary many coupled attractors, i.e. small perturbations of their direct product. In
this way one gets multidimensional hyperbolic systems satisfying (H1)-(H4). One can
also consider linear hyperbolic toral maps defined by matrices with determinant one and

noninteger entries (a popular 2-D example is A =

(
1 + a a

1 1

)
with a positive a /∈ ZZ),

such maps have singularities. We will not elaborate examples like this. Our main purpose
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is to find a working approach to statistical properties of multidimensional systems in gen-
eral, aiming Lorentz gases and hard balls. While billiards do not satisfy our assumption
(H1), because the derivatives of billiard maps are always unbounded, we plan to extend
our results to billiards in a separate paper.

2 Expansion and filtration of u-manifolds

Here we study u-manifolds. The general theme will be showing that the expansion of
u-manifolds by T is “stronger” (in many senses) than cutting by singularity manifolds
S. More precisely, we will show that the images of small u-manifolds under T n, n ≥ 0,
grow in size exponentially in n ‘on the average’, until they reach a certain ‘fixed’ size (δ1

below).
Notations. Let U be a u-manifold. We denote by diamU the diameter of U in the ρU

metric. For any point x ∈ U \ S denote by Ju(x) = |det(DT |TxU)| the jacobian of the
map T restricted to U at x, i.e. the factor of the volume expansion on U at the point x.
For n ≥ 1 the connected components of T n(U \ S(n)) are called components of T nU .

The following is standard, and we omit the proofs:

(a) Curvature. ∃B′ > B′′ > 0 such that if the sectional curvature of a u-manifold
U is ≤ B′′, then all the components of T nU , n ≥ 1, have sectional curvature ≤ B′. As
a result, sectional curvature of any LUM W u is bounded above by B′. We will always
assume that sectional curvature of our u-manifolds is bounded above by B′.

(b) Distorsions. Let x, y ∈ U \S(n−1) and T nx, T ny belong in one component of T nU ,
denote it by V . Then

log
n−1∏
i=0

Ju(T ix)

Ju(T iy)
≤ C ′ρV (T nx, T ny) (2.1)

with some C ′ = C ′(T ) > 0.

(c) Absolute continuity. Let U1, U2 be two sufficiently small u-manifolds, so that
any local stable manifold W s intersects each of U1 and U2 in at most one point. Let
U ′

1 = {x ∈ U1 : W s(x) ∩ U2 6= ∅}. Then we define a map h : U ′
1 → U2 by sliding along

stable manifolds. This map is often called a holonomy map. It is absolutely continuous
with respect to the Lebesgue measures νU1 and νU2 , and its jacobian (at any point of
density of U ′

1) is bounded, i.e.

1/C ′′ ≤ νU2(h(U ′
1))

νU1(U
′
1)

≤ C ′′ (2.2)

with some C ′′ = C ′′(T ) > 0.

Our assumption (H4) implies that ∃δ̄ > 0 such that any δ̄-ball in M intersects at
most K0 smooth components of S.

We now fix a δ0 � δ̄ and will assume that it is small enough for all our future needs.
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Definition. We say that a connected u-manifold U is admissible if
(a) its sectional curvature is ≤ B′ everywhere;
(b) diamU ≤ δ0;
(c) its boundary ∂U is piecewise smooth, i.e. it is a finite union of smooth compact
submanifolds of dimension dimension du − 1, possibly with boundary.

Key Remark. Let U be an admissible u-manifold. Since δ0 is very small, the
tangent spaces TxU are almost parallel at all points x ∈ U . If n ≥ 1 and U ′ ⊂ T nU is
another admissible u-manifold, then T n

∗ νU |U ′ (the nth iterate of the Lebesgue measure
on U conditioned on U ′) has an almost constant density with respect to νU ′ , due to (2.1).
These important observations will allow us to approximate any admissible u-manifold by
a du-dimensional flat domain in IRd, i.e. a domain on a du-dimensional linear subspace
of IRd with piecewise smooth boundary. In addition, we assume that δ0 � the minimum
radius of curvature of singularity manifolds S(i) ⊂ S. Thus, if a u-manifold U intersects a
singularity manifold S(i), all the tangent spaces to S(i) at the points of S(i)∩U are almost
parallel. Hence, the manifold S(i) is almost flat on the ‘microscopic’ scale of diamU ≤ δ0.

Let U be an admissible u-manifold. The components of its iterates, T nU , n ≥ 1, may
not be admissible, since they grow in size. We will partition them into smaller, admissible
u-manifolds.

Definition. Let U be an admissible u-manifold, and V ⊂ U an open subset with
piecewise smooth boundary (i.e., ∂V consist of a finite number of smooth compact (du−
1)-dimensional submanifolds in M̄). ∀x ∈ V we denote by V (x) the connected component
of V that contains x. We say that V is n-admissible, n ≥ 0, if T n is smooth on V and
∀x ∈ V the u-manifold T nV (x) is admissible.

Observe that V need not be connected, in fact, it almost never is in our arguments.
Observe also that for an n-admissible open set V we have V ⊂ U \ S(n).

Let U be an admissible u-manifold, and V ⊂ U an n-admissible open subset. Let

rV,n(x) = ρT nV (x)(T
nx, ∂T nV (x)) (2.3)

be the distance from T nx to the boundary of the connected component of T nV where
this point belongs. (The distance is measured in the induced Riemannian metric on that
component.) We put

Z[U, V, n] = sup
ε>0

νU(x ∈ V : rV,n(x) < ε)

ε · νU(U)
(2.4)

This supremum is finite because ∂T nV (x) in (2.3) is piecewise smooth ∀x ∈ V . In the
case νU(U \ V ) = 0, the value of Z[U, V, n] characterizes, in a certain way, the ‘average
size’ of the components of T nV – the larger they are the smaller Z[U, V, n].

In particular, the value of Z[U,U, 0] characterizes the size of U in a way illustrated
by the following examples:
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Examples. Let U be a ball of radius r, then Z[U,U, 0] ∼ r−1. Let U be a cylinder
whose base is a ball of radius r and height h � r, then again Z[U,U, 0] ∼ r−1. Let U be
a rectangular box with dimensions l1× l2×· · ·× ldu , then Z[U,U, 0] ∼ 1/ min{l1, . . . , ldu}.

Definition Let U be an admissible u-manifold. A decreasing sequence of open subsets
U = U0 ⊃ U1 ⊃ U2 ⊃ · · · is called a u-filtration of U if
(a) ∀n ≥ 0 the set Un is n-admissible;
(b) ∀n ≥ 0 the set Un is dense in U , i.e. Ūn = Ū .
We also put U∞ = ∩n≥0Un

Observe that all Un and U∞ have full νU -measure. On the other hand, U∞ has to be
totally disconnected.

Let {Un} be a u-filtration of an admissible u-manifold U . We then put for brevity
rn = rUn,n a function on Un defined by (2.3) and Zn = Z[U,Un, n] for all n ≥ 0. The
value of Zn characterizes the ‘average size’ of the connected components of T nUn.

Theorem 2.1 There are α = α(T ) ∈ (0, 1) and β = β(T ) > 0 such that for any
admissible u-manifold U there is a u-filtration {Un} such that
(i) we have

Z1 ≤ αZ0 + βδ−1
0 (2.5)

and ∀n ≥ 2
Zn ≤ αnZ0 + βδ−1

0 (1 + α + · · ·+ αn−1) (2.6)

(ii) let β̄ = 2β/(1− α): then Zn ≤ max{Z0, β̄/δ0} for all n ≥ 0;
(iii) Zn ≤ β̄/δ0 for all n ≥ a ln Z0 + b.
Here a = −(ln α)−1 and b = max{0,− ln(δ0(1− α)/β)/ ln α} are independent of U .

Remark. Effectively, the theorem asserts that if a u-manifold U is small or thin, so
that Z0 is very large, then the connected components of T nU grow larger, on the average,
so that Zn decreases exponentially in n until it becomes small enough, ≤ β̄/δ0. This is
our exact version of the well-known concept ‘small unstable manifolds grow exponentially
in size’ in the context of high dimensions.

Proof of Theorem 2.1. We start with a construction of an open dense 1-admissible
subset U1 ⊂ U that satisfies (2.5). For brevity, we will write ν instead of νU and ρ instead
of ρU .

Step 1. Assume first that U ∩S = ∅ and diamU ≤ δ0Λ
−1
max. Then TU is an admissible

u-manifold, and we set U1 = U . Then r1(x) ≥ Λminr0(x) for any x ∈ U , and so

ν(r1 < ε) ≤ ν(r0 < ε/Λmin) ≤ Z0Λ
−1
minν(U) · ε (2.7)

Step 2. Assume that diamU > δ0Λ
−1
max. Then we will define an open dense subset

U ′
1 ⊂ U whose connected components will have diameter < δ0Λ

−1
max.
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According to our Key Remark, the manifold U is almost flat. We first assume that
U is exactly a flat du-dimensional surface in IRd with piecewise smooth boundary. We
choose a coordinate system in IRd so that U is parallel to the first du coordinate axes, i.e.
xdu+1 = · · · = xd = 0 on U . Also, we assume that ν is the du-dimensional volume on U .

For each i = 1, . . . , du we take an array of parallel hyperplanes {xi = ai+mδ′}, m ∈ ZZ,
where δ′ = δ0Λ

−1
max/

√
2du, and with some fixed ai ∈ [0, δ′). All these hyperplanes together

‘shred’ (or ‘dice’) the domain U into cubic pieces of diameter δ0Λ
−1
max/

√
2 < δ0Λ

−1
max. Then

the set
U ′

1 := U \ (∪i,m{xi = ai + mδ′}) (2.8)

is open, dense in U , and completely determined by the vector (a1, . . . , adu), which will
be fixed shortly. For each i = 1, . . . , du and m ∈ ZZ put Dm,ai

= U ∩ {xi = ai + mδ′}.
Observe that ∂U ′

1 = ∂U ∪ (∪i,mDm,ai
). For ε > 0 put U0

ε = {x ∈ U : ρ(x, ∂U) < ε} and
U ′

ε = {x ∈ U : ρ(x, ∂U ′
1) < ε}.

Now we will optimize the parameters a1, . . . , adu so that ν(U ′
ε) will be small enough,

∀ε > 0. For every Dm,ai
denote by

Cm,ai
(ε) = Dm,ai

× [ai + mδ′ − ε ≤ xi ≤ ai + mδ′ + ε]

the solid cylinder in IRdu of height 2ε whose middle cross-section is Dm,ai
. Observe that

for any point x ∈ U ′
ε \ U0

ε the du-dimensional ball in U of radius ρ(x, ∂U ′
1) centered at x

is touching one of the (du− 1)-dimensional domains Dm,ai
. Therefore, the region U ′

ε \ U0
ε

is covered by the union of the cylinders Cm,ai
(ε). Therefore

ν(U ′
ε \ U0

ε ) ≤ 2ε
du∑
i=1

Sai
(2.9)

where Sai
is the total (du − 1) dimensional volume of the domains Dm,ai

, m ∈ ZZ.
We now fix ai ∈ [0, δ′) so that Sai

takes its minimum value. In particular, this fixes
our subset U ′

1 defined by (2.8)! Obviously, for each i = 1, . . . , du we have

ν(U) =
∫ δ′

0
Sai

dai

so that minai
Sai

≤ ν(U)/δ′. Therefore

ν(U ′
ε \ U0

ε ) ≤ 2εduν(U)/δ′ < 4d3/2
u δ−1

0 Λmaxν(U) · ε (2.10)

Step 3. Assume now that U ∩ S 6= ∅. Since δ0 � δ̄, then, according to (H4), U
intersects at most K0 singularity manifolds Sj ⊂ S. We again assume that U is a flat
du-dimensional surface in IRd with piecewise smooth boundary. Besides, we assume that
each singularity manifold Sj intersecting U is a hyperplane in IRd, cf. Key Remark. It
may happen that some Sj terminates inside U , then it must terminate on some other Sj′ ,
see Introduction. In that case we treat Sj as a hyperplane cutting one part of U after U
was previously cut into two parts by the hyperplane Sj′ .
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The set U ′′
1 = U \ S is open and dense in U . It is obtained by cutting the domain

U by k ≤ K0 hyperplanes in IRd. Unlike Step 2, however, we no longer can control the
position of the new cutting hyperplanes. So, we need the following lemma:

Lemma 2.2 Let Σ be an arbitrary hyperplane cutting U . For any ε > 0 put U0
ε = {x ∈

U : ρ(x, ∂U) < ε} and U ′′
ε,1 = {x ∈ U : ρ(x, Σ) < ε}. Then ν(U ′′

ε,1 \ U0
ε ) ≤ ν(U0

ε ).

Proof. If x ∈ U ′′
ε,1\U0

ε , then the du-dimensional ball in U of radius ρ(x, Σ∩U) centered
at x is touching the (du − 1)-dimensional region Σ ∩ U . Therefore, the set U ′′

ε,1 \ U0
ε is

foliated by segments in U orthogonal to Σ ∩ U in such a way that each segment crosses
Σ∩U and sticks out by ≤ ε on each side of Σ∩U . On the other hand, the line containing
any of those segments intersects U0

ε by two segments of length ≥ ε each. Hence the
lemma. 2

Remark. We will later need the following modification of Lemma 2.2. Let B ⊂ U be
some du-dimensional ball, and U ′′′

ε = {x ∈ U\B : ρ(x, B) < ε}. Then ν(U ′′′
ε \U0

ε ) ≤ ν(U0
ε ),

∀ε > 0. The proof of this is similar to that of Lemma 2.2 if one uses the foliation of U ′′′
ε

by segments of rays emanating from the center of B.

Lemma 2.2 asserts that cutting U by any hyperplane effectively adds at most as much
volume to the ε-neighborhood of the boundary as there was originally.

Corollary 2.3 Let Σ1, . . . , Σk be arbitrary hyperplanes crossing U . For any ε > 0 put
U ′′

ε = {x ∈ U : ρ(x,∪iΣi) < ε}. Then ν(U ′′
ε \ U0

ε ) ≤ k · ν(U0
ε ).

Applying Corollary 2.3 to the k ≤ K0 singularity hyperplanes Sj that cut U gives

ν(U ′′
ε \ U0

ε ) ≤ K0 · ν(U0
ε ) (2.11)

Step 4. We put U1 = U ′
1 ∩U ′′

1 . Observe that {x ∈ U : ρ(x, ∂U1) < ε} = U0
ε ∪U ′

ε ∪U ′′
ε .

Combining (2.10) and (2.11) gives

ν(x ∈ U : ρ(x, ∂U1) < ε) ≤ (K0 + 1) · ν(U0
ε ) + 4d3/2

u δ−1
0 Λmaxν(U) · ε

This last estimate combined with (2.7) gives (formally) the bound (2.5) with α = (K0 +
1)/Λmin and β = 4d3/2

u Λmax/Λmin > 0. Note that α < 1 due to (H4).
Due to the actual nonflatness of both U and S we have to slightly (depending on δ0)

increase the above values of α and β, and we can keep α below 1 assuming δ0 be small
enough.

Step 5. Next, (2.6) follows from (2.5) by induction on n. To define Un inductively,
assume that Un−1 is defined. Every connected component V of T n−1Un−1 is an admissible
u-manifold. Applying the proof of (2.5) to V defines an open dense subset V1 ⊂ V . Then
Un is defined to be the union of T−n+1V1 over all V ⊂ T n−1Un−1. Lastly, the measure
T n
∗ νU conditioned on any admissible u-manifold V ⊂ T nUn is almost uniform (depending

on δ0) with respect to νV , cf. Key Remark. Its actual nonuniformity, however, requires
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an additional slight increase of α and β in the above calculations, which we can afford
assuming that δ0 is small enough.

The clauses (ii) and (iii) trivially follow from (i). Theorem 2.1 is proved. 2

Remark. The choice of the vector (a1, . . . , adu) made in Step 2 defines the subset U1.
Applying this choice to every connected component of T n−1Un−1 defines the subset Un.
Thus, the entire u-filtration {Un} is defined. We say that the u-filtration so defined is
admissible. Admissible u-filtrations always satisfy (i)-(iii) of the above theorem.

Remark. Our estimates (2.7), (2.10) and (2.11) yield a little more than the part (i)
of the theorem. In fact, for any admissible u-manifold U , an admissible u-filtration {Un}
of U , and ∀ε > 0 we have

νU(r1 < ε) ≤ αΛmin · νU(r0 < ε/Λmin) + εβδ−1
0 · νU(U) (2.12)

and hence ∀n ≥ 2

νU(rn < ε) ≤ (αΛmin)
n · νU(r0 < ε/Λn

min) + εβδ−1
0 (1 + α + · · ·+ αn−1) · νU(U) (2.13)

Let δ1 = δ0/(2β̄). According to the part (iii) of Theorem 2.1, Zn ≤ (2δ1)
−1 for all

n ≥ a ln Z0 + b. Hence,
νU(rUn,n(x) > δ1) > νU(U)/2 (2.14)

In other words, at least 50% of the points in T nU (with respect to the measure induced
by νU) lie a distance ≥ δ1 away from the boundaries of T nU .

3 Existence and ergodic properties of SRB measures

Here we prove the parts (a) and (b) of our main theorem 1.1. In [9], Pesin proved the
existence and ergodic properties of SRB measures for a wide class of hyperbolic maps
with singularities (he called them generalized hyperbolic attractors), covering the class
we study here, under two extra assumptions, which in our notation are:

(H5) ∃C > 0, q > 0 such that ∀ε > 0, n ≥ 1

Vol(T−nUε(S)) ≤ Cεq

(H6) ∃z ∈ M0 with a local unstable manifold1 W u(z) and C > 0, q > 0 such that
∀ε > 0, n ≥ 1

νW u(z)(W
u(z) ∩ T−nUε(S)) ≤ Cεq

Here Uε(·) stands for ε-neighborhood in the ρ metric.

1Wu(z) is defined [9] via a function φu : Bu
z → Es

z , where Bu
z is a ball in Eu

z centered at z, whose
graph is then mapped onto M by the exponential map. Observe that such Wu(z) has smooth boundary,
so it is admissible.

11



One should note that, under these assumptions, Pesin [9] proved that any SRB mea-
sure has at most countable number of ergodic components – a weaker statement than
we claim in Theorem 1.1. Sataev [10] showed that the number of ergodic components is
finite under the above (H5) and the following:

(H7) ∃C > 0, q > 0 such that for any ball-like u-manifold U (i.e., a u-manifold U
that is a ball in the ρU metric) there are nU > 0 and BU > 0 such that ∀ε > 0

(a) νU(U ∩ T−nUε(S)) ≤ νU(U) · Cεq ∀n > nU

(b) νU(U ∩ T−nUε(S)) ≤ νU(U) ·BUεq ∀n > 0

Proposition 3.1 If the map T satisfies (H1)-(H4), then it satisfies (H5)-(H7).

Proof. The property (H5) with q = 1 is obvious for n = 0, cf. [6]. To prove it for
n ≥ 1, we foliate M by admissible u-manifolds Uf = {U} in a smooth way. Let νf

U be
the conditional measures on U ∈ Uf induced by the Lebesgue volume in M , and dµf (U)
the factor measure on Uf . If the foliation is smooth enough and δ0 small enough, every
νf

U will have almost uniform density with respect to the Lebesgue measure νU on U . For
every U ∈ Uf let {Un} be an admissible u-filtration of U , and rUn,n(x) be defined by
(2.3). Observe that

rUn+1,n+1(x) < C ′εΛmax ∀x ∈ T−nUε(S) ∩ U (3.1)

where C ′ is determined by the minimum angle between the unstable cone family and S.
Now we have

Vol(T−nUε(S)) = 2
∫

νf
U(T−nUε(S) ∩ U) dµf (U)

≤ 2
∫

[νU(U)]−1νU(x ∈ U : rUn+1,n+1(x) < C ′εΛmax) dµf (U)

≤ 2
∫ [

(αΛmin)
n+1 νU(x ∈ U : rU,0(x) < C ′εΛmax/Λ

n+1
min )/νU(U)

+ C ′εΛmaxβδ−1
0 (1− α)−1

]
dµf (U)

≤ 4(αΛmin)
n+1

∫
νf

U(rU,0(x) < C ′εΛmax/Λ
n+1
min ) dµf (U)

+ 2C ′εΛmaxβδ−1
0 (1− α)−1Vol(M)

where we used (3.1) and (2.13). Clearly, the last integral is ≤const·εΛ−n−1
min . This proves

(H5).
We now prove (H6) and (H7). Let U be an admissible u-manifold and {Un} its

admissible u-filtration. Based on (3.1) we have

νU(U ∩ T−nUε(S)) ≤ νU(rUn+1,n+1 < C ′εΛmax) ≤ C ′εΛmaxZn+1 · νU(U) (3.2)

The assumption (H7) now follows from Theorem 2.1 with q = 1 and BU = C ′Λmax max{Z0, β̄δ−1
0 },

nU = a ln Z0 + b, C = C ′Λmaxβ̄δ−1
0 . The assumption (H6) follows in the same way, pro-

vided we can prove the sheer existence of unstable manifolds, which we do next.
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Let Λ > 1 and ε > 0. Define

M±
Λ,ε = {x ∈ M± : ρ(T±nx,S) > εΛ−n ∀n ≥ 0}

and
M±

Λ = ∪ε>0M
±
Λ,ε M0

Λ = M+
Λ ∩M−

Λ

The following is standard [9, 13]:

Fact. Let 1 < Λ < Λmin and ε > 0. Then ∀x ∈ M−
Λ,ε there is a LUM W u(x)

such that ρ(x, ∂W u(x)) ≥ ε. Similarly, ∀x ∈ M+
Λ,ε there is an LSM W s(x) such that

ρ(x, ∂W s(x)) ≥ ε.

Therefore, stable manifolds exist everywhere on M−
Λ , and unstable ones everywhere

on M+
Λ . For x ∈ M−

Λ,ε we denote by W u
ε (x) the ε-ball in W u(x) centered at x, in the

ρW u(x) metric. It is, indeed, a ball, since ρW u(x)(x, ∂W u(x)) ≥ ε. Similarly, W s
ε (x) is

defined ∀x ∈ M+
Λ . We will call W s

ε (x) and W u
ε (x) stable and unstable disks of radius ε

through x, respectively.

Lemma 3.2 ∀Λ > 1 we have M0
Λ 6= ∅.

Pesin [9] proved this lemma under the assumption (H5), that we already proved, for
a larger class of hyperbolic systems than we study here. On the other hand, Young [13]
provided a direct argument for 2-D case, which we will extend below to our systems.

Let U be an admissible u-manifold, and let

ν̄N =
1

N

N−1∑
i=0

T i
∗νU

This is a pre-compact sequence of Borel measures on M̄ . Any limit point µ̂ of this
sequence, normalized, is a T -invariant probability measure concentrated on M0. Theo-
rem 2.1, see also the above proof of (H7), ensures that ∃C > 0 such that µ̂(Uε(S)) ≤ Cε,
∀ε > 0. Then the standard application of Borel-Cantelli lemma [13] proves Lemma 3.2.
2

Proposition 3.1 is proved.2

This concludes the proof of parts (a) and (b) of Theorem 1.1. 2

Corollary 3.3 ([9, 13]) For any SRB measure µ and any Λ > 1 we have µ(M0
Λ) = 1,

i.e., LUM’s and LSM’s exist a.e. with respect to any SRB measure.

Remark. Applying Borel-Cantelli lemma to νU rather than µ̂ yields that for any u-
manifold U we have νU(U \M+

Λ ) = 0, i.e. an LSM W s
x exists for νU -a.e. point x ∈ U .

Having proved the first two parts of Theorem 1.1, we conclude that all the SRB
measures satisfying the assumptions of the part (c) are actually mixing and Bernoulli.
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4 Refined filtration of u-manifolds

The techniques of Section 2 are not enough to obtain the statistical properties of T . We
will be dealing with rectangles defined later in Sect. 5. Those are made of points whose
both stable and unstable manifolds are large enough. The results of Sect. 2 allow us only
to control the sizes of unstable manifolds and their iterates. In order to locate points on
a given unstable manifold with large enough stable manifolds, we have to, according to
the Fact given in the previous section, discard the points whose orbits come too close to
the singularity manifold S.

Technically, we again consider the iterations of an admissible u-manifold W under
T n, n ≥ 0. The admissible u-filtration {Wn} constructed in Sect. 2 will be refined here,
so that points in W whose images come too close to the singularity manifolds will be set
apart and no longer iterated under T . This will create countably many gaps in W in
which stable manifolds fail to be long enough.

We start with a technical construction around the singularity manifold S. For every
δ′ � δ0 we define two parallel hypersurfaces at distance δ′ from every singularity manifold
Sj (located on both sides of Sj). They are obtained by moving every point x ∈ Sj the
distance δ′ from Sj along the normal vectors to Sj at x in both directions from Sj. Since
δ0 is less than the minimum radius of curvature of Sj, the resulting hypersurfaces will
be smooth ∀δ′ < δ0. We also make sure that those hypersurfaces terminate on the same
components of S as the original manifold Si. We denote by Ŝδ′

j the union of these two
hypersurfaces, ∀j = 1, . . . , r.

Now, fix a Λ ∈ (1, Λmin) and let δ2 � δ1 = δ0/(2β̄). The two parameters Λ and δ2

will govern all our further constructions in this section.
Let W be an admissible u-manifold and {Wn} its admissible u-filtration defined in

Sect. 2. For any n ≥ 0 we define an open subset W ′
n ⊂ Wn by

W ′
n =

{
x ∈ Wn : 0 < ρ(T nx,S) < δ2Λ

−n
}

(4.1)

This is a set of points whose n-th iterates come too close to the singularity manifolds.
Observe that the sets W ′

n, n ≥ 0, may overlap. So, we define W 0
n = W ′

n \ (W ′
0 ∪ · · · ∪

W ′
n−1). This set consists of points whose trajectories come too close to S at time n, not

earlier. Hence, W 0
n is a gap in W created at the n-th iteration. We then set W 1

0 = W
and W 1

n = W \ (W ′
0 ∪ · · · ∪W ′

n−1) for n ≥ 1. Thus, W 1
n is the part of W that survives n

iteration of T without coming too close to S.
All W 0

n and W 1
n are n-admissible open subsets of W . We call the two collections {W 1

n}
and {W 0

n} the refinement of the u-filtration {Wn}, or a refined u-filtration. We denote it
by ({Wn}, {W 1

n}, {W 0
n}).

We put W 1
∞ = ∩n≥0W

1
n . Observe that W 1

∞ ⊂ M+
Λ,δ2

, and so a stable disk W s
δ2

(x) of
radius δ2 exists at every point x ∈ W 1

∞.
Next, we characterize the ‘sizes’ of the u-manifolds T nW 1

n and T nW 0
n , n ≥ 0, in the

manner similar to that of Sect. 2. Define ∀n ≥ 0

Z1
n = Z[W, W 1

n , n] and Z0
n = Z[W, W 0

n , n]
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based on (2.4). In the case W 1
n = ∅ we have, of course, Z1

n = 0, but this will never actually
happen in our further constructions. Observe that Z1

0 = Z0, where Z0 was defined in
Theorem 2.1. Put also

w1
n = νW (W 1

n)/νW (W ) and w0
n = νW (W 0

n)/νW (W )

Observe that w1
n = 1− w0

0 − · · · − w0
n−1 and w1

n ↘ w1
∞

def
= νW (W 1

∞)/νW (W ) as n →∞.

Theorem 4.1 Let W be an admissible u-manifold and {Wn} its admissible u-filtration.
Let 1 < Λ < Λmin and δ2 � δ1. Then the refinement ({Wn}, {W 1

n}, {W 0
n}) of the u-

filtration {Wn} satisfies the following bounds:
(i) we have

Z1
1 ≤ αZ1

0 + βδ−1
0 (4.2)

with the same α ∈ (0, 1) and β > 0 as in Theorem 2.1, and for any n ≥ 2

Z1
n ≤ αnZ1

0 + βδ−1
0 (1 + α + · · ·+ αn−1) (4.3)

(ii) for any n ≥ 0 we have Z0
n ≤ (3K0 + 1)Z1

n;
(iii) for any n ≥ 0 we have w0

n ≤ Z0
nC

′δ2Λ
−n with some constant C ′ = C ′(T ) > 0.

Remark. This theorem is a refinement of Theorem 2.1. Part (i) essentially states
that even after the removal of the parts of T nW that come too close to singularities,
the remaining components grow exponentially fast, on the average. The part (iii) asserts
that the total measure of the gaps created at the n-th iteration is exponentially small
in n (quite natural). The part (ii) ensures that the boundaries of the gaps are ‘not too
ugly’: this is necessary to control further images of the gaps (coming into play later, in
Sect. 6), we will prove that they, too, grow fast enough, on the average.

Proof. To prove (4.2), we only need to modify Step 3 of the proof of Theorem 2.1.
According to (4.1), the sets W 0

0 and W 1
1 are made by cutting W with the hypersurfaces Sji

and Ŝδ2
ji

, 1 ≤ i ≤ k. Thus, in addition to k ≤ K0 singularity hyperplanes Σj, 1 ≤ j ≤ k,
in the notations used in the proof of Theorem 2.1, we now have k pairs of their parallel
copies, which we shall call Σ′

j and Σ′′
j , 1 ≤ j ≤ k.

Lemma 2.2 admits the following easy modification:

Lemma 4.2 Let W be a domain in IRdu ⊂ IRd with piecewise smooth boundary, and
Σ′, Σ′′ two parallel hyperplanes in IRd. Denote by B the layer in IRd between Σ′ and
Σ′′. For any ε > 0 put U0

ε = {x ∈ W : ρW (x, ∂W ) < ε} and U ′′
ε,1 = {x ∈ W \ B :

ρW (x, Σ′ ∪ Σ′′) < ε}. Then νW (U ′′
ε,1 \ U0

ε ) ≤ νW (U0
ε ).

We apply Lemma 4.2 to each pair of hyperplanes Σ′
j, Σ

′′
j , 1 ≤ j ≤ k and then sum

over j = 1, . . . , k as we did in Corollary 2.3. This proves (4.2).
The bound (4.3) follows from (4.2) by induction on n, as in Step 5 of the proof of

Theorem 2.1. We simply apply the bound (4.2) to every connected component of T nW 1
n ,

which is an admissible u-manifold.
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To prove (ii) for n = 0, we apply Corollary 2.3 to the entire collection of 3k hyperplanes
Σj, Σ

′
j, Σ

′′
j , 1 ≤ j ≤ k, and then get

νW (x ∈ W 0
0 : ρ(x, ∂W 0

0 ) < ε) ≤ (3K0 + 1)Z1
0 ενW (W )

To prove (ii) for n ≥ 1, we apply the above argument to every connected component of
T nW 1

n .
To prove (iii), observe that, in the notations of (4.1), ∀x ∈ W 0

n we have

ρT nW 0
n(x)

(
T nx, ∂T nW 0

n(x)
)
≤ ρT nW 0

n(x) (T nx,S) ≤ C ′δ2Λ
−n

where C ′ > 0 depends on the minimum angle between S and the unstable cone family.
We apply (2.3) and (2.4) with U = W , V = W 0

n , ε = C ′δ2Λ
−n and observe that then

νW (x ∈ W 0
n : rW 0

n ,n(x) < C ′δ2Λ
−n) = νW (W 0

n) = w0
n · νW (W )

This gives (iii). Theorem 4.1 is proved. 2.

Corollary 4.3 Let β̄ = 2β/(1−α), δ1 = δ0/(2β̄), a = −(ln α)−1 and b = max{0, a ln[δ0(1−
α)/β]} as in Section 2. Let Z̄0 = max{Z0, β̄/δ0}. Then
(i) Z1

n ≤ Z̄0 and Z0
n ≤ (3K0 + 1)Z̄0 for all n ≥ 0;

(ii) Z1
n ≤ β̄/δ0 = (2δ1)

−1 for all n ≥ a ln Z0 + b;
(iii) w0

n ≤ C ′′Z̄0δ2Λ
−n for all n ≥ 0, where C ′′ = (3K0 + 1)C ′;

(iv) w1
n ≥ 1− C ′′Z̄0δ2/(1− Λ−1) for all n ≥ 1;

(v) νW (W 1
∞) ≥ νW (W ) ·

[
1− C ′′Z̄0δ2/(1− Λ−1)

]
The values Z1

n and Z0
n do not characterize the average size of the components of T nW 1

n

or T nW 0
n , respectively, in the sense of Section 2, since W 1

n and W 0
n are not subsets of full

measure in W . To characterize the average sizes of the components of any n-admissible
open subset V ⊂ W we will use the quantity

Z[V, n] := sup
ε>0

νW (x ∈ V : rV,n(x) < ε)

ε · νW (V )
= Z[W, V, n]× νW (W )

νW (V )
(4.4)

This value depends on V but not on W . It characterizes the average size of the com-
ponents of T nV just like Z[U, V, n] did in Section 2 for subsets V ⊂ U of full measure.
Accordingly, the values of

Z[W 1
n , n] = Z1

n/w
1
n and Z[W 0

n , n] = Z0
n/w

0
n

characterize the average size of the components of T nW 1
n or T nW 0

n , respectively.
In our further constructions, the set W 1

∞ will be often very dense in W , so that
w1
∞ > 0.9. We call this a special case, and Corollary 4.3 then implies:
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Special case. If w1
∞ > 0.9, then for all n ≥ a ln Z0 + b we have Z[W 1

n , n] ≤ 0.6/δ1. We
will say then that the components of T nW 1

n are large enough, on the average.

Remark. The values of Z[U, V, n] in (2.4) and the values of Z1,0
n , w1,0

n in this sec-
tion will certainly not change if we replace the Lebesgue measures, νU in (2.4) and νW

here, by any measures proportional to those. It is also straightforward that all the re-
sults of Sections 2 and 4 extend to countable disjoint unions of admissible u-manifolds
with finite measures that are linear combinations of the Lebesgue measures on individ-
ual components. Precisely, let U = ∪kU

(k) be a countable union of pairwise disjoint
admissible u-manifolds and ν̂U =

∑
k ukνU(k) , with some uk > 0, a finite measure on U .

Then Z[U, V, n] is still defined by (2.4), with νU replaced by ν̂U , for any set V = ∪kV
(k),

where V (k) are some n-admissible open subsets of U (k). The definition of u-filtration
and the proof of Theorem 2.1 go through with only minor obvious changes. Likewise,
the definitions and results of this section apply to any countable union W = ∪W (k) of
admissible u-manifolds with any finite measure ν̂W =

∑
k ukνW (k) , provided we use the

same parameters Λ and δ2 for all W (k).

Final Remark. Let W ′ be an admissible u-manifold, k ≥ 1, and V ′ ⊂ W ′ a k-
admissible open subset. Then W = T kV ′ is a finite or countable union of admissible
u-manifolds. The measure ν̃W := T k

∗ νW ′|W on W is almost uniform (proportional to the
Lebesgue measure νW ) on each component of W , according to Key Remark of Sect. 2.
All the results of Sections 2 and 4 will then apply to (W, ν̃W ), instead of (W, νW ), but
the slight nonuniformity of the measure ν̃W with respect to νW might slightly affect the
values of the constants, such as α, β, a, b. The smaller δ0, the smaller changes in the
constants will be inflicted. In all that follows we assume that the constants are adjusted
accordingly, so that the results of Sections 2 and 4 apply to pairs (W, ν̃W ) as above.

Lastly, we generalize the above special case:

Proposition 4.4 Let ({Wn}, {W 1
n}, {W 0

n}) be a refined u-filtration of an admissible u-
manifold W , such that w1

∞ = p > 0. Then for all n ≥ a1(ln Z0 − ln p) + b1 we have
νW (W 1

∞)/νW (W 1
n) ≥ 0.9 and Z[W 1

n , n] ≤ 0.6/δ1, i.e. the components of T nW 1
n will

be large enough, on the average. Here a1 = a + (ln Λ)−1 and b1 is another constant
determined by α, β, δ0, Λ, C ′′.

Remark. Loosely speaking, it takes const·(ln Z0 − ln p) iterations to grow the com-
ponents of T nW 1

n large, on the average. Recall that it takes const· ln Z0 iterations to
grow the components of T nW , where Z0 characterizes the initial size of W . Now, the
manifolds T nW lose, along the way, some of the mass in gaps, and only a fraction, p,
of the initial mass survives. Therefore, additional const· ln p iterations are required to
recover the losses due to gaps.

Proof. Due to the part (ii) of Corollary 4.3, we have Z1
n ≤ (2δ1)

−1, and hence
Z[W 1

n , n] ≤ (2δ1p)−1, for all n ≥ n′ := a ln Z0 + b. Due to the part (iii) of the same
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corollary, we have
∑∞

i=n w0
i ≤ p/20 for all n ≥ n′′ := logΛ[20 C ′′Z̄0p

−1/(1 − Λ−1)]. Ob-
serve that n′, n′′ ≥ 0 and let k = n′ + n′′. The set W̃ := T kW 1

k is a finite or count-
able union of admissible u-manifolds. It carries the measure ν̃W̃ := T k

∗ νW |W̃ , so that
the results of this section apply to (W̃ , ν̃W̃ ), according to Final Remark. The subsets
T kW 1

m ⊂ W̃ , m ≥ k, correspond to a refined u-filtration ({W̃n}, {W̃ 1
n}, {W̃ 0

n}) of W̃
with δ2 replaced by δ2Λ

−k, so that T kW 1
m = W̃ 1

m−k, ∀m ≥ k. Since k ≥ n′, we have

Z[W̃ , W̃ , 0] = Z[W 1
k , k] ≤ (2δ1p)−1. Since k ≥ n′′, we have

w̃1
∞ = ν̃W̃ (W̃ 1

∞)/ν̃W̃ (W̃ ) = νW (W 1
∞)/νW (W 1

k ) ≥ 0.9

Thus, the refined u-filtration ({W̃n}, {W̃ 1
n}, {W̃ 0

n}) of W̃ falls in the above special case.
Hence, Z[W̃ 1

n , n] ≤ 0.6/δ1 for all n ≥ n′′′ := −a ln(2δ1p) + b. Therefore, for the original
refined u-filtration of W , we have Z[W 1

n , n] ≤ 0.6/δ1 for all n ≥ n′ + n′′ + n′′′. It is then
an easy calculation that n′ + n′′ + n′′′ ≤ a1(ln Z0 − ln p)+const. 2.

Final Remark (Part 2). The above proposition also applies to any pair (W, ν̃W )
described in Final Remark before the proposition. Likewise, some further results stated
and proved for admissible u-manifolds, W , with Lebesgue measures νW , will also apply
to measures ν̃W = T k

∗ νT−kW on W for any k ≥ 1 such that T−k is defined on W . We will
assume this without any more reminders.

5 Rectangles

The key instrument in Young’s proofs [13] of statistical properties of hyperbolic dynamical
systems is a set with hyperbolic product structure. Its full definition is quite long, but
for uniformly hyperbolic maps studied here such a set is just a rectangle or parallelogram
in Sinai-Bowen sense, cf. [11, 2].

Definition. A subset R ⊂ M0 is called a rectangle if ∃ε > 0 such that for any x, y ∈ R
there is an LSM W s(x) and an LUM W u(y), both of diameter ≤ ε, that meet in exactly
one point, which also belongs in R. We denote that point by [x, y] = W s(x) ∩W u(y).

In all our rectangles, we will have ε < δ0.
A subrectangle R′ ⊂ R is called a u-subrectangle if W u(x) ∩ R = W u(x) ∩ R′ for

all x ∈ R′. Similarly, s-subrectangles are defined. We say that a rectangle R′ u-crosses
another rectangle R if R′ ∩R is a u-subrectangle in R and an s-subrectangle in R′.

We introduce some more notation. Let x ∈ M and r ∈ (0, δ0). We denote by Sr(x)
any s-manifold that is a ball of radius r centered at x in its own metric, ρSr(x). By
that we mean ρSr(x)(x, y) = r, ∀y ∈ ∂Sr(x). We call such Sr(x) an s-disk. In order to
define s-disks also around points close to ∂M we extend the cone families Cu and Cs

continuously beyond the boundaries of M into the δ0-neighborhood of M . Then s-disks
Sr(x) exist ∀x ∈ M, ∀r ∈ (0, δ0). Note that Sr(x) is by no means uniquely determined
by x and r.
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Let U be a u-manifold of diameter < δ0, and x ∈ M . Clearly, any s-disk Sδ0(x) can
meet U in at most one point (as we always require δ0 be small enough). We call

Hx(U) = {y ∈ U : y = Sδ0(x) ∩ U for some Sδ0(x)}

the s-shadow of x on U .
We say that a point x ∈ M is overshadowed by a u-manifold U if ∀Sδ0(x) we have

Sδ0(x) ∩ U 6= ∅. Note that in this case, of course, ρ(x, U) ≤ δ0. We call

ρs(x, U) = sup
Sδ0

(x)
ρSδ0

(x)(x, Sδ0(x) ∩ U)

the s-distance from x to U (this one is also ≤ δ0 whenever defined).
Let U,U ′ be two u-manifolds of diameters < δ0. We call

HU(U ′) = ∪x∈UHx(U
′)

the s-shadow of U on U ′. We say that U ′ overshadows U if it overshadows every point
x ∈ U . In this case we define

ρs(U,U ′) = sup
x∈U

ρs(x, U ′)

the s-distance from U to U ′. It is not symmetric, since no two u-manifolds can simulta-
neously overshadow each other: geometrically, U ′ overshadows U if U is close to U ′ and
U ′ stretches all the way along U and a little beyond it.

Let Λ ∈ (1, Λmin) be the one fixed in Sect. 4. We assume that δ0, and hence δ1, are
small enough, so that M−

Λ,δ1
6= ∅. Therefore,

Aδ1
def
= {x ∈ M : the unstable disk W u

δ1
(x) exists} 6= ∅

(recall, cf. Sect. 3, that W u
ε (x) is the ball of radius ε centered at x in the local unstable

manifold W u(x)).
Let z ∈ Aδ1 . Consider W (z) := W u

δ1/3(z), the ‘central part’ of the existing unstable
disk W u

δ1
(z). It is an admissible u-manifold, and a perfect ball in its own metric. It is

an easy exercise that for a perfect ball W of radius δ in IRdu one has Z[W, W, 0] = du/δ.
Since the manifolds W (z), z ∈ Aδ1 , actually have some (bounded) sectional curvature,
Z[W (z), W (z), 0] might be larger than 3du/δ1, but if δ1 is small enough, that difference
is not big, and we will have

Z[W (z), W (z), 0] ≤ 4du/δ1 (5.1)

for all z ∈ Aδ1 .
Let δ2 � δ1 to be specified below, and ({Wn(z)}, {W 1

n(z)}, {W 0
n(z)}) the refined

u-filtration of W (z) defined in Sect. 4 and governed by the two parameters Λ and δ2.
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Lemma 5.1 If δ2/δ1 is small enough, then ∀z ∈ Aδ1 we have νW (z)(W
1
∞(z)) ≥ 0.9 ·

νW (z)(W (z)).

This follows from (5.1) and the part (v) of Corollary 4.3, provided

δ2

δ1

≤ 1− Λ−1

40 C ′′du

(5.2)

Convention. We will treat our small parameters δi, i ≥ 0, in the following way. On
the one hand, all of them are assumed to be small, and on the other hand, the ratios
δi+1/δi, i ≥ 0, are also small. Moreover, we will fix their ratios δi+1/δi, i ≥ 1, at some
points below, but still allow them to vary altogether with their ratios fixed.

In fact, the ratio δ1/δ0 = (2β̄)−1 is already fixed in Section 2. We now fix δ2/δ1 that
satisfies (5.2). Recall that ∀x ∈ W 1

∞(z) a stable disk W s
δ2

(x) exists, cf. Sect. 4.

Lemma 5.2 Let z ∈ Aδ1, and consider a refined u-filtration ({Wn(z)}, {W 1
n(z)}, {W 0

n(z)})
of the unstable disk W (z) = W u

δ1/3(z). Then ∀n ≥ n′0 := a ln(16du)+max{1, a ln[βδ−1
0 /(1−

α)]} we have
(i) Z1

n < (2δ1)
−1 and Z[W 1

n(z), n] < 0.6/δ1;
(ii) νW (z)(x ∈ W 1

n(z) : rW 1
n(z),n(x) > δ1) > 0.4 · νW (z)(W

1
n(z)) > 0.4 · νW (z)(W

1
∞(z)).

In other words, (ii) means that at least 40% of the points in T nW 1
n(z) (with respect to

the measure induced by νW (z)) lie a distance ≥ δ1 away from the boundaries of T nW 1
n(z).

Proof. This follows from the part (ii) of Corollary 4.3, Lemma 5.1 and (5.1), recall
also a similar bound (2.14). 2

Remark. Let z ∈ Aδ1 . For a moment, let W (z) = W u
ε (z) be the stable disk of any

radius ε ∈ (δ1/3, δ1). That disk W (z) is larger than W u
δ1/3(z), and so (5.1) still holds.

Therefore, the statements (i) and (ii) of the above lemma hold as well. Furthermore, if,
again for a moment, we decrease δ2 thus making the ratio δ2/δ1 smaller than the one
fixed above, then Lemma 5.1 will still hold, and then so will (i) and (ii) of Lemma 5.2.

In the next proposition, we consider the iterations of two nearby unstable manifolds
and prove that the ρs-distance between them decreases exponentially. Let δ3 � δ2, to be
specified later.

Proposition 5.3 Let W be an admissible u-manifold, and W ′ another u-manifold that
overshadows W and ρs(W, W ′) ≤ δ3. Let ({Wn}, {W 1

n}, {W 0
n}) be a refined u-filtration

of W . Then ∀n ≥ 1 and any connected component V of W 1
n there is a connected domain

V ′ ⊂ W ′ \ S(n) such that the u-manifold T nV ′ overshadows the admissible u-manifold
T nV , and ρs(T nV, T nV ′) ≤ δ3Λ

−n
min.
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Proof. The proof easily goes by induction on n, so that it suffices to prove the
proposition for n = 1. Put n = 1, and let V be a connected component of W 1

0 . Then
∀x ∈ V we have ρ(x,S) > δ2 by (4.1), so that any s-disk S2δ3(x) will cross W ′ but not S,
provided δ3/δ2 is small enough. Hence, the s-shadow H(V, W ′) belongs in one connected
component of W ′ \ S. It is then easy to see by direct inspection that its image under T
overshadows TV and the s-distance from TV to that image is ≤ δ3Λ

−1
min. 2

For any z ∈ Aδ1 we define a ‘canonical’ rectangle R(z) as follows: y ∈ R(z) iff
y = W s

δ2
(x)∩W u for some x ∈ W 1

∞(z) and for some LUM W u that overshadows W (z) =
W u

δ1/3(z), and such that ρs(W (z), W u) ≤ δ3. Observe that if δ3/δ2 < c′, where c′ > 0 is
determined by the minimum angle between the stable and unstable cone families, then
every W u that overshadows W (z) and is δ3-close to it in the above sense will meet all
stable disks W s

δ2
(x), x ∈ W 1

∞(z). In that case R(z) will be a rectangle, indeed. We fix
the ratio δ3/δ2 now as follows:

δ3/δ2 = min{c′, 1− Λ−1, 1/3} (5.3)

For any connected subdomain V ⊂ W (z) the set RV (z) := {y ∈ R(z) : W s(y) ∩ V 6=
∅} is an s-subrectangle in R(z) “with base V ”. Let n ≥ 1. The partition of W 1

n(z) into
connected components, {V }, induces a partition of R(z) into s-subrectangles {RV (z)}
that those components as bases. Let RV (z) be one of those s-subrectangles. It follows
from Proposition 5.3 that T nRV (z) is a rectangle. We call every rectangle T nRV (z) a
component of the set T nR(z), note that the entire set T nRV (z) does not have to be a
rectangle itself. We next consider the intersections of T nRV (z) with R(z′) for z′ ∈ Aδ1 .

First, we prove a technical lemma. It says that if two unstable manifolds come close
to each other at some points that are in their middle parts, then they must be close
enough to each other ‘all the way’.

Lemma 5.4 There is a c1 > 0 such that ∀z, z′ ∈ Aδ1 such that ρ(z, z′) < c1δ3, the
LUM W u

δ1/2(z
′) overshadows the LUM W (z) = W u

δ1/3(z), and ρs(W (z), W u
δ1/2(z

′)) ≤ δ3/2.
Likewise, the LUM W u

δ1
(z) overshadows the LUM W u

δ1/2(z
′), and ρs(W u

δ1/2(z
′), W u

δ1
(z)) ≤

δ3/2.

Proof. We will only prove the first statement, the second one is completely similar.
We need to prove that ∀x ∈ W (z) we have ρs(x, W u

δ1/2(z
′)) ≤ δ3/2. Assume that it is not

the case, i.e.
∃x ∈ W (z) : ρs(x, W u

δ1/2(z
′)) > δ3/2 (5.4)

Observe that ∀m ≥ 0, the map T−m is defined and smooth on both W u
δ1/2(z) and

W u
δ1/2(z

′). The distance between the inverse images Wm := T−m(W u
δ1/2(z)) and W ′

m :=
T−m(W u

δ1/2(z
′)) grows with m, and eventually these images may be separated by a sin-

gularity manifold. Let m ≥ 1 be the largest integer that satisfies two conditions:
(i) T−m is smooth on a connected domain in M that contains both W u

δ1
(z) and W u

δ1
(z′);

(ii) ρ(T−mz, W ′
m) ≤ δ1.
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Observe that ρs(z, W u
δ1/2(z

′)) ≤ C ′c1δ3 for some C ′ determined by the minimum angle
between the stable and unstable cone families. It is easy to see that ρs(T−mz, W ′

m) ≤
C ′′c1δ3Λ

m
max, where C ′′ is another constant determined by the minimum angle between the

stable and unstable cone families. On the other hand, we have the following lower bound
on the inner radius of the manifold Wm: ρWm(T−mz, ∂Wm) ≥ δ1Λ

−m
max/2. It follows from

(H3) that the LUM’s Wm and W ′
m cannot be separated by singularities as long as the

distance between them is � the inner radius of Wm. Therefore, 2c1δ3δ
−1
1 Λ2m

max ≥ c′′/C ′′,
where c′′ is some constant determined by the minimum angle between the unstable
cone family and S. Recall that δ3/δ2 and δ2/δ1 are fixed, so that δ3 = c̃δ1 with some
c̃ =const> 0. Hence, m ≥ ln[(2c̃c1)

−1c′′/C ′′]/ ln Λ2
max, so that m can be made arbitrarily

large by choosing c1 in the lemma very small. On the other hand, assuming (5.4) we
arrive at

ρs(T−mx, W ′
m) ≥ δ3Λ

m
min/2 = c̃δ1Λ

m
min/2

When m is large enough, the right hand side will be � δ1, which contradicts the require-
ment (ii) above (note that both manifolds Wm and W ′

m will be tiny, of diameter � δ1).
This proves the lemma. 2

We now get back to the intersections of T nRV (z) with R(z′) for z′ ∈ Aδ1 . We set
δ4 = c1δ3. We also fix n′′0 = min{n ≥ 1 : Λn

min > 2}

Proposition 5.5 Let z ∈ Aδ1 and n ≥ n′′0. Let V be a connected component of W 1
n(z) and

x ∈ V such that rV,n(x) > δ1 and ρ(T nx, z′) < δ4 for some z′ ∈ Aδ1. Then the rectangle
T nRV (z) u-crosses the rectangle R(z′), i.e. T nRV (z) ∩ R(z′) is (i) a u-subrectangle in
R(z′) and (ii) an s-subrectangle in T nRV (z).

Proof. According to Lemma 5.4, the LUM T nV overshadows W (z′), and ρs(W (z′), T nV ) ≤
δ3/2. According to our choice of n′′0 and Proposition 5.3, the LUM W u(y) for every
y ∈ T nRV (z) overshadows W (z′), and ρs(W (z′), W u(y)) ≤ δ3. This implies (ii). To prove
(i), we need to show that ∀x′ ∈ W 1

∞(z′) the point y′ = W s
δ3

(x′)∩T nV belongs in T nRV (z).
It is enough to show that the point y = T−ny′ ∈ W 1

∞(z). Firstly, y ∈ V ⊂ W 1
n(z), so

we only need to prove that y ∈ W 1
n+1+k(z), ∀k ≥ 0. Observe that ρ(T kx′,S) > δ2Λ

−k,
∀k ≥ 0, since x′ ∈ W 1

∞(z′). Next, observe that ρ(T kx′, T ky′) < δ3Λ
−k, ∀k ≥ 0, by virtue

of Proposition 5.3. Therefore, ρ(T ky′,S) > (δ2 − δ3)Λ
−k > δ2Λ

−n−k, the last inequality
follows from (5.3). Thus, y ∈ W 1

n+1+k(z), ∀k ≥ 0. 2.

6 Rectangular structure and return times

The scheme of our proof of the part (c) of Theorem 1.1 is the following. Let µ be an SRB
measure such that (T n, µ) is ergodic ∀n ≥ 1. According to the last remark of Sect. 3, µ
is also mixing and Bernoulli. Clearly, there is a δ0 > 0 and a z1 ∈ Aδ1 (remember that
δ1 = δ0/(2β̄)) such that µ(R(z1)) > 0. Note also that for any other ergodic SRB measure
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µ′ 6= µ we have µ′(R) = 0. We fix such a δ0 and one such z1 ∈ Aδ1 . We then denote, for
brevity, R = R(z1), W = W (z1), W 1

∞ = W 1
∞(z1), etc.

Let Z = {z1, z2, . . . , zp} be a finite δ4-dense subset of Aδ1 containing the above point
z1. We call R = ∪iR(zi) the rectangular structure. It is a finite union of rectangles that
most likely overlap and do not cover M or even the support of µ.

We will partition the set W 1
∞ into a countable collection of subsets W 1

∞,k, k ≥ 0, such
that for every k ≥ 1 there is an integer rk ≥ 1 such that for the s-subrectangle Rk ⊂ R
with base W 1

∞,k the set T rk(Rk) will be a u-subrectangle in some R(zi), zi ∈ Z. By the
s-subrectangle Rk ⊂ R with base W 1

∞,k we mean the set Rk = {x ∈ R : W s(x) ∩W 1
∞ ∈

W 1
∞,k}. Topologically, W 1

∞,k, k ≥ 1, are du-dimensional Cantor sets for systems with
singularities. We will call them gaskets. We consider the fact that T rk(Rk) is a u-
subrectangle in some R(zi) as a proper return (of Rk into R). We define a function r(x)
on W 1

∞ by r(x) = rk for x ∈ W 1
∞,k, k ≥ 1, and r(x) = ∞ for x ∈ W 1

∞,0. We call r(x) the
return time.

L.-S. Young proved [13] the following:

Theorem 6.1 If
∫
W 1
∞

r(x) dνW < ∞, then there is an SRB measure µR concentrated on
∪n≥0T

nR. That measure is ergodic, thus unique.

Theorem 6.2 If νW{r(x) > n} ≤ Cθn, ∀n ≥ 1, for some C > 0, θ ∈ (0, 1), then the
system (T, µR) enjoys an exponential decay of correlations and a central limit theorem.

We state these theorems here in a slightly wider version than Young did in [13]. One
gets her original theorems if one sets p = 1, i.e. when the rectangular structure contains
just one rectangle. However, Young worked with finite unions of (overlapping) rectangles
in Section 7 of [13], and showed that it was equivalent to working with one rectangle.

Alternatively, one can define the returns of R to itself rather than to ∪iR(zi) and then
apply the original Young’s theorems (with p = 1) directly. This can be done by using
the mixing property of the measure µ, along the lines of [3, 4], but this is not necessary
in view of the above.

The uniqueness of µR in Theorem 6.1 implies µR = µ. Note also that if T rk(Rk) ⊂
R(zi), then µ(R(zi)) > 0, so there are no possible returns to rectangles R(zi) ⊂ R of
zero µ-measure, i.e. they can be simply ignored. In summary, it remains to define the
function r(x) and prove an exponential tail bound:

νW{r(x) > n} ≤ Cθn (6.1)

for some C > 0, θ ∈ (0, 1), and all n ≥ 1.
In the rest of this section, we define the partition W 1

∞ = ∪kW
1
∞,k and the return time

r(x). Our definition consists in several steps.

Initial growth. First, we take n1 = max{n′0, n′′0}. According to Lemma 5.2, we have
(a) Z1

n1
< (2δ1)

−1 and Z[W 1
n1

, n1] < 0.6/δ1, i.e. the components of T n1W 1
n1

are large
enough, on the average, and
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(b) νW{x ∈ W 1
n1

: rW 1
n ,n(x) ≥ δ1} ≥ 0.4 νW (W 1

n1
), i.e. at least 40% of the points in

T n1W 1
n1

(with respect to the measure induced by νW ) lie a distance ≥ δ1 away from
∂T n1W 1

n1
.

(Recall that (b) actually follows from (a), cf. Lemma 5.2.) Let W g = T n1W 1
n1

, and
ν̃W g = T n1

∗ νW |W g the induced measure on W g. For every connected component V ⊂ W g

such that ∃xV ∈ V : ρV (xV , ∂V ) ≥ δ1 we arbitrarily fix one such point xV . Then
xV ∈ Aδ1 , and ∃zV ∈ Z such that ρ(xV , zV ) < δ4. We fix one such zV , too. Then we
label the set T−n1(V ∩ R(zV )) as one of our gaskets W 1

∞,k, and we define rk = n1 on it.
According to Proposition 5.5, T rk(Rk) is a u-subrectangle in R(zV ), indeed. Note that we
are defining at most one gasket in each component V of W g. We will sometimes slightly
abuse the terminology and call the set V ∩ R(zV ) a gasket, too (strictly speaking, it is
the image of a gasket).

Lemma 6.3 There is a q = q(T ) > 0 such that, independently of the choice of the points
xV and zV in the components V ⊂ W g, the just defined gaskets W 1

∞,k satisfy

νW

(
∪W 1

∞,k

)
≥ q νW (W 1

n1
)

Proof. The lemma follows from Lemmas 5.1 and 5.2, along with the absolute conti-
nuity (2.2). 2

Thus, a certain fraction (≥ q) of W g returns at the n1-th iteration. This is the earliest
return in our construction. Further returns are harder to define, and we first explain why.
Let n > n1 and ∃x ∈ V : ρV (x, ∂V ) > δ1 for some connected component V of T nW 1

n .
If we arbitrarily pick some points xV and zV as before, then the set T−n(V ∩ R(zV ))
may overlap with some previously defined gaskets W 1

∞,k, so we cannot label it as another
gasket. To avoid possible overlaps, we perform the following construction.

Capture. Every connected component V of W g where a point xV has been picked
is now subdivided into two connected sets: V c := W u

δ1/2(xV ) and V f := V \ V c. Observe
that V c overshadows W (zV ), according to Lemma 5.4, and so the gasket V ∩ R(zV )
defined above lies wholly in V c. We say that V c is ‘captured’ at the n1-th iteration. The
rest of V , i.e. the set V f , is ‘free to move’. The captured parts of W g are taken out of
circulation, for the moment, and the rest of W g, let us call it W f , is mapped further under
T , it contains no points of the previously defined gaskets. Denote W f

n = W f ∩T n1W 1
n1+n

for n ≥ 0. Observe that the manifolds W f
n , n ≥ 0, correspond to a refined u-filtration

{W f
n , W f,1

n , W f,0
n } of the u-manifold W f in the sense of Sect. 4 with δ2 replaced by δ2Λ

−n1 ,
so that W f

n = W f,1
n , ∀n ≥ 0.

We would like to see, first of all, that the components of T nW f
n for some n ≥ 0 are

large, on the average, precisely that Z[W f
n , n] < 0.6/δ1. This may not be the case for

n = 0, for the following reasons. The removal of the captured parts from W g will create
more boundary in the remaining part, W f , and also reduce its measure. As a result,
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Z[W f , W f , 0] > Z[W g, W g, 0] = Z[W 1
n1

, n1]. However, the ε-neighborhood of the bound-
ary increases at most twice ∀ε > 0, cf. the remark after Lemma 2.2. It is also clear that
ν̃W g(W f ) > ν̃W g(W g)/2. Therefore, Z[W f , W f , 0] < 4 · Z[W 1

n1
, n1] < 2.4/δ1. Applying

then the part (ii) of Corollary 4.3 to the manifold W f , which is possible according to
Final Remark of Section 4, with δ2 replaced by δ2Λ

−n1 yields Z[W f , W f
n , n] < (2δ1)

−1 for
all n ≥ n2, where n2 := [− ln 9.6/ ln α]+1. Also, the part (iv) of the same corollary, along
with (5.2), yields ν̃W g(W f

n ) > (1− 0.06 Λ−n1/du) ν̃W g(W f ) > 0.9 ν̃W g(W f ) for all n ≥ 0.
Therefore, due to (4.4), we have Z[W f

n , n] = Z[W f , W f
n , n] ν̃W g(W f )/ν̃W g(W f

n ) < 0.6/δ1

for all n ≥ n2, as desired. In other words, it takes a fixed number of iterations, n2,
to recover the lost average size of the freely moving manifold, T nW f

n , n ≥ 0, after the
removal of the captured parts from W g. As soon as this is done, i.e. at the iteration
n = n2, at least 40% of the image T nW f

n , will lie a distance ≥ δ1 from its boundary, just
as in the claim (b) above.

Now we inductively repeat the above procedure of picking points xV , zV in the large
components V of the freely moving manifold, defining new gaskets V ∩R(zV ), capturing
disks covering the newly defined gaskets, moving the remaining manifold another n2 it-
erations under T until its components grow large enough, on the average, etc. According
to Lemma 6.3, the points of the freely moving manifold are being captured at an expo-
nential rate: at least a fraction q > 0 of them is captured every n2 iterations of T . Let
t0(x), x ∈ W 1

∞, be the number of iterations it takes to capture the image of the point x.
Observe that t0(x) = n1 + kn2 for some k = 0, 1, . . .. Lemma 6.3 implies that

νW (t0(x) > n)/νW (W 1
∞) ≤ C0θ

n
0 (6.2)

with θ0 = q1/n2 < 1 and some C0 > 0. In particular, t0(x) < ∞ for a.e. x ∈ W 1
∞.

Release. Next, we take care of the captured parts of the manifolds T nW 1
n , n ≥ 1.

They are all very similar. Let Bc ⊂ T ncW 1
nc

be a connected part captured at the nc-th
iteration of T , nc ≥ n1. Then Bc is a perfect ball of radius δ1/2 in some connected
component of T ncW 1

nc
. It carries the measure ν̃Bc = T nc

∗ νW |Bc. The center xc of the disk
Bc belongs in Aδ1 , and there is a point zc ∈ Z such that ρ(xc, zc) < δ4 and such that
the set Bc

R := Bc ∩ R(zc) makes a new gasket at the moment of capture. The points
of the gasket successfully return to R(zc), i.e. r(x) = nc for x ∈ T−ncBc

R. Denote also
Bc
∞ = Bc ∩ T ncW 1

∞. We now have to take care of the set Bc
∞ \Bc

R.
Denote Bc

n = Bc ∩ T ncW 1
nc+n for n ≥ 0. According to the remark after Lemma 5.2,

we have
Z[Bc, Bc, 0] ≤ 4du/δ1 and Z[Bc

n, n] < 0.6/δ1, ∀n ≥ n′0 (6.3)

In other words, it takes n′0 iterations of T to make the components of T nBc
n large enough,

on the average.
In order to define a new gasket in any large component V of T nBc

n and avoid possible
overlaps with the image T nBc

R of the old gasket Bc
R, we will make sure that V contains

no points of T nBc
R. To get a control of that, we define a ‘release time’ (we will call it

also ‘point release time’), f(x), for points x ∈ Bc
∞ \ Bc

R. Loosely speaking, a point x
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will be ‘released’ if T f(x)(x) is sufficiently far from T f(x)Bc
R, so that for all n ≥ f(x) the

component of T nBc
n containing T nx will contain no points of T nBc

R.
The definition of the release time requires a classification of points x ∈ Bc

∞ \Bc
R.

Type I points are such that there is an LSM W s(x) meeting the manifold W u
δ1

(zc) in
one point, call it h(x). Then h(x) /∈ W 1

∞(zc), otherwise x would have belonged in Bc
R.

Hence, either h(x) ∈ W u
δ1

(zc) \ W u
δ1/3(zc) or h(x) ∈ W 0

m(zc) for some m = m(x) ≥ 0.
In the former case, we set m(x) = 0 and ε(x) = ρ(h(x), W u

δ1/3(zc)). In the latter case

we set ε(x) = ρ(Tmh(x), ∂TmW 0
m(zc)). We now define the release time to be f(x) =

m(x) + logΛ(δ0/ε(x)), one formula for both cases.

Type II points have no local stable manifolds that extend to W u
δ1

(zc). Let x ∈ Bc
∞ be

such a point. According to the second statement in Lemma 5.4, ρs(x, W u
δ1

(zc)) ≤ δ3/2.
Hence, no local stable manifold W s(x) contains a stable disk of radius δ3/2 around x.
Therefore, x /∈ M+

Λ,δ3/2, in virtue of the Fact of Section 3. Let then m = m(x) =

min{m′ > 0 : ρ(Tm′
x,S) ≤ δ3Λ

−m′
/2}. We claim that, on the component of TmBc

m

containing Tmx, there are no points of TmBc
R in the (δ2Λ

−m/2)-neighborhood of Tmx.
Indeed, if some point y ∈ TmBc

R were there, its local stable manifold W s(y) would contain
a point y′ ∈ TmW 1

∞(zc), which is at distance ≤ δ3Λ
−m from y. Then ρ(y′,S) ≤ δ2Λ

−m,
since δ3 ≤ δ2/3, cf. (5.3). This, however, contradicts the definition of W 1

∞(zc), cf. (4.1).
We now define the release time to be f(x) = 2m(x) + logΛ(2δ0/δ2).

It is clear that for any point x ∈ Bc
∞ \ Bc

R of either type I or II and any n ≥ f(x)
the point T nx should be at least the distance δ0 from T nBc

R (measured along T nBc
n), so

that, in fact, the component of T nBc
n containing T nx does not intersect T nBc

R at all.
Therefore, we are free to define new gaskets and capture new disks on any component

V ⊂ T nBc
n that contains at least one released point, i.e. such that ∃x ∈ T−nV : f(x) ≤ n.

We can only define a gasket, however, if ∃x ∈ V : ρV (x, ∂V ) ≥ δ1, i.e. if V is large enough.
Hence the next step in our construction.

Growth. To get a control on the size of the components of T nBc
n, we gather, for

every n ≥ 0, the components V ⊂ T nBc
n released at the n-th iteration. We say that V is

released at the n-th iteration if at least one point of V is released at this iteration, and
none of the points of the component of T iBc

i that contains T−(n−i)V is released at the
i-th iteration for any i = 0, . . . , n− 1. In that case we define another function, s(x) = n,
on Bc

∞ ∩ T−nV . We call s(x) the ‘component release time’ (as opposed to the point
release time f(x) defined earlier). Observe that s(x) is defined for each x ∈ Bc

∞ \Bc
R and

s(x) ≤ f(x).
Fix an s ≥ 0 (the ‘component release time’) and let

W̃ = W̃ (s) = ∪{V ⊂ T sBc
s : s(x) = s ∀x ∈ Bc

∞ ∩ T−sV } (6.4)

be the union of the components of T sBc
s released exactly at the s-th iteration. The

manifold W̃ carries the measure ν̃W̃ = T s
∗ ν̃Bc |W̃ . Observe that the sets W̃ ∩ T sBc

s+n,
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n ≥ 0, correspond to a refined u-filtration {W̃n, W̃
1
n , W̃ 0

n} of W̃ in the sense of Sect. 4
with δ2 replaced by δ2Λ

−nc−s, so that W̃ ∩ T sBc
s+n = W̃ 1

n . Denote

p(s) = ν̃W̃ (W̃ 1
∞)/ν̃W̃ (W̃ ) = ν̃W̃ (W̃ ∩ T sBc

∞)/ν̃W̃ (W̃ ) (6.5)

In a trivial case, when p(s) = 0, there is nothing in W̃ to worry about, and we disregard
such a release time s. If p(s) > 0, then Proposition 4.4 applies to (W̃ , ν̃W̃ ), according to
Final Remark (Part 2). Hence, ∃n ≥ 1 such that Z[W̃ 1

n , n] ≤ 0.6/δ1, i.e. the components
of T nW̃ 1

n are large enough, on the average. Let g be the minimum of such n’s. We call g
the ‘growth time’ and define another function, g(x) = g on Bc

∞ ∩ T−sW̃ (note that g(x)
is a constant function on Bc

∞ ∩ T−sW̃ , and it only depends on s, so we will also write it
as g(s)).

Consider now the manifold Ŵ = T gW̃ 1
g and the measure ν̃Ŵ = T g

∗ ν̃W̃ |Ŵ on it. Denote

Ŵ 1
∞ = T g(W̃ 1

∞) = T g(W̃ ∩ T sBc
∞) the subset of Ŵ we will keep track of. According to

Proposition 4.4, we have
(c) ν̃Ŵ (Ŵ 1

∞) > 0.9 ν̃Ŵ (Ŵ ), and

(d) Z[Ŵ , Ŵ , 0] ≤ 0.6/δ1, so that at least 40% of the points in Ŵ (with respect to the
measure ν̃Ŵ ) lie a distance ≥ δ1 away from ∂Ŵ .
Next, we define new gaskets and capture disks covering them on the large components
of Ŵ , as we did to W g early in this section. Then we move the remaining parts of Ŵ
under T n2 , again define new gaskets and capture new disks, etc., exactly repeating the
procedure applied to W g during the period of initial growth. Let t(x) be the ‘capture
time’ for x ∈ Ŵ 1

∞, i.e. the minimum of t ≥ 0 such that T tx belongs in a captured disk.
Note that T tx might be luckily covered by a gasket, then it returns to R, or else it has
to be iterated further under T .

Lemma 6.4 We have ν̃Ŵ (t(x) > n)/ν̃Ŵ (Ŵ 1
∞) ≤ C0θ

n
0 with the same constants as in

(6.2).

Proof. The lemma follows from the properties (c) and (d) of the manifold Ŵ just like
Lemma 6.3 and (6.2) followed from the similar properties of the manifold W g. 2

Summary. We summarize the ideas of our constructions. For every release time
s ≥ 0 we take the union W̃ of the components of T sBc

s released exactly at the s-th
iteration, iterate them further g times without capturing or defining gaskets, then they
become large enough, on the average. Then our construction repeats inductively. We
define new gaskets and capture new disks on the components of T tW̃ , t ≥ g, the gaskets
make successful return to R at the time they are defined, the captured points around
gaskets are iterated further and eventually released, the released components grow in size
until they become large enough, on the average, then new gaskets are defined, etc. For
a.e. point x ∈ W 1

∞, the cycle ‘growth→capture→release→growth. . .’ repeats until the
point returns to R at a moment of capture. If it never returns, however, we put it into
W 1

∞,0 and set r(x) = ∞. This concludes our definition of the partition W 1
∞ = ∪kW

1
∞,k

and the return time r(x).
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7 Exponential tail bound

In this section we prove the exponential tail bound (6.1). First, we show that the points
of any captured disk Bc are being released at an exponential rate.

Lemma 7.1 There are C1 > 0 and θ1 ∈ (0, 1) such that for every captured disk Bc we
have ν̃Bc(f(x) > n)/ν̃Bc(Bc) < C1θ

n
1 , ∀n ≥ 0.

Proof. Recall that we have defined the point release time f(x) separately for the
captured points of types I and II. First, we take care of points of type I. Recall that
for every point x of type I we have defined a point h(x) ∈ W u

δ1
(zc) and two numbers,

m(x) ≥ 0 and ε(x) > 0. In view of the absolute continuity (2.2), it is enough to estimate
the measure νW u

δ1
(zc){h(x) : f(x) > n}. The measure of the set {h(x) : m(x) > n/2}

is exponentially small in n due to the part (iii) of Corollary 4.3 and (5.1). Next, for
every 0 ≤ m ≤ n/2, the measure of the set {h(x) : m(x) = m & ε(x) < δ2Λ

−n/2} is
exponentially small in n, uniformly in m, in view of the definition of Z0

m and the part (i)
of Corollary 4.3 and (5.1). Thus, the points of type I obey our claim.

For any point x of type II with m(x) = m, observe that ρV (Tmx, ∂V ∪ S) <
C ′δ3Λ

−m/2, where V is the component of TmBc containing Tmx, and C ′ > 0 is a
constant depending on the minimum angle between unstable cones and S. Hence,
ρV ′(T

m+1x, ∂V ′) ≤ C ′Λmaxδ3Λ
−m/2, where V ′ is the component of Tm+1Bc containing

Tm+1x. The measure of the set of such points is then exponentially small in m in view
of the definition of Zm+1 in Sect. 2 as applied to the u-manifold U = Bc, combined with
the part (ii) of Theorem 2.1 and (6.3). 2.

For brevity, we normalize the measure ν̃Bc , so that ν̃Bc(Bc) = 1. The next lemma
shows that the released components in the images of any captured disk Bc grow at an
exponential rate:

Lemma 7.2 There are C2 > 0 and θ2 ∈ (0, 1) such that for every captured disk Bc we
have ν̃Bc(s(x) + g(x) > n) < C2θ

n
2 , ∀n ≥ 0.

Proof. Let s ≥ 0 be fixed. We will use the notations W̃ (s) and p(s) introduced by (6.4)
and (6.5). On the set Bc

∞ ∩ T−sW̃ (s), the functions s(x) = s and g(x) = g(s) = g have
constant values. Proposition 4.4 implies that g ≤ a1(ln Z[W̃ (s), W̃ (s), 0]− ln p(s)) + b1.
Let q(s) := ν̃Bc(T−sW̃ (s)), then Z[W̃ (s), W̃ (s), 0] ≤ 4du(δ1q(s))

−1, according to (6.3).
Therefore, g ≤ −a1 ln[p(s)q(s)] + const, so that

p(s)q(s) ≤ const · exp (−g/a1) (7.1)

Observe that
p(s)q(s) = ν̃Bc(Bc

∞ ∩ T−sW̃ (s)) ≤ C1θ
s
1 (7.2)

due to Lemma 7.1, since s(x) ≤ f(x). Now let θ2
2 = max{θ1, e

−1/a1}. Then (7.1) and
(7.2) imply that, for all s ≥ 0,

ν̃Bc(Bc
∞ ∩ T−sW̃ (s)) = p(s)q(s) ≤ const · θs+g

2
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The lemma now follows immediately. 2.

We are now in a position to prove the tail bound (6.1). Let x ∈ W 1
∞. The point x first

goes through the period of initial growth, which takes t0(x) iterations. Then it is captured
and either returns or goes through one or more cycles of ‘release→growth→capture’
before it makes return. Let N(x) ≥ 0 be the number of cycles the point x goes through
before it returns, and si(x), gi(x), ti(x) be the lengths of the ‘release’, ‘growth’, and
‘capture’ periods, respectively, in the i-th cycle. Then

r(x) = t0(x) +
N(x)∑
i=1

[si(x) + gi(x) + ti(x)]

We have already proved exponential tail bounds for t0(x), cf. (6.2), for ti(x), cf.
Lemma 6.4, and for the sum si(x) + gi(x), cf. Lemma 7.2. Furthermore, since a certain
fraction (≥ q) of every captured disk makes return (due to Lemma 5.1 and the absolute
continuity (2.2), in the same way as in the proof of Lemma 6.3), we get an exponential
tail bound on N(x): νW (N(x) > n) ≤ (1− q)n for all n ≥ 0.

Now an exponential tail bound on r(x) can be obtained by a standard argument
developed in [4] (pp. 129–130) and used in [13] (Sublemma 6 in Section 7).

Instead of repeating that argument, we present a different one here, of a completely
probabilistic nature. Its relevance to our previous discussion will be quite clear. Let
ξn, n ≥ 1, be a sequence of independent identically distributed random variables taking
positive integral values and satisfying an exponential tail bound P (ξi = n) ≤ c1λ

n
1 for

some c1 > 0, λ1 ∈ (0, 1). Let also N be a random variable independent from all ξi’s,
taking positive integral values, and satisfying an exponential tail bound P (N = n) ≤ c2λ

n
2

for some c2 > 0 and λ2 ∈ (0, 1). Let SN =
∑N

i=1 ξi.

Proposition 7.3 The random variable SN satisfies an exponential tail bound P (SN =
n) ≤ cλn with some c > 0 and λ ∈ (0, 1).

Proof. The generating function

Gξ(z) =
∞∑

n=1

P (ξi = n) zn

is analytic in the open disk |z| < λ−1
1 . The generating function of SN is

GSN
(z) =

∞∑
n=1

P (N = n)Gn
ξ (z)

Since |Gξ(z)| ≤ 1 on the closed unit disk |z| ≤ 1, then for any 1 < A < min{λ−1
1 , λ−1

2 }
we have |Gξ(z)| ≤ A on some larger open disk |z| < 1 + εA, εA > 0. Then GSN

(z) is an
analytic function in the open disk |z| < 1+εA. This implies P (SN = n) ≤ const·(1+ε′)−n

for ε′ < εA. 2
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