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Abstract. We extend here the famous theory by Bunimovich and Sinai covering

statistical properties of planar periodic Lorentz gas to the multidimensional version
of that model. Namely, we establish a stretched exponential bound for the decay of

correlations, prove the central limit theorem and Donsker’s Invariance Principle for

multidimensional periodic Lorentz gases with finite horizon. Our methods do not
require Markov partitions, we use only a crude approximation to such partitions,

which we call Markov sieves. Multidimensional Markov sieves are built-up and used

here for the first time. Their construction is principally different from that of two-
dimensional Markov sieves and requires more difficult and intricate considerations.

We restrict ourselves primarily with heuristic, qualitative explanations. Full details
of that construction are yet to be elaborated.
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1. Introduction

So far only a few models are known in mathematical physics that exhibit non-

trivial or even rich chaotic behavior and, at the same time, have been studied with

mathematical rigor. One of those models is the periodic Lorentz gas for which the

theory of billiard-type dynamical systems works. The ergodicity and K-property

of that model were proven by Sinai in 1970 [16], and its B-property was proven by

Gallavotti and Ornstein in 1974 [10]. A deep exploration of its statistical properties

was done much later, in 1981, by Bunimovich and Sinai [6], and recently their tech-

niques were improved in ref. [7]. In all the above papers only a two-dimensional
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gas has been treated. From the physical point of view, the planar gas is not quite

realistic – recall that originally H. Lorentz introduced his model in 1905 to describe

an electronic gas in metals. As for the Lorentz gas in three and higher dimensions,

only its ergodicity and K-property were established by Sinai and the present author

in 1987 [17]. The present paper is devoted to the statistical properties of the mul-

tidimensional Lorentz gas. We establish here the same properties for that model

as were established for the planar gas in refs. [6] and [7].

The periodic Lorentz gas is a dynamical system generated by the free motion

of a point particle in the d-dimensional space Rd, d ≥ 2, which collides elastically

with fixed scatterers situated in space periodically. As usual, we suppose the speed

of the particle to be unit and the scatterers to be disjoint and strictly convex with

smooth (at least of class C3) boundaries whose sectional curvature is uniformly

bounded away from 0 and ∞.

Assumption A (Finite horizon). The time of free motion between scatterers is

uniformly bounded above.

By projecting the particle trajectory down to a suitable d-dimensional torus

Tord we can get a dynamical system with a compact phase space denoted by M =

Q×Sd−1, where Q is the torus Tord with a finite number of scatterers removed from

it and Sd−1 is the unit sphere, the space of the velocity vectors. The projection of

the motion of our particle down to Q generates a flow {Ψt} on M with a continuous

time t. This is a so called semidispersing billiard system. It preserves the Liouville

measure dµ = cµdq dv, where dq and dv are simply the Lebesgue measures in Q

and Sd−1 respectively, and cµ is a normalizing factor.

A discrete time version of a billiard dynamics is usually constructed by a cross-

section of the phase space defined as M = {x = (q, v) ∈ M : q ∈ ∂Q, (v, n(q)) ≥ 0},

where n(q) is the inward unit normal vector to ∂Q at q, and (·, ·) stands for the

scalar product. So, M consists of all the unit vectors attached to the boundary ∂Q

and pointing inside Q (outside the scatterers). At each x ∈ M we denote τ(x) the

first positive time of reflection of the trajectory starting at x, and Tx = Sτ(x)+0x

then specifies the first return map T : M → M . The map T preserves the measure

dν = cν(v, n(q))dv dq which is obtained by the projection of the Liouville measure

dµ onto M (cν is again a normalizing factor). Both the map T and the flow {Ψt}
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are known to be ergodic, mixing and enjoy the K-property [17]. We will only work

with the discrete time system (T,M, ν).

For the precise statement of our results we introduce the classes of Hölder con-

tinuous (HC) and piecewise Hölder continuous (PHC) functions on M . An HC

function f satisfies the condition |f(x) − f(y)| ≤ C(f) · ||x − y||β for some β > 0

(the Hölder exponent). A PHC function is a function which is HC on a finite union

of subdomains in M separated by a finite number of compact smooth hypersurfaces.

For example, τ(x) and τ(T−1x) are both PHC functions.

All four theorems formulated below are proven here under the assumption A

and one more, technical, assumption B, see Section 2. The situation when the

assumption A fails is discussed briefly in Section 7.

Theorem 1.1 (Decay of correlations). Let f(x) and g(x) be two HC or PHC

functions on M . Then

|〈(f ◦ Tn) · g〉 − 〈f〉〈g〉| ≤ c(f, g)α
√

n (1.1)

where c(f, g) > 0 depends on f, g and α < 1 is determined by the configuration of

scatterers and the class of HC or PHC function under consideration.

Here and further on 〈·〉 denotes the expectation with respect to the invariant

measure ν.

Theorem 1.2 (Central limit theorem). Again, let f(x) be an HC or a PHC

function with 〈f〉 = 0. Then the quantity

σ2 =
∞∑

n=−∞
〈(f ◦ Tn) · f〉 (1.2)

is finite and nonnegative. If σ 6= 0, then the sequence

f(x) + f(Tx) + · · ·+ f(Tn−1x)√
σ2n

(1.3)

converges in distribution to the standard normal law as n →∞.

Remark (see, e.g., [11]). The sum (1.2) equals zero if and only if the function

f(x) is a coboundary one, i.e. f(x) = g(Tx) − g(x) a.e. for another function

g ∈ L2(M,ν).
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Next, we lift the dynamics back up to the space Rd from Q. The moving particle

starts somewhere in the unit cube [0, 1]d and then travels in Rd colliding with an

infinite array of scatterers. Denote q(t) its position in space at time t and qn the

point of the nth reflection. The starting position q(0) (or q0) is selected randomly

according to the probability measure µ (resp., ν).

Theorem 1.3 (Limit distribution of the displacement vector). The vectors

q(t)− q(0)√
t

and
qn − q0√

n
(1.4)

both converge in distribution to d-dimensional nondegenerate normal laws with zero

means.

The covariance matrices V1 and V2 of two normal distributions involved in the

theorem 1.3 are known as diffusion matrices. The latter can be expressed by the

(discrete-time) Green-Kubo formula

V2 =
1

2〈τ(x)〉

∞∑
n=−∞

〈(q1 − q0)T ⊗ (qn+1 − qn)〉. (1.5)

Here (q1 − q0)T is a column-vector and (qn+1 − qn) is a row-vector, so that their

(tensor) product is a d × d matrix. The convergence of the infinite series in (1.5)

is assured by the theorem 1.1. A continuous-time Green-Kubo formula for V1 can

be also written down, but we are unable to prove it because of a lack of necessary

bounds on the decay of correlations for the flow {Ψt}.

The next theorem requires a certain space-time rescaling. For every s ∈ [0, 1]

and t > 0 we denote qt(s) = q(st)/
√

t. The measure µ induces the probability

distribution µt on the set of all possible trajectories qt(s), 0 ≤ s ≤ 1, which are

then considered as points in the space C[0,1](Rd) of continuous vector functions on

[0, 1].

Theorem 1.4 (convergence to the Brownian motion). The measure µt con-

verges weakly to a Wiener measure.

The planar versions of the theorems 1.1-1.4 were first proven by Bunimovich and

Sinai in 1981 [6]. Their proofs were based on the Markov partitions of the space

M constructed in their previous paper in 1980 [5]. Those partitions were used

to approximate the dynamical system (T,M, ν) by probabilistic Markov chains
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with sufficiently strong ergodic and mixing properties. After that certain classical

methods from probability theory were applied to derive the theorems 1.1-1.4.

Unfortunately, a direct extension of that approach to the case d ≥ 3 fails

due to the absence of suitable Markov partitions. The troubles with “nonsmooth

boundaries” specific for multidimensional hyperbolic systems were first described

by Bowen in 1978 [4]. So far they have prevented “explicit” constructions of Markov

partitions for multidimensional billiards in the spirits of refs. [3] or [5]. In a recent

paper by Krüger and Troubetzkoy [14] somewhat different (in a sense, “implicit”)

construction of a Markov partition for an abstract nonuniformly hyperbolic system,

very close to the Lorentz gas, was presented. That partition is not ready to use

for study of statistical properties of the system. Hopefully, it can be improved and

applied to billiards, but a realization of that program might require a hard work.

Our proofs of the theorems 1.1-1.4 bypass Markov partitions. We only use a

finite approximation to those partitions, which is, in a sense, very crude. We

call it a Markov sieve, since it does not even cover the phase space M . A tiny

subset of positive (but small enough) measure is left out. Such an approach has

been developed in ref. [7], where the planar versions of the theorems 1.1-1.3 were

reproven and also extended to semidispersing billiards and stadia. In a sense, that

approach is more straightforward than the one used in the original works [5,6], and

its techniques are simpler. After all, the original approach has span two full size

articles, while we accomplish all in one.

The paper is organized as follows. Section 2 contains the necessary background

of the theory of hyperbolic billiards. In Section 3 we extend the notions of homo-

geneous stable and unstable manifolds and parallelograms introduced in ref. [7]

for planar billiards to the multidimensional case. In Section 4 we prove two basic

lemmas on the evolution of the homogeneous manifolds. In Section 5 we construct

Markov sieves. Section 6 contains the proofs of the theorems 1.1-1.4.

A final remark. We work with a billiard system, and so the complete proofs of

our theorems inevitably invoke intricate and very specific techniques of the theory

of billiards. However, our principal ideas are very general and, no doubt, can work

for other multidimensional nonuniformly hyperbolic systems, including attractors.

In order to make our ideas and arguments easy to understand for a generic reader,

nonexpert in billiards, we remove the billiard-related technical proofs from the
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main text and place them into Appendix. We also try to give emphasis to intuitive,

heuristic explanations and descriptions. The last remark especially pertains to

Section 5, where the existence of Markov sieves is demonstrated qualitatively rather

than proved rigorously.

2. Preliminaries.

There are fairly many papers on billiards published in the past two decades. By

now that theory has been sufficiently far developed, so that we can effectively use

its machinery while avoiding long and tedious calculations typical for early works

on this topic. In this section we briefly introduce general, well-known facts.

The map T and its inverse T−1 are piecewise smooth. Their discontinuities are

made up by the trajectories tangent to ∂Q. Denote S0 = ∂M = {x = (q, v) ∈ M :

(v, n(q)) = 0} and Si = T iS0 for every integer i. Then S−n is the singularity set

for Tn, n 6= 0. For m < n denote Sm,n = Sm ∪ · · · ∪ Sn. Obviously, all the powers

of T are continuous on a subset Mc = M \ S−∞,∞. For each m ≥ 1 the set S−m,m

consists of a finite number of smooth compact hypersurfaces in M with boundaries.

Assumption B (Nonaccumulation property of singularities). The number

of smooth components of S−m,m meeting at any point x ∈ M does not exceed a

constant K0 independent of m.

This assumption holds for generic configurations of scatterers. It is true, for

instance, if any trajectory undergoes at most a fixed number of tangent reflections.

Assumptions of that kind have been usually made in literature, see, e.g., refs. [5-7].

The map T is hyperbolic since all the scatterers are strictly convex. The hyper-

bolicity means that at every point x ∈ Mc the tangent space TxM is decomposed

as Eu
x ⊕Es

x, each of Eu,s
x being a (d−1)-dimensional subspace. This decomposition

is DT -invariant, i.e. DT Eu,s
x = Eu,s

Tx at every x ∈ Mc. The space Eu
x corresponds

to all the positive Lyapunov exponents, while Es
x corresponds to the negative ones.

A convenient description of the subspaces Eu,s
x , x = (q, v) ∈ M , through certain

curvature operators have been worked out in nearly all the previous papers in

billiards. Take a point x ∈ M and any (d − 1)-dimensional submanifolds Γu,s
1 (x)

in M passing through x and tangent to Eu,s
x . Each of those manifolds generates
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a bundle of trajectories in the domain Q outgoing from ∂Q and another bundle

incoming to ∂Q. The curvature operator of the orthogonal cross-section of the

outgoing bunch is denoted by Bu,s
+ (x) and that of the incoming one is denoted by

Bu,s
− (x). The operators Bu,s

+ (x) act in the (d − 1)-dimensional subspace Jx ⊂ Rd

orthogonal to the outgoing velocity vector v, and Bu,s
− (x) act in the hyperplane

Jx− orthogonal to the incoming velocity vector v− = v − 2(v, n(q))n(q). All those

operators are self-conjugate, Bu
±(x) are positive definite, and −Bs

±(x) are positive

definite, too. In other words, the bundles of trajectories generated by Eu
x are convex

(diverging), and those generated by Es
x are concave (converging).

There are simple equations governing the evolution of the above operators under

the action of T . Let x = (q, v) ∈ Mc. First,

Bu,s
− (Tx) = Bu,s

+ (x) · (I + τ(x)Bu,s
+ (x))−1. (2.1)

Here and on I denotes the identity operator. Second,

Bu,s
+ (x) = Bu,s

− (x) + K(x), where K(x) = 2(v, n(q))V ∗(x)K0(q)V (x). (2.2)

Here K0(q) is the curvature operator of the boundary surface ∂Q at q, and V ∗

and V are two projection operators: V is a projection of the hyperplane Jx onto

a hyperplane orthogonal to n(q) along the vector v, and V ∗ is a projection of the

latter back to the former, but now along the vector n(q). The spaces Jx and Jx−

can be identified by an isometric projection along the normal vector n(q), and we

assumed that identification in (2.1). Combining (2.1) and (2.2) we can express

Bu,s
± (x) as operator-valued continued fractions, see Appendix, but we never use

those expressions in the main text.

From (2.1) and (2.2) one can conclude that the eigenvalues of Bu
−(x) and −Bs

+(x)

are uniformly bounded away from 0 and ∞. But two other operators, Bu
+(x) and

−Bs
−(x) may have one very large eigenvalue, roughly proportional to (v, n(q))−1,

which will cause a lot of troubles in our calculations.

It turns out that natural distances in Eu,s
x induced by the Riemannian structures

in the phase spaces M and M are no good for studying the action of DT , since those

spaces are not monotonically expanded or contracted. In order to get monotonicity

we use another coordinate system in Eu,s
x induced by the Riemannian structure of

the orthogonal cross-section to the bundles of trajectories in Q generated by these
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subspaces (it can be taken either just before the reflection at the point x or after

it, the result is the same). In that coordinate system the derivative DT of the map

T acts on Eu,s
x as

DT |Eu,s
x

= I + τ(x)Bu,s
+ (x). (2.3)

As a result, one gets that Eu
x is expanded by DT in every direction with the factor

(rate) uniformly bounded away from 1. The same is true for the contraction of

Es
x. In what follows we refer to these properties of T as simply expansion and

contraction. Note that there are presumably no upper bounds on the rates of

expansion and contraction, since one eigenvalue of Bu
+(x) and Bs

−(Tx) may be

arbitrarily large.

Some technical remarks. The spaces Eu,s
x , as well as the operators Bu,s

± (x) depend

continuously on the point x ∈ Mc. The angles between Eu
x and Es

x in TxM (now

taken in the Riemannian structure in M) are uniformly bounded away from 0.

The angles between the hypersurfaces Sm,m ≥ 0, and Es
x, x ∈ Sm, are uniformly

bounded away from 0 (this is proven in Appendix). On the contrary, the angles

between Sm,m ≥ 0, and Eu
x , x ∈ Sm, uniformly tend to zero as m →∞.

The Katok-Strelcyn theory [12] assures the existence of local stable and unstable

manifolds (LUM and LSM for brevity) γu(x) and γs(x) passing through a.e. point

x ∈ Mc. Those LUM and LSM are tangent to Eu
x and Es

x respectively. Those

manifolds have finite sizes (they are compact) due to the discontinuities of both T

and T−1. The “unnatural” metrics in Eu,s
x introduced in (2.3) also induces a special

metrics in γu,s
x which is used throughout this paper unless otherwise specified. We

call it the ρ-metrics. It induces a Riemann measure (volume) in LUM’s and LSM’s,

which we also denote by ρ.

An important property of the LUM’s and LSM’s in billiards is their absolute

continuity. It is described in terms of a canonical isomorphism. For any two LUM’s

γu
1 and γu

2 sufficiently close to each other the canonical isomorphism is defined as a

map which takes a point x ∈ γu
1 to the point γs(x)∩γu

2 (provided the latter exists).

A dual map is defined for any two close LSM’s γs
1,2. These maps are absolutely

continuous with respect to the natural Riemannian measure in γu,s
1 [16,13]. This

property is termed the absolute continuity of the LUM’s and LSM’s. For two points

x, y ∈ M we denote [x, y] = γs(x) ∩ γu(y). For two subsets A,B ⊂ M we denote
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[A,B] = {[x, y] : x ∈ A, y ∈ B}. For an LUM γu and a subset A we denote

γu
A = γu ∩A, and we call the set {x ∈ γu : γs(x)∩A 6= ∅} the canonical projection

of A onto γu.

3. Parallelograms

Our principal goal in this section is to extend the notions of homogeneous LUM’s,

LSM’s and parallelograms elaborated in refs. [7,8] for a planar gas, to multidimen-

sional case. All the necessary proofs are provided in Appendix.

A parallelogram is a subset A ⊂ M such that for every pair x, y ∈ A a point

z = [x, y] exists and also belongs in A. Alternatively, A = [γu
A(x0), γs

A(x0)] for

every point x0 ∈ A. Parallelograms are often called rectangles, but we intentionally

follow the terminology of refs. [5-8].

Next, we fix a point x0 ∈ A, and let B ⊂ A be a subparallelogram. We denote

Γu
B and Γs

B the canonical projections of B onto γu(x0) and γs(x0), respectively.

Hence, B = [Γu
B ,Γs

B ]. Note that x0 needs not to belong in B. If the parallelogram

B is an infinitesimal one, its measure can be evaluated as

ν(B) = cν · det(Bu
+(x)− Bs

+(x)) · Ju(x) · Js(x) · ρ(Γu
B) · ρ(Γs

B) (3.1)

for x ∈ B. Here Ju,s(x) stand for the Jacobian of the canonical isomorphisms from

γu,s
B (x) onto Γu,s

B at x. This is a generalization of a formula established for planar

billiards in ref. [7]. The proof of (3.1) is given in Appendix, Sect. A1.

Now, for an arbitrary subparallelogram B ∈ A one can easily set up an integral

formula

ν(B) = cν

∫
Γu

B

dρ(y)
∫

Γs
B

dρ(z) · det(Bu
+(x)− Bs

+(x)) · Ju(x) · Js(x) (3.2)

where y ∈ Γu
B and z ∈ Γs

B are specified by [y, z] = x, and both integrals are taken

with respect to the ρ-measures in γu,s(x0).

Next, we fix two numbers α0 ∈ (0, 1) and C0 > 0. A parallelogram A is said to

be weakly n-homogeneous, n ≥ 0, if

|det(Bu
+(x)− Bs

+(x))/ det(Bu
+(y)− Bs

+(y))− 1| ≤ C0α
n
0 (3.3)
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and

|Ju,s(x)− 1| ≤ C0α
n
0 (3.4)

for every x, y ∈ A and every x0 ∈ A determining Ju,s(x). The main property of a

weakly n-homogeneous parallelogram A is that the measure of any subparallelogram

B ⊂ A can be approximated by

νa(B) = cν · det(Bu
+(x0)− Bs

+(x0)) · ρ(Γu
B) · ρ(Γs

B) (3.5)

with an exponentially small error:

|νa(B)/ν(B)− 1| ≤ C1α
n
0 (3.6)

with some C1 = C1(α0, C0).

An important consequence of (3.5-3.6) is the following Markovian approximation

formula. A subparallelogram B ⊂ A is said to be u-inscribed (or s-inscribed) in A,

cf. [5,7], if γu
B(x) = γu

A(x) (resp., γs
B(x) = γs

A(x)) for every x ∈ A ∩ B. If B1 is

u-inscribed in A and B2 is s-inscribed in A, then one has∣∣∣∣ν(B2/B1)
ν(B2/A)

− 1
∣∣∣∣ ≤ C2α

n
0 (3.7)

with some C2 = C2(α0, C0) provided A is an n-homogeneous parallelogram.

The construction of weakly homogeneous parallelograms is technically very close

to that for two-dimensional billiards [7]. First, we fix a θ > 1 and an n0 ≥ 1 and

denote D0 the infinite union of hypersurfaces in M defined by (v, n(q)) = n−θ for

all integers n ≥ n0. These hypersurfaces divide the neighborhood of S0 = ∂M

into an infinite number of thin layers, the closer to S0 the thinner. An LUM

(respectively, an LSM) is said to be homogeneous (we refer to them as HLUM and

HLSM for brevity) if it and all its images under Tn for n < 0 (resp., for n > 0)

do not cross the set D0. An LUM γu (an LSM γs) is said to be n-homogeneous,

n ≥ 0, if Tnγu (resp., T−nγs) is a homogeneous LUM (LSM). The main reason to

introduce homogeneous LUM’s and LSM’s is that they provide an efficient control

on the largest eigenvalue of the operators K(x), Bu
+(x) and Bs

−(x). Recall that this

eigenvalue is roughly proportional to (v, n(q))−1.

A parallelogram A is said to be n-homogeneous, n ≥ 0, if for every point x ∈

A the sets γu,s
A (x) belong in the same HLUM or, respectively, HLSM. It turns
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out that n-homogeneous parallelograms are always weakly n-homogeneous with

the constants α0 and C0 in (3.3-3.4) determined by θ and n0 above. Besides, n-

homogeneous LUM’s have another important property: for every pair of points x, y

in such an LUM

|Λu
k(T−kx)/Λu

k(T−ky)− 1| ≤ C0α
n
0 (3.8)

for every k ≥ 1, where Λu
k(T−kx) stands for the local rate of expansion of the ρ-

volume in γu(T−kx) by T k at the point T−kx. A dual estimate to (3.8) holds for

LSM’s.

The proofs of (3.3), (3.4) and (3.8) are fairly long. They are carried out in

Appendix, Sect. A2.

We also need some relatively simple properties of homogeneous LUM’s and LSM’s

listed below. Their proofs are outlined in Appendix, Sect. A3.

For a.e. point x ∈ M and every n ≥ 0 there are n-homogeneous LUM and LSM

passing through x. The maximal smooth components of the HLUM and HLSM

passing through x are denoted by γ0u(x) and γ0s(x), respectively.

Remark. Any nonhomogeneous LUM may contain many (possibly, infinitely

many) HLUM’s inside it. Those HLUM’s are separated by the images of the set D0

intersecting the original LUM. We claim that those images cannot accumulate near

any interior point of γu(x) for a.e. x ∈ M . (That is, they can accumulate only at

∂γu(x).)

For any x ∈ M we denote ru(x) and rs(x) the distances of x from ∂γ0u(x) and

∂γ0s(x), respectively. The following estimate holds for any ε > 0 and some β > 0:

ν{x : ru(x) < ε or rs(x) < ε} ≤ const · εβ . (3.9)

The bound (3.9) results from another important estimate. Given a subset A ⊂ M ,

we denote Uε(A) the so-called ε-neighborhood of A in the ρ-metrics, i.e. the union

of all the stable and unstable manifolds of size ≤ ε intersecting A. Then, for some

β1 > 0, one has

ν(Uε(S−1,1 ∪ D0)) ≤ εβ1 . (3.10)
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4. Evolution lemmas

Here we prove two basic lemmas on the evolution of HLUM’s and HLSM’s in M

under the transformation T . We discuss only HLUM’s but dual statements hold

for HLSM’s in the reverse dynamics.

Let γu be an HLUM and ρ0 denote the normalized ρ-volume (ρ-measure) in γu.

The image Tnγu consists of a finite or countable number of HLUM’s called compo-

nents. At each point x ∈ Tnγu we denote rn(x) the distance of that point from the

boundary of the component of Tnγu containing x (of course, the distance is mea-

sured in the ρ-metrics defined by (2.3)). Denote rmax
N (x) = max0≤n≤N{rn(Tnx)}

for x ∈ γu and

r̄n = −
∫

γu

ln rn(Tnx) dρ0(x).

The smaller γu is, the larger value r̄0 takes. The evolution of a small HLUM

under the action of T is determined by two competitive processes. One of them

is the expansion which forces the values rn(x) to grow exponentially fast in n or,

equivalently, pushes r̄n down by a positive amount at each step. The other process

is the splitting of Tnγu into shorter HLUM’s when it intersects S−1 or D0, which

pushes the mean values r̄n up again. The next lemma states that the first process is

more powerful, so that typical components of Tnγu will grow in size exponentially

fast in n until they reach a certain order of magnitude determined simply by the

geometry of the space M .

Lemma 4.1 (Expansion). There are a constant D > 0 and a function β(c) such

that β(c) → 0 as c →∞, and for any HLUM γu one has

ρ0{x ∈ γu : rmax
N (x) ≥ D} ≥ 1− β(c)

with N = [cr̄0].

In other words, during the first N ≈ const · r̄0 iterates of T the points of γu

appearing at least once in large (of size ≥ D) components of the images of the

HLUM γu form a “fat” subset of that HLUM.

The proof of a similar lemma for the planar gas [7] (see also ref. [8]) is short

and gives even more than stated here. It gives a good estimate for the function

β(c), which decays exponentially fast as c → ∞. But that proof does not work
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in the multidimensional case. We outline here another proof, which works in any

dimension, but is rather long and gives a much weaker estimate for β(c).

Consider a function Fn(x) = − ln rn(Tnx) on γu. The sequence {Fn(x)} equipped

with the probability measure ρ0 can be treated as a discrete time random pro-

cess. The expectation with respect to the measure ρ0 is denoted by 〈·〉0, so that

r̄n = 〈Fn(x)〉0.

If the discontinuities did not affect the evolution of γu, the function Fn(x) would

decrease by at least a positive amount f0 > 0 at each iterate of T at each point

x ∈ γu due to the uniform expansion on HLUM’s. In such a case the lemma 4.1

would have followed immediately.

The key point in our arguments is that the split-ups of the images of γu when they

cross S−1 or D0 do not prevent the function Fn(x) from a rapid decrease for typical

points x ∈ γu. First we consider the split-ups by S−1 alone. The assumption B

implies that for each m ≥ 1 there is an εm > 0 such that every HLUM of size

≤ εm intersects no more than K0 smooth components of S−m,0. Thus, Tm cuts

any sufficiently small HLUM along no more than K0 smooth surfaces. That cutting

certainly boosts the function Fn(x), but one can bound its “average” increment.

The crude idea is that since the number of cutting surfaces is uniformly bounded

(≤ K0), the total “damage” must be bounded, too.

We now give a precise estimate. Let a component γu
1 of Tnγu have a size ≤ εm

and be broken by S−m,0 into several subcomponents. For each x ∈ γu
1 denote

r′n(x) the ρ-distance of x from the boundary of the subcomponent where x belongs.

Let 〈·〉1 denote the conditional expectation over the HLUM T−nγu
1 ⊂ γu equipped

with the ρ0 measure (i.e., 〈F (x)〉1 = 〈F (x)〉0/ρ0(T−nγu
1 ) for any function F (x) on

T−nγu
1 ).

Sublemma 4.1.a. 〈− ln r′n(Tnx)〉1 ≤ 〈Fn(x)〉1 + f1, where the constant f1 > 0 is

independent of γu or m.

Sublemma 4.1.a is proven in Appendix.

For large m the difference f2 = mf0 − f1 is positive. Therefore, the combined

effect of the expansion and splitting at m subsequent iterates of T is always a

decrease of the average value of the function Fn. Obviously, this is an advantage

in our arguments.
13



We now turn to the splitting of the components caused by the hypersurfaces in

D0. Those can break any component down into an arbitrary large or even infinite

number of subcomponents. Hence the above arguments no longer work, and we

need a different approach. The situation can be saved by the fact that the rate of

expansion of LUM’s rapidly grows in the neighborhood of S0. Roughly speaking,

the pieces of a component γu
1 of Tnγu broken by D0 become large enough at the

very next step and the effect of expansion outweighs the effect of splitting. Again,

let γu
1 be small enough (≤ εm) and 〈·〉1 denote the conditional expectation over

T−nγu
1 ⊂ γu.

Sublemma 4.1.b. 〈Fn+1(x)〉1 ≤ 〈Fn(x)〉1−f3 with a constant f3 > 0 independent

of γu.

Sublemma 4.1.b is proven in Appendix, Section A.4.

We now complete the proof of Lemma 4.1. We consider an evolution of the

HLUM γu under T subject to a special “stopping rule”. The reason why we in-

troduce such a rule is that when a component of Tnγu becomes large enough and

contains some points y with rn(y) > D, then such points have already “reached

the goal” (recall the definition of rmax
N (x)) and we do not need to iterate them any

further. Precisely, we define the stopping rule as follows. Whenever a component

γu
1 of Tnγu contains a nonempty subset γu

1,0 = {y ∈ γu
1 : rn(y) > 2D}, we take the

D-neighborhood γu
1,s of γu

1,0 (in the ρ-metric on γu
1 ) and cut γu

1,s out of γu
1 . The

set γu
1,s is stopped (“frozen”), and the remaining part γu

1,v = γu
1 \ γu

1,s will then

continue evolving under T .

Let us consider more closely a component γu
1 of Tnγu, for which the above

stopping rule applies. Since we have cut that component into two subcomponents,

we will redefine the function rn(x) on the “moving” subcomponent γu
1,v. It must be

now equal to the ρ-distance of x ∈ γu
1,v from the boundary ∂γu

1,v (instead of ∂γu
1 ).

Denote 〈·〉1,v the conditional expectation over T−nγu
1,v ⊂ γu. The following relation

between the old and new values of the function rn(x) on the moving subcomponent

is analogous to Sublemma 4.1.a and proven in Remark A.6 in Appendix:

〈− ln rnew
n (Tnx)〉1,m ≤ 〈− ln rold

n (Tnx)〉1,m + f4
P s

P v
(4.1)

where f4 > 0 is independent of γu, and P v and P s stand for the ρ0-measures of

T−nγu
1,v and T−nγu

1,s, respectively. The meaning of (4.1) is to bound the increment
14



of − ln rn(x) caused by introducing the stopping rule. We do not change Fn(x) on

γu
1,s.

We apply the stopping rule to each moving component at every step. Thus, we

redefine the function Fn(x) at every step. Its increment at the nth step can be

estimated due to (4.1):

〈F new
n (x)〉0 ≤ 〈F old

n (x)〉0 + f4P
s
n (4.2)

where P s
n =

∑
γu
1⊂T nγu ρ0(T−nγu

1,s) is the ρ0-measure of the set of points stopped

at the nth step, exactly (not before or after it).

The part of Tnγu that has not been stopped up to the nth step consists of a

finite or countable number of HLUM’s. Note that the preimage of that “moving”

part under T−n has the ρ0-measure P v
n = 1−

∑n
1 P s

i in the above notations. On the

other part of γu, which has been stopped before the (n + 1)th step, we naturally

“freeze” the function Fn(x), so that Fk(x) = Fk+1(x) = Fk+2(x) = . . . for any

point x ∈ γu stopped at the kth step.

In order to apply Sublemmas 4.1.a and 4.1.b to the moving components of Tnγu

we need them to be short enough, i.e. their sizes must be < εm. It is not always

the case. We apply an additional cutting to assure that smallness. It is very simple

– we just cut “long” components into shorter subcomponents of size < εm along

some hyperplanes in M . Those hyperplanes can be selected in a rather arbitrary

way, so that the overall increment of the function Fn can be bounded as

〈F new
n (x)〉0 − 〈F old

n (x)〉0 ≤ P v
nf5D/εm (4.3)

where f5 is independent on γu or D. This bound is explained in Remark A.7 in

Appendix. We now fix D, so small that the RHS of (4.3) will be < P v
nf2/(2m).

Therefore, the cumulative increment of 〈Fn(x)〉0 due to the additional cuttings at

any m subsequent steps will be less than P v
nf2/2.

A combination of Sublemmas 4.1.a and 4.1.b with the bounds (4.2) and (4.3)

gives a bound on the cumulative increment of the mean value of Fn(x) at any m

subsequent iterates of T :

〈Fn+m(x)〉0 − 〈Fn(x)〉0 ≤ −P v
nf2/2 + (P s

n+1 + · · ·+ P s
n+m)f4. (4.4)

With a slight abuse of notations, here we denote by Fn(x) the new value of this

function, after its redefinitions in (4.2) and (4.3) and the above freezing.
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The bound (4.4) readily yields for any n ≥ 1

〈Fmn(x)〉0 ≤ r̄0 − (P v
0 + P v

m + · · ·P v
m(n−1))f2/2 + f4 ≤ r̄0 − nP v

mnf2/2 + f4.

On the other hand, 〈Fmn(x)〉0 ≥ P v
mn ln(2D)−1, because rmn(x) ≤ 2D on the

moving part of Tmnγu, whose ρ-measure is P v
mn. Thus,

P v
mn ≤

r̄0 + f4

nf2/2 + ln(2D)−1

and Lemma 4.1 follows.

As a byproduct, we get an explicit formula for the function β(c), assuming r̄0

be large enough, β(c) = 2m
cf2

. This function decays very slowly as c → ∞, but we

conjecture that an exponential bound for P v
n can be also obtained, as for the planar

case in ref. [7]. �

The second evolution lemma pertains to the evolution of sufficiently large HLUM’s,

i.e. those of size ≥ D which were obtained in Lemma 4.1. Intuitively, the images

of large HLUM’s can no longer grow in size due to the compactness of the space

M . Instead, the components of the images of such HLUM’s in the distant future

presumably fill out the space M more or less uniformly. We prove only a weaker

version of that conjecture. We call our version the transitivity of HLUM’s and

HLSM’s, as in ref. [7].

To give a precise definition of the transitivity we have to specify an HLUM γu
1

to start with and a “place” in the space M which is expected to be filled with the

components of Tnγu
1 . The HLUM is only supposed to be large enough, i.e. the

ρ-distance of at least one point x to the boundary ∂γu
1 must be not less than D.

To specify an appropriate place in the space M we need certain geometric notions.

Those will be also used later in Section 5.

We fix a large m ≥ 1 and a point y ∈ M \ S−m,m. We then fix an arbitrary

rectangular coordinate system in the space Eu
y and another one in Es

y. Together,

they form a linear coordinate system in TyM . Its projection into M by the expo-

nential map determines a coordinate system in a vicinity of y ∈ M . We now take

an open cube Vε(y) ⊂ M with sides of length ε parallel to the fixed coordinate

axes and centered at y. If ε is small enough, then Vε(y) does not intersect S−m,m

and looks like a curvilinear parallelepiped in M bounded by some 2(d− 1) smooth

hypersurfaces almost parallel to Eu
y and some other 2(d− 1) hypersurfaces almost
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parallel to Es
y. We call the former the u-sides of Vε(y) and the latter the s-sides of

it. Certain similar open cubes have been involved in the proofs of the fundamental

theorem of the theory of hyperbolic billiards in earlier works [16,13]. Next, we take

all the HLUM’s inside the cube Vε(y) which do not terminate inside Vε(y) or on

its u-faces, i.e. such HLUM’s γu that the boundary ∂(γu ∩ Vε(y)) belongs to the

union of s-faces of Vε(y). We also take all the HLSM’s inside Vε(y) which, likewise,

do not terminate inside the cube or on its s-faces. Each such an HLUM intersects

each HLSM at a single point inside Vε(y). The set of the points of intersection

is then a homogeneous parallelogram. We denote it by Aε(y). We say that such

parallelograms are maximal, just as in the planar case [7,8].

Remark. More generally, given y ∈ M \ S−m,m and two sufficiently small reals

εu, εs > 0, we can take two open cubes in Eu
y and Es

y centered at y with sides

εu and εs, respectively. The exponential projection of the direct product of these

cubes into M is a curvilinear parallelepiped, which we denote Vεu,εs(y). In a similar

fashion we define u- and s-faces of Vεu,εs(y) and a maximal parallelogram Aεu,εs(y)

inside it.

For our present purposes we need just one cube V0 = Vε(y) and the corresponding

parallelogram A0 = Aε(y) with some y ∈ M and ε > 0 satisfying the only condition

that ν(A0) > 0. This set A0 will be fixed throughout the paper. We call it the

meeting place, since it is a “place” in M where the images and preimages of the

elements of the Markov sieve constructed later in Section 5 will meet and intersect

one another.

We now turn back to the HLUM γu
1 . Denote ρ1 the normalized ρ-measure in

γu
1 . Fix an n ≥ 1. Consider all the components of Tnγu

1 that intersect V0 and do

not terminate inside V0 or on its u-faces. For each such a component we take its

intersection with V0 and denote the union of all those intersections by γu
1,n.

Lemma 4.2 (Transitivity). There are constants n0 ≥ 1 and δ0 > 0 determined

by V0 and D alone, such that for every n ≥ n0

ρ1(T−nγu
1,n) ≥ δ0. (4.5)

In other words, after n0 iterates of T the portion of the image Tnγu
1 staying

inside V0 (in a “proper way”) at any time has a ρ1-volume bounded away from
17



zero. The constants n0 and δ0 do not depend on the HLUM γu
1 provided it is large

enough. The “meeting place” A0 can be fixed anywhere in the phase space M , thus

justifying our term “transitivity”.

Sublemma 4.2.a. There are a point x1 ∈ γu
1 and two reals εu, εs > 0 such that

ν(Aεu,εs(x1)) > 0.

Proof. It is known that for any LUM γu
1 and for ρ-a.e. point x ∈ γu

1 there is

an LSM γs(x). Actually, it suffices to have a subset G ⊂ γu
1 of a positive ρ-measure

where LSM exist. This statement follows from the so called fundamental theorem

for dispersing billiards [16, 17]. The union of the LSM’s γs(x), x ∈ G, has a positive

ν-measure due to the absolute continuity property of LUM’s and LSM’s.

We now claim that for ρ-a.e. point of G an HLSM γ0s(x) also exists. Indeed, if for

an x ∈ G, which is an interior point of γu
1 , there is no HLSM, then either Tnx ∈ D0

for some n ≥ 0, or x is a point of accumulation of surfaces separating HLSM’s

inside the LSM γs(x). Such “unlucky” points x form a set of zero ρ-measure in γu
1

due to the remark at the end of Section 3.

Thus, rs(x) > 0 at a.e. point x ∈ G ⊂ γu
1 . Obviously, for some δ > 0 the set

Gδ = {x ∈ γu
1 : rs(x) > δ} has a positive ρ-measure and is closed. Let x1 be a

density point of the subset Gδ (such that the density of Gδ in small ball-shaped

neighborhoods of x1 in γu
1 is asymptotically one). Besides, we can assume that

ρ(x1, ∂γu
1 ) > δ. Now, one can apply all the above arguments to the HLSM γ0s(x1)

and easily obtain a maximal parallelogram Aεu,εs(x1) of positive measure. �

Denote A1 = Aεu,εs(x1). In virtue of the mixing property of T one has

ν(TnA1 ∩A0) ≥
1
2
ν(A1)ν(A0) (4.6)

for all n ≥ n1 = n1(A1, A0).

The image TnA1 consists of a finite or countable number of homogeneous paral-

lelograms. Denote Bn,1, Bn,2, . . . those of them that intersect A0. If x′ ∈ Bn,i∩A0,

then the HLUM γ0u(x′) is obviously large enough and does not terminate inside V0

or on its u-faces. The corresponding component of Tnγ0u
V1

(T−nx′) covers the entire

γ0u
V0

(x′) unless the point T−nx′ is too close to ∂V1, i.e. unless dist(T−nx′, ∂V1) < αn

for a certain α < 1. This last case is negligible, it pertains to parallelograms whose

total relative measure is exponentially small in view of (4.6).
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Suppose now that x′ ∈ Bn,i ∩ A0 and Tnγ0u
V1

(T−nx′) covers the entire HLUM

γ0u
V0

(x′). If for any other x′′ ∈ γs(x′)∩Bn,i the image Tnγ0u
V1

(T−nx′′) also covers the

entire HLUM γ0u
V0

(x′′), and the set Tnγ0u
A1

(T−nx′) covers the set γ0u
A0

(x′), then the

intersection Bn,i ∩A0 is “good” – it is a homogeneous parallelogram u-inscribed in

A0 and its preimage T−n(Bn,i ∩A0) is s-inscribed in A1. This readily follows from

the maximality of both A1 and A0. We say that such intersections are regular, as in

ref. [8]. If the intersection Bn,i∩A0 is lacking any of these properties, then it is not

large enough, and we say that it is irregular [8]. The latter is the case when either

of two following conditions holds: (i) for some point x′′ ∈ γs(x′) ∩Bn,i the HLUM

γ0u(x′′) meets either an image T kS−1 or the set T kD0 with some k, 1 ≤ k ≤ n,

inside V0, or (ii) the previous condition fails, but for some point x′′′ ∈ γu(x′) ∩ A0

the HLSM γ0s(T−nx′′′) meets either an image Tn−kS−1 or the set Tn−kD0 with

some k, 1 ≤ k ≤ n, inside V1. Our method for ruling out such “bad” intersections

is different from the one used for two-dimensional case in ref. [7]. A special,

nonmaximal, parallelogram A1 was constructed there, for which bad (irregular)

intersections never occurred. Here we allow irregular intersections, but bound the

measure of their union by an exponentially small quantity Cαn, α < 1. Similar

ideas were developed earlier in ref. [8]. We consider three cases.

Case 1. The value of k is large enough, very close to n. Precisely, let (1− δ1)n ≤

k ≤ n for some small fixed δ1 > 0. Then the set T−k(γ0u(x′′) ∩ Bn,i) lies in the

(c1α
n
1 )-neighborhood of the union S−1∪D0 (in the ρ-metric, cf. Sect. 3) with some

α1 < 1. We now estimate the portion of A1 visiting this tiny neighborhood in the

course of [δ1n] iterates of T . The images TA1, . . . , T [δ1n]A1 altogether consist of

no more than Λ[δ1n]
0 parallelograms for some Λ0 > 1 which is simply determined by

the number of the smooth components of the set S−1. Each of those parallelograms

intersects the (c1α
n
1 )-neighborhood of S−1 ∪ D0 by a set of measure ≤ (c1α

n
1 )β1 ,

according to the estimate (3.10). Therefore, the total measure of the irregular

intersections for the values of k specified above does not exceed const · αnβ1
1 ·Λδ1n

0 .

By choosing δ1 small enough one can make this bound exponentially small in n.

Case 2. The value of k is very small, 1 ≤ k ≤ δ2n for some small δ2 > 0. Similar

arguments as in the previous case can be now applied to the parallelogram A0

and its pre-images T−1A0, . . . , T−[δ2n]A0. As a result we again get an exponential

bound for the total measure of irregular intersections with the current values of k.
19



Case 3 pertains to the remaining, intermediate values of k, which satisfy δ2n ≤

k ≤ (1 − δ1)n with the fixed δ1, δ2 > 0. If Bn,i corresponds to such a k, then

T−kBn,i is exponentially small in n in every direction due to uniform expansion of

LUM’s and uniform contraction of LSM’s. Therefore, T−kBn,i lies in the (c2α
n
2 )-

neighborhood of S−1 ∪D0, where α2 < 1 is determined by the values of δ1, δ2. The

sets T kBn,i are disjoint for each fixed k. The estimate (3.10) gives a bound on the

measure of the above neighborhood. Summing it over all the related k again yields

an exponential bound on the measure of irregular intersections.

Thus, all the irregular intersections are negligible, again in view of (4.6).

Next, in each regular intersection Bn,i ∩A0 there is a component of Tnγu
1 which

does not terminate inside V0 or on its s-faces. The inequality (4.5) now formally

follows from (4.6).

The last thing we must take care about is the independence of n0 from the

HLUM γu
1 required by Lemma 4.2. The problem here is that the value of n1 in

(4.6) depends on A1, which, in turn, may depend on γu
1 . To solve this problem

we observe that the set HD of all the “large” HLUM’s involved in Lemma 4.2 is

compact in the C0-topology [7]. Indeed, if a sequence of HLUM’s converges to

a surface in M in C0-topology, then that surface is easily seen to be an HLUM,

too. The parallelogram A1 in (4.6) can be used not only for a particular HLUM

γu
1 with which it has been constructed, but also for all close HLUM’s forming an

open neighborhood of that HLUM in HD. Due to the compactness of HD a finite

collection of such neighborhoods covers HD, so that a finite number of maximal

parallelograms of positive measure can “serve” all the “large” HLUM’s. Each of

those parallelograms yields its own n1, and we define n0 as their maximum. �

Remark 4.3. As a byproduct of the above proof we get that for any two maximal

parallelograms A1, A2 the intersection TnA1 ∩A2 for a large n > 0 consists mostly

of parallelograms that we call regular intersections. Precisely, the measure of the

irregular part of TnA1 ∩ A2 for any n ≥ 1 is bounded above by an exponential

function cαn for some c > 0 and α < 1 independent of A1 and A2.
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5. Markov sieves.

Our construction of Markov sieves for the multidimensional Lorentz gas is, in a

sense, simpler and cruder than the one elaborated for planar gas in ref. [7].

We start with an informal description of a Markov sieve – what it looks like

and which properties it enjoys. So far it has been used only in refs. [7,8,9], but it

has already proven an effective tool for studying statistical properties of hyperbolic

dynamical systems.

A Markov sieve (MS) is a collection of disjoint parallelograms in M . They fill out

the entire space M except for a tiny “marginal” set of negligibly small measure.

The MS is not a fixed object unlike the Markov partition. This means that if

we are estimating some quantities involved in the theorems 1.1-1.3 for a certain

(discrete) time N , then we will construct a MS that works for the given N alone.

For different times N we use different MS’s, thus working with a one-parameter

family of MS’s. Furthermore, unlike infinite Markov partitions [5-6], the elements

of a MS for each N are comparable (uniform) in structure and size. Namely, they

all are n-homogeneous parallelograms for a certain n (n can be thought of as a

second parameter of the MS’s, but in our proofs it will be determined by N). The

diameters of the elements of a MS are exponentially small in n and the measure of

the marginal set is exponentially small in n, too. In other words, for the larger N

we take smaller parallelograms which, however, fill the space M more densely.

We also outline the way the MS’s work. Once constructed for a given value of

N (and the corresponding n), a MS gives a natural representation of the iterates

T i on M , 1 ≤ i ≤ N , by a stochastic process with a discrete time and with a finite

number of states (here the elements of the MS along with the marginal set form

the set of states). The first property of that process is sort of a “short memory”.

It allows us to approximate that process by a finite state Markov chain. The

principal property of the approximating Markov chain is that the convergence to

the stationary distribution is fast enough, so that it can be observed on the given

interval [0, N ]. In other words, the relaxation to equilibrium essentially needs no

more than N iterates of T to occur. In probability theory such properties of Markov

chains are called regularity conditions. After that the proofs of Theorems 1.1-1.3

will be accomplished by invoking standard methods of probability theory.
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We now give a formal definition of the MS’s. A MS is determined by two large

integer parameters N and n, 0 < n < N (actually, we will consider n ≈ Nβ for

some β ∈ (0, 1), however, we need certain freedom in choosing β). We denote a

MS by <N,n and its elements by B1, . . . , BI , I = I(n, N). We also denote B0 =

M \ (B1 ∪ · · · ∪ BI) the marginal set. We denote = the set of indices {1, . . . , I},

and so =k is the set of k-tuples of indices.

The MS <N,n is defined by four conditions. Here and further on α1, α2, . . . stand

for various constants in the interval (0, 1) and c1, c2, . . . stand for various positive

constants, usually coefficients. The values of αi and ci do not depend on the MS

parameters N and n.

Condition 1 (Sizes). diamBi ≤ c1α
n
1 for all i ∈ =.

Condition 2 (Marginal set). ν(B0) ≤ c2α
n
2 .

Condition 3 (Markovian approximation). For any integers k > l > 1, 1 ≤

i1 < i2 < · · · < ik ≤ N and for any collection (j1, . . . , jk) ∈ =k one has

ν(T i1Bj1 ∩ T i2Bj2 ∩ · · · ∩ T il−1Bjl−1/T ilBjl
∩ · · · ∩ T ikBjk

)

= ν(T i1Bj1 ∩ · · · ∩ T il−1Bjl−1/T ilBjl
)(1 + ∆) (5.1)

with some |∆| ≤ c3α
n
3 . Here ν(B′/B′′) means the conditional measure, i.e. ν(B′ ∩

B′′)/ν(B′′).

Condition 4 (Regularity). There are constants g0, g1 > 0 independent of N and

n such that for every k ≥ g0n and for a majority of pairs (i, j) ∈ =2 (see below)

one has

ν(T kBi ∩Bj) ≥ g1ν(Bi)ν(Bj). (5.2)

The “majority of pairs” means the following. For every i we denote Ri(k) ⊂ =

the collection of the values of j for which (5.2) holds. Then we consider the subset

R(k) ⊂ = of integers i such that∑
j∈Ri(k)

ν(Bj) ≥ 1− c4α
n
4 . (5.3)

Now the “majority of pairs” means exactly that∑
i∈R(k)

ν(Bi) ≥ 1− c5Nαn
5 . (5.4)
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The rest of the present section is devoted to the construction of MS’s. It starts in

a different manner than that for the planar gas [7]. The latter was based on so called

pre-Markov partitions [5-8], which partitioned the two-dimensional space M into

“nice boxes” (“squares” circumscribed by LUM’s and LSM’s) whose boundaries

enjoyed certain Markovian invariance property, see refs. [6-8] for details. That

property was necessary to prevent possible “ugly” mutual intersections of the images

of those boxes. Those ugly intersections are illustrated below.

We cannot construct pre-Markov partitions here, in the multidimensional case.

Moreover, they are unlikely to exist, because the singularity hypersurfaces S−∞,∞

may cut the boundaries of any “nice” box in a very “ugly” manner and thus rule out

any strict invariance property that was valid in the two-dimensional case. But we

are able to construct a crude analogue of those pre-Markov partitions, and it works

well enough. After all, the MS only provides an approximation to the dynamics,

and so its construction and properties need not be absolutely rigid, they are flexible

by their nature.

Our construction is based on the ideas of Sinai [15] and Bowen [3]. First we

fix a large integer m ≥ 1. The set M \ S−m,m consists of a finite number of

domains with piecewise smooth boundary. We fill those domains with some boxes

Wi = Vε(xi), 1 ≤ i ≤ I1 (see Sect. 4), where ε = e−n. The boxes should cover

the entire space M except a vicinity of the set S−m,m. Precisely, the boxes cover

M \Uc′6αn
6
(S−m,m) and do not intersect Uc′′6 αn

6
(S−m,m) with some c′6 > c′′6 > 0 (here

Uε(S) stands for the ε-neighborhood of a set S).

Locally, the centers of boxes constitute a nearly regular (2d − 2)-dimensional

lattice with a variable spacing ranging from 0.8ε to 0.9ε. The boxes are aligned

so that neighboring boxes have nearly parallel faces. Thus each box intersects

32(d−1) − 1 neighboring boxes and the sizes of overlappings are of order ε. Similar

covers have been used in refs. [13, 17] and we omit details. Provided m is large

enough such boxes exist, because we allow the constants c′6, c
′′
6 and α6 to depend

on m but not on n.

Next, we adjust the boundaries of the boxes to prevent certain “ugly” intersec-

tions of the images of those boxes under Tm and T−m with other boxes. Consider

the image TmWi of a box Wi. It looks like a “pancake” – largely extended in all

the u-directions but extremely thin in s-directions. In Fig. 1 three possible inter-
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sections of TmWi with another box Wj are shown. We say that the first two are

“ugly”, and our next goal is to rule them out. First note that the last intersection

shown in Fig. 1c is a typical one, but the two ugly ones still occur too often and

can spoil further estimates if we do not adjust the boundaries of the boxes.

The idea of the adjustment is borrowed from ref. [15]. In the case shown in Fig.

1a we expand the box Wi in the u-directions, so that the image TmW
(1)
i of the

expanded box W
(1)
i will intersect the box Wj very neatly – it will spread exactly

up to the s-faces of the latter, see the dashed line in Fig. 1a. The case shown in

Fig. 1b is symmetric to the preceding one because the intersection T−mWj ∩ Wi

looks exactly like that shown in Fig. 1a. It is treated in a similar fashion – the box

Wj is expanded in the s-direction, so that it will reach the boundaries of TmWi.

After all the adjustments we get slightly larger boxes Wi, 1 ≤ i ≤ I1 of a less

regular shape, however. For our convenience we may assume that they still have a

cylindrical form, i.e. they have a direct product structure in the local coordinate

system induced by Eu,s
xi

, see Section 4. Furthermore, we can modify the boundary

of the new box, so that it will consist of a finite number of hypercubes, which we

continue calling u- and s-faces. In that case we have to sacrifice “the neatness” of

the intersections of the images of the new boxes with the old ones now allowing

tiny slots between their s-faces, but possible losses are easily seen to be negligible.

Actually, the losses (in measure) are of the same order of magnitude as the slots

between the original boxes, i.e. exponentially small in n.

Our adjustments have reduced the “ugliness” of the intersections but have not

eliminated it completely. Indeed, the boundary of the box Wj in Fig. 1a has been

adjusted, too, so that some new gaps appear between the s-faces of W
(1)
j and those

of TmW
(1)
i . Hence, we need a new adjustment consisting in further expansion of the

new boxes in such a way that the images of their new boundaries fit the boundaries

of the boxes obtained at the previous step. This second adjustment results in

somewhat larger boxes W
(2)
i , 1 ≤ i ≤ I1. Additionally, we modify new boxes again,

so that they will have cylindrical structure and their boundaries will consist of a

finite number u- and s-faces, as we did above. After performing those adjustments

(followed by modifications) k times, we get some boxes W
(k)
i , 1 ≤ i ≤ I1, of a rather

irregular shape. Clearly, the increments of the boxes decay exponentially fast in k,

and when m is large, the total increments are small enough compared to the sizes
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of the original boxes (say, they are less than ε/100 if m is large enough).

We stop this iterational procedure at a finite step k = n avoiding some serious

troubles with nonsmooth boundaries of the limiting “boxes” as k → ∞, see refs.

[3,15] for more detail. Our boxes W
(n)
i are still cylindrical sets and still have a

finite number of u- and s-faces. Their boundaries are not completely adjusted –

there are some tiny slots (of width smaller than εδn = (δe−1)n, δ < 1) between the

s-faces of images of boxes and other boxes as described above. However, possible

losses are negligible.

Next, we borrow another idea from refs. [3,15] to define smaller but disjoint

boxes here. First we observe that each box intersects exactly 32(d−1) neighboring

boxes (except for the outermost boxes, adjacent to an uncovered vicinity of S−m,m).

For each pair Vi and Vj of intersecting boxes we partition each of them into 4 smaller

ones. To specify that partition we observe that the spaces Eu,s
xi

are almost parallel

to Eu,s
xj

, because xi and xj are close. Thus, we can assume that the box Vj has a

direct product structures in the coordinate system Eu,s
xi

. Say, let Vi = Eu
i ×Es

i and

Vj = Eu
j ×Es

j , where Eu,s
i,j are subregions in the spaces Eu,s

xi
. We call those regions

the basic regions of the boxes Vi and Vj , respectively. Actually, only the box Vi has

a direct product structure in this coordinate system, and so our assumption requires

a slight perturbation of Vj , but the relative error gained from that is exponentially

small in n, and so it is negligible. We now partition the box Vi into four ones:

V 1
i,j = (Eu

i ∩Eu
j )×(Es

i ∩Es
j ), V 2

i,j = (Eu
i \Eu

j )×(Es
i ∩Es

j ), V 3
i,j = (Eu

i ∩Eu
j )×(Es

i \Es
j ),

and V 4
i,j = (Eu

i \ Eu
j ) × (Es

i \ Es
j ). All the four boxes V k

i,j , 1 ≤ k ≤ 4, have direct

product structures in our coordinate system and a finite number of u- and s-faces,

and they are disjoint.

Note that we do not disturb the (nearly) invariance property of the boundaries

gained above since each face of the old boxes is extended no farther than by the

distance ε and at least by the distance 0.05ε. (That observation may, however, fail

for boxes V whose images TmV and T−mV are close to S−m,m, but their total

measure is exponentially small).

We now consider the collection of all “part” V k
i,j , 1 ≤ k ≤ 4, 1 ≤ i 6= j ≤ I1. Since

the boxes V 1
i,j and V 1

j,i almost coincide, we discard either one of them for every pair

i, j. Given a point x ∈ M , we define a box V (x) = ∩{V k
i,j : x ∈ V k

i,j}. These boxes

are disjoint and cover the whole M except a tiny set of exponentially small measure.
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They enjoy the same (approximate) invariance property of the boundaries as the

old boxes did.

Some of our new boxes might be anomalously short. We will simply remove such

boxes. To be specific, we retain a box V = Eu
V ×Es

V , where Eu
V and Es

V are its basic

regions, if each of those regions contains at least one point such that the ρ-distance

of it from the boundary of that region is not less than c7α
n
7 . If α7 < e−1 is small

enough, then the total measure of the removed boxes is exponentially small in n,

and so the losses are negligible. We fix an α7 ∈ (δe−1, e−1).

Thus far we have worked with Tm instead of T in order to ease the control on

the possible increments of the boxes during the adjustments. But now we have

to turn back to T . Denote V the set of boxes constructed above and take W =

V ∨ TV ∨ · · · ∨ Tm−1V. This is the collection of all the mutual intersections of

those boxes and their images under T, . . . , Tm−1. For our convenience we also split

the disconnected elements of this collection into their connected components. As a

result we get a collection of smaller boxes, which have a direct product structure

and a finite number of u- and s-faces. Again, we remove all the anomalously short

boxes from W by the same rule as above (with the same value of α7). The new

system of boxes enjoys the invariance property of the boundary under the action

of both T and T−1 (we always mean an approximate invariance, allowing gaps of

width ≤ c7α
n
7 , which are exponentially smaller than the sizes of our boxes). It is

our crude analogue of a pre-Markov partition.

We now start the construction of the Markov sieve (MS). For each box V ∈ W

we denote Eu
V and Es

V the basic regions and then take their (2c7α
n
7 )-neighborhoods

Êu
V and Ês

V (in the corresponding (d − 1)-planes). The box V̂ = Êu
V × Ês

V has a

direct product structure and contains V . We call ∂Ês
V × Êu

V (respectively, ∂Êu
V ×

Ês
V ) the u-boundary (s-boundary) of V̂ . Inside each box V ∈ W we take all the

HLUM’s spreading up to the s-boundary of V̂ . This means that the HLUM’s do

not terminate inside V̂ or on its u-boundary. Likewise, we take all the HLSM’s

spreading up to the u-boundary of V̂ . The points of intersections of those HLUM’s

and HLSM’s inside V make up a homogeneous parallelogram A = A(V ) ⊂ V .

The measure of the set not covered by the parallelograms, ν(∪W(V \ A(V )), is

exponentially small in n by virtue of (3.9). Moreover, we can retain only “very
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dense” parallelograms, i.e. such that

ρ(Eu,s
V ∩A(V )) ≥ (1− c8α

n
8 )ρ(Eu,s

V ) (5.5)

where Eu,s
V are the basic regions of the box V (recall that V = Eu

V × Es
V ). If the

constant α8 < 1 is sufficiently close to 1, then the total measure of the parallelo-

grams lacking the property (5.5) for either Eu
V or Es

V is exponentially small in n,

and so it is negligible. Denote the resulting collection of parallelograms by A. The

approximate invariance property of the boundaries of the boxes V ∈ W under T±1

and our definition of boxes V̂ readily imply the regularity of the intersections of

T±1A1 ∩A2 for all A1, A2 ∈ A, i.e. those intersections are either empty or regular.

We now take An = T−nA ∨ · · · ∨ A ∨ TA ∨ · · · ∨ TnA. This is the collection of

the mutual intersections of the parallelograms in A with their images under T i for

all i, |i| ≤ n. The elements A ∈ An are n-homogeneous parallelograms covering the

entire space M except for a tiny marginal set A(0) whose measure is less than c9α
n
9 .

The intersections T±1A1∩A2 for any two parallelograms A1, A2 ∈ An are either

empty or regular, because the same property holds for the elements of A. But

this is no longer valid for the intersections T±kA1 ∩ A2 with k ≥ 2, since some

intermediate images T±iA1, 1 ≤ i ≤ k − 1, may intersect the marginal set A(0)

where we lose control on their further evolution. Nonetheless, the regularity of the

intersections T kA1 ∩A2, |k| ≥ 2 would be important at least for |k| ≤ N to ensure

the condition 3 of the MS. To achieve this regularity we reduce the parallelograms

in An by removing from every A ∈ An all the points x ∈ A whose images under

T i, |i| ≤ N , visit the marginal set A(0) at least once. The measure of the set of

points removed from all the parallelograms A ∈ A does not exceed 2Nc9α
n
9 . If n

is of order Nβ with some fixed β > 0, then the total losses are still exponentially

small in n. It is easy to verify, by induction in k, that the remaining subset of each

A ∈ An is still a parallelogram, and the intersections T kA′ ∩ A′′, A′, A′′ ∈ An are

regular for |k| ≤ N . Moreover, we can discard all the parallelograms which, after

the reduction, lack the “density” property (5.5), since their total measure would

not exceed Nc10α
n
10.

The result of the above construction is the desired Markov sieve <n,N . It ob-

viously satisfies the conditions 1 and 2. The third condition readily follows from

the n-homogeneity of the parallelograms in <n,N , the regularity of the intersections
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between their images and the relation (3.7).

The verification of the last condition of the MS requires additional considerations.

They are based on the two evolution lemmas and involve the “meeting place” A0

from Section 4. We describe those considerations briefly, since they almost repeat

the corresponding arguments for the planar gas [7].

Take any parallelogram A ∈ An. We first claim that its image A′ = TnA is of

size ≥ ce−n in every u-direction. This means that for any point x ∈ A′ and any

line l ∈ Eu
x the projection of A′ onto l has the ρ-diameter ≥ ce−n. Indeed, for any

point y ∈ A′ the set γu
A′(y) lies in an HLUM γu

V ′(y), where V ′ is a box from W.

Therefore, this HLUM is of ρ-size ≥ ce−n in every u-direction with a value of c

determined by m. Besides, γu
A′ is a “very dense” subset of that HLUM, precisely,

ρ(γu
A′(y)) ≥ (1− c8α

n
8 )ρ(γu

V ′(y)). (5.6)

Therefore, the projection of the set γu
A′(y) onto any u-directed line in the box V ′

has ρ-size ≥ ce−n.

The further images Tn+iA, for i ≥ 1, may suffer from the discontinuities of T ,

and so they generally consist of a finite number of homogeneous parallelograms. We

call them p-components to distinguish them from the components of the HLUM’s

discussed earlier in Section 4.

Lemma 4.1 applies to the HLUM γu
V ′(y) and says that during the evolution of

that HLUM under T i, 1 ≤ i ≤ c11n, a majority of its points appear at least once in

large components of T iγu
V ′(y), i.e. in components whose ρ-size in every u-direction

is ≥ D. Each of these components “carries” on it a p-component of T iA′. The

density of the p-components of T iA′ on the corresponding components of T iγu
V ′(y)

does not change significantly under the action of T i by virtue of (3.8). Hence this

density on most of the components is still high, as high as was specified by (5.6)

with, say, somewhat larger value of the constant c8.

The evolution lemma 4.2 now applies to each of the above large components of

T iγu
V ′(y), 1 ≤ i ≤ c11n, and says that for every i ≥ c11n + n0 a certain portion

(of relative ρ-measure ≥ c12) of the HLUM γu
V ′(y) is transformed by T i into a

set of components lying inside the box V0 and not terminating inside it or on its

u-faces. The box V0 was defined in Sect. 4. The p-components of T iA′ carried on

the components of the images of γu
V ′ that lie inside V0 are still dense enough, as
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specified by (5.6), and so their total measure is at least 1
2c12ν(A′).

All the p-components of T iA′ = Tn+iA carried on the components of T iγu
V ′

inside V0 certainly intersect the meeting place A0, but here we need more. We

need to work with only the p-components intersecting A0 regularly, as defined in

Section 4. The remark 4.3 provides a good bound for the measure of all the irregular

intersections – this bound is exponentially small in n. At first sight, this seems to

be not enough since the measure of each A′ is of the same order of magnitude, i.e. it

is exponentially small in n. However, we can combine all the irregular intersections

of p-components of Tn+iA for all A ∈ An with a fixed i, and estimate their total

measure. Since those irregular intersections are all disjoint for any fixed i, the

remark 4.3 applies to their union and gives the same bound for the total measure

of those irregular intersections: cαn with c > 0 and α < 1 independent of n and i.

From this bound, one readily gets the following. For each i ≥ n+c11n+n0 there are

some “bad” elements of An whose images under T i have not enough p-components

intersecting A0 regularly. However, the total measure of those “bad” elements of

An is exponentially small in n. All the other elements A ∈ An have enough p-

components of Tn+iA intersecting A0 regularly. Precisely, the total measure of

those p-components is at least 1
2c12ν(A). For a given i, we denote the set of “good”

elements of An by A+
n (i).

We now take another parallelogram B ∈ An. Its pre-images T−jB, j ≥ 1, have

the properties symmetric to the ones of the images of A. As a result, for every

j ≥ n + c11n + n0 there is a dominant collection of elements of B ∈ An whose

images under T−j have enough p-components intersecting A0 regularly (for each B

their total measure is at least 1
4c12ν(B)). For a given j, we denote that dominant

collection of B ∈ An by A−n (j). Note that the regularity of intersections of T−jB

with A0 now means that they are s-inscribed in A0 and their images under T j are

u-inscribed in B.

We now fix a k ≥ 2(n + c11n + n0) and a decomposition k = i + j with i, j

such that min{i, j} ≥ n + c11n + n0. For every pair of parallelograms A ∈ A+
n (i)

and B ∈ A−n (j) we can take advantage of the approximative formulas (3.5-3.6)

to estimate from below the total measure of the intersections of T iA with T−jB
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within the “meeting place” A0. As a result, one easily gets

ν(T iA ∩ T−jB) ≥ g′1ν(A)ν(B) (5.7)

with some g′1 > 0 determined by the values of c12 and C1 from (3.6).

Next, we consider the elements Â and B̂ of the MS <n,N contained in A and

B, respectively. In virtue of (5.5), which holds for both pairs A,B and Â, B̂, the

elements Â and B̂ are dense enough in A and B. Therefore, (5.7) implies

ν(T i+jÂ ∩ B̂) ≥ 1
2
g′1ν(Â)ν(B̂)

for sufficiently large n. Thus, we have proven (5.2) for a majority of pairs Â, B̂ ∈

<n,N . The estimates (5.3) and (5.4) readily results from our definitions of A+
n (i)

and A−n (j).

A family of Markov sieves <n,N characterized by the conditions 1-4 is now con-

structed. The following theorem is a direct consequence of the conditions 1-4:

Theorem 5.1 [Relaxation to the equilibrium distribution]. For any integers

k ≥ l > 1 and 1 ≤ i1 < i2 < · · · < ik ≤ N there is a subset R∗ = R∗(i1, . . . , ik) ⊂

=k−l+1 of (k − l + 1)-tuples of indices such that

(i) if (jl, . . . , jk) ∈ R∗, then

I∑
j1,... ,jl−1=0

∣∣ν(T i1Vj1 ∩ · · · ∩ T il−1Vjl−1/T ilVjl
∩ · · ·

· · · ∩ T ikVjk
)− ν(T i1Vj1 ∩ · · · ∩ T il−1Vjl−1)

∣∣ ≤ ∆;

(ii) one has
I∑

(jl,... ,jk)∈R∗

ν(T ilVjl
∩ · · · ∩ T ikVjk

) ≥ 1−∆,

where ∆ = max{c13N
2αn

11, (1− g1)[L/2]} with L = [(il − il−1)/(g0n)].

Theorem 5.1 is proven in ref. [7]. Note that it is still true if one reverses “the

time”, i.e. for N ≥ i1 > · · · > ik ≥ 1. The meaning of Theorem 5.1 is that the

conditional distributions relax to equilibrium exponentially fast in the parameter

|il − il−1| (which represents the “interval” between the “future” and the “past”),

at least as long as it is less than const·n2.
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6. The proofs of Theorems 1.1-1.4

Theorem 1.1 follows from Theorem 5.1 immediately, see refs. [7] and [8].

The proof of Theorems 1.2 is based on Theorem 5.1 and purely probabilistic ar-

guments, which do not make use of any specific feature of the underlying dynamical

system. The proof may be found in ref. [7]. Its probabilistic part has been bor-

rowed from the book [11]. We emphasize that MS’s, along with Theorem 5.1, are

thus a rather universal tool – they automatically ensure the statistical properties

described in Theorems 1.1 and 1.2.

The proof of Theorem 1.3 is a combination of some general probabilistic argu-

ments with one special geometric property of the dynamical system in question.

That property is only required to ensure the nondegeneracy of the matrices V1 and

V2. We discuss that last property here and refer for the probabilistic part of the

proof of Theorem 1.3 to refs. [6] and [7].

We verify only the nondegeneracy of V2 since that of V1 will then follow imme-

diately. Suppose that V2 is degenerate, i.e. detV2 = 0. In virtue of our remark to

Theorem 1.2 a certain linear combination (a,q1−q0) is then a coboundary function

on M . Here a = (a1, . . . , ad) is a constant vector, and (·, ·) again stands for the

scalar product in Rd.

All we need now is a periodic point x ∈ M for the map T with a period n0 ≥ 1

(i.e. Tn0x = x) such that

(a, (qn0 − q0)) 6= 0 (6.1)

at the point x. Indeed, the function (a, (qn − q0)) is the sum of iterates of a

coboundary function (a,q1−q0), and so it stays bounded in distribution as n grows.

On the other hand, that function grows linearly in n at a particular periodic point.

From its continuity, it also takes values proportional to n in a vicinity of the periodic

point, which depends on n. If the above coboundary function were bounded, we

would get an obvious contradiction. For coboundary functions from L2(M,ν) some

extra reasonings are required to get a contradiction. They are provided in ref. [7].

We only prove here that a periodic point with the property (6.1) exists.

Fix an integer N ≥ 1 and take Nd copies of the torus Tord such that they

make up a big cube of size N × N × · · · × N in the space Rd. This cube can be

also considered as a “big” torus Tord
N by imposing periodic boundary conditions.
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Projecting the trajectory of the moving particle from Rd down to that big torus

we get a new billiard dynamics. in a region QN made up by Nd copies of Q (as

of “bricks”). We denote MN = QN × Sd−1 the phase space, {Ψt
N} the phase flow

and TN the billiard ball map of that big system. The dynamics {Ψt
N} obviously

commutes with space shifts of the big torus along the sides of the original torus

Tord. (Those shifts generate a finite Abelian group isomorphic to a direct product

of d identical N -element cyclic groups.)

The billiard dynamics in QN certainly meets all the conditions of Theorem 1.1,

and so we can again consider a parallelogram A0 defined in Section 4. Since its clo-

sure Ā0 is also a parallelogram, we can assume that A0 is closed. Let n1, . . . , nd be

integers such that 0 ≤ ni < N for every i. Consider the translation of Tord
N gener-

ated by n1 shifts along the first side of the original torus Tord, then n2 shifts along

the second side, etc. The resulting translation of Tord
N generates a transformation

of the phase space MN , which commutes with the dynamics {Ψt
N}. Denote A′ the

image of A0 under that transformation. It has the same form and measure as A0,

it is just located in another part of the phase space. Due to the results of Section 4

the intersection Tn
NA0∩A′ for large n consists mostly of the regular intersections of

the p-components of Tn
NA0 with A′. Let U be one of those p-components of Tn

NA0.

By projecting the dynamics {Ψt
N} down to the original torus we get a periodic

point x = · · ·∩T−nU ∩U ∩TnU ∩T 2nU ∩· · · that belongs in M , whose period is n.

On the other hand, qn−q0 at the point x is an integer vector with the components

(m1N + n1,m2N + n2, . . . , mdN + nd) with some integers m1, . . . , md.

Lemma 6.1. For any nonzero real-valued vector a = (a1, . . . , ad) one can find

integers N and n1, . . . , nd such that the sum

a1(m1N + n1) + a2(m2N + n2) + · · ·+ ad(mdN + nd) (6.2)

does not vanish for any integers m1, . . . , md.

Actually, it is easier to prove that the expression (6.2) never takes values of the

form Nm with any integer m. This can be done by induction in d. The proof is

elementary and we leave it to the reader.

The existence of a periodic point x ∈ M with the property (6.1) is now estab-

lished. Hence the proof of Theorem 1.3 is accomplished.
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Finally, the proof of Theorem 1.4 is based solely on Theorem 1.3 and certain

general measure-theoretic arguments. It is provided in ref. [6].

7. Concluding remarks

Here we discuss possible extensions of Theorems 1.1-1.4.

First of all, one might wish to relax from Assumption A. A periodic Lorentz

gas that does not satisfy it is said to have no horizon. Such a gas looks, in a

sense, more realistic than the one with finite horizon. For two-dimensional case

Theorems 1.1 and 1.2 are still true without Assumption A as was shown in ref. [7],

but Theorem 1.3 fails in that case. The reason is that while the mean value 〈τ(x)〉

is still finite, the second moment 〈τ2(x)〉 is infinite, and so the sum (1.5) contains an

infinite term at n = 0. P. Bleher has conjectured that in this case the displacement

qn − q0 in (1.4) should be rescaled by
√

n lnn instead of
√

n. He supported his

conjecture with a detailed calculation of the mean displacement 〈qn − q0〉 in ref.

[1], but this is not a conclusive proof yet.

We conjecture that Theorems 1.1 and 1.2 are valid for the multidimensional

Lorentz gas without horizon as well. The proofs in the planar case [7] involved an

explicit description of the so called “cells” in the space M – the subregions where

the map T is continuous and the function τ(x) takes very large values. Hopefully,

the structure of cells for the multidimensional gas can be described in an alike

fashion. It is easy to verify that the mean 〈τ(x)〉 is finite but 〈τ2(x)〉 is infinite,

just as for the planar Lorentz gas without horizon. Hence, Theorem 1.3 fails, but

certain rescaling of (1.4) might be possible.

Theorem 1.1 provides only an upper bound for the decay of correlations. The

actual rate of the decay is still unknown. Certain old numerical experiments, see,

e.g., ref. [2], have revealed a stretched exponential decay of the type

|〈(f ◦ Tn) · g〉 − 〈f〉〈g〉| � αnγ

with γ < 1 (besides, γ → 1 as the dimension d grows). On the other hand, certain

recent numerical researches showed an exponential decay even for planar hyperbolic

billiards, see references given in ref. [8]. There is also a rigorous result [8] supporting
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the conjecture of an exponential rate of the decay of correlations. On the contrary,

nothing is known about the decay of correlations for the continuous time dynamics

{Ψt}. Apparently, without the finite horizon assumption A, the correlations for

that flow decay very slowly, most likely as slowly as algebraically.

Finally, we discuss small perturbations of the Lorentz gas dynamics with finite

horizon by small constant external fields (electric, magnetic or combined ones).

A perturbation of that type for the planar gas was studied recently in ref. [9].

This perturbation destroyed the invariant measure ν for the map T , but strong

hyperbolic properties of T persisted. Despite the absence of an absolutely contin-

uous invariant measure, the machinery of the Markov sieves worked. It was used

to construct a (singular) invariant measure, to establish its ergodicity and to es-

timate the rate of the decay of correlations. The resulting invariant measure was

the so called Sinai-Bowen-Ruelle (SBR) measure, which was singular on M but

absolutely continuous on the unstable manifolds. The analysis performed in ref.

[9] led to mathematical proofs of certain classic electrodynamic equations, in par-

ticular, Ohm’s law and Einstein relation. The results of ref. [9] can be extended

straightforwardly to any dimension d ≥ 3 by using the Markov sieves constructed

in the present paper. There is a hope that other hydrodynamic equations can be

derived in this way.
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Appendix

The Appendix consists of four sections, in which we give support to the claims

made in Sections 3 and 4 whose proofs involve specific billiard techniques. Let us

first introduce some conventions. We will denote by α various constants between
34



0 and 1 whose exact values are not relevant. We also denote by c and a various

positive constants.

A1. Here we derive the formula (3.1). We consider a generic point x = (q, v) ∈

M and define several coexisting measures in the tangent space TxM (all of them will

be simply scalar multipliers of the Lebesgue measure). This space is a direct product

of the tangent spaces Tq(∂Q) and TvSd−1, and so the first natural measure is the

Lebesgue measure dmx = dmq
xdmv

x, i.e. the product of the Lebesgue measures in

Tq(∂Q) and TvSd−1. Another measure is dνx = cν(v, n(q))dmx. We then consider

the tangent spaces Txγu,s(x) to the local manifolds γu,s(x) at the point x. Their

natural projections onto Tq(∂Q) along TvSd−1 are one-to-one linear maps, and so

the measure dmq
x induces on these tangent spaces measures dmu,s

x . We also have

the measures dρu,s
x in the spaces Txγu,s(x) induced by the ρ-measures in γu,s(x)

defined in Section 2. Evidently, dρu,s
x = (v, n(q))dmu,s

x .

Since γu(x) and γs(x) are transversal at x, the product dmu
xdms

x is a measure in

TxM . We now derive the relation between this measure and dmx. To this end we

pick a basis (e1, . . . , ed−1) of orthogonal unit vectors in Tq(∂Q) such that the vector

e1 is a linear combination of v and n(q). Denote Jx a (d− 1)-dimensional subspace

in IRd orthogonal to the velocity vector v of the point x. It is naturally identified

with TvSd−1. Denote e′1 the unit vector in Jx (= TvSd−1) that is proportional to

the projection of e1 onto Jx along v. The collection (e′1, e2, . . . , ed−1) is a basis in

Jx, and then in TvSd−1. Therefore,

E =
(
(e1, 0), (e2, 0), . . . , (ed−1, 0), (0, e′1), (0, e2), . . . , (0, ed−1)

)
is a basis in TxM , where a pair (u1, u2) of vectors u1 ∈ Tq(∂Q) and u2 ∈ TvSd−1

means a vector in TxM in a usual sense. We now project the vectors e1, . . . , ed−1 ∈

Tq(∂Q) onto the subspaces Txγu,s(x) ⊂ TxM along TvSd−1. The projection of ei

is (ei,Bu,s
+ (x)ei) for i ≥ 2, and the projection of e1 is (e1, (v, n(q))Bu,s

+ (x)e′1). One

can easily write down the coordinates of all these 2d − 2 vectors in the basis E as

in the form of a (2d − 2) × (2d − 2) matrix J and compute its determinant. The

result is

|detJ| = (v, n(q)) det(Bu
+(x)− Bs

+(x)).
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Therefore,

dmx = (v, n(q)) det(Bu
+(x)− Bs

+(x))dmu
xdms

x

= (v, n(q))−1 det(Bu
+(x)− Bs

+(x))dρu
xdρs

x.

As a result, we get

dνx = cν det(Bu
+(x)− Bs

+(x))dρu
xdρs

x

and thus complete the proof of the expression (3.1).

A2. We now turn to the inequalities (3.3), (3.4) and (3.8). We derive them

altogether by studying how smoothly the operators Bu,s
± (x) depend on x in ho-

mogeneous parallelograms. First, we write down an operator-valued continuous

fraction formula for Bs
+(x):

Bs
+(x) = − I

τ0I +
I

K(Tx) +
I

τ1I +
I

K(T 2x) + · · ·

(A.1)

where τi = τ(T ix) and I stands for the identity operator. A ratio A/B always

means AB−1. All the operators in (A.1) act in the (d − 1)-dimensional space Jx

orthogonal to the velocity vector v. Recall that we identified the linear spaces Jx

and JT−1x in Section 2. In the same way we now identify the spaces JT ix and

JT i+1x for all i ∈ ZZ by isometric projections along the normal vectors to ∂Q at the

points T ix. Thus, all the spaces JT ix, i ∈ ZZ are identified and the formula (A.1) is

justified. The operator Bu
−(x) is expressed by an operator-valued continued fraction

constructed by tracking the negative semi-trajectory of x (in this case, however, one

has a positive sign in front of the fraction).

We now consider two points x = (qx, vx) and y = (qy, vy) in an n-homogeneous

parallelogram A. Due to uniform contraction and expansion diamA ≤const·αn,

where the diameter is measured in the Riemann metric in M . (Actually, the con-

traction property has been established for the ρ-metric on LUM’s and LSM’s, but

one can easily verify that dist(x, y) ≤const
√

ρ(x, y) for any x and y in one LUM or

LSM.)
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Lemma A.1. If two points x and y belong in the same n-homogeneous parallelo-

gram, then ∣∣∣∣ (vx, n(qx))− (vy, n(qy))
(vx, n(qx))

∣∣∣∣ ≤ const · αn.

Proof. We first observe that

|(vx, n(qx))− (vy, n(qy))| ≤ const · αn. (A.2)

If x and y are not too close to ∂M , say, if |(vx, n(qx))| ≥ n−θ
0 =const, then

Lemma A.1 follows from (A.2). If x and y lie between two close hypersurfaces

in D0, say, (v, n(q)) = k−θ and (v, n(q)) = (k + 1)−θ, k ≥ n0, then

|(vx, n(qx))− (vy, n(qy))| ≤ 2θk−(θ+1) ≤ 4θ(vx, n(qx))(θ+1)/θ.

Therefore, ∣∣∣∣ (vx, n(qx))− (vy, n(qy))
(vx, n(qx))

∣∣∣∣ ≤ const · αn/(θ+1)

and Lemma A.1 follows. �

We now define a special linear transformation Txy on IRd that takes x to y and

maps Jx onto Jy. First we shift IRd by the vector ~qxqy, so that qx will go to qy. Then

we apply a rotation through the angle between vx and vy, so that the image of vx

will coincide with vy. Thus, Jx is mapped onto Jy. In addition, in case (vx, n(qx))

is small, say, less than n−θ
0 , then we apply a rotation of IRd about the vector vy so

that the principal eigenvector of K(x) (that with the largest eigenvalue) will go to

its counterpart for the operator K(y). So, the map Txy is a composition of a shift

and one or two rotations. Clearly, Txy is an isometry. Since K(x) depends on x

smoothly, the map Txy differs from the identity operator by less than const·αn (in

the Euclidean norm).

Denote B̃u,s
± (y) = T−1

xy ◦B
u,s
± (y)◦Txy, these are operators in Jx, just like Bu,s

± (x).

Now, it is a straightforward estimation that

|det(Bu
+(x)− Bs

+(x))− det(Bu
+(y)− Bs

+(y))| ≤ const
[
(vx, n(qx))−1dist(x, y)

+(vx, n(qx))−1 − (vy, n(qy))−1 + ||Bu
−(x)− B̃u

−(y)||+ ||Bs
+(x)− B̃s

+(y)||
]
.

(A.3)

The two last terms are the most difficult to bound from above.
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Lemma A.2. If two points x and y belong in one n-homogeneous parallelogram

A, then

||Bu
−(x)− B̃u

−(y)|| ≤ const · αn (A.4)

and

||Bs
+(x)− B̃s

+(y)|| ≤ const · αn. (A.5)

One might think of (A.4) and (A.5) as the Hölder continuity of the operators

Bu
− and Bs

+ on homogeneous parallelograms.

Before proving Lemma A.2 we observe that it, along with Lemma A.1 and the

bound (A.3), completes the proof of the inequality (3.3). Thus, we now have to

prove (A.4), (A.5), (3.4) and (3.8). The four are closely related and we derive them

altogether.

For any point x ∈ Mc we denote

λu(x) = det
(
I + τ(x)Bu

+(x)
)

and λs(x) =
[
det

(
I − τ(x)Bs

−(Tx)
)]−1

the local one-step rates of expansion of the ρ-volume in γu(x) and, respectively,

contraction of the ρ-volume in γs(x), cf. (2.3). Then

Λu,s
k (x) = λu,s(x)λu,s(Tx) · · ·λu,s(T k−1x)

are the corresponding k-step rates of expansion/contraction. It is well know, see,

e.g., [7,9,10], that if x and y belong to one LSM (LUM), then the Jacobian of the

canonical isomorphism from γu(x) to γu(y) (respectively, from γs(x) to γs(y)) is

Ju(x, y) = lim
k→∞

Λu
k(x)

Λu
k(y)

(
resp., Js(x, y) = lim

k→∞

Λs
k(T−ky)

Λs
k(T−kx)

)
(A.6)

There is a helpful duality in billiard systems. The reverse dynamics {Φ−t} is also a

billiard system in the same configuration space Q. So, many statements have their

dual forms obtained by just reversing the dynamics. For example, the bounds (A.4)

and (A.5) are dual to each other. It always suffices to prove either one of two dual

statements.

By taking the natural logarithm of both sides of (A.6) one can easily reduce the

estimates (3.4) and (3.8) to two inequalities∣∣∣∣ln λu(x)
λu(y)

∣∣∣∣ ≤ C ′0α
n
0 (A.7)
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for any points x and y in the same n-homogeneous LSM and∣∣∣∣ln λs(x)
λs(y)

∣∣∣∣ ≤ C ′0α
n
0 (A.8)

for any points x and y in the same n-homogeneous LUM, with another positive

constant C ′0.

Note that (A.7) and (A.8) are not dual. Nonetheless, the bound (A.8) does have

a dual form: that is the bound (A.7) for any x and y in the same n-homogeneous

LUM. In other words, it suffices to prove (A.7) for any x and y in one n-homogeneous

parallelogram.

We now derive (A.7) assuming x and y belong in one n-homogeneous parallelo-

gram A. We again invoke the transformation Txy. It is a straightforward calculation

that

|det(I + τ(x)Bu
+(x))− det(I + τ(y)Bu

+(y))| ≤ const ·
[
|τ(x)− τ(y)|(vx, n(qx))−1

+(vx, n(qx))−1 − (vy, n(qy))−1 + (vx, n(qx))−1 · dist(x, y) + ||Bu
−(x)− B̃u

−(y)||
]
.

(A.9)

It is easily seen that |τ(x) − τ(y)| ≤ dist(x, y) + dist(Tx, Ty) ≤ const · αn. A

combination of the bound (A.9) and Lemmas A.1 and A.2 then gives (A.7) for any

x, y ∈ A.

As a result, all our considerations boiled down to two inequalities in Lemma A.2,

of which only one has to be proven due to the duality principle. Unfortunately,

either is not easy to prove. Our proof is based on somewhat cumbersome decom-

position of the operator-valued continued fraction (A.1).

We will prove the bound (A.5). First we denote τ̃i = τ(T iy) and K̃(T iy) =

T−1
xy K(T iy)Txy for i ≥ 0. Then we write down an expression

B̃s
+(y) = (τ̃0I + (K̃(Ty) + (τ̃1I + (K̃(T 2y) + · · · )−1)−1)−1)−1

similar to (A.1). Our further arguments will be based on the decomposition

Bs
+(x)− B̃s

+(y) = Bs
+(x)

(
[B̃s

+(y)]−1 − [Bs
+(x)]−1

)
B̃s

+(y) = −Bs
+(x)(τ0 − τ̃0)B̃s

+(y)

+Ds
+(x)(K(Tx)− K̃(Ty))D̃s

+(x) + Ds
+(x)(Bs

+(Tx)− B̃s
+(Ty))D̃s

+(y),
(A.10)
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where Ds
+(x) = (I+τ(x)[Bs

−(Tx)]−1)−1 and D̃s
+(y) = (I+τ̃(y)[T−1

xy Bs
−(Ty)Txy]−1)−1.

Iterating the decomposition (A.10) k times yields

Bs
+(x)− B̃s

+(y) = −
k∑

i=1

E
(i−1)
+ (x) · Bs

+(T i−1x) · (τi−1 − τ̃i−1) · B̃s
+(T i−1y) · Ẽ(i−1)

+

+
k∑

i=1

E
(i)
+ · (K(T ix)− K̃(T iy)) · Ẽ(i)

+ + E
(k)
+ · (Bs

+(T kx)− B̃s
+(T ky)) · Ẽ(k)

+ ,
(A.11)

where E
(i)
+ = Ds

+(x) · · ·Ds
+(T i−1x) and Ẽ

(i)
+ = D̃s

+(T i−1y) · · · D̃s
+(y). We stop the

decomposition (A.11) at k = [n/2].

In order to prove the bound (A.5) we observe the following:

(i) The operators Ds
+(T ix) and D̃s

+(T iy) are contractions: ||Ds
+(T ix)|| ≤ α and

||D̃s
+(T iy)|| ≤ α uniformly in x, y and i ≥ 0;

(ii) dist(T ix, T iy) ≤const·αn−i, and so |τi − τ̃i| ≤const·αn−i;

(iii) ||Bs
+(T kx)− B̃s

+(T ky)|| is uniformly bounded in x, y and k;

(iv) If, given an i ≤ k, the points T ix = (qi, vi) and T iy are not too close to ∂M ,

say, if (vi, n(qi)) ≥ n−θ
0 =const, then

||K(T ix)− K̃(T iy)|| ≤ const · dist(T ix, T iy) ≤ const · αn−i;

(v) The last case to be considered is the one when T ix = (qi, vi) and T iy belong in

one thin layer between two close hypersurfaces of D0 for some i ≤ k. In last case the

operators K(T ix) and K̃(T iy) have one large eigenvalue each. (For example, if the

scatterer at which the reflection at the point T ix occurs is a sphere of radius r, the

largest eigenvalue of K(T ix) is 2r−1(vi, n(qi))−1. The difference K(T ix)− K̃(T iy)

might also have a large norm, however. In this case we will estimate the norm of a

composition

Fi = Ds
+(T i−1x) · (K(T ix)− K̃(T iy)) · D̃s

+(T iy).

All our arguments will be based on elementary geometric considerations and we

only outline the main steps. Denote χi and χ̃i the largest eigenvalues of K(T ix)

and K̃(T iy), respectively, and ei and ẽi the corresponding unit eigenvectors. First

we notice that the points T jx and T jy are εn-close for all j ≤ n/2 with some

εn =const·αn. Thus, ||ei−ẽi|| ≤const·αn and, due to Lemma A.1, |χi−χ̃i| ≤const·αnχi.

We now take an arbitrary unit vector w ∈ Jx and consider w1 = D̃s
+(T i−1y)w. Since
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χ̃i is large, it is easy to verify that |(w1, ẽi)| ≤const·χ̃−1
i . Besides, |(w1, ei)| ≤const·(χ−1

i +

εn). We then consider a vector w2 = (K(T ix)− K̃(T iy))w1. Its projection onto ei

has a length ≤const·χiεn, and its projection onto the orthogonal complement to ei

in Jx has a length ≤const·εa
n for some a > 0. Finally, the vector w3 = Ds

+(T i−1x)w2

has a length ≤const·εa
n. Thus, we conclude that ||Fi|| ≤const·εa

n.

Applying all the five observations (i)-(v) to the decomposition (A.11) results in

the bound (A.5). Lemma A.2 is now proven.

A3. We proceed by supporting the relatively simple properties of HLUM’s

and HLSM’s mentioned in the end of Section 3. First we verify the inequality

(3.10). Every HLSM of ρ-size ≤ ε that intersects the set S−1,1 ∪ D0 wholly lies in

a (const·
√

ε)-neighborhood of S−1,1 ∪ D0 (taken in the Riemannian metric on M).

The ν-measure of this neighborhood can be estimated directly, and one gets the

bound (3.10).

Our next step is almost compiled from ref. [7, Appendix 2]. We pick a p0 > 0

and set εn = p0λ
n
0 for all n ≥ 0, where λ0 < 1 is an upper bound on the one-step

rate of contraction of HLSM’s in the ρ-metric. We then estimate

∞∑
n=0

ν
(
Uεn(S−1,1 ∪ D0)

)
≤ const · pβ

0 . (A.12)

We now claim that, given a point x ∈ M such that Tnx /∈ Uεn(S−1,1 ∪ D0) for all

n ≥ 0, an HLSM γs(x) exists and the ρ-distance from x to its boundary ∂γs(x)

is bounded below by p0. The proof of this claim is well known, see, e.g., similar

statements in refs. [12, 16]. Thus, the bound (A.12) implies (3.9).

Furthermore, let an LSM γs contain an infinite number of HLSM and the surfaces

separating them accumulate at an interior point of γs. Then the images Tnγs,

n ≥ 1, intersect D0 for an infinite sequence of values of n. Due to the inequality

(A.12) and the Borel-Cantelli lemma such points x form a set of zero measure.

A4. In this section of Appendix we support the claims made in the proof of

Lemma 4.1. We will work here in the “full” phase space M instead of M . The
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flow {Φt} is hyperbolic, and so at a.e. point x = (q, v) ∈ M there is a (d − 1)-

dimensional local unstable manifold Γu(x) for the flow. Its natural projection to Q

is a (d−1)-dimensional surface orthogonal to the velocity vector v whose curvature

operator at the point x is Bu(x) = ([Bu
−(x+)]−1 − τ(x)I)−1, where τ(x) is the first

positive time of reflection of the orbit starting at x and x+ = Φτ(x)+0(x) ∈ M .

The singularities of the flow {Φt} are smooth hypersurfaces in M. For each finite

t there are a finite number of compact smooth hypersurfaces of singularities for Φt.

The set of singularities for Φt for all t > 0 (all t < 0) consists of a countable number

of compact smooth hypersurfaces which we denote S+ (resp., S−). It is well known

[13,17] that the components of S+ intersect those of S− transversally. We claim

that, likewise, LUM’s Γu(x), x ∈ M, intersect the components of S+ transversally.

We will prove this claim by developing geometry on the singularity sets S±.

Let x = (q, v) ∈ S+ ∪ S− and n(x) be the normal vector to S+ ∪ S− at x.

According to our tradition, we decompose it as n(x) = (nq(x), nv(x)), with nq(x) ∈

Tq(Q) and nv(x) ∈ Tv(Sd−1). Since we have identified TvSd−1 with Jx, the vector

nv(x) belongs in Jx. Moreover, nq(x) belong in Jx, too, because S+∪S− is invariant

under Φt. At a point xt = Φtx, t ∈ IR, we have another normal vector n(xt) =

(nq(xt), nv(xt)) to S+ ∪ S−. The relation between n(x) and n(xt) can be derived

from the following observations:

(i) if no reflection occurs in the interval (0, t), then

nq(xt) = nq(x) and nv(xt) = nv(x)− tnq(x); (A.13)

(ii) if t is an instant of reflection at a point xt = (qt, vt) ∈ M , then

nq(xt+0) = nq(xt−0)−K(xt+0)nv(xt−0) and nv(xt+0) = nv(xt−0), (A.14)

where we use the same notations as in (2.2) and again identify the spaces Jxt−0 and

Jxt+0 . One should note that the relations (A.13-A.14) just give a normal vector, not

necessarily a unit one. We do not care about the norm of n(xt) since any restriction

on it would aggravate our calculations and would not help in any way.

The next quantity we consider is the scalar product s(x) = (nq(x), nv(x)), which

is a function on S+ ∪ S−. Its sign does not depend on the choice of the normal

vector. The relations (A.13-A.14) readily imply the following
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Lemma A.3. If s(xt) is negative (nonpositive) at t = t′, then it remains negative

(nonpositive) for all t ≥ t′. Likewise, if it is positive (nonnegative) at t = t′, then

is also positive (nonnegative) for all t ≤ t′.

Any point x = (q, v) ∈ §0 (i.e. any point with q ∈ ∂Q and (v, n(q)) = 0)

is, in a sense, an “origin” of both S+ and S−. Precisely, S+ = ∪t>0Φ−tS0 and

S− = ∪t>0ΦtS0. (Note that since the velocity vectors are tangent to ∂Q on S0,

there is no problem in moving S0 both forward and backward in time.) It is

easily seen that the normal vector n(x) to both S+ and S− at any point x ∈ S0

is n(x) = (n(q), 0). Therefore, s(x) is strictly positive on S+ \ (S0) and strictly

negative on S− \ (S0). In particular, we get another proof that S+ and S− always

intersect transversally. A little bit more detailed analysis of (A.13-A.14) leads to

one more conclusion:

Lemma A.4. Apart from a vicinity of the subset S0 in M, the vectors nq(x) and

nv(x) are comparable in length: c1 ≤ ||nq(x)||/||nv(x)|| ≤ c2, with some positive

constants c1 and c2 depending only on the vicinity of S0 that one excludes.

The next lemma follows from the previous one and a known fact that the eigen-

values of Bu(x), x ∈ M are uniformly bounded away from zero:

Lemma A.5. Apart from a vicinity of S0 ⊂ M, the hypersurfaces of S+ always in-

tersect LUM’s Γu of the flow Φt at angles ≥ c3 with a positive constant c3 depending

only on the vicinity of S0 one excludes.

By the angle between a surface of S+ and an LUM Γu(x) intersecting at x ∈ S+

we naturally mean the angle between the normal vector n(x) to S+ and the d-

dimensional subspace in TxM orthogonal to TxΓu(x). To prove Lemma A.5 one

can easily show that the angle between the vectors n(x) = (nq(x), nv(x)) and

n1 = (nv(x),Bu(x)nv(x)) (the latter is tangent to Γu(x)) is uniformly bounded

away from π/2.

Proof of Sublemma 4.1.a. First, we notice that for each m ≥ 1 there are a

finite number of manifolds in S−m,0, and they touch a finite number of compact

smooth components of S+. We denote the union of the latter by S+
m. The sectional

curvature of those components is bounded above by a finite quantity Cm (Cm may

depend on m, but it does not matter for us how fast Cm grows with m). To verify
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this claim it is enough to show that (i) the sectional curvature of both S+ and S−

is bounded at the points of their origin, i.e. on S0, and (ii) the sectional curvature

does not grow too rapidly during the evolution of S0 under Φt and Φ−t, t > 0,

i.e. it stays finite at finite times. The part (i) follows from the above remark that

n(x) = (n(q), 0) on S0, recall that the sectional curvature of ∂Q is bounded. The

part (ii) can be derived by a direct calculation based on the “equations of motion”

(A.13)-(A.14) for the normal vectors to Φ±tS0 as t grows, and we omit that.

Due to Assumption B, there is an εm such that any LUM Γu of size < εm in-

tersects no more than K0 components of S+
m. Since εm depends on m, it can be

adjusted to whatever large value of Cm, and then we can think of those compo-

nents as almost flat hypersurfaces in a vicinity of Γu. They intersect the HLUM

transversally by virtue of Lemma A.5.

We now consider an HLUM γu
1 ⊂ M of a ρ-size < εm. The structure of the ρ-

metric on γu
1 can be better understood if one considers an orthogonal cross-section

Σu of a bundle of trajectories coming to the set γu
1 ⊂ M , just before the reflection.

The natural Riemannian metric in Σu is isomorphic to ρ in γu
1 . By equipping the

surface Σu with unit normal vectors pointing in the flow direction we get an HLUM

Γu
1 for the flow. Since γu

1 is cut by ≤ K0 components of S−m,0, the HLUM Γu
1 is

cut by ≤ K0 hypersurfaces of S+
m.

We denote ρ1 the normalized ρ-measure on γu
1 and 〈·〉1 the expectation with

respect to ρ1. To emulate the functions rn(x) and r′n(x) from Sublemma 4.1.a we

introduce two functions on Σu: r(x) =dist(x, ∂Σu) and r′(x) =dist(x, ∂Σu ∪ (S+
m ∩

Σu)). We claim that

−〈ln r′(x)〉1 ≤ −〈ln r(x)〉1 + C ′ ·K0 (A.15)

provided εm is small enough, here C ′ is independent of m or γu
1 . Evidently, it

suffices to prove (A.15) for K0 = 1. Since the sectional curvature of Σu is uniformly

bounded and εm is small enough, the surface Σu is almost flat. One can think of it

as just a domain in IRd−1 and of ρ as just the Euclidean metric (then ρ1 is just the

normalized Lebesgue measure). Likewise, the cutting surface (recall that K0 = 1)

is almost flat, and one can think of it as a hyperplane cutting the above domain.

After that the problem boils down to rather simple geometric consideration. We

take an arbitrary segment Z orthogonal to the cutting hyperplane whose endpoints
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belong to the boundary of the domain. The conditional ρ-measure on that segment

is proportional the Lebesgue measure (length). We denote 〈·〉Z the expectation

with respect to that measure. The condition r′(x) < r(x) holds on a subsegment

that is at least twice as short as Z. Then it is an elementary calculation that

〈r′(x)〉Z < 〈r(x)〉Z + ln 2. Integrating over the domain gives (A.15) with C ′ = ln 2.

Finally, we recall that the HLUM γu
1 is supposed to be a component of the image

of the original HLUM γu in Lemma 4.1. Hence the normalized measure ρ2 on γu
1

induced by pulling ρ0 from γu differs from the existing ρ1-measure on γu
1 . However,

the Radon-Nikodým derivative dρ2(x)/dρ1(x) is uniformly bounded away from zero

and infinity by virtue of (3.8). Thus, we get −〈ln r′(x)〉2 ≤ −〈ln r(x)〉2 + C ′′ ·K0,

where the expectation is taken with respect to ρ2, with some C ′′ determined by C ′

and C0 in (3.8). Sublemma 4.1.a is proven. �

Remark A.6. The last step in the proof of (A.15) was the integration over the

domain representing γu
1 . We now suppose that the functions r(x) and r′(x) only

differ on a relatively small subdomain. Then one can strengthen (A.15) as

−〈ln r′(x)〉1 ≤ −〈ln r(x)〉1 + PC ′K0, (A.16)

where P = 2ρ1({x ∈ γu
1 : r(x) 6= r′(x)}). We now can support the bound (4.1). The

values rnew
n (x) and rold

n (x) can differ only in the 2D-neighborhood of the boundary

∂γu
1,s. This neighborhood obviously has the relative ρ-measure ≤const·P s/P v in

γu
1,v in the notations used in (4.1). Thus, (4.1) follows from (A.16).

Remark A.7. In a similar fashion one can obtain (4.3). Here the key observation

is that rn(x) < 2D on any moving subcomponent (no matter how long it is). Thus,

the additional cuttings defined in Section 4 can only alter the function rn(x) in the

2D-neighborhood of the cutting surfaces. There is a certain freedom in positioning

those surfaces and one can minimize the ρ-measure of their 2D-neighborhood, so

that its relative ρ-measure in the whole moving component will be less than, say,

100 ·D/εm. The bound (4.3) then follows from (A.16).

Proof of Sublemma 4.1.b. Consider an HLUM γu
1 which intersects some

hypersurfaces of D0. Again, as in the proof of Sublemma 4.1.a, we think of γu
1

as a “flat” (d − 1)-dimensional domain cut by some hyperplanes. Let Hk and

Hk+1 be two neighboring hyperplanes defined by the equations (v, n(q)) = k−θ and

(v, n(q)) = (k +1)−θ, respectively. Denote the part of γu
1 confined between Hk and
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Hk+1 by γu
1,k. The ρ-distance between Hk and Hk+1 in γu

1,k is easily seen to be

of order k−2θ−1 (this means that it is between c1k
−2θ−1 and c2k

−2θ−1 with some

constants c1 and c2 independent on k or γu
1 ).

We consider an arbitrary segment Z in γu
1,k whose endpoints belong to hyper-

planes Hk and Hk+1, and which is perpendicular to one of them, say, to Hk. For

each x ∈ Z denote r(x) the ρ-distance of x from ∂γu
1 . Note that γu

1 does not in-

tersect the singularity set S0 and the ρ-distance from any x ∈ Z to S0 is of order

k−2θ. Hence, r(x) ≤const·k−2θ.

The map T is almost linear on γu
1,k, and the image Tγu

1,k is also an almost flat

(d − 1)-dimensional compact surface in M (provided εm is small enough). The

distance between THk and THk+1 in the ρ-metric in Tγu
1,k is easily seen to be of

order k−θ−1, because the rate of expansion under T is proportional to (v, n(q))−1 ≈

kθ. For every point x ∈ Z we denote r′(x) the ρ-distance of Tx from the boundary

∂(Tγu
1,k). and r′′(x) the ρ-distance of Tx from T (Hk ∪ Hk+1). Let Z1 = {x ∈ Z :

r′(x) < r′′(x)} and Z2 = Z \ Z1. Denote l(·) the normalized Lebesgue measure

(length) on Z and 〈·〉Z the expectation with respect to l(·). For each x ∈ Z1 we

have r′(x) ≥ Λ0r(x) with a constant Λ0 > 1 due to uniform expansion on LUM’s.

Thus, one has

−
∫

Z1

ln r′(x) dl(x) ≤ −
∫

Z1

ln r(x) dl(x)− l(Z1) ln Λ0. (A.17)

On the other hand, one has − ln r(x) ≥const+2θ ln k for each x ∈ Z and l{x ∈ Z2 :

r′′(x) < δ} ≤constδkθ+1 for any δ > 0. As a result, one obtains

−
∫

Z2

ln r′′(x) dl(x) ≤ −
∫

Z2

ln r(x) dl(x)−l(Z2)((θ−1) ln k−const)−l(Z2) ln l(Z2).

(A.18)

Since k ≥ n0 and n0 is supposed to be large enough, adding (A.17) and (A.18)

gives a bound

−
∫

Z

ln r′(x) dl(x) ≤ −
∫

Z

ln r(x) dl(x)− 1
2

lnΛ0.

The proof of Sublemma 4.1.b is then accomplished by integration over γu
1 and by

using (3.8) as in the proof of Sublemma 4.1.a.
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