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Abstract

We discuss rigorous results and open problems on the decay of correlations for
dynamical systems characterized by elastic collisions: hard balls, Lorentz gases,
Sinai billiards and related models. Recently developed techniques for general dy-
namical systems with some hyperbolic behavior are discussed. These techniques
give exponential decay of correlations for many classes of billiards and open the
door to further investigations.

1 Definitions

This is a survey on the statistical properties of Lorentz gases and gases of hard balls.
The properties of interest to us include rates of correlation decay, central limit theorems,
and invariance principles. We begin with some precise definitions.

Let Φt : M → M be a dynamical system preserving a probability measure µ. The
time t here is either discrete, i.e. t ∈ ZZ, or continuous, i.e. t ∈ IR. Let f : M → IR be a
real-valued measurable function which we think of as an observable. Then the family

ξt = f ◦ Φt, t ∈ ZZ or IR ,

defines a stationary stochastic process with (M, µ) as the underlying probability space,
stationarity following from the invariance of the measure µ.

For t > 0, let St : M → IR be the accumulation function of ξt. That is to say,

St = f + f ◦ Φ1 + f ◦ Φ2 + · · ·+ f ◦ Φt−1

in the case of discrete time and

St =
∫ t

0
f ◦ Φs ds
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in the case of continuous time. (We assume in the latter that as a function of t, f ◦Φt(x)
is continuous or at least piecewise continuous for a.e. x ∈ M , so that the integral is well
defined). The function St/t is the time average of the process ξt. We denote by 〈·〉 the
expected value of a function with respect to µ.

The Birkhoff Ergodic Theorem asserts that if (M, Φt, µ) is ergodic and f is integrable,
then St/t converges almost surely to 〈f〉 as t → ∞. In probability theory, this is also
called the strong law of large numbers.

As we shall see, under suitable assumptions on the system Φt : M → M and the
observable f , many other results in probability theory can be carried over to the stochastic
process ξt and its accumulation function St.

An important object of study is the time correlation function

Cf (t) = 〈f · (f ◦ Φt)〉 − 〈f〉2. (1.1)

This function measures the dependence between the values of f at time 0 and time t.
It is also common to study the asymptotics of more general correlation functions than
(1.1), namely

Cf,g(t) = 〈f · (g ◦ Φt)〉 − 〈f〉〈g〉 (1.2)

where g : M → IR is another measurable function. The function Cf (t) in (1.1) is called
an autocorrelation function.

In statistical physics, autocorrelation functions are involved in transport theories.
Transport coefficients (such as diffusion coefficient, heat or electrical conductivity, shear
viscosity) can be expressed through integrals of certain autocorrelation functions. See
the survey [Bu].

Next, we say that ξt satisfies the central limit theorem (CLT) if

lim
t→∞µ

{
St − t〈f〉√

t
< z

}
=

1√
2πσ

∫ z

−∞
e−

s2

2σ2 ds (1.3)

for all −∞ < z < ∞. Here σ = σf ≥ 0 is a constant. (In the case σf = 0, the right
side of the equation is to be read as 0 for z < 0 and 1 for z > 0.) Equation (1.3) is
equivalent to the convergence of (St − t〈f〉)/√t in distribution to the normal random
variable N(0, σ2

f ). We remark that the central limit theorem is considerably more refined
than the Birkhoff Ergodic Theorem; it tells us that the distribution of the deviations of
the time average St/t from its limit value 〈f〉, when scaled by 1/

√
t, is asymptotically

Gaussian.
The variance σ2

f in the CLT is related to the correlation function (1.1) by

σ2
f = Cf (0) + 2

∞∑

n=1

Cf (n) (1.4)

in the case of discrete time and

σ2
f =

∫ ∞

−∞
Cf (t) dt (1.5)
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in the case of continuous time. It follows that a prerequisite for the central limit theorem
is the integrability of the correlation function Cf (t). Most existing proofs of the CLT
for dynamical systems follow essentially (though not immediately) from slightly stronger
estimates on the speed of correlation decay, i.e. the speed with which Cf (t) tends to 0
as t →∞.

We remark also that under very mild assumptions, σ2
f = 0 if and only if the function

f is cohomologous to a constant. This means, in the discrete time case, that f =
K + g − g ◦ Φ for some g ∈ L2(M) and a constant K, and in the continuous time case,
that f = K + d

dt
|t=0(g ◦ Φt).

A good survey on issues related to the central limit theorem for dynamical systems
may be found in [De].

An invariance principle often accompanies the central limit theorem in the study of
random processes and dynamical systems. For large T > 0, x ∈ M and 0 ≤ s ≤ 1,
consider the function WT (s; x) defined by

WT (s; x) =
St(x)− t〈f〉

σ
√

T
where t = sT .

In the discrete time case, we interpolate linearly between integer values of t, letting

WT (s; x) = (k + 1− sT ) WT (k/T ; x) + (sT − k) WT ((k + 1)/T ; x)

for k/T < s < (k + 1)/T .
For fixed T , the family {WT (s; x), x ∈ M} induces a probability measure on the space

of piecewise continuous functions on [0, 1]. We say that ξt satisfies the weak invariance
principle (WIP) if this measure converges, as T → ∞, to the Wiener measure. We
say that ξt satisfies an almost sure invariance principle (ASIP) if there is a standard
Brownian motion B(s; x) on M with respect to the measure µ so that for some λ > 0,

|WT (s; x)−B(s; x)| = O(s−λ)

for µ-almost all x ∈ M . The invariance principle asserts, therefore, that the accumulation
function St, after a proper rescaling of space and time, converges to the Wiener process
(or Brownian motion). The weak invariance principle is sometimes called the functional
central limit theorem. More detailed discussions may be found in [C3, DP, PS].

Other refinements of the central limit theorem and related probabilistic limit laws also
have their corresponding versions for dynamical systems. For example, one can prove
a local central limit theorem, the law of iterated logarithms, renewal theorems, Borel-
Cantelli lemmas, Poisson distribution for return times etc. These extensions would take
us too far from the main topic and will not be discussed here.

Finally, let us relate the discussion above to some of the standard notions in ergodic
theory. Recall that a dynamical system (M, Φt, µ) is said to be mixing if for any two
measurable sets A,B ⊂ M , we have µ(A∩Φ−tB) → µ(A)µ(B) as t →∞. The following
fact is standard in ergodic theory:
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Fact Cf,g(t) → 0 as t →∞ for all f, g ∈ L2(M) if and only if (M, Φt, µ) is mixing.

One might surmise that stronger versions of mixing (for example, multiple mixing,
K-mixing, or Bernoulli) imply fast decay of correlations. This is not true. Even the
Bernoulli property cannot guarantee any speed of convergence of Cf,g(t) to zero for arbi-
trary functions f, g ∈ L2(M), not even for bounded or continuous functions! Moreover,
let Φt be the “most chaotic” of all known dynamical systems, such as an expanding
interval map or a hyperbolic toral automorphism. Even then, for typical integrable or
continuous functions f, g on M , the convergence of Cf,g(t) to zero is arbitrarily slow, and
the central limit theorem (1.3) fails (cf. [C3, CC, JR, V]). In order to have a reason-
able speed of correlation decay common to a family of observables, or to guarantee the
CLT, it is necessary to restrict ourselves to observables with some regularity. In general,
Hölder continuity is sufficient. Fortunately, all interesting functions in physics (such as
temperature, energy, velocity) are smooth or at least piecewise smooth. This makes it
possible to obtain strong statistical properties for many physically relevant observables.

2 Historical overview

Among the dynamical systems first rigorously studied are geodesic flows on manifolds of
constant negative curvature [Ha, He, Ho]. E. Hopf [Ho] proved ergodicity for these flows
as early as 1940. His argument relies on the existence of a pair of transversal foliations
whose leaves are made up of stable and unstable manifolds (called horocycles in the case
of geodesic flows). Hopf’s argument is simple yet far reaching. While it alone is not
adequate in more complicated situations, it lies at the heart of many proofs of ergodicity,
including those for the dynamical systems considered in this survey.

Following Hopf’s work, the dynamics of geodesic flows on manifolds of constant neg-
ative curvature were investigated by Ya. Sinai. In the late fifties, Sinai noticed a striking
resemblance between these flows and stationary random processes. He proved the central
limit theorem in 1960 [Si1] and the K-mixing property in 1961 [Si2]. In 1967, D. Anosov
[An] completed a study of geodesic flows on manifolds of variable negative curvature,
proving ergodicity, in particular, along the lines of Hopf. The Bernoulli property was
later proved by D. Ornstein and B. Weiss [OW] and by Ratner [Ra2].

Generalizing a key property of geodesic flows on manifolds of negative curvature,
Anosov [An] introduced a class of flows with the property that Φt leaves invariant a pair of
foliations transversal to the vector field, uniformly expanding distances in one of them and
uniformly contracting distances in the other. He called these flows and their discrete-time
versions C-systems; they are now known as Anosov diffeomorphisms and flows, and the
dynamical property described above is called uniform hyperbolicity. At roughly the same
time, S. Smale [Sm] introduced his famous horseshoe model and the notion of Axiom A.
The Axiom A condition requires only that the system be uniformly hyperbolic on certain
recurrent sets and not necessarily on the entire manifold. Axiom A systems, therefore, are
more general than Anosov systems. Unlike geodesic flows, however, Anosov and Axiom A
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systems do not always admit invariant probability measures that are compatible with
volume. This perhaps motivated the study of more general invariant measures.

An important class of invariant measures for dynamical systems has its origins in
statistical physics. This came about in a curious way. In 1967 Adler and Weiss [AW]
constructed Markov partitions for linear toral automorphisms. In 1968 Sinai [Si3, Si4]
constructed Markov partitions for all Anosov diffeomorphisms. Via a Markov partition,
the trajectory of each point is coded by an infinite sequence of symbols from a finite
alphabet, and the dynamics of the map is represented by a topological Markov chain.
Spaces of symbol sequences are naturally reminiscent of one-dimensional lattice models
in statistical mechanics. For lattice models, Gibbs measures were constructed in 1968-
1969 by R. Dobrushin [Db1, Db2, Db3] and by O. Lanford and D. Ruelle [LR], who also
showed that translationally invariant Gibbs measures are equilibrium states, i.e. they
are characterized by a variational principle. Using Markov partitions, Sinai developed a
theory of Gibbs measures for Anosov diffeomorphisms in 1972 [Si6] in analogy with that
for lattice models. In the meantime, Bowen constructed Markov partitions for all Axiom
A diffeomorphisms [B1], making it possible to extend the theory of Gibbs measures to
this larger context. See [B3] for an exposition.

For dynamical systems, certain invariant measures are more important than others
from the standpoint of physics. Here we take the view that observable events correspond
to sets of positive Lebesgue measure in the phase space. It follows that the invariant
measures of interest in physics are those that reflect the distributions of orbits starting
from sets of positive Lebesgue measure. This is all very natural for conservative systems,
i.e. for systems that preserve smooth measures. In the presence of dissipation, the sit-
uation is more subtle: there is no reason a priori why any invariant measure with the
desired property should exist. For Anosov diffeomorphisms and Axiom A attractors, it
turns out these measures can be found among Gibbs measures [Si6]. Equivalent charac-
terizations emphasizing their connection to Lebesgue-almost every initial condition are
given in [Ru2, BR]; see also [B3]. Today these special invariant measures are known as
Sinai-Ruelle-Bowen measures or SRB measures.

In the discrete time case, strong statistical properties for Gibbs measures were ob-
tained (mostly) by Sinai [Si6] and Ruelle [Ru1, Ru2]; a version of it is given in [B3]. In
these papers, exponential decay of correlations for Hölder continuous functions is proved
for Anosov and Axiom A diffeomorphisms. From this the central limit theorem is easily
deduced. For Axiom A flows, the Bernoulli property and central limit theorem were
proved by Ratner [Ra2], and the ASIP was obtained by M. Denker and W. Philipp [DP].
Asymptotic bounds on correlations in continuous time have turned out to be considerably
more delicate. First, Ruelle [Ru4] and M. Pollicott [Po] obtained negative results: they
found Axiom A flows with arbitrarily slow rates of correlation decay. Recently D. Dolgo-
pyat [Do1] proved the exponential decay of correlations for Anosov flows under certain
additional assumptions and for all geodesic flows on surfaces of negative curvature. He
also proved [Do2] that there is an open and dense set of Axiom A flows that enjoy rapid
mixing in the sense of Schwarz. Whether “most” Anosov flows have exponential decay
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of correlations is unknown at this time.
Today, the theory of Anosov and Axiom A systems can be regarded as fairly complete.

In statistical physics, these systems have become a reference model, a paradigm for many
heuristic studies of chaotic multiparticle systems – gases and fluids (both in and out of
equilibrium). G. Gallavotti and E. Cohen [GC] spelled this out in their Axiom C in
1995. They stated that chaotic multiparticle systems could be regarded, for the purpose
of averaging of phase observables, as Anosov systems.

Since the seventies, mathematicians have tried to extend the theory of Axiom A sys-
tems to dynamical systems having some hyperbolic behavior but satisfying less stringent
conditions. Particularly important to physicists are billiard models, including hard-ball
gases and Lorentz gases. Analogies between collisions of hard balls and geodesic flows
on manifolds of negative curvature had been noticed by N. Krylov [K] decades earlier.
Krylov pointed out that the convex surface of hard balls produces the same scattering
effect on phase trajectories as the negative curvature of the manifold on geodesic curves.

In 1970 Sinai [Si5] undertook a systematic study of planar periodic Lorentz gases
and, more generally, of planar billiards in tables with concave boundaries (now called
dispersing billiards or Sinai billiards). He investigated the hyperbolic properties of these
billiards and proved ergodicity and the K-mixing property. A major difference between
billiards and Anosov systems lies in the fact that billiard flows are not continuous. Sin-
gularity sets break up stable and unstable curves into arbitrarily small pieces, making
the proof of ergodicity considerably more involved and ruling out the existence of finite
Markov partitions, which, as we recall, were the main tool in understanding the ergodic
theory of Anosov systems. Sinai’s seminal work paved the way for many subsequent
developments in this direction.

In 1980, L. Bunimovich and Sinai considered billiard maps associated with planar
periodic Lorentz gases and constructed for them countable Markov partitions [BS1]; see
also [BSC1]. (Billiard maps are return maps on the Poincare sections of billiard flows
corresponding to collisions.) In 1981, Bunimovich and Sinai [BS2] established the CLT
and WIP with the help of these Markov partitions. Note that from the point of view of
physics, the WIP for Lorentz gases has the following important interpretation: it says
that typical particle trajectories (xt, yt) on the covering plane converge, after a suitable
rescaling of time and space, to Brownian motion. See also [BSC2]. Bunimovich and Sinai
[BS2] obtained, in fact, an upper bound on the time correlation function. They showed
that

|Cf,g(t)| ≤ const · exp(−atγ) (2.1)

for some a > 0 and γ ∈ (0, 1). (As usual, f and g are Hölder continuous functions and Φt

here is the billiard map ). This mode of decay, later termed stretched exponential decay
of correlations, is slower than exponential but fast enough to allow them to derive their
results on the CLT and WIP.

The true asymptotics of the time correlation function Cf,g(t) for dispersing billiards
were not known for some time. Numerical results, including estimates on the constant
γ, were produced by various people (e.g. [BlD, CCG]). See also [FM1, MR, FM2, GG].
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There was disagreement in the mathematical physics community on whether this decay
rate is in fact exponential or if it is substantially slowed down by the cutting and folding
action of the singularity set. Analytic evidence in favor of exponential estimates came
in the early 1990s: Chernov [C1] and later C. Liverani [L] proved exponential decay of
correlations for certain piecewise hyperbolic maps (with singularities) in 2-dimensions.

For Lorentz gases, this question was resolved in the late nineties. In 1998, L.-S. Young
[Y1] developed a general method for determining if a map has exponential decay of
correlations with respect to its SRB measure. She [Y1] applied her method to planar
Lorentz gases with finite horizon and obtained exponential decay of correlations. Shortly
thereafter, Chernov applied the scheme in [Y1] to other classes of planar dispersing
billiards [C6] and to Lorentz gases under external forces and their SRB measures [C7],
obtaining in both cases exponential decay rates.

Young [Y2] has since expanded her results to deal with arbitrary decay rates. With
tools for establishing polynomial decay now available, there is hope that rigorous correla-
tion decay results for certain billiard models with very nonuniform hyperbolic behavior,
such as the stadium, may be forthcoming.

The main ingredient of Young’s approach is a tower construction that captures the
renewal properties of a dynamical system. She focuses on return times to a reference
set rather than the partitioning up of the phase space. In particular, Markov partitions
are not used. It is becoming increasingly clear that this approach is quite generic, in
the sense that it has given a unified way of understanding correlation decay and related
statistical properties for many (different) dynamical systems that have some degree of
expansion or hyperbolicity. In Section 3 we describe in a fairly general context her tower
construction and the statistical information it carries. In Section 4 we explain what this
tells us when applied to Lorentz gases. Further applications of this method are discussed
in Section 5.

Finally, we turn to gases of hard balls, whose ergodic and statistical properties are
among the less tractable problems in dynamical systems. In the general setting consisting
of an arbitrary number of balls on a torus, full hyperbolicity (i.e. the absence of zero
Lyapunov exponents) has been proved only recently by N. Simanyi and D. Szasz [SS1].
A proof of ergodicity is not yet available except in certain special cases (see the survey
[SS2]). Nothing is known for gases of n ≥ 3 balls in a rectangular box (see [Sim] for
the case n = 2). What is clear is that hyperbolicity is very nonuniform in hard ball
systems: there are “traps” of various kind in the phase space. Trajectories temporarily
lose hyperbolicity as they get caught in these traps, and they may remain there for
arbitrarily long periods of time. A careful quantitative analysis of these traps is necessary
for rigorous results on correlation bounds and the CLT. This appears to be hopelessly
out of reach at the present time. Numerical and heuristic studies have, however, been
carried out by physicists. Some of their results and conjectures are discussed in Section 5.
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3 Statistical properties of chaotic dynamical systems

In this section we discuss a general method for capturing statistical information for
chaotic dynamical systems. This approach is introduced in [Y1], expanded in [Y2], and
has been used successfully to obtain results for a number of the systems considered in
this survey.

Some of the material in this section is valid only for discrete time systems, i.e. for Φt

with t ∈ ZZ or ZZ+. It can be applied, in principle, to all discrete time systems that are
predominantly hyperbolic, that is to say, Φt does not have to be uniformly hyperbolic or
Anosov; singularities and other nonhyperbolic behaviors are allowed as long as there is
“enough” hyperbolicity.

The key idea of this approach is to extract statistical information from certain distri-
butions of return times. This is motivated by similar considerations in probability theory,
in, for example, the theory of countable state Markov chains, the statistical properties of
which are known to be closely related to the recurrence properties of the “tail states” to
a fixed block of states.

Leaving more precise discussions for later, we give an indication here of what the
proposed scheme entails: Pick a suitable reference set Λ in the phase space, and regard
a subset of Λ as having “renewed” itself when it makes a “full” or “Markov” return to
Λ, meaning its image covers all of Λ or at least stretches across all of Λ in the unstable
direction. When successfully carried out, this construction gives rise to a representation,
or a model, of the system in question, described in terms of a reference set and return
times. As a dynamical system, this model is often much simpler than the original one.
Consequently, its statistical properties are more easily accessible, and, as we will see,
they can be expressed explicitly in terms of the tail distribution of the return times.

This, in summary, is the approach proposed by Young: Set aside the individual char-
acteristics of the original dynamical system, focus only on return times to a reference
set, study the statistical properties of the resulting (abstract) model, and pass the findings
back to the original dynamical system.

In the rest of this section, we will limit ourselves to discrete time systems. Writing
Φ = Φ1, we let Φ : M → M denote the given dynamical system (which we do not
need to assume a priori to have an invariant density or to admit an SRB measure).
All test functions f : M → IR are assumed to be at least Hölder continuous. In Sect.
3.1 we discuss the construction of reference sets and Markov return maps, using a very
simple example, namely the “cat map” or “2-1-1-1 map” of the 2-torus, to illustrate how
precisely this is done. The abstract models that result from these constructions will be
denoted by F : ∆ → ∆. In Sect. 3.2 we describe F : ∆ → ∆, and discuss its statistical
properties and their implications for Φ. Sect. 3.3 contains a general discussion.
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3.1 Reference set and distribution of return times
(for the cat map)

We begin with a discussion of the “cat map”. This example will be used to illustrate
(1) how to pick a reference set Λ, (2) how to define legitimate return maps, and (3) how
to estimate the tail of the distribution of return times. Once this example is understood,
we will comment on how it differs from the general situation.

Let Φ : T| 2 → T| 2 be the “cat map” or any invertible map induced from a hyperbolic
linear map of IR2. We require that Λ be a rectangle, with two of its sides aligned with the
stable direction and two with the unstable direction; other than that, its choice is entirely
arbitrary. Next we describe a procedure for defining a return map to Λ. This map will be
denoted by ΦR : Λ → Λ, where R here is to be thought of as an integer-valued function
or random variable and not a fixed integer. That is to say, R : Λ → ZZ+ is a function,
and ΦR evaluated at x ∈ Λ is equal to Φn(x) with n = R(x).

Λ Λ

Φ
n1

Λ Λ1 2

Figure 1: Markov returns

To describe the Markov property of the return map, we introduce the following lan-
guage: Γ ⊂ Λ is called an s-subrectangle if it spans Λ in the stable direction, a u-
subrectangle if it spans Λ in the unstable direction. As Φ is iterated, Λ is transformed into
a long and thin ribbon running parallel to the unstable direction. Let n1 > 0 be the first
time when part of Φn1Λ contains a u-subrectangle of Λ as shown, and let Λ1, Λ2, · · · , Λk1

be the s-subrectangles of Λ that are mapped under Φn1 onto u-subrectangles of Λ. We
declare that these Λi have “returned” with return time R = n1 and stop considering
them. Focusing on the part that has not returned, we continue to iterate until its image
contains a u-subrectangle of Λ, say at time n2 > n1. Label the s-subrectangles that
return at this time Λk1+1, · · · , Λk2 and set their return time to be R = n2. The process is
continued ad infinitum. We will show momentarily that almost all points in Λ eventually
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return to Λ under this procedure, defining, modulo a set of Lebesgue measure zero, a
return map ΦR on Λ.

Since we are interested in the process of dynamical renewal and not just recurrence
alone, partial crossings are not counted as returns in the procedure above. The fact that
the ΦR-image of each Λi is a u-subrectangle of Λ means that ΦR(Λi) contains a sample of
all possible future trajectories starting from Λ; it is as though after ΦR steps, the system
is starting anew. This is what we mean by “Markov returns”.

Note that we do not insist that ΦR(x) be the first time the orbit starting at x returns to
Λ. The choice of ΦR is, in general, quite flexible in the sense that many reasonable choices
will not significantly affect the outcome of this discussion. To facilitate the estimation
of the distribution of R, we will, in fact, use the following rule: fix a number δ > 0,
comparable, say, to the size of Λ, and count an s-subrectangle Γ ⊂ (Λ ∩ {R > n − 1})
as returning at time n if and only if the component of Φn(Λ ∩ {R > n − 1}) containing
Φn(Γ) not only crosses Λ but extends beyond Λ on both sides by lengths at least δ.

Next we show how to estimate the tail distribution of R. Let µ denote Lebesgue
measure on the torus. We claim that

µ{R > n} < Cθn for some θ < 1.

We will see in the next subsection that this tail estimate implies exponential decay of
correlations.

To prove the claim, observe that at step n, the set Φn−1(Λ∩{R > n−1}) is the union
of a finite number of very thin “ribbons”, disconneted due to the fact that the parts
that have returned have been removed. Our rule of what constitutes a return in the last
paragraph ensures that each component of this “ribbon” has length at least δ. We divide
Φn−1(Λ ∩ {R > n − 1}) into segments of length ∼ δ, consider them one at a time and
argue as follows: By the topological transitivity of Φ, there exists N = N(δ) such that if
B1 and B2 are any two balls of radius δ

3
, we have ΦkB1∩B2 6= ∅ for some k ≤ N . Now let

B1 be centered at the midpoint of one of the δ-segments Γ of Φn−1(Λ∩{R > n−1}), and
let B2 be centered at the midpoint of Λ. Suppose ΦkB1 ∩B2 6= ∅. Then by the geometry
of hyperbolic maps, Φk(Γ) crosses Λ with two pieces sticking out on both sides as required
(see Figure 2). We have thus shown that for every n, µ{R ≤ n + N | R > n − 1} is
greater than some c > 0, proving the claim.

. .

BB1
2

Φk

Figure 2: The geometry of hyperbolic maps
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We discuss next some of the similarities and differences between the example above
and what one may expect to find in general.

With regard to the choice of Λ and ΦR, the construction above is quite indicative of
what is done in general. To make sense of the “Markov” property, we need to be able
to talk about s- and u-subrectangles, and Λ should be chosen so that it has a product
structure of stable and unstable manifolds. When Φ is not Anosov, there may not be
“solid” rectangles made up of stable and unstable leaves; when that is the case, take Λ
to be the product of two Cantor sets. Also, since our main focus is on smooth invariant
measures or SRB measures, Λ must be chosen so that each unstable leaf meets Λ in a
set of positive (1-dimensional) Lebesgue measure. These differences aside, the general
construction is quite similar to that for the cat map.

As to the estimation of the measures of {R > n}, the argument above suggests that
pure and uniform hyperbolicity leads to return time distributions with exponentially
decaying tails. Indeed, essentially the same argument gives an alternate proof of the
exponential decay of correlations with respect to SRB measures for all Anosov diffeor-
mophisms, a result proved earlier in [Ru1, Ru2, Si6].

For systems that are not Anosov, other aspects of the map, such as discontinuities or
other forms of nonhyperbolic behavior, may affect the distribution of return times, the
nature of which depends entirely on the dynamical system in question.

3.2 The abstract model F : ∆ → ∆

Let Φ : M → M be the dynamical system of interest. As indicated at the beginning of
this section, our strategy is to construct from Φ another dynamical system F : ∆ → ∆
which we think of as an abstract model of Φ. The reason for passing from Φ to F is
that F will be a much simpler object, with the relevant information that determines the
statistical properties of Φ conveniently displayed. The goal of this subsection is to take
a closer look at F and the statistical information it contains.

The maps F : ∆ → ∆ that may potentially arise as abstract models for some Φ have
the structure of a tower or skyscraper, in which every point moves upward until it reaches
its highest level, i.e. there is nothing above it, before it returns to the base of the tower
which we denote by ∆0 (see Figure 3). For the cat map, F is related to the construction
in Sect. 3.1 as follows. The set ∆0 is obtained from Λ by collapsing stable manifolds into
points, and the return map of F from ∆0 to itself is the quotient map of ΦR : Λ → Λ.

We now give a more precise description of F : ∆ → ∆. The bottom level of this
tower, denoted by ∆0, is partitioned into a countable number of sets ∆0,i, i = 1, 2, · · ·.
The first level of this tower is denoted by Λ1, the next level up Λ2 etc. Under the action
of F , each ∆0,i moves upward one level per iterate, to ∆1,i, then ∆2,i, etc. Think of
this upward movement as rigid translations. Nothing interesting happens until a point
reaches the highest level above ∆0,i, which we call ∆Ri,i. At the next iteration, F maps
∆Ri,i bijectively onto ∆0. We assume that the partition {∆`,i} separates points, meaning
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for every x, y ∈ ∆, there exists n ≥ 0 such that F nx and F ny lie in different elements of
the partition. This completes the description of the coarse structure of F : ∆ → ∆.

∆

∆
∆
∆ 0

1

2

0,i

Figure 3: The tower map F : ∆ → ∆

We are interested in returns from ∆0 to ∆0. The return time function R : ∆0 → ZZ+

is given by R|∆0,i = Ri, and the return map FR : ∆0 → ∆0 is defined by FR|∆0,i = FRi .
Moving on to the finer structures of F : ∆ → ∆, we assume that there is a reference

measure m on ∆, not necessarily finite and not necessarily F -invariant. The map F as
well as its local inverses are assumed to be measurable and nonsingular with respect to
m, so that measures with densities with respect to m are transformed under the action
of F to measures with densities.

Finally, we introduce a notion of Hölderness or Lipschitzness for functions on ∆. A
metric on ∆ that measures symbolic distances between points can be defined as follows:
Let the separation time between x, y ∈ ∆0 be given by

s(x, y) = the smallest n such that (FR)nx and (FR)ny belong in different ∆0,i.

For x, y ∈ ∆0, we define d(x, y) = βs(x,y) where β < 1 is a number arbitrarily chosen but
fixed. For x, y ∈ ∆, we define d(x, y) = 1 if they do not belong in the same ∆`,i, and
if they do we let d(x, y) = d(F−ix, F−iy). Letting JF denote the Jacobian of F with
respect to m, we assume that JF = 1 on ∆\F−1∆0, and impose the following regularity
condition on JF |F−1∆0 or, equivalently, on JFR|∆0: we require that log JFR|∆0,i be
uniformly Lipschitz with respect to the metric defined, i.e. there exists C > 0 such that
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for all i and for all x, y ∈ ∆0,i,

∣∣∣∣∣
JFR(x)

JFR(y)
− 1

∣∣∣∣∣ ≤ Cβs(x,y).

Furthermore, all the observables considered will be assumed to be uniformly Lipschitz
with respect to the same β.

This completes our description of the dynamical system F : ∆ → ∆. We remark
that the structure of F is chosen so that it displays clearly the information of greatest
importance to us, namely the sequence of numbers m{R > n} as n →∞.

Before stating results on the statistical properties of F , we explain more precisely
how F : ∆ → ∆ is derived from the construction in Sect. 3.1. First let Φ be the cat map,
and let ΦR : Λ → Λ be as in Sect. 3.1. Identifying points in Λ that belong to the same
stable leaves, we obtain a quotient set Λ̄, a quotient measure µ̄ on Λ̄, and an induced map
Φ̄R : Λ̄ → Λ̄. Clearly, Λ̄ can be thought of as an interval and µ̄ the 1-dimensional measure
on Λ̄. Moreover, Λ̄ is partitioned into a countable number of intervals each one of which
is mapped affinely by Φ̄R onto Λ̄. The correspondence should now be transparent: ∆ in
the abstract model for Φ is the tower with ∆0 = Λ̄, FR = Φ̄R and m = µ̄. It follows
immediately that m{R > n} < Cθn for some θ < 1.

In general, we proceed as with the cat map, but when nonlinearities are present, the
situation is a little more complicated: Topologically, the map Φ̄R : Λ̄ → Λ̄ is defined, but
it is a priori not clear that JFR makes sense. Some technical work is needed. We refer
the reader to [Y1] for details.

Results on the statistical properties of F : ∆ → ∆ and their implications for
Φ : M → M , the dynamical system from which F is derived [Y1, Y2]:

• If
∫

Rdm < ∞, then

(i) F has an invariant probability measure ν equivalent to m;

(ii) Φ has a smooth invariant probability measure or an SRB measure µ.

Remarks. 1. (F, ν) is automatically ergodic. In the results below, let µ be the SRB
measure with µ(

⋃
n ΦnΛ) = 1. Then (Φ, µ) is also ergodic. 2. We do not claim that Φ

has no other SRB measures: through information on ΦR : Λ → Λ, one cannot possibly
know about the existence of SRB measures whose supports do not intersect

⋃
n ΦnΛ.

• If
∫

Rdm < ∞ and the greatest common divisor of {R} is 1, then

(i) (F, ν) is mixing

(ii) (Φ, µ) is mixing.

We assume from here on that gcd{R} = 1. In the next three bullets, all test functions
are understood to be uniformly Lipschitz as stipulated earlier.
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• If m{R > n} = O(n−α), α > 1, then

(i) the rate of correlation decay of (F, ν) is O(n−α+1);

(ii) the rate of correlation decay of (Φ, µ) is O(n−α+1).

• If m{R > n} = Cθn, θ < 1, then

(i) the rate of correlation decay of (F, ν) is < C ′θ′n for some θ′ < 1;

(ii) the rate of correlation decay of (Φ, µ) is < C ′θ′n for some θ′.

• If m{R > n} = O(n−α), α > 2, then

(i) the central limit theorem holds for (F, ν);

(ii) the central limit theorem holds for (Φ, µ).

3.3 Discussion

1. To what kinds of dynamical systems would the method of this section apply, and
for what kinds of statistical properties? The success of this approach depends on
(1) the construction of ΦR : Λ → Λ, and (2) success in passing information for F back to
the original system. (1) generally works when Φ has “enough hyperbolicity”, although
it is hard to axiomatically formulate what exactly that means. As mentioned at the be-
ginning of this section, this construction has been successfully carried out for a number
of the systems considered in this survey. In addition to that, it has been shown to work
for various examples of interest in dynamical systems, including logistic interval maps
[Y1, BLS], expanding maps with neutral fixed points [Y2], piecewise hyperbolic maps
[Y1, C5], Hénon attractors [BY] and their generalizations [WY], and certain partially
hyperbolic systems. As for (2), for almost-sure properties and properties expressed in
terms of the expectation of a random variable (such as correlation decay), this passage
is largely (though not completely) formal; for other properties such as the Poisson law
for large returns, this passage is less transparent.

2. What aspects of a dynamical system determine its statistical properties? We have
seen from the cat map that uniformly hyperbolic systems have exponential decay or
correlations. For systems that are predominantly but not purely hyperbolic, the following
phenomenon has been observed: Initially, the hyperbolic part of the system gives rise to
an exponential drop-off in m{R > n}. However, as n increases, m{R > n} is determined
more and more by the least hyperbolic part of the system. To illustrate how this works,
imagine that the phase space of Φ has certain (localized) regions of nonhyperbolicity.
These regions behave like “traps” or “eddies”, in which orbits may linger for arbitrarily
long times. While most orbits starting from Λ return relatively quickly, a fraction of
initial conditions will, by ergodicity, get into these “traps” and remain there for a long
time. The ultimate decay rate of m{R > n}, therefore, is determined by how fast these
orbits are able to break free. Indeed, the following message is clear: if a dynamical
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system has identifiable sources of nonhyperbolicity, then the time it takes to overcome
these nonhyperbolic parts determine m{R > n} and consequently the type of statistical
properties in Sect. 3.2.

3. What are the standard methods for obtaining rates of correlation decay in dynamical
systems? In dynamical systems as in statistical mechanics and probability, the existence
of a spectral gap is one of the most commonly used methods of proof of exponential
decay. The operator in question for dynamical systems is the Perron-Frobenius or transfer
operator (see e.g. [Ru3, HK, Y1]). Equivalent to the existence of a spectral gap but
technically more flexible is the existence of strictly invariant cones with projective metrics
([FS, L]). A method used by Sinai et. al. ([BS2, BSC2]) to study correlation decay of
billiards is approximation by Markov chains. Yet another standard method first used by
Doeblin and well known in probability but not exploited seriously in dynamical systems
until recently is the coupling method, which is first used in [Y2] to prove the results
stated in Sect. 3.2. This method goes as follows: Consider two processes consisting of
iterating F : ∆ → ∆ with different initial distributions λ and λ′. We run these processes
independently, all the while trying to “match” F n

∗ λ with F n
∗ λ′. The rate at which the L1-

norms of the densities of F n
∗ λ−F n

∗ λ′ tend to zero is a measure of the speed of convergence
to equilibrium, which in turn gives a bound for the speed of correlation decay.

4 Correlation decay for planar Lorentz gases

The purpose of this section is to explain the proof of exponential decay of correlations
for a class of billiard maps using the method discussed in the last section.

The class we will focus on is the 2-dimensional periodic Lorentz gas, which is a
model for electron gases in metals. Mathematically it is represented by the motion of
a point mass in IR2 bouncing off a (fixed) periodic configuration of convex scatterers.
This model was first studied by Sinai around 1970 [Si5]; it is sometimes called the Sinai
billiard. Putting the dynamics on the torus, we assume that the billiard flow takes place
on Ω = T| 2 \ ∪k

i=1Ωi where the Ωi’s are disjoint convex regions with C3 boundaries (see
Figure 4). The section map Φ is defined on M = ∂Ω× [−π

2
, π

2
]. We denote points in M by

p = (x, θ) where x ∈ ∂Ω is the footpoint of the arrow indicating the direction of the flow
and θ is the angle this arrow makes with the normal pointing into Ω. It is straightforward
to check that Φ leaves invariant the probability measure µ = c cos θ dx dθ where c is the
normalizing constant. For simplicity, we will assume in this section the finite horizon
condition, which requires that the time between collisions be uniformly bounded.

This entire section is devoted to explaining the ideas behind the following result. Let
Cα denote the class of Hölder functions on M with Hölder exponent α.
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Figure 4: Billiard on T| 2 with convex scatterers

Theorem [Y1] Let (Φ, µ) be as above. Then correlation decays exponentially fast
for observables in Cα. More precisely, there exists β = β(α) > 0 such that for every
f, g ∈ Cα,

|Cf,g(n)| ≤ C exp(−βn)

for some C = C(f, g).

As mentioned in the introduction, a weaker version of this result, namely that of
“stretched exponential decay”, is first proved for this class of billiards in [BSC2] along
with other statistical properties. The finite horizon condition in the theorem above is
dropped in [C6]. This and other results on correlation decay for billiards based on a
similar approach are discussed in Section 5.

4.1 Geometric properties of the map Φ : M → M

The following geometric properties of Φ play important roles in determining its statistical
properties. For more background information, we refer the reader to [Si5] and [BSC1,
BSC2].

(1) The discontinuity set S It is easy to see that Φ is discontinuous at a point (x, θ) ∈
M if and only if the straight line segment starting at x and going in the direction
determined by θ meets ∂Ω tangentially at the first point of intersection. We claim
that the geometry of S as a subset of (x, θ)-space is as shown in Figure 5: (i) S is
the union of a finite number of smooth curve segments (this number is infinite in the
infinite horizon case). (ii) Fixing an orientation for ∂Ω, the slopes of these segments
all have the same sign; let us assume they are negatively sloped. (iii) Some of the
segments in S run from the top edge to the bottom edge of M , whereas others end
abruptly as they join one of the “main” branches.
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Figure 5: The singularity set S in phase space

To understand these assertions better, let us imagine starting from a fixed compo-
nent of ∂Ω, aiming in a certain general direction and having an obstacle in front
of us. (See Figure 6.) It is easy to see that the set of directions that give rise
to a tangency forms a smooth curve. Moreover, if the obstacle in question is the
“nearest” obstacle, meaning there is no other obstacle in front of it, then this curve
extends from θ = −π

2
to θ = π

2
. If, on the other hand, the obstacle in question is

the “second” obstacle, then the curve of tangencies cannot be extended beyond the
point of “double tangency”. Points of multiple tangency, therefore, are points in S
at which two or more smooth segments of S meet. They are called multiple points.
We will return to them later on in the discussion.

Figure 6: Curves of singularity. The top set of arrows represents
a branch of S that extends from top to bottom of M . The bottom
set of arrows represents a branch of S that ends abruptly at a double

tangency
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(2) Hyperbolicity Hyperbolicity of Φ is first proved in [Si5]. Intuitively, it is easy to
see from the strict convexity of the scatterers that DΦ has strictly invariant cones
([W]), the existence of which is a standard way or proving hyperbolicity:

Tangent vectors at (x, θ) ∈ M are represented by curves in M passing through
(x, θ), and curves in M are parametrized families of “arrows” in Ω. Consider the
cone corresponding to all 1-parameter families of arrows that are divergent. Since
divergent families upon reflection at a convex curve become even more divergent,
we see that the cones in question are strictly invariant. This proves that on the
projective level, at least, DΦ is uniformly hyperbolic. A little more work shows
that Eu, the unstable directions of DΦ, are positively sloped and transversal to the
curves in S.

(3) Unbounded derivatives In addition to having discontinuities, another aspect of Φ
that complicates its analysis is that DΦ is unbounded as (x, θ) tends to S. The
technical difficulties that arise from this have been taken care of in [BSC2] and will
not be discussed in this article.

4.2 Comparison with the cat map

According to the scheme discussed in Section 3, it suffices to pick a reference set Λ,
construct an acceptable return map ΦR : Λ → Λ, and show that µ{R > n} < Cθn for
some θ < 1. The exponential decay of correlations and Central Limit Theorem for Φ will
then follow automatically.

Instead of repeating the construction from scratch, let us remember what is done for
the cat map (Sect. 3.1) and focus on the differences. First, Φ here is nonlinear and DΦ is
unbounded, but as we have said earlier, we will not concern ourselves in this article with
these technical aspects of the problem. There are two conceptual differences between the
cat map and the situation here, both caused by the presence of discontinuities:

(1) Stable and unstable curves can be arbitrarily short. Points that come arbitrarily close
to the singularity set S in forward (respectively backward) time have their local stable
(resp. unstable) curves cut arbitrarily short. By the ergodicity of Φ, which is proved
in [Si5] and taken for granted in this argument, points with arbitrarily short stable or
unstable curves are dense in M . The best that we can do, therefore, is to choose Λ to be
a positive Lebesgue measure set that is homeomorphic to a product of two Cantor sets.

(2) Connected components of unstable curves may remain short for a long time. Imagine
the following worse-case scenario: Suppose a piece of unstable leaf γ is, under the action
of Φ, magnified by a factor of ∼ 3

2
and cut into two pieces of roughly equal lengths.

Suppose also that each one of these segments is dealt the same hand, i.e. it is again
magnified by ∼ 3

2
and cut into two equal pieces. Suppose this goes on indefinitely, so

that after n iterates, Φn(γ) has 2n components each of length ∼ (3
4
)n. This is detrimental

to our construction of ΦR : Λ → Λ, for in order for a segment to make an acceptable
return, it must grow to the size of Λ. While this scenario exactly as described is extremely
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unlikely, long stretches of time during which the images of γ are cut faster than they have
a chance to grow may have an effect on the tail of the return times.

Of these two concerns, (2) has an obvious bearing on µ{R > n}; it will be the center
of our attention in the rest of this section. It turns out that once (2) is resolved, (1) can
be handled as well. We first discuss briefly some problems that arise from (1): Since it is
virtually impossible to track the evolution of Cantor sets, we track instead the rectangle
Q spanned by Λ. An immediate question is: when the Φn-image of an s-subrectangle Qs

of Q is mapped to a u-subrectangle of Q, does Φn(Λ ∩Qs) coincide with Λ ∩ Φn(Qs)?
It turns out that in the unstable direction, Φn(Λ∩Qs) is bigger, and bits of this Cantor

set fall through the gaps of Λ without “returning”. This leads to more complicated
estimates on return times. We remark that technical as they may seem, these problems
are far from purely technical in nature: The main difference between Φ and an Anosov
map is the presence of discontinuities, and the gaps in Λ are precisely the handiwork of
the discontinuity set.

4.3 Growth of unstable curves

To prevent the phenomenon in (2) above from happening, consider first a condition of
the following type:

(*) There exists N ∈ ZZ+ and δ > 0 such that for all unstable curves γ
with `(γ) < δ, the number of connected components of ΦN(γ) is < λN

where λ > 1 is the minimum expansion on unstable curves.

Condition (*) has the following interpretation: Thinking of cutting as introducing a
form of local complexity, (*) says that the growth in local complexity is dominated by
the rate of expansion. When this condition is satisfied, we have immediately that on
average, each of the components of Φn(γ) grows exponentially in length.

We first explain why Sinai billiards have exponential decay of correlations assuming
that Φ satisfies Condition (*). Justification of this condition is postponed to later. We
will maintain throughout that the number δ in (*) is the relevant length scale to consider,
referring to segments shorter than δ as “short” and those longer than δ as “long”.

Let γ be an unstable curve. On γ we introduce a stopping time

T (x) := the smallest n such that the component of Φnγ containing Φnx
has length > δ.

Here is what we propose to do: We run Φ until time T , that is to say, we run Φ on each
component of Φnγ (for as long as it takes) until it becomes “long”. Then we stop. The
following is an estimate on the distribution of T .
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Lemma 1 Let mγ denote the Lebesgue measure on γ. Assuming (*), there exists α < 1
independent of γ such that

mγ{T > n} < αn.

Proof Let us assume for simplicity that N = 1 in (*), and let K be the maximum
number of components into which a “short” unstable curve can be cut by Φ. By (*),
K < λ. The number of components that have remained “short” up until time n is
≤ CKn where C = [`(γ)/δ] + 1. Thus the total measure of the pull-back of these short
components is ≤ CKnλ−n. Taking α = Kλ−1 < 1 completes the proof.

When a component of Φiγ becomes “long”, i.e. when it reaches a length > δ, we start
up the process again. This defines on γ a sequence of stopping times

T1 < T2 < T3 < · · ·

with T1 = T and Tn is the first time after Tn−1 when the component in question becomes
“long”. The key idea is to look at the images of γ under ΦTn, not Φn. Observe
that ΦT1(γ) is the union of curves all of which are “long”, and that the same is true of
ΦT2(γ), ΦT3(γ), and so on. Moreover, pretending for the moment that T1 < T2 < T3 < · · ·
represents real time, one would conclude that γ grows exponentially, and there are never
any short curves around. The situation, therefore, is entirely similar to that for the
cat map (see Sect. 3.1). Using the mixing property of Φ (proved in [Si5]) in the place
of topological transitivity, we see that the proof in Sect. 3.1 continues to work, giving
µ{R > n} < Cθn.

To reconcile the stopping times Tn with real time, observe that the distribution of
(Tn − Tn−1)|Tn−1 is essentially the same as that of T , which is estimated in the Lemma
above to have exponentially decaying tails.

To summarize, then, we first confuse Tn with real time, and conclude exponential
decay of correlations for reasons similar to those for the cat map. Under Condition (*),
the distributions of Tn−Tn−1 have exponentially decaying tails. A little bit of work shows
that these two estimates together give exponential decay of correlations with respect to
real time.

It remains to explain why Condition (*) holds for Φ, the billiard map in question.
Let S(Φn) denote the singularity set of Φn. It is not hard to see that S(Φn) has the same
structure as S(Φ), except that it contains more curve segments and becomes denser
as n increases. For z ∈ M , let N (Φn, z) denote the number of smooth segments of
S(Φn) meeting at z. If z is not a multiple point of S(Φn), then N (Φn, z) = 1. Also,
let N (Φn) = supz∈M N (Φn, z). The verification of Condition (*) is a rephrasing of the
following observation due to Bunimovich:

Lemma 2 [BSC1] There exists K depending only on Ω such that for all n ≥ 1,

N (Φn) ≤ Kn.
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Verification of Condition (*) assuming Lemma 2 Recall that unstable curves are
transversal to S(Φn), so that for each n, if an unstable curve γ is sufficiently short, then
it will not meet S(Φn) in more than N (Φn) points. This implies that Φnγ will have not
more than N (Φn) + 1 components. We choose our parameters in the following order:
First choose N so that KN + 1 < λN where λ > 1 is the minimum expanion along
unstable curves. Then we choose δ > 0 such that if γ has length < δ, then γ meets
S(ΦN) in ≤ KN points. This δ is the relevant length scale for Condition (*).

We conclude this section with an explanation for Bunimovich’s observation. Consider
a (straight) billiard trajectory with multiple tangencies, starting at z ∈ M , ending in
z′ ∈ M , with no regular collisions and at least one tangency in between. We stress that
z and z′ are points in the phase space M , not on the billiard table.

Starting from a small neighborhood of z, there is a finite number of ways of reaching
a neighborhood of z′: it is possible for the billiard trajectory not to touch any of the
scatterers in between, or to bounce off the first but not the second, or the second but not
the first, and so on. From this one deduces the following picture (see Figure 7):

- there are small neighborhoods U of z and U ′ of z′ such that U is the disjoint union of
a finite number of sectors V1, · · · , Vk and U ′ is the disjoint union of a finite number
of sectors V ′

1 , · · · , V ′
k ;

- for each j, there exits nj such that Φnj maps Vj diffeomorphically onto V ′
j .

Here each Vj represents one “type” of trajectories from U to U ′, and nj is the number of
(nontangential) bounces in between. Clearly, the number of sectors, k, depends only on
the configuration of scatters.

Φ
U'U

z z'

x

θ

( )n

Figure 7: Neighborhoods of multiple points
(Φ(n) = Φnj when restricted to the sector Vj)

An upper bound for N (Φn, z) can be estimated as follows. Let N (Φi|V ′
j , z

′) denote
the number of smooth segments of S(Φi) passing through z′ that lie in V ′

j . Then pulling
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back the picture from z′ to z, we have

N (Φn, z) ≤ k +
∑

j

N (Φn−nj |V ′
j , z

′).

Since N (Φn−nj |V ′
j , z

′) ≤ N (Φn−1|V ′
j , z

′), which we assume inductively to be ≤ K(n− 1),
we have argued thatN (Φn, z) grows linearly with n, completing the proof of Bunimovich’s
lemma and the hence the proof of exponential decay for this class of billiards.

5 Correlation decay in related billiard models

Here we describe other physical models with elastic collisions for which estimates on
correlation decay rates have been proven or conjectured. In Sects. 5.1 –5.5, the discussion
pertains to the billiard map (or relevant section map) Φ. Results for the corresponding
flows are considerably more delicate and are discussed in Sect. 5.6, under the headline
“Real time dynamics”.

5.1 Sinai billiard tables

Imagine a Lorentz gas whose scatterers are so large that they overlap and trap the particle
in a bounded diamond-like region as shown in Fig. 8. This defines a billiard system on
a table whose sides are convex inward. The resulting models are called Sinai billiards.
They differ from the Lorentz gases discussed earlier in two ways.

Figure 8: Sinai billiards in a diamond-type table
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A. Traps at the corners. If a trajectory comes close to a corner point (where two
scatterers intersect), it may experience two or more rapid collisions within a very short
time. Between those rapid collisions, the unstable curves do not have a chance to grow.
More precisely, the expansion factor along unstable curves under the billiard map Φ is

D = 1 + τB (5.1)

where τ is the time between consecutive collisions and B the geometric curvature of the
outgoing wave front made by the unstable curve. The quantity B is positive and usually
bounded; since τ can be arbitrarily close to 0, D can be arbitrarily close to 1. As a result,
Φ is not uniformly hyperbolic. For more details, see [BSC1, BSC2, C6]).

Here is one way around this problem. It is a simple geometric fact (see e.g. [Re])
that if two scatterers meet at an angle α > 0, then there can be at most 1 + π/α
rapid collisions of the type described above. After that the particle must leave the
corner. Hence if all the angles α1, . . . , αk made by the scatterers at their intersections are
positive, then the maximum number of consecutive rapid collisions is bounded above by
m = maxi{1 + π/αi}. The map Φm is therefore uniformly hyperbolic, and if one proves
exponential decay of correlations for Φm, then the same property for Φ will follow. This
is done in [C5, C6] (see paragraph B. below).

On the other hand, if one of the angles αi is zero, i.e. if two of the scatterers intersect
tangentially, forming a cusp, then the number of consecutive rapid collisions is easily seen
to be unbounded. In this case, the hyperbolicity of Φ is very nonuniform, and correlations
are believed to decay slowly, at the rate

|Cf,g(t)| ∼ t−1 .

There is a strong numerical and analytical evidence of this asymptotic behavior [MR],
but a rigorous proof is not yet available.

B. Condition (*). The proof of exponential decay for the periodic Lorentz gas given
in Section 4 relies on a property of Φ that expresses the fact that expansion dominates
local complexity along unstable curves. This property, which we called Condition (*),
has not been verified for general Sinai billiards with corner points. Indeed, Lemma 2 is
likely to be false. In [BSC2, C6], Condition (*) is assumed in order to obtain bounds on
correlations. We refer the reader to [Bu] for recent advances in this direction.

5.2 Lorentz gases with infinite horizon

Infinite horizon in a periodic Lorentz gas refers to the property that there is no finite
upper bound for the lengths of free runs between collisions. This is equivalent to the
existence of corridors along which the particle can move indefinitely without colliding
with a scatterer (see Fig. 9).

In contrast to the finite horizon case, the singularity set here is the union of infinitely
many smooth curves. Figure 9 shows how they are generated. It is now possible for
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an unstable curve, however short, to be cut in one iterate by the singularity set into an
arbitrarily large, possibly infinite, number of disconnected components. Hence Condition
(*) in Section 4 fails. Nevertheless, the map Φ is known to have exponential decay of
correlations [C6]). This can be explained as follows. The regions in the phase space
where the singularity curves accumulate correspond to long intercollision flights (Fig. 9).
During those flights, the unstable curves expand very strongly, according to (5.1), where
τ in now very large (in fact, B is also large, as B ∼ τ 1/2; see [C6]). This strong expansion
is sufficient for overcoming the effect of the cutting. Careful analyses of these issues are
carried out in [BSC2, C6].

Figure 9: The periodic Lorentz gas without horizon:
long free runs generate infinitely many singularity lines

5.3 Lorentz gases under external forces

Consider the situation where the particle in a periodic Lorentz gas is subjected to an
external force F. The equations of motion (between collisions) are now

q̇ = p, ṗ = F(p,q)

where q = (x, y) is the position and p the velocity vector of the particle. We assume
there is an integral of motion E(p,q), so that the dynamics can be reduced to motions on
3-D surfaces E(p,q) = const. We assume that the force F is small, so that the particle
trajectories between collisions are nearly straight. For simplicity, we assume also the
finite horizon condition.

If the force F is given by the gradient of a potential, i.e. if F = −∇U(q) for some U ,
then the dynamics is Hamiltonian. In particular, total energy U(q)+ 1

2
||p||2 is preserved,

as is a measure compatible with volume called the Liouville measure.
For more general forces, the system admits no smooth invariant measures, and one

looks for the existence of a physically meaningful invariant measure, i.e. an SRB measure
(see Sect. 2). The techniques described in Sections 3-4 apply to this model to provide an
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SRB measure which also has strong statistical properties: exponential decay of correla-
tions and the CLT. For a detailed analysis of this model, see [C7]. A separate argument
[C7] shows that this SRB measure is unique and its support is the entire phase space.
Moreover, the system has the Bernoulli property in both discrete and continuous time.

5.4 Multi-dimensional Lorentz gases

Consider the motion of a particle in IRd, d ≥ 2, bouncing off a periodic array of fixed
convex scatterers. This is the d-dimensional version of the periodic Lorentz gas. We
again assume finite horizon. It is shown in [C2] that the correlation function decays at
least faster than a stretched exponential function, i.e.

|Cf,g(t)| ≤ a e−b
√

t

for some constants a, b > 0. It is believed that the actual rate of decay is exponential,
and the work to prove that is underway.

5.5 Multiple correlations

A natural generalization of the correlation function (1.2) is:

Cf1,...,fk
= 〈(f1 ◦ Φt1) · · · (fk ◦ Φtk)〉 − 〈f1〉 · · · 〈fk〉

where f1, . . . , fk are functions on M and t1, . . . , tk are moments of time. This is called a
multiple correlation function.

Certain physical constants are expressed in terms of multiple correlation functions.
For example, the so-called super-Burnett coefficient (arising in higher-order expansions
of the diffusion equation) is given by an expression that involves the sum

∞∑

m,n,k=−∞
[ Ca,b,c,d(0,m, n, k)− Ca,b(0,m)Cc,d(n, k)

− Ca,c(0, n)Cb,d(m, k)− Ca,d(0, k)Cb,c(m,n) ] (5.2)

where a, b, c, d are certain functions.
The facts about correlation functions obtained in [BSC2, C3] allow us to prove, in the

case of Lorentz gases, that the sum in (5.2) converges absolutely for any four Hölder con-
tinuous functions a, b, c and d. For a proof and the discussion of the Burnett coefficient,
see [CD].

5.6 Real time dynamics

The discussions in Sects. 5.1–5.5 are for discrete time dynamics; more precisely, the
statements there pertain to certain section maps corresponding to the flows in question.
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Physically interesting time is, of course, real (or continuous). In finite horizon situa-
tions, the central limit theorem and invariance principle for real time follow from the
corresponding results for discrete time; see [BS2, BSC2, DP]. The correlation function
Cf,g(t), however, may behave quite differently in discrete and continuous times.

In a periodic Lorentz gas without horizon, one has exponential decay of correlations
in discrete time as we have seen in Sect. 5.2. There is strong evidence, however, that
correlations decay slowly in real time [FM1, FM2]:

|Cf,g(t)| ∼ t−1 (5.3)

The reasons behind this estimate are as follows. For a particle in a corridor as shown in
Fig. 9, a collision-free flight of length ≥ t occurs with probability ∼ 1/t. Hence, over a
period of time t, a fraction of the phase space of measure ∼ 1/t does not have the chance
to mix with the rest of the phase space. From this one deduces the estimate (5.3). In
short, the slow-down in correlation decay is caused by the presence of long corridors,
which act as traps for the otherwise uniformly hyperbolic dynamics.

In contrast to the previous situation, in Sinai billiards with cusps (caused by tangential
intersections of the scatterers), even though correlations in discrete time seem to decay
like 1/t as we have discussed earlier, it is reasonable to expect that their decay rate in
continuous time is much faster, possibly as fast as exponential. The difference between
discrete and continuous times can be explained by the fact that in a succession of rapid
collisions near a cusp, the total time elapsed is very short even though the number of
collisions may be large.

In a Lorentz gas with finite horizon, correlations in real time are expected to de-
cay exponentially as in discrete time, but the situation is considerably more involved.
Mathematical proofs are not yet available, but research is underway.

5.7 Gases of hard balls

As dynamical systems, hard balls are considerably more complicated than Lorentz gases.
Full hyperbolicity for an arbitrary number of balls in a torus has only been proved very
recently [SS2]. Rigorous studies of correlation functions are not within reach at the
present time. The only facts that are clear are that there are many traps in the phase
space, they are of various kinds, and that it is possible for trajectories to be caught in
them for very long periods of time without achieving full hyperbolicity.

The following trap is well known: certain phase trajectories may interact only with a
proper subset of the balls. Even though the set of initial conditions with this property is
of zero Lebesgue measure, nearby phase trajectories take arbitrarily long times to get to
the rest of the phase space, slowing down the rate of correlation decay. We remark that
this phenomenon of clusters is one of the main obstacles in the proofs of full hyperbolicity
[SS2] and ergodicity for gases of hard balls.

For infinite gases assuming that the particles are at local equilibrium (i.e. they are dis-
tributed randomly and uniformly in space), one can heuristically estimate the correlation
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function Cf (t) as follows [PR]:
Let the function f in Cf (t) be the x-component of the velocity vector of a selected

(tagged) ball. We fix that component vx(0) at time t = 0. The tagged particle interacts
with its neighbors and, after time t, its initial velocity vx(0) is shared by all the particles
in a volume Vt around it. Hence the average velocity of the tagged particle at time t is
〈vx(t)〉 ∼ vx(0)/Nt where Nt ≈ ρVt is the estimated number of particles in the volume Vt

and ρ is the density.
Further decay of the function Cf (t) ≈ 〈vx(t)〉 can only occur because Vt grows with

t. For simplicity, assume that Vt is a round ball of radius Rt. Then it is standard in
hydrodynamics that Rt ∼

√
t. This gives the estimate

|Cf (t)| ∼ a t−d/2 (5.4)

where d is the dimension of physical space, and the coefficient a depends on the density
ρ.

The estimate (5.4) was arrived at more accurately by a variety of empirical and
theoretical methods in statistical mechanics. B. Adler and T. Wainwright demonstrated it
by molecular-dynamics calculations. R. Dorfman and E. Cohen established this estimate
using kinetic theory. M. Ernst, E. Hauge, and J. van Leeuwen, then K. Kawasaki, and
then Y. Pomeau derived (5.4) from hydrodynamic mode-coupling theory. We refer the
reader to [EW, PR] for references and for further discussion of the topic.
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[Ho] E. Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus, II,
Math. Annalen 117 (1940), 590–608.

[JR] A. del Junco, J. Rosenblatt, Counterexamples in ergodic theory and number theory,
Math. Ann. 245 (1979), 185–197.

[K] N. S. Krylov, Works on the foundation of statistical physics, Princeton U. Press,
Princeton, N.J., 1979.

[LR] O. E. Lanford and D. Ruelle, Observables at infinity and states with short range
correlations in statistical mechanics, Commun. Math. Phys. 13 (1969), 194–215.

[L] C. Liverani, Decay of correlations, Annals of Math. 142 (1995), 239–301.

[MR] J. Machta, B. Reinhold, Decay of correlations in the regular Lorentz gas, J. Statist.
Phys. 42 (1986), 949–959.

[OW] D. S. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math., 14
(1973), 184–198.

[PS] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of
weakly dependent random variables, Memoir. Amer. Math. Soc. 161 (1975).

[Po] M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985),
413–426.

[PR] Y. Pomeau and P. Resibois, Time dependent correlation function and mode-mode
coupling theories, Phys. Rep. 19 (1975), 63-139.

[Ra1] M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel
J. Math. 15 (1973) 92–114.

30



[Ra2] M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds
of negative curvature, Israel J. Math. 16 (1973), 181–197.

[Ra3] M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math.
17 (1974), 380–391.

[Re] J. Rehacek, On the ergodicity of dispersing billiards, Random Comput. Dynam. 3
(1995), 35–55.

[Ru1] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Commun. Math.
Phys. 9 (1968), 267-278.

[Ru2] D. Ruelle, A measure associated with Axiom A attractors, Amer. J. Math. 98
(1976), 619–654.

[Ru3] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978.
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