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Abstract
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sults to expanding interval maps, Axiom A diffeomorphisms, chaotic billiards and
hyperbolic attractors.

Mathematical Subject Classification: 28D05, 58F11, 58F15, 60F05, 60F17

Running title: Limit theorems and Markov approximations

1 Introduction

The subject of this paper is the probabilistic aspects of the theory of chaotic dynamical
systems. By a dynamical system we mean a measure preserving transformation T : M →
M of a measurable space M (also called the phase space) with a probability measure µ.
Flows are not discussed here. We consider mixing dynamical systems under various
assumptions on mixing coefficients.

Our purpose is to establish bounds on correlations and central limit theorems for
various classes of functions on the phase space. For any two observables F,G ∈ L2(M)
the correlation function CF,G(n) is defined to be

CF,G(n) = 〈F (T nx)G(x)〉 − 〈F (x)〉 · 〈G(x)〉, (1)

where 〈·〉 stands for the integration with respect to the invariant measure µ.
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Let SN(x) = F (x) +F (Tx) + · · ·+F (TN−1x). We say that F obeys the central limit
theorem (CLT) if for any z ∈ IR we have

lim
N→∞

µ

{
x :

SN − 〈SN〉
(VarSN)1/2

≤ z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt, (2)

i.e. the “centered” and “normed” partial sum SN converges in distribution to the stan-
dard normal law (certainly, VarSN = 〈S2

N〉 − 〈SN〉2). In addition, the CLT says that
VarSN = σ2

FN + o(N), where

σ2
F = CF,F (0) + 2

∞∑
n=1

CF,F (n) (3)

A weak invariance principle (WIP) often accompanies the central limit theorem in the
theory of random processes and in that of chaotic dynamical systems. For every x ∈ M
consider a function WN(t) for t ∈ [0, 1], such that

WN(k/N) =
Sk

σF

√
N

(4)

for k = 0, 1, . . . , N , and WN(t) is a linear function between k/N and (k + 1)/N for each
0 ≤ k ≤ N−1 (the graph of WN(t) is a polygonal line). Then {WN} for any N induces a
measure on the space of continuous functions on [0, 1]. The invariance principle then says
that this measure converges weakly, as N →∞, to the Wiener measure. In other words,
the partial sum process {SN}, after a proper rescaling in space and time, converges in
distribution to the Wiener process W . The weak invariance principle is also called the
functional central limit theorem (FCLT).

The rate of the decay of correlations plays a crucial role in statistical physics, e.g., in
the studies of relaxation to equilibrium and transport coefficients for dynamical variables.
The central limit theorem plays a fundamental role in studies of diffusion and in statistical
analysis on dynamical systems. The weak invariance principle provides an approximation
to deterministic dynamical systems by a Brownian motion on large scales in space and
time. In statistical physics such a time-space rescaling often means the transition from
the microscopic time scale to the macroscopic one. As a result, a completely deterministic
model will behave, at macroscopic times, as a Brownian motion. The most prominent
example of that kind is the Lorentz gas, where a particle moves in space and bounces off
fixed convex scatterers periodically arranged in space, see [7, 10, 12] for more detail.

All these properties – bounds on correlations, the CLT and WIP – are referred to as
statistical properties of dynamical systems. We do not discuss further refinements of the
CLT here, see, e.g., M. Denker’s survey [14].

At present, strong statistical properties have been established for Anosov and Axiom
A diffeomorphisms on compact manifolds with Hölder continuous functions by R. Bowen
[5] and D. Ruelle [39]. After that, similar properties have been obtained for chaotic
maps of the interval and so called functions of bounded p-variation by F. Hofbauer and
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G. Keller [19], M. Rychlik [40] and others [50, 49, 26]. In all those systems the correlations
decay exponentially fast. Recently, statistical properties have been obtained for chaotic
billiards by L. Bunimovich, Ya. Sinai and N. Chernov [10, 12] and hyperbolic attractors
by V. Afraimovich, N. Chernov and E. Sataev [1], again for Hölder continuous functions
on the phase space. The correlations in the latter systems have been only bounded by
a stretched exponential function, and the techniques of the proofs were rather specific
and intricate. Further development of those techniques are needed to cover many more
physically interesting systems, e.g., gases of hard spheres. We work in this direction
here. We obtain rather strong bounds on correlations and limit theorems for abstract
dynamical systems based on flexible and easy-to-check mixing assumptions. We also
show how our abstract results work for concrete dynamical systems with both high and
low mixing rates.

Some authors have raised a question how large the classes of functions satisfying the
CLT are, see, e.g., a survey by Denker [14]. Sometimes those classes are much larger than
those of Hölder continuous or bounded variation functions. In response to this question,
we find very large classes of observables with rapid decay of correlations which also satisfy
limit theorems.

A universal method of proving statistical properties is to find partitions of the phase
space with sufficiently high mixing rates and then condition the given functions on atoms
of those partitions. We also employ this strategy assuming the existence of partitions
with mixing coefficients decaying at specific rates. We do not discuss how to construct
such partitions in applications or how to obtain necessary bounds on mixing coefficients
(the latter problem is, however, partially solved in Section 5).

We assume that the phase space is equipped with a metric and µ is a nonatomic
measure. For any finite or countable measurable partition A = {A1, A2, . . .} of the phase
space M we denote diamA = supi{diamAi}. We put An = T−nA = {T−nAi} for n ≥ 0
and An,k = An∨· · ·∨Ak for k ≥ n ≥ 0. A measure of dependence between two partitions
A = {Ai} and B = {Bj} of the phase space M is defined to be

β(A,B) =
∑
i,j

|µ(Ai ∩Bj)− µ(Ai)µ(Bj)|

Based on this measure, we put1

β(n) = β(A0,An) (5)

for any n ≥ 0 and
βN(n) = max

0≤k≤N−n−1
β(A0,k,Ak+n,N−1), (6)

for any N ≥ n ≥ 0. We call β(n) and βN(n) the mixing coefficients of the partition A.
Their rates of decay, as n→∞, are crucial for our proofs of statistical properties.

For any function F ∈ L2(M) and a partition A of the phase space M we denote
F̄A = 〈F |A〉 the conditional expectation of F with respect to the σ-algebra generated

1note that β(n) here does not have its usual meaning, supk β(A0,k,Ak+n,∞).
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by A, and ∆AF = F − F̄A. Given an F ∈ L2(M), we define two functions, HF (d) and
LF (d) defined for d > 0, that characterize F :

HF (d) = sup
diamA≤d

||∆AF ||2

and
LF (d) = sup

B

∫
B
(F − 〈F 〉)2 dµ(x)

where the supremum is taken over all subsets B ⊂ M such that µ(B) ≤ d. For any
F ∈ L2(M) both HF (d) and LF (d) approach zero as d → 0, and the rate of decrease
of those functions will be also crucial in our proofs of statistical properties. Certain
properties of functions H and L are discussed in Section 2.

Theorem 1.1 (Bound on Correlations) For any functions F,G ∈ L2(M), any n ≥ 1
and any partition A we have

|CF,G(n)| ≤ 2|LF (β(n)) · LG(β(n))|1/2

+ ||F ||2 · ||∆AG||2 + ||G||2 · ||∆AF ||2 + ||∆AF ||2 · ||∆AG||2

In particular, if d = diamA, then

|CF,G(n)| ≤ 2|LF (β(n)) · LG(β(n))|1/2

+ ||F ||2 · HG(d) + ||G||2 · HF (d) +HF (d) · HG(d)

If F and G are essentially bounded, then the first term in both bounds does not exceed
2||F ||∞||G||∞β(n). If both F and G belong in L2+δ(M) for some δ > 0, then the first
term in these bounds does not exceed 2||F ||2+δ||G||2+δβ(n)δ/(2+δ).

We prove the CLT under various hypotheses. Our objective is to cover several types
of dynamical systems: for the ones with high mixing rates one can considerably enlarge
the classes of phase functions, slower mixing rates require more stringent assumptions on
the functions. In all our CLT’s we assume that the first moment of the autocorrelation
function is finite: ∞∑

n=1

n|CF,F (n)| <∞ (7)

As usual, we assume that σF defined in (3) is strictly positive. A criterion for degeneracy
(σF = 0) is given in Section 3.

Theorem 1.2 (Central Limit Theorem: General Format) Let F ∈ L2(M) have
an autocorrelation function CF,F (n) with a finite first moment (7) and σF > 0. Assume
that for any N ≥ 1 there is a partition A = A(N) of the phase space M such that

||∆AF ||2 = o(N−1/2) (8)

4



Furthermore, assume that there is an integer valued function n = n(N) such that n→∞
as N →∞ and n = o(N) satisfying two conditions:

βN(n) = o(n/N) (9)

and
LF (n/N) = o(1/n) (10)

Then the central limit theorem (2) holds.

A sufficient condition for (8) is

HF (diamA(N)) = o(N−1/2) (11)

In the next theorem we specify two particular cases where Theorem 1.2 works:

Theorem 1.3 (CLT: Two Special Formats) Let F ∈ L2(M) have an autocorrela-
tion function CF,F (n) with a finite first moment (7) and σF > 0. Assume that for any
N ≥ 1 there is a partition A = A(N) of the phase space M such that ||∆AF ||2 = o(N−1/2).
Furthermore, assume that either of the following two conditions holds:
(i) the function F is essentially bounded and there are ε1, ε2 > 0, ε1 > 2ε2, such that

βN(n) = O(n−1 ln−ε1 n) (12)

where n = [N1/2 ln−ε2 N ];
(ii) the function F belongs in L2+δ(M) with some δ > 0, and there are 0 < s < s0 :=
(2 + 2/δ)−1 and t > s/(s2

0 − ss0) such that

βN(n) = O(n−
2+δ

δ
−t) (13)

where n = [N δ/(2+2δ)−s];
Then the central limit theorem (2) holds.

We prove WIP under slightly more stringent conditions than those of Theorem 1.3.
It makes, however, no difference in all our applications in Sections 6 and 7.

Theorem 1.4 (Weak Invariance Principle) Let F ∈ L2(M) have an autocorrelation
function CF,F (n) with a finite first moment and σF > 0. Assume that for any N ≥ 1
there is a partition A = A(N) of the phase space M such that

||∆AF ||2 = o(N−1) (14)

Furthermore, assume that either of the following two conditions holds:
(i) the function F is essentially bounded and there are ε1, ε2 > 0, ε1 > 2ε2 such that

βN(n) = O(n−1 ln−ε1 n) (15)
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where n = [N1/2 ln−ε2 N ];
(ii) the function F belongs in L2+δ(M) with some δ > 0, and there are 0 < s < s0 =
(2 + 2/δ)−1 and t > s/(s2

0 − ss0) such that

βN(n) = O(n−
2+δ

δ
−t) (16)

for every n ∈ [n0, N ], where n0 = [N δ/(2+2δ)−s];
Then the weak invariance principle holds.

Next, we specify two classes of dynamical systems with high mixing rates and obtain
two corollaries to our theorems.

Definition 1.5 We say that a dynamical system (M,T, µ) has exponential mixing rates
if for any a ∈ (0, 1] and any N ≥ 1 there is a partition A = A(N,a) of the space M such
that diam (A) ≤ c1λ

Na

1 and βN([Na]) ≤ c2λ
Na

2 with some c1, c2 > 0 and λ1, λ2 ∈ (0, 1)
(the last four constants may depend on a but not on N).

Definition 1.6 We say that a dynamical system (M,T, µ) has stretched exponential
mixing rates if there is a constant γ ∈ (0, 1) such that for any a ∈ (0, 1] and any
N ≥ 1 there is a partition A = A(N,a) of the space M such that diam (A) ≤ c1λ

Naγ

1

and βN([Na]) ≤ c2λ
Naγ

2 with some c1, c2 > 0 and λ1, λ2 ∈ (0, 1) (again, these four con-
stants may depend on a but not on N).

In Sections 6 and 7 we show that Axiom A diffeomorphisms and expanding interval
maps have exponential mixing rates. We also show that chaotic billiards and hyperbolic
attractors have stretched exponential mixing rates (the latter does not, however, rule out
possible exponential mixing rates for those systems!).

Corollary 1.7 Let a dynamical system (M,T, µ) have exponential mixing rates. Assume
that a function F ∈ L2(M) satisfies one of the two following conditions:
(i) it is essentially bounded and HF (d) = O(1/| ln d|2+ε) for some ε > 0;
(ii) it belongs in L2+δ(M) for some δ > 0 and HF (d) = O(1/| ln d|2+2/δ+ε) for some ε > 0;
Then both CLT and WIP hold provided σF > 0.

Corollary 1.8 Let a dynamical system (M,T, µ) have stretched exponential mixing rates.
Assume that a function F ∈ L2(M) satisfies one of the two following conditions:
(i) it is essentially bounded and HF (d) = O(1/| ln d|2/γ+ε) for some ε > 0;
(ii) it belongs in L2+δ(M) for some δ > 0 and HF (d) = O(1/| ln d|(2+2/δ)/γ+ε) for some
ε > 0;
Then both CLT and WIP hold provided σF > 0.

We now recall how the partitions A = A(N) are constructed in the existing works.
For Axiom A diffeomorphisms, see also Section 7, the partition A(N ) can obtained by a
refinement of a finite generating Markov partition A0 according to the rule

A(N) = ∨L
i=−LT

−iA0 (17)
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where L = L(N) is some function of N . For expanding interval maps, see Section 6, one
can take the natural partition A0 into intervals where the map T is monotone and put

A(N) = ∨L
i=0T

−iA0 (18)

where L = L(N) is again some function in N . In both cases the mixing coefficients for
A(N) decay exponentially fast in N . Moreover, the existence of a common generator A0

for all A(N) allows one to reduce the CLT and WIP to the existing limit theorems for
strongly mixing stationary processes, see refs. [19, 14, 23], thus bypassing our theorems.

However, the proofs of the CLT and WIP for hyperbolic systems with singularities,
such as billiards and attractors, are based on partitions A(N) constructed for every N
independently, so that those partitions are by no means related to each other. This makes
direct applications of the theory of strongly mixing random processes no longer possible.
Thus, the CLT and WIP have to be proven by separate arguments. Such arguments, in
an abstract manner, are developed here. It is very likely that systems with even more
dilute chaotic properties (such as nonuniformly hyperbolic systems, e.g., gases of hard
balls [43]) will require further work in this direction.

The structure of the paper is the following. In Section 2 we discuss the classes of
phase functions to which our results apply and prove Theorem 1.1. In Section 3 we prove
all our CLT’s (Theorems 1.2 and 1.3 and their variations, including a CLT for nonmixing
transformations). In the next section we prove the WIP (Theorem 1.4). In Section 5 we
develop techniques for bounding mixing coefficients for partitions with strong Markov
properties. To this end we define and explore Markov approximations. In Section 6 we
apply our theorems to expanding interval maps (both uniform and nonuniform ones).
Lastly, in Section 7 we discuss hyperbolic maps: Anosov and Axiom A diffeomorphisms,
chaotic billiards and attractors.

2 Mixing and decay of correlations

A dynamical system (M,T, µ) is said to be mixing if for any two measurable subsets
A,B ⊂M one has limµ(T−nA∩B) = µ(A)µ(B), or, equivalently, for any F,G ∈ L2(M)
one has limCF,G(n) = 0.

The rates of the decay of correlations characterize the degree of ‘chaoticity’ of the
dynamical system. It is, however, known long ago (see, e.g., [13]) that even for extremely
chaotic dynamical systems there are functions in L2(M) for which the correlations decay
arbitrarily slowly. At present, it is even known that slow decay of correlations is not just
a ‘bad luck’, but a typical feature of functions in L2(M):

Proposition 2.1 Let T : M → M be an invertible aperiodic ergodic dynamical system.
Let Kn be an arbitrary sequence such that Kn → ∞ as n → ∞. Then for any F in a
second category (i.e., Gδ) subset of L2(M) one has

lim sup
n→∞

Kn
CF,F (0) + · · ·+ CF,F (n− 1)

n
= ∞
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This proposition follows from a recent category theorem by D. Volný [47]. The latter
says that if an invertible dynamical system is aperiodic and ergodic and Kn → ∞ as
n→∞, then for each F in a Gδ subset of the Hilbert space {F ∈ L2(M), 〈F 〉 = 0} one
has

lim sup
n→∞

Kn||n−1
n−1∑
i=0

F (T ix)||2 = ∞

From this result Proposition 2.1 follows due to the equation (21) from Section 3.
Volný’s category theorem shows that for any ergodic and aperiodic dynamical system

the CLT fails for a Gδ subset of functions in L2(M). One can also observe that the CLT
is closely related to the rate of convergence in Birkhoff’s ergodic theorem, so that a slow
convergence in that theorem rules out the CLT. The convergence in the ergodic theorem
is known to be arbitrarily slow for typical functions in Lp(M) for every p ≥ 1 (including
L∞) and even for typical continuous functions in case M is an interval (see [24]). It is
very likely that the correlations decay arbitrarily slowly for typical functions in Lp(M)
for every p ≥ 2, in L∞, and even for typical continuous functions, whatever chaotic a
dynamical system.

We conclude that a fast decay of autocorrelations and the CLT are, in a sense, a
good luck for phase functions, and one has to restrict oneself to certain narrow classes of
“nice” functions in order to bound the correlations and prove the CLT.

Favorite types of functions for which the correlations have been effectively bounded
and the CLT has been proven for smooth dynamical systems on manifolds are smooth
and ‘nearly smooth’ functions, such as Hölder continuous ones and those of bounded
p-variation (cf. Section 6). Various generalizations of Hölder continuous functions were
introduced in [44, 38, 1, 10, 30, 12], but none of them went beyond bounded and al-
most everywhere continuous functions. On the other hand, for certain classes of maps
with uniform mixing rates (e.g., for Axiom A diffeomorphisms and expanding maps of
the interval), strong bounds on correlations and limit theorems can be carried out for
strikingly large classes of functions [14], see our Sections 6 and 7 for more detail.

The classes of functions for which our theorems work are much larger than those
of Hölder continuous or bounded p-variation functions or all the generalizations in [44,
38, 1, 10, 30, 12]. Our theorems do not, however, cover the classes of functions that
have been covered in [14] for systems with uniform mixing rates. We intentionally do not
assume any uniform mixing rates here, because that would prevent us from studuing even
relatively ‘nice’ systems like chaotic billiards or attractors, let alone hyperbolic systems
with nonuniform expansion rates such as gases of hard spheres.

We now discuss the properties of the functions H and L defined is Section 1.
First, if the observable F is continuous and satisfies the condition |F (x) − F (y)| ≤

h(dist(x, y)) for some function h(d), d > 0, then HF (d) ≤ h(d). In particular, if F is a
Hölder continuous function with exponent a, then HF (d) ≤ const · da. Ya. Sinai [44] and

8



M. Ratner [38] have studied a class of functions F such that

|F (x)− F (y)| < const · ρ| ln dist(x,y)|κ (19)

with some ρ, κ ∈ (0, 1). For such functions HF (d) ≤ const · ρ| ln d|κ . In recent works
[10, 12, 1] a class of piecewise Hölder continuous functions on compact manifolds M has
been introduced. Those are defined to be Hölder continuous with an exponent a on a
finite number of open subsets in M with piecewise smooth boundaries that generate a
(mod 0) partition of M . Assume also that the measure µ does not grow too fast near the
boundaries of those open sets, i.e. µ(ε−neighborhood of those boundaries) <const·εa′

with some a′ > 0. Then HF (d) ≤ const · da1 with a1 = min{a, a′/2}. In Section 6 we
show that for all the functions of bounded p-variation on [0, 1] one has HF (d) ≤ const ·da

with a = min{1/2, 1/p}.
Therefore, the function HF (d) decreases as d→ 0 as a power function in d for all the

popular classes of phase functions, except for Sinai-Ratner functions (19) for which the
speed of decrease is still very high. As Corollaries 1.7 and 1.8 show, even a much slower
asymptotics, such as O(1/| ln d|p) with a p > 2, is enough for both CLT and WIP.

Furthermore, no bounds on the function HF (d) will imply a.e. continuity or even
boundedness of the phase function F . Even if HF (d) ≤ const · d (the strongest possible
bound for nonconstant functions), the function F may be everywhere discontinuous and
even essentially unbounded on every open subset of M .

We now turn to the function LF (d). It is monotone increasing, continuous and convex
in d ≥ 0 for any F ∈ L2(M). It satisfies LF (d) ≥ const · d for all d ∈ [0, 1] unless the
function F is a constant a.e., in which case LF (d) ≡ 0. One has LF (d) ≤ const · d iff the
function F is essentially bounded. One has LF (d) ≤ const · dδ/(2+δ) for some δ > 0 iff
F ∈ L2+δ(M).

It is useful to note that the function LF (d) can be defined solely in terms of the
distribution of the observable F . That is, if F and F1 have the same distribution, then
LF (d) ≡ LF1(d). In particular, LF (d) ≡ LF◦T n(d) for all n ≥ 1. It is also clear that for
any partition A we have LF̄A(d) ≤ LF (d).

Proof of Theorem 1.1. Since CF+a,G+b(n) = CF,G(n) for any constants a and b and
any n ≥ 1, we can (and will) assume that 〈F 〉 = 〈G〉 = 0.

We first observe that given an n ≥ 0 and a partition A, we have

CF,G(n) = 〈F̄ (T nx)Ḡ(x)〉
+ 〈∆F (T nx)Ḡ(x)〉+ 〈F̄ (T nx)∆G(x)〉+ 〈∆F (T nx)∆G(x)〉 (20)

(for brevity, we omit the subscript A). We apply Schwarz’ inequality to the last three
terms in the RHS of (20) and immediately obtain the last three terms of the bounds
claimed in Theorem 1.1. Notice that these terms depend on the partition A and the
functions F and G but have nothing to do with the map T . These terms measure the
error of the approximation of the functions F and G by their mean values on the atoms
of the partition A.
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The first term in the RHS of (20) is CF̄ ,Ḡ(n), the correlation of two discrete functions
F̄ (T nx) and Ḡ(x), the latter is A measurable, and the former is An = T−nA measurable.
This term can be rewritten as

CF̄ ,Ḡ(n) =
∑
i,j

F̄jḠi

(
µ(T−nAj ∩ Ai)− µ(Aj)µ(Ai)

)
≤

∑
i,j

|F̄j| · |Ḡi| · |µ(T−nAj ∩ Ai)− µ(Aj)µ(Ai)|.

where F̄i = F̄ (x) and Ḡi = Ḡ(x) for x ∈ Ai ∈ A. The quantity CF̄ ,Ḡ(n) depends mainly
on how fast the map T mixes up the atoms of the partition A, the functions F and G
play minor roles.

We will denote Σ+
i,j (and Σ−

i,j) the summation over such i and j that the difference
µ(T−nAj ∩ Ai) − µ(Aj)µ(Ai) is positive (respectively, negative). We then make an ob-
servation that

Σ+
i,j

[
µ(T−nAj ∩ Ai)− µ(Aj)µ(Ai)

]
≤ β(n),

and so
Σ+

i,j |F̄j| · |Ḡi| · |µ(T−nAj ∩ Ai)− µ(Aj)µ(Ai)|

≤ sup
B: µ(B)=β(n)

∫
B
|F̄ (T nx)Ḡ(x)| dµ(x).

Given a set B ⊂M such that µ(B) = β(n), applying Schwarz’ inequality yields∫
B
|F̄ (T nx)Ḡ(x)| dµ(x)

≤
(∫

B
F̄ 2(T nx) dµ(x)

)1/2

·
(∫

B
Ḡ2(x) dµ(x)

)1/2

≤ LF (β(n)) · LG(β(n))

In a similar fashion we observe that

Σ−
i,j

[
µ(Aj)µ(Ai)− µ(T−nAj ∩ Ai)

]
≤ β(n),

and then estimate

Σ−
i,j |F̄j| · |Ḡi| · |µ(Aj)µ(Ai)− µ(T−nAj ∩ Ai)|

≤
(
Σ−

i,j F̄
2
j [µ(Aj)µ(Ai)− µ(T−nAj ∩ Ai)]

)1/2
·
(
Σ−

i,j Ḡ
2
i [µ(Aj)µ(Ai)− µ(T−nAj ∩ Ai)]

)1/2

≤
(

sup
B:µ(B)=β(n)

∫
B
F̄ 2(x)dµ(x)

)1/2

·
(

sup
B:µ(B)=β(n)

∫
B
Ḡ2(x)dµ(x)

)1/2

≤ LF (β(n)) · LG(β(n))

Theorem 1.1 is proven.
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3 Central limit theorem

We start with a few helpful observations. First,

VarSN = N · CF,F (0) + 2
N−1∑
n=1

(N − n)CF,F (n) (21)

Our assumption on the first moment of the autocorrelation function (7) implies that
VarSN = Nσ2

F +O(1). More specifically,

lim
N→∞

(VarSN −Nσ2
F ) = −2

∞∑
n=1

nCF,F (n) = const <∞ (22)

There are two distinct cases now. The first one is σ2
F = 0. Then, due to (22), the

sequence {VarSN} is bounded and has a finite limit. Due to a general result by V. Leonov
[29], see also [21, Theorem 18.2.2], there is another function G ∈ L2(M) such that

F (x) = G(Tx)−G(x) a.e.. (23)

In this case the function F is called a coboundary, and one has SN(x) = G(TNx)−G(x)
and limN→∞ VarSN = 2VarG (the latter was shown in [29]). The central limit theorem
(2) certainly fails in this case.

We will discuss only the main case: σ2
F > 0. The equation (22) allows one to replace

VarSN by Nσ2
F in the CLT (2), which then looks more like the classical central limit

theorem in probability theory.
We first prove a general CLT based on a Lindeberg-type condition. A similar theorem

has been obtained first in applications [7, 10]. We prove this theorem in a very general
setup.

Theorem 3.1 Let F ∈ L2(M) have an autocorrelation function CF,F (n) with a finite
first moment and σF > 0. Assume that for any N ≥ 1 there is a partition A = A(N)

of the phase space M such that ||∆AF ||2 = o(N−1/2). Furthermore, assume that there
are two integer valued functions p = p(N) and q = q(N), both monotone increasing to
infinity as N →∞, such that p = o(N) and q = o(p), and

lim
N→∞

Np−1βN(q) = 0 (24)

and for any ε > 0
lim

N→∞
〈p−1S2

p · χ{x: S2
p>ε2N}〉 = 0 (25)

Then the CLT (2) holds.

Here χB stands for the characteristic function (indicator) of the subset B ⊂M .
Proof. Our proof is based on Bernstein’s technique of approximation to sums of

weakly dependent random variables by those of independent ones. This method is also

11



known as “the big small block technique”. We partition the ‘time’ interval [0,N-1] into
an alternating sequence of ‘big’ blocks of length p = p(N) and ‘small’ blocks of length
q = q(N). The number of big blocks is k = [N/(p+ q)] ∼ N/p. The last remaining block
is of length N − kp− (k − 1)q < p+ q.

We denote by ∆r, 1 ≤ r ≤ k, the big blocks and set

S(r)
p (x) =

∑
i∈∆r

F (T ix),

S ′N =
k∑

r=1

S(r)
p , and S ′′N = SN − S ′N

The residual sum S ′′N contains no more than w = kq + p summands F (T nx). Hence,

VarS ′′N ≤ w

(
|CF,F (0)|+ 2

∞∑
n=1

|CF,F (n)|
)
≤ const · w

Using Chebyshev’s inequality gives

µ

{
x :

|S ′′N |
σF

√
N
> ε

}
≤ VarS ′′N
ε2σ2

FN
≤ const ·

(
q

p
+

p

N

)
→ 0 (26)

as N → ∞. So, one can replace SN by S ′N in (2), cf. Lemma 18.4.1 in [21] and also
our Lemma 3.4 below. We will also replace VarSN by kVarS(1)

p based on the following
observation, cf. (21):

|VarSN − kVarS(1)
p | ≤ w|CF,F (0)|

+2
p−1∑
n=1

(w + nk)|CF,F (n)|+ 2
N−1∑
n=p

(N − n)|CF,F (n)|,

and so |VarSN−kVarS(1)
p | = o(N) = o(VarSN) as N →∞. As a result, (2) is equivalent

to

lim
N→∞

µ

{
x :

S ′N

(kVarS
(1)
p )1/2

≤ z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt (27)

The next step in the proof is the approximation of the variable

UN =
S ′N

(kVarS
(1)
p )1/2

=
S(1)

p + · · ·+ S(k)
p

(kVarS
(1)
p )1/2

(28)

by the sum
U ′

N = u
(1)
N + · · ·+ u

(k)
N (29)

of k independent random variables u
(i)
N , 1 ≤ i ≤ k, each of which has the same distribution

as that of

wN =
S(1)

p

(kVarS
(1)
p )1/2

(30)

12



By approximation we mean that the limit distributions of UN and U ′
N as N →∞ coincide

provided one of them exists. In virtue of the continuity theorem of probability theory it
suffices to show that

sup
λ∈Λ

|ϕUN
(λ)− ϕU ′

N
(λ)| → 0 (31)

for any compact subset Λ ∈ IR, where ϕU(λ) stands for the characteristic function of a
random variable U .

Lemma 3.2 Let U,U ′ ∈ L2(M) and 〈U〉 = 〈U ′〉. Then

|ϕU(λ)− ϕU ′(λ)| ≤ 4λ2/3||U − U ′||2/3
2

Proof. Applying Schwarz’ inequality gives

|ϕU(λ)− ϕU ′(λ)| = |〈eiλU · (eiλ(U ′−U) − 1)〉|

≤ 〈|eiλ(U ′−U) − 1|2〉1/2 = 2〈sin2(λ(U ′ − U)/2)〉1/2

Therefore, for any ε > 0

|ϕU(λ)− ϕU ′(λ)| ≤ ε+ 2µ
{
x : |U ′ − U | ≥ ε|λ|−1

}
≤ 2ε+ 2ε−2λ2Var (U ′ − U)

where we have used Chebyshev’s inequality. Minimizing the RHS of the last bound with
respect to ε gives the lemma.

Corollary 3.3 Let U ′ = (1 + δ)U with a constant δ and 〈U〉 = 0. Then

|ϕU(λ)− ϕU ′(λ)| ≤ 4λ2/3|δ|2/3||U ||2/3
2

Corollary 3.4 Let

U = ρ
n∑

i=1

F (T rix) and U ′ = ρ
n∑

i=1

F̄A(T rix)

for some n ≥ 1 and 0 ≤ r1 < r2 < · · · < rn ≤ N , with a constant factor ρ > 0. Then

|ϕU(λ)− ϕU ′(λ)| ≤ 4λ2/3ρ2/3n2/3||∆AF ||2/3
2

13



We now ‘discretize’ the functions UN and U ′
N . For any r, 1 ≤ r ≤ k, denote

S̄(r)
p (x) =

∑
i∈∆r

F̄A(T ix)

(we omit the subscript A for the sake of brevity). Then replacing all the S(i)
p by S̄(i)

p in
(28)-(30) gives new, discrete functions ŪN and Ū ′

N .
Observe that ||UN ||2 ≤const<∞, ||U ′

N ||2 ≤const<∞ and

|VarS(r)
p − Var S̄(r)

p | < const · p3/2||∆AF ||2 (32)

for every r, 1 ≤ r ≤ k. Recall that
√
N ||∆AF ||2 → 0 as N → ∞. Then Corollaries 3.3

and 3.4 imply that

|ϕUN
(λ)− ϕŪN

(λ)| ≤ const · λ2/3(
√
N ||∆AF ||2)2/3 → 0

as N →∞, and

|ϕU ′
N
(λ)− ϕŪ ′

N
(λ)| ≤ const · λ2/3(

√
N ||∆AF ||2)2/3 → 0

as N →∞, where the convergence is uniform in λ on any compact subset Λ ⊂ IR.
It remains to show that

sup
λ∈Λ

|ϕŪN
(λ)− ϕŪ ′

N
(λ)| → 0 (33)

for any compact Λ ⊂ IR, and we will complete the proof of (31).

Lemma 3.5 Let 0 ≤ n < n + q < N . Let Φ1(x) and Φ2(x) be two complex valued
functions on M such that Φ1 is A0,n measurable, Φ2 is An+q,N−1 measurable, and |Φk| ≤
Mk for k = 1, 2. Then

|〈Φ1Φ2〉 − 〈Φ1〉〈Φ2〉| ≤M1M2βN(q) (34)

Applying (34) to characteristic functions involved in (33) for each small block of length
q gives the bound

|ϕŪN
(λ)− ϕŪ ′

N
(λ)| ≤ (k − 1)βN(q) ≤ Np−1βN(q)

for any real λ. Making use of the assumption (24) completes the proof of (33) and that
of (31).

The last step consists in proving the CLT for the sum (29) of independent identically
distributed random variables. It is known in probability theory (see, e.g., the proof
of Theorem 18.4.1 in [21]) that the condition (25) is sufficient for that CLT, i.e. U ′

N

converge, as N →∞, in distribution to the standard normal law. Theorem 3.1 is proven.

14



The condition (25) in Theorem 3.1 is an analogue of Lindeberg’s condition in proba-
bility theory and deserves a separate discussion. Note that

lim
N→∞

〈p−1S2
p〉 = σ2

F <∞,

and

µ{x : S2
p > ε2N} ≤

〈S2
p〉

ε2N
≤ 2σ2

F

ε2
· p
N
→ 0 (35)

as N →∞. These simple observations make (25) look trivial. However, (25) is the most
subtle and controversial among all the hypotheses of the theorem. It is really hard to
check in applications. It imposes many unpleasant constraints in the theory of strongly
mixing stationary processes, see, e.g., the refs. [20, 21, 34, 14].

We prove Lindeberg’s condition (25) by the following trick:

〈p−1S2
p · χ{x: S2

p>ε2N}〉 ≤ pLF (µ{x : S2
p > ε2N})

≤ pLF

(
2σ2

F

ε2
· p
N

)
≤ 2σ2

F

ε2
· pLF (p/N) (36)

(recall that LF (d) is a convex function in d). Therefore, a sufficient condition for (25) is

lim
N→∞

pLF (p/N) = 0 (37)

It certainly works only if p = o(
√
N). We can afford functions p(N) like this, as opposite

to the theory of strongly mixing stationary processes, where p(N) must grow faster than√
N , see [20, 34]. Such a fast growth is necessary in that theory to ensure a linear in N

asymptotics of VarSN . We guarantee this asymptotics by a different assumption, that
of the finiteness of the first moment of the autocorrelation function (7).

We now derive Theorem 1.2 from Theorem 3.1. Let q(N) = n(N). In order to define
the function p(N) we consider the sequence aN = qLF (q/N), which approaches zero, as

N →∞, due to (10). Let p(N) = [a
−1/3
N q(N)]. Then

pLF (p/N) ≤ a
−2/3
N qLF (q/N) → 0

as N →∞, and we get (37). Thus, Theorem 3.1 applies and we obtain Theorem 1.2.
Theorem 1.3 immediately follows from Theorem 1.2 by a direct inspection. We leave

the details to the reader.
Warning. Even though Theorem 1.3 requires solely power law mixing rates, one may

attempt to relax those rates even further. We have certain reasons to believe, however,
that the mixing rates in (12) and (13) are very close to the ones necessary for the CLT.
Our belief is based on the following two counterexamples due to R. Bradley [6] in the
theory of absolutely regular processes.
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Let {Xi} be a stationary random process and Fm,n denote σ-algebra generated by
Xm, . . . , Xn for −∞ ≤ m ≤ n ≤ ∞. For any two σ-algebras A and B one defines

β∗(A,B) = sup
1

2

I∑
i=1

J∑
j=1

|µ(Ai ∩Bj)− µ(Ai)µ(Bj)|

where supremum is taken over all pairs of partitions {A1, . . . , AI} and {B1, . . . , BJ} such
that Ai ∈ A and Bj ∈ B. Then one defines β∗(n) = β∗(F−∞,0,Fn,∞). A process {Xi} is
said to be absolutely regular if β∗(n) → 0 as n → ∞. Clearly, the function β∗(n) is an
analogue of our mixing coefficient βN(n).

Bradley [6] has found two absolutely regular stationary processes that do not obey
the CLT. His first example satisfies

|Xi| ≤ C <∞ and β∗(n) = O(n−1 ln3 n)

and the other one satisfies

〈|Xi|2+δ〉 <∞ and β∗(n) = O
(
(n−1 ln3 n)(2+δ)/δ

)
It is very likely that there exist dynamical systems whose mixing coefficients, βN(n), have
the above asymptotics, which do not obey the CLT.

On the other hand, our central limit theorems may produce a wrong impression that
the decay of correlations (or, equivalently, the mixing property) is a necessary condition
for the CLT (2). As R. Burton and M. Denker have recently proven [11], for any er-
godic and aperiodic dynamical system (M,T, µ), mixing or not, there is a dense subset of
functions in L2(M) that obey the CLT. In particular, they proved this statement for ir-
rational rotations of the circle, based on Fourier representations. Of course, the functions
satisfying the CLT for irrational circle rotations, are very peculiar, and generic smooth
functions on the circle do not obey the CLT.

There is, however, a wide class of nonmixing transformations for which generic smooth
functions do obey the CLT. This class, as we will see in Sections 6 and 7, appears in
many important applications, so that we need to devote a few lines to it.

Let M = M1∪· · ·∪Mr be a partition into disjoint subsets, and T : Mi →Mi+1 for all
i = 1, . . . , r − 1 and T (Mr) = M1. In that case we call T a cyclic permutation. Denote
Ti the restriction of T r on Mi and µi the conditional µ-measure on Mi. For any function
F on M denote Fi its restriction on Mi.

Proposition 3.6 Let T be a cyclic permutation as defined above. Let the dynamical
system (Mi, Ti, µi) and the function Fi satisfy the hypotheses of Theorem 3.1 for every
i = 1, . . . , r. Then the function F obeys the CLT (2), unless F is a coboundary.

To prove this proposition one can apply Theorem 3.1 to the function F (x)+F (Tx)+
· · ·+ F (T r−1x) on M1. The argument is straightforward and we omit it.
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Note that the autocorrelation function CF,F (n) in the case of the last proposition
does not necessarily decay at all. It decays if and only if 〈Fi〉 = 0 for every i = 1, . . . , r.
Otherwise the correlation function converges to a periodic nonzero function. Its average
over the period is zero, and so the correlations cancel out in long partial sums SN , as
N →∞, giving way to the CLT.

We conclude this section with a vector CLT. Let F = {F1, . . . , Fr} be a vector function
on M . Assume that each component Fi satisfies the hypotheses of Theorem 3.1 (in
particular, 〈Fi〉 = 0), and let

∞∑
n=1

n|CFi,Fj
(n)| <∞

for any pair Fi, Fj. Consider partial sums Sn = {S1,n, . . . , Sr,n} = F+F◦T+· · ·+F◦T n−1.
Define an r × r matrix, V = {vij}, with components

vij = lim
n→∞

1

n
〈Si,nSj,n〉

= CFiFj
(0) +

∞∑
n=1

CFiFj
(n) +

∞∑
n=1

CFjFi
(n)

In particular, vii = σ2
Fi

. The matrix V is symmetric and nonnegative definite.

Theorem 3.7 (Vector CLT) Under the above assumptions, if the matrix V is nonde-
generate (i.e., if detV 6= 0), the vector function Sn/

√
n converges in distribution to a

normal law with zero mean and covariance matrix V.

The following lemma provides a useful criterion for the degeneracy of the matrix V:

Lemma 3.8 The matrix V is degenerate (detV = 0) iff there is a linear combination
H = a1F1 + · · · + arFr with some a2

1 + · · · + a2
r 6= 0, which is a coboundary function:

H(x) = G(Tx)−G(x) a.e. for some G ∈ L2(M).

To prove this lemma, we denote A = {a1, . . . , ar} and observe that

σ2
H =

∑
i,j

aiajvij = AVA∗ (38)

(here ∗ means the transposition), so that detV = 0 is equivalent to σ2
H = 0 for some

A 6= 0. Then we recall (23) and obtain the lemma.
Theorem 3.7 can be proven in two ways. First, one can just repeat the proof of Theo-

rem 3.1 almost word by word. Alternatively, we can reduce Theorem 3.7 to Theorem 3.1
by a simple trick. For any linear combination H = AF∗ = a1F1 + · · · + arFr we have
σH 6= 0 (due to Lemma 3.8), and so by Theorem 3.1 the function

Un := AS∗n/
√
n = [H(x) +H(Tx) + · · ·+H(T n−1x)]/

√
n
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converges in distribution to a normal law with zero mean and variance σ2
H . By the

continuity theorem the characteristic function

ϕUn(t) = ϕSn/
√

n(a1t, . . . , art)

converges, as n→∞, to exp(−σ2
Ht

2/2) = exp(−AVA∗t2/2) for any real t. Therefore, the
characteristic function ϕSn/

√
n(t1, . . . , tr) converges pointwise to exp(−TVT∗/2), where

T = {t1, . . . , tr}. This limit function is the characteristic function of a normal distribution
with zero mean and covariance matrix V, so that Theorem 3.7 again follows by the
continuity theorem.

4 Weak invariance principle

The classical strategy to prove a weak invariance principle consists of two steps. First,
one shows that finite dimensional distributions of WN , see (4), converge to those of the
Wiener processW . For one-dimensional distributions this convergence is equivalent to the
central limit theorem. Thus, the above convergence can be termed the multidimensional
central limit theorem. Its exact statement follows.

Theorem 4.1 (Multidimensional CLT) Under the assumptions of Theorem 3.1 for
any k ≥ 1 and 0 < t1 < t2 < · · · < tk ≤ 1 the joint distribution of the functions
WN(t1),WN(t2), . . . ,WN(tk) converges, as N →∞, to that of W (t1),W (t2), . . . ,W (tk).

Proof. This theorem is a direct generalization of Theorem 3.1. Indeed, it is enough
to prove that, given 0 < t1 < · · · < tk ≤ 1, the joint distribution of the variables

S[Nt1]

σF

√
Nt1

,
S[Nt2] − S[Nt1]

σF

√
N(t2 − t1)

, . . . ,
S[Ntk] − S[Ntk−1]

σF

√
N(tk − tk−1)

, (39)

converges to the k-dimensional normal distribution with zero mean and unit covari-
ance matrix. Individually, the functions (39) converge in distribution to the stan-
dard normal law by Theorem 3.1. Then we remove a small block of length q from
each sum S[Nti+1]−[Nti], 1 ≤ i ≤ k − 1, starting at its left end, i.e. we remove terms
F ◦ T [Nti], . . . , F ◦ T [Nti]+q−1. By applying the arguments of the proof of Theorem 3.1
it is easy to show that this removal does not harm the limit distribution of the vector
(39). Furthermore, the joint characteristic function of (39) can be approximated by the
product of individual characteristic functions of the involved variables. This completes
the proof of Theorem 4.1.

The second part of the proof of the WIP is far more difficult: one has to verify the
tightness of WN . The weak invariance principle follows from the multidimensional CLT
and the tightness of {WN}, see the book by P. Billingsley [4] and discussions in surveys
[34, 36].
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To prove the tightness, certain criteria are available, see [4, 34]. In particular, the
following condition is sufficient for the tightness of WN , see [4, Theorem 8.4]. If for any
ε > 0 there is an Aε > 1 and an Nε ≥ 1 such that

µ{ max
0≤i≤N

|Si| ≥ AεσF

√
N} ≤ ε

A2
ε

(40)

for all N ≥ Nε, then {WN} is tight.
We will also need the following simple lemma:

Lemma 4.2 Under the assumptions of Theorem 3.1 the sequence {S2
N/N} is uniformly

integrable.

Proof. This lemma is an easy consequence of the central limit theorem, cf. [21,
Theorem 18.4.2]. Indeed, let FN(z) = µ{x : SN(x)/

√
N ≤ z}. Then, by the CLT, for

any A > 0 ∫
|z|≤A

z2 dFN(z) → σ2
F

∫
|z|≤A

z2 dΦ(z) as N →∞

where Φ(z) is the distribution function of the standard normal law. In addition,

∫ ∞

−∞
z2 dFN(z) = Var

(
SN√
N

)
→ σ2

F as N →∞

These prove Lemma 4.2.
Proof of Theorem 1.4 (i). We follow a short and elegant proof of a similar theorem

in the theory of strongly mixing random processes by H. Oodaira and K. Yoshihara [33].
All we have to do is verify the sufficient condition (40).

Let k = [N/n]. First, we ‘discretize’ the sums Si for all i ≤ N with respect to the
partition A. We denote

S̄i =
i−1∑
j=0

F̄A(T jx) and ∆Si =
i−1∑
j=0

∆AF (T jx)

and so

µ{max
i≤N

|Si| ≥ AσF

√
N} ≤ µ{max

i≤N
|S̄i| ≥ 2−1AσF

√
N}+ µ{max

i≤N
|∆Si| ≥ 2−1AσF

√
N}

The last term in the RHS does not exceed

µ{|∆AF |+ · · ·+ |(∆AF ) ◦ TN−1| ≥ 2−1AσF

√
N}

≤ Nµ{|∆AF | ≥ 2−1AσF/
√
N} ≤ 4N2||∆AF ||22

A2σ2
F

(41)

This last quantity approaches zero as N →∞ due to (14).
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It remains to show that

µ{max
i≤N

|S̄i| ≥ 2−1AεσF

√
N} ≤ 5

6
· ε
A2

ε

(42)

for some Aε > 1 and all sufficiently large N .
Given ε > 0, choose an A = Aε (> 1) so that

µ{|Si| > 12−1AσF

√
i} ≤ ε

6A2

for all i ≥ 1, which is possible due to Lemma 4.2. Then for any N ≥ 1 and i ∈ [1, N ]

µ{|S̄i| > 6−1AσF

√
i}

≤ µ{|Si| > 12−1AσF

√
i}+ µ{|∆Si| > 12−1AσF

√
i} (43)

≤ ε

6A2
+

144i2||∆AF ||22
A2σ2

F

≤ ε

3A2

for all sufficiently large N and all i ≤ N , based again on the bound (41).
Since F (x) is essentially bounded,

|F̄ (x)|+ · · ·+ |F̄ (T 2nx)| ≤ 6−1AσF

√
N a.e. (44)

for all sufficiently large N .
We now prove (42). For every i ∈ [1, N ] we consider a subset Ei = {x ∈ M :

maxj<i |S̄j(x)| < 2−1AσF

√
N ≤ |S̄i(x)|}. Obviously, {Ei} are disjoint and their total

measure enters (42). Now,

µ{max
i≤N

|S̄i| ≥ 2−1AσF

√
N}

≤ µ{|S̄N | ≥ 6−1AσF

√
N}+ µ

(
∪N−1

i=1 [Ei ∩ {|S̄N − S̄i| ≥ 3−1AσF

√
N}]

)
≤ µ{|S̄N | ≥ 6−1AσF

√
N}+

k−2∑
r=0

µ
(
∪n

i=1[Ern+i ∩ {|S̄N − S̄rn+i| ≥ 3−1AσF

√
N}]

)

+
N−1∑

i=(k−1)n+1

µ{|S̄N − S̄i| ≥ 3−1AσF

√
N}

(from now on we assume that N is large enough and make use of (44))

≤ µ{|S̄N | ≥ 6−1AσF

√
N}+

k−2∑
r=0

µ
(
∪n

i=1[Ern+i ∩ {|S̄N − S̄(r+2)n| ≥ 6−1AσF

√
N}]

)

= µ{|S̄N | ≥ 6−1AσF

√
N}+

k−2∑
r=0

µ
(
[∪n

i=1Ern+i] ∩ {|S̄N − S̄(r+2)n| ≥ 6−1AσF

√
N}

)
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Since ∪n
i=1Ern+i is A0,(r+1)n measurable and {|S̄N−S̄(r+2)n| ≥ 3−1AσF

√
N} is A(r+2)n,N−1

measurable, we apply Lemma 3.5 and (15) and get

k−2∑
r=0

µ
(
[∪n

i=1Ern+i] ∩ {|S̄N − S̄(r+2)n| ≥ 6−1AσF

√
N}

)

≤
k−2∑
r=0

µ (∪n
i=1Ern+i)µ

{
|S̄N − S̄(r+2)n| ≥ 6−1AσF

√
N
}

+ kβN(n)

≤
k−2∑
r=0

µ (∪n
i=1Ern+i)µ

{
|S̄N−(r+2)n| ≥ 6−1AσF

√
N − (r + 2)n

}
+ kβN(n)

≤ ε

3A2
+ kβN(n) =

ε

3A2
+ o(1),

where we have used (43). The clause (i) of Theorem 1.4 is now proven.
Proof of Theorem 1.4 (ii). As in the previous proof, we only have to verify (40). We

start with a discretization of SN with respect to the partition A. This repeats word by
word that from the previous proof, and we again reduce (40) to (42).

The rest of the proof follows that of the corresponding theorem in the theory of
strongly mixing random processes [33, Theorem 2]. We truncate the discrete function
F̄A(x) by the rule

F̂ (x) =

{
F̄A(x) if |F̄A(x)| ≤ N

1
2(1+δ)

0 otherwise

and denote F ∗(x) = F̄A(x) − F̂ (x). We then put Ŝn(x) =
∑n−1

i=0 F̂ (T ix) and S∗n(x) =∑n−1
i=0 F

∗(T ix) for each n ≥ 1.

Lemma 4.3 N−1Var ŜN → σ2
F as N →∞.

Proof. First recall that N−1VarSN → σ2
F as N →∞, and (32) can be rewritten as

|Var S̄N − VarSN | ≤ const ·N3/2||∆AF ||2

Therefore N−1Var S̄N → σ2
F as N → ∞. Then, by the expansion (21) it is enough to

prove that

lim
N→∞

N−1∑
n=0

|CF̄ ,F̄ (n)− CF̂ ,F̂ (n)| = 0

Observe that

CF̄ ,F̄ (n)− CF̂ ,F̂ (n) = CF̂ ,F ∗(n) + CF ∗,F̂ (n) + CF ∗,F ∗(n)

We make use of Theorem 1.1 and the assumption (16), and obtain

N−1∑
n=n0

|CF̄ ,F̄ (n)− CF̂ ,F̂ (n)| ≤ const · ||F ||2+δ||F ∗||2+δ → 0
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as N →∞. Besides,

n0−1∑
n=0

|CF̄ ,F̄ (n)− CF̂ ,F̂ (n)| ≤ const · n0 ·
(
||F̂ ||∞〈|F ∗|〉+ 〈|F ∗|2〉

)
→ 0

as N →∞, cf. also (47) below. Lemma 4.3 is proven.
Next, we have

µ{max
i≤N

|S̄i| ≥ 2−1AσF

√
N}

≤ µ{max
i≤N

|Ŝi − i〈F̂ 〉| ≥ 4−1AσF

√
N}+ µ{max

i≤N
|S∗i − i〈F ∗〉| ≥ 4−1AσF

√
N} (45)

≤ µ{max
i≤N

|Ŝi − i〈F̂ 〉| ≥ 4−1AσF

√
N}+ µ

{
N−1∑
i=0

|F ∗(T ix)− 〈F ∗〉| ≥ 4−1AσF

√
N

}

We put k = [N/n0]. In virtue of (16) kβN(n0) → 0 as N → ∞. Since the function
|F̂ (x)− 〈F̂ 〉| is bounded (≤ 2N1/2(1+δ)), we have

2n0−1∑
i=0

|F̂ (T ix)− 〈F̂ 〉| ≤ 4n0N
1

2(1+δ) < 50−1AσF

√
N a.e.

for all sufficiently large A. Based on these observations and Lemma 4.3 and by repeating
the arguments of the proof of (42) we obtain that for any ε > 0 there is an Aε > 1 such
that

µ{max
i≤N

|Ŝi − i〈F̂ 〉| ≥ 4−1AσF

√
N} ≤ 5ε

12A2

for all A ≥ Aε.
It remains to bound the last term in the RHS of (45). Due to Chebyshev’s inequality

we have

µ

{
N−1∑
i=0

|F ∗(T ix)− 〈F ∗〉| ≥ 4−1AσF

√
N

}
≤ 16

A2σ2
FN

〈(
N−1∑
i=0

|F ∗(T ix)− 〈F ∗〉|
)2〉

Next,

N−1

〈(
N−1∑
i=0

|F ∗(T ix)− 〈F ∗〉|
)2〉

≤ 〈|F ∗(x)− 〈F ∗〉|2〉+ 2
N−1∑
i=1

〈|F ∗(x)− 〈F ∗〉| · |F ∗(T ix)− 〈F ∗〉|〉 (46)

≤ 2n0||F ∗||22 + 2
N−1∑
i=n0

〈|F ∗(x)− 〈F ∗〉| · |F ∗(T ix)− 〈F ∗〉|〉

Observe that

〈|F ∗|〉 ≤ ||F ∗||2+δ||F ||1+δ
2+δN

−1/2 and 〈|F ∗|2〉 ≤ ||F ∗||22+δ||F ||δ2+δN
−δ/2(1+δ) (47)
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Therefore, the first term in the RHS of the last inequality in (46) vanishes as N → ∞.
The second term involves the correlations between two functions, one is A measurable,
the other is Ai measurable for an i ≥ n0. Thus, we can apply Theorem 1.1 and get

〈|F ∗(x)− 〈F ∗〉| · |F ∗(T ix)− 〈F ∗〉|〉

≤ 〈|F ∗(x)− 〈F ∗〉|〉 · 〈|F ∗(T ix)− 〈F ∗〉|〉+ 2||F ∗ − 〈F ∗〉||22+δβ
δ

2+δ

N (i)

≤ 4〈|F ∗|〉2 + 8||F ∗||22+δβ
δ

2+δ

N (i)

≤ 4N−1||F ||2(1+δ)
2+δ ||F ∗||22+δ + const · ||F ∗||22+δi

−1−tδ/(2+δ)

Summing over i ∈ [n0, N − 1] shows that the second term in the RHS of (46) vanishes as
N →∞, too. Therefore, for all sufficiently large N we have

µ

{
N−1∑
i=0

|F ∗(T ix)− 〈F ∗〉| ≥ 4−1AσF

√
N

}
≤ 5ε

12A2

and the bound (42) is established. The clause (ii) of Theorem 1.4 is now proven.
The following extension of our WIP can be obtained in the same fashion as Proposi-

tion 3.6:

Proposition 4.4 Let T be a cyclic permutation as defined in Section 3. Let the dy-
namical system (Mi, Ti, µi) and the function Fi satisfy the clause (i) or the clause(ii) of
Theorem 1.4 for every i = 1, . . . , r. Then the function F satisfies WIP as well, unless it
is a coboundary.

5 Markov approximation

In the present paper we do not discuss how to establish high mixing rates required by our
theorems. However, we show how the hypotheses on mixing coefficients in our theorems
can be considerably relaxed, with the help of a novel general technique involving Markov
approximations generated by finite or countable partitions of the phase space.

The idea of Markov approximations defined here goes back to that of coarse-graining
of the phase space, popular among physicists, see a discussion in the survey [32]. It is
also close to Ulam’s construction [46]. Markov approximations for dynamical systems
are motivated mainly by Markov partitions first obtained for toral automorphisms by
R. Adler and B. Weiss [3], then for Anosov systems by Ya. Sinai [42] and for Axiom
A diffeomorphisms by R. Bowen [5], cf. also Section 7. Historically, however, Markov
partitions were defined by very fine topological properties. Those are of little help for
Markov approximations in the measure-theoretic sense, which we need here. Other par-
titions with good Markov properties in the measure-theoretic sense alone (like Markov
sieves, cf. Section 7) can work even better than original Markov partitions and are often
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much easier to construct. This is why we will define Markov approximations based on
an arbitrary partition of the phase space.

Let A = {Ai} be a finite or countable partition of the phase space M into subsets
of positive measure. We define a probabilistic stationary Markov chain with transition
matrix

πij = µ(T−1Aj/Ai) = µ(T−1Aj ∩ Ai)/µ(Ai) (48)

and stationary distribution
pi = µ(Ai). (49)

We say that this Markov chain approximates the dynamics within n iterates of T if
(n+ 1)-dimensional distributions of the Markov chain

pi0i1···in = pi0πi0i1 · · ·πin−1in (50)

are close to those of the dynamical system

µ(T−nAin ∩ T−(n−1)Ain−1 ∩ · · · ∩ Ai0) = µ(T−nAin/T
−(n−1)Ain−1 ∩ · · · ∩ Ai0)

×µ(T−(n−1)Ain−1/T
−(n−2)Ain−2 ∩ · · · ∩ Ai0) · · ·µ(T−1Ai1/Ai0)µ(Ai0) (51)

The expansion (51) holds whenever µ(T−(n−1)Ain−1 ∩ · · · ∩ Ai0) > 0.
It is clear that (50) and (51) are close provided

µ(T−nAin/T
−(n−1)Ain−1 ∩ · · · ∩ Ai0) ≈ µ(T−1Ain/Ain−1) = πin−1in (52)

whenever µ(T−1Ail∩Ail−1
) > 0 for all l = 1, 2, . . . , n. We specify below what the sign “≈”

in (52) means. One can think of (52) as a ‘short memory’ condition for the dynamical
system (M,T, µ) within the first n iterates.

We now introduce a measure of closeness of the ‘long-memory’ and ‘short-memory’
conditional probabilities involved in (52) by

νN = sup
n≤N

∑
i0,...,in

|µ(T−nAin/T
−(n−1)Ain−1 ∩ · · · ∩ Ai0)− µ(T−1Ain/Ain−1)|

×µ(T−(n−1)Ain−1 ∩ · · · ∩ Ai0) (53)

In this and other formulas the summation is taken over such indexes that all the condi-
tional measures are defined.

Certainly, (53) is an ‘integral’ measure of closeness of long- and short-memory condi-
tional probabilities rather than their individual closeness indicated by (52). Recall that
given two probability distributions P = {pi} and Q = {qi} on the same index set {i},
the distance in variation between P and Q is defined to be

Var(P,Q) =
1

2

∑
i

|pi − qi| (54)
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Then (53) is twice the mean distance in variation between the long- and short-memory
conditional distributions on {T−nAi}, i ≥ 1.

Based on (53), one can estimate how close the finite dimensional distributions (50)
and (51) are in the variational metric:∑

i0,...,in

|µ(T−nAin ∩ · · · ∩ Ai0)− pi0i1···in| ≤ (n− 1)νN (55)

for n ≤ N . The proof of (55) goes by induction in n.
Certain bounds on the closeness of finite dimensional conditional distributions with

long and short memories follow from (53). First,∑
i0,...,in+k

|µ(T−(n+k)Ain+k
∩ · · · ∩ T−nAin/T

−(n−1)Ain−1 ∩ · · · ∩ Ai0)

−µ(T−(n+k)Ain+k
∩ · · · ∩ T−nAin/T

−(n−1)Ain−1)| (56)

×µ(T−(n−1)Ain−1 ∩ · · · ∩ Ai0) ≤ (2k + 1)νN ,

for any n, k ≥ 1 such that n+ k ≤ N . This can be derived from (53) by induction in k.
Second, ∑

i0,...,im,in,...,in+k

|µ(T−(n+k)Ain+k
∩ · · · ∩ T−nAin/T

−mAim ∩ · · · ∩ Ai0)

−µ(T−(n+k)Ain+k
∩ · · · ∩ T−nAin/T

−mAim)| · µ(T−mAim ∩ · · · ∩ Ai0) (57)

≤ (2k + 2n− 2m+ 1)νN

for any n > m and k ≥ 0 such that n+k ≤ N . This readily follows from (56). Note that
there is “a gap in time”, between m and n in (57). In a similar manner another useful
bound follows: ∑

i0,...,im,in,...,in+k

|µ(T−(n+k)Ain+k
∩ · · · ∩ T−nAin/T

−mAim ∩ · · · ∩ Ai0)

−µ(T−(n+k)Ain+k
∩ · · · ∩ T−nAin)| · µ(T−mAim ∩ · · · ∩ Ai0)

≤
∑

i0,...,im,in

|µ(T−nAin/T
−mAim ∩ · · · ∩ Ai0)− µ(T−nAin)| · µ(T−mAim ∩ · · · ∩ Ai0)

+(2k + 2n− 2m)νN (58)

≤
∑

im,in

|µ(T−nAin ∩ T−mAim)− µ(T−nAin)µ(T−mAim)|+ (2k + 4n− 4m)νN

We will utilize this last bound later.
The Markov approximations introduced here can be also interpreted in terms of

symbolic dynamics. For every point x ∈ M we define a one-sided symbolic sequence
ω(x) = {ωi(x)}∞i=0 by T ix ∈ Aωi(x) for all i = 0, 1, . . .. Denote ΩM the set of symbolic
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sequences ω(x) for all x ∈ M . The transformation T of M is conjugate to the left shift
σL on ΩM , defined by σL(ω0, ω1, . . .) = (ω1, ω2, . . .). The invariant measure µ on M in-
duces a measure µΩ on ΩM , which is invariant under the shift σL. The dynamical system
(ΩM , σL, µΩ) is commonly referred to as the symbolic representation of (M,T, µ) gener-
ated by the partition {Ai}. One usually demands that different points x, y ∈ M have
different symbolic sequences ω(x) 6= ω(y), in which case the partition {Ai} is called a gen-
erator. If the transformation T is invertible, one usually assigns double-sided sequences
ω(x) = {ωi(x)}∞i=−∞ to points x ∈M by the rule T ix ∈ Aωi(x),−∞ < i <∞.

The equations (48) and (49) define another, Markov, measure µ(M) on the set of all

one-sided symbolic sequences INZZ+ ⊃ ΩM . (In the case of invertible T we get a Markov

measure µ(M) on the set of double-sided symbolic sequences INZZ ⊃ ΩM). The mea-
sure µ(M) and the invariant measure µΩ always have common one- and two-dimensional
distributions on the cylinders {ω0} and {ω0ω1}. The condition (52) requires that the mul-
tidimensional distributions of µ(M) and µΩ are close on cylinders {ω0, . . . , ωn} of length
n+ 1.

Let us emphasize that good Markov approximations can be defined not only for
chaotic dynamical systems. For example, let M = S1 and T be a rotation through a
rational angle of 360m/n degrees, with m,n ∈ IN. Then a partition of S1 into equal
arcs of 360/n degrees generates a perfect Markov approximation (νN ≡ 0 for all N ≥ 1).
If the fraction m/n is irreducible, then the associated Markov chain is ergodic, but not
mixing. Needless to say, the system is extremely regular (all the points are periodic).

In other words, the quality of the Markov approximation (the smallness of νN in (53))
is an exclusive property of the partition A, and does not say anything about the ergodic
or statistical properties of the dynamical system (M,T, µ). One needs additional infor-
mation about the approximating Markov chain in order to derive statistical properties
of the dynamical system. Next we specify what kind of information is sufficient. Recall
that our purpose is to bound mixing coefficients βN(n) and β(n) for the partition A.

The following lemma readily follows from the estimate (58):

Lemma 5.1 βN(n) ≤ β(n) + 2(N + n)νN for any n < N .

This lemma shows that, if the Markov approximation generated by the partition A is
good enough (so that νN is sufficiently small), then bounds on a more intricate coefficient
βN(n) can be reduced to bounds on β(n).

In order to bound the function β(n), a Markov approximation can be used again:

β(n) =
∑
i,j

|µ(T−nAj ∩ Ai)− µ(Ai)µ(Aj)|

≤
∑

i,i1,...,in−1,j

|µ(T−nAj ∩ T−(n−1)Ain−1 ∩ · · · ∩ T−1Ai1 ∩ Ai)− pii1...in−1j|

+
∑
i,j

|piπ
(n)
ij − pipj| ≤ (n− 1)νN +

∑
i,j

|π(n)
ij − pj|pi

26



for any n < N , based on (55). Here π
(n)
ij stands for the n-step transition probability from

Ai to Aj. Denote β̂(n) =
∑ |π(n)

ij − pj|pi.

Corollary 5.2 βN(n) ≤ (2N + 3n)νN + β̂(n) for any n < N .

The value of β̂(n) measures the convergence of the transition probabilities π
(n)
ij , as

n → ∞, to the equilibrium distribution {pj}, and so it is β̂(n) who is responsible for
mixing rates in the dynamical system.

If the dynamical system (T,M, µ) is ergodic and mixing, then any approximating
Markov chain is irreducible and aperiodic. If the latter is finite, then the difference
π

(n)
ij −pj converges to zero exponentially fast in n for any pair i, j. However, in applications

the partition A itself depends on n, through the way of refinements (17) and (18), or by
direct construction. So, the above observation is not very helpful.

There are certain sufficient conditions that provide effective bounds on β̂(n) and work
both for finite and countable Markov chains. Those are motivated by classical Doeblin’s
condition in the theory of Markov chains [16] and by Dobrushin’s coefficient of ergodicity
for countable Markov chains [15].

For any pair of states i, j and k ≥ 1 we denote

Vij(k) =
1

2

∑
l

|π(k)
il − π

(k)
jl | (59)

the distance in variation between two conditional distributions, {π(k)
il } and {π(k)

jl }. For
any k ≥ 1 and a real s > 0 we put

q1(k, s) =
∑

i,j: Vij(k)>1−s

pipj (60)

We also denote

q2(k, s) = inf
{
q > 0 :

∑
i:
∑

j: Vij(k)>1−s
pj<q

pi > 1− q
}

(61)

The classical Doeblin condition in a modified form, due to L. Bunimovich and Ya. Sinai
[7, 10], says that Vij(k) < 1 − s for some s > 0 and k ≥ 1 for all the pairs i, j (so that
both quantities q1(k, s) and q2(k, s) vanish). Our functions q1(k, s) and q2(k, s) measure
the ‘total probability’ of pairs i, j that violate Doeblin’s condition.

Remark. 1
2
q1(k, s) ≤ q2(k, s) ≤

√
q1(k, s).

The following proposition provides a bound on the quantity β̂(n) in terms of k, s and
q2(k, s):

Proposition 5.3 For any n > k ≥ 1 and s > 0 we have

β̂(n) ≤ 2(1− s/2)[n/k] + 2[n/k] · q2(k, s)
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Proof. Since the function β̂(n) is monotone decreasing in n, it is enough to prove the
proposition for all n = kr, where r ≥ 1 is an integer. The proof goes by induction in r.

We will denote Σ+
j and Σ−

j the summations over such j that the difference π
(kr+k)
ij −pj

is positive and negative, respectively. In the same manner, we will denote Σ+
m and Σ−

m

the summations over such m that the difference π
(kr)
im − pm is positive and negative,

respectively. Then we have

β̂(rk + k) = 2ΣipiΣ
+
j (π

(kr+k)
ij − pj) =

2ΣipiΣ
+
j

(
Σm(π

(rk)
im − pm)π

(k)
mj

)
≤ 2ΣipiΣ

+
j

(
Σ+

m(π
(rk)
im − pm)π

(k)
mj

)
≤ 2Σipi

(
Σ+

m(π
(rk)
im − pm)Σ+

j π
(k)
mj

)
≤
(
1− s

2

)
β̂(rk) + 2×

∑
m: Σ+

j π
(k)
mj>1−s/2

pm

In a similar fashion we have

β̂(rk + k) ≤ 2Σipi

(
Σ−

m(pm − π
(rk)
im )Σ−

j π
(k)
mj

)
≤
(
1− s

2

)
β̂(rk) + 2×

∑
m: Σ−j π

(k)
mj>1−s/2

pm

Observe that for any m1,m2

Σ+
j π

(k)
m1j + Σ−

j π
(k)
m2j = 1 + Σ−

j (π
(k)
m2j − π

(k)
m1j) ≤ 1 + Vm1m2(k)

Therefore, if Σ+
j π

(k)
m1j > 1 − s/2 and Σ−

j π
(k)
m2j > 1 − s/2 for some m1 and m2, then

Vm1m2(k) > 1− s. Due to (61) we conclude that either∑
m: Σ+

j π
(k)
mj>1−s/2

pm ≤ q2(k, s)

or ∑
m: Σ−j π

(k)
mj>1−s/2

pm ≤ q2(k, s)

Thus, the proof of Proposition 5.3 is completed.
In applications, it is more convenient to bound the quantity

V µ
ij (k) :=

1

2

∑
l

|µ(T−kAl/Ai)− µ(T−kAl/Aj)| (62)

rather than Vij(k), since V µ
ij (k) is defined in terms of the invariant measure µ. In other

words, we assume the smallness of

qµ
1 (k, s) :=

∑
i,j: V µ

ij (k)>1−s

pipj (63)
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Lemma 5.4 For any r ∈ (0, s) we have

q1(k, r) ≤ qµ
1 (k, s) + (s− r)−1kνN

Proof. Denote Σ∗
ij the summation over such i, j that V µ

ij (k) < 1−s and Vij(k) > 1−r.
Then it is a straightforward calculation based on (55) that

(s− r)Σ∗
ijpipj ≤ Σ∗

ij

(
Vij(k)− V µ

ij (k)
)
pipj ≤ kνN

The lemma is proven.

Corollary 5.5 For any r ∈ (0, s) we have

β̂(n) ≤ 2(1− r/2)[n/k] + 2[n/k] ·
(
qµ
1 (k, s) + (s− r)−1kνN

)1/2

Based on Corollary 5.5 one can exploit the following strategy for bounding the function
β̂(n): to bound the quantity V µ

ij (k) away from unity for an “overwhelming majority” of
the pairs i, j, and also bound the measure of the remaining pairs i, j in (63). That
strategy has been successfully employed in [1] for two-dimensional hyperbolic attractors,
see Section 7 for more detail.

We now outline another approach to bounding the function β̂(n). For any k ≥ 1 and
t > 0 denote

q3(k, t) =
∑

i,j: π
(k)
ij <tpj

pipj (64)

If the quantity q3(k, t) is small enough, one can say that the conditional distribution π
(k)
ij

recovers ‘a fraction’ t of the equilibrium one.

Lemma 5.6 For any s ∈ (0, t) we have

q1(k, s) ≤
4t

t− s
· q3(k, t)

The key point in the proof is the observation that if

∑
l: π

(k)
il

<tpl

pl <
1

2

(
1− s

t

)
and

∑
l: π

(k)
jl

<tpl

pl <
1

2

(
1− s

t

)

then Vij(k) < 1− s. We leave the details to the reader.

Corollary 5.7 For any n > k ≥ 1 and t > s > 0 we have

β̂(n) ≤ 2(1− s/2)[n/k] + 4[n/k] ·
√
t(t− s)−1q3(k, t)
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Again, in applications it is more natural to seek a bound for the quantity

qµ
3 (k, u) :=

∑
i,j: µ(T−kAj/Ai)<uµ(Aj)

µ(Ai)µ(Aj) (65)

rather than for q3(k, t).

Lemma 5.8 For any t ∈ (0, u) we have

q3(k, t) < qµ
3 (k, u) + (u− t)−1kνN

Proof. Denote Σ∗
ij the summation over such i, j that µ(T−kAj/Ai) ≥ uµ(Aj) and

πij(k) < tpj. Then it is a straightforward calculation based on (55) that

(u− t)Σ∗
ijpipj ≤ Σ∗

ij

(
µ(T−kAj/Ai)− π

(k)
ij

)
pi ≤ kνN

The lemma is proven.

Corollary 5.9 For any n > k ≥ 1 and u > t > s > 0 we have

β̂(n) ≤ 2(1− s/2)[n/k] + 4[n/k] ·
(
t(t− s)−1(qµ

3 (k, u) + (u− t)−1kνN)
)1/2

This corollary provides an alternative strategy for bounding β̂(n), based on proving
the inequality µ(T−kAj/Ai) ≥ uµ(Aj) for some constant u > 0 and an “overwhelming
majority” of pairs i, j. Such a strategy has been successfully implemented for chaotic
billiards in [10, 12], see Section 7 for more detail. The implementation of either of the
above two strategies for any new class of dynamical systems is beyond the scope of this
article.

6 Applications to expanding interval maps

Here we apply our results to expanding maps of an interval.
6.1 Uniformly expanding maps. Let M = [0, 1] and B = {I1, . . . , In, . . .} be a finite

or countable partition of [0, 1] into disjoint open subintervals such that the Lebesgue
measure of M \ (∪Ii) is zero. Let T : [0, 1] → [0, 1] be a map which is C1-smooth and
monotonic on each interval Ii, i ≥ 1. Two assumptions are imposed on T :

(i) inf{|T ′x|, x ∈ ∪Ii} = Λ > 1, i.e. T is a (uniformly) expanding map;
(ii) either T is C2 smooth on each Ii, i ≥ 1, or the function g(x) = 1/|T ′(x)| is of

bounded variation on [0, 1].
Ergodic and statistical properties of such interval maps (in the case of finite partitions

B0) have been studied by Hofbauer and Keller [19]. Rychlik [40] has extended that
theory to countable partitions B0. Their theory was later extended to interval maps with
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nonpositive Schwarzian by Ziemian [50] and to certain quadratic maps of the interval by
Young [49], Keller and Nowicki [26], but we do not go that far.

It has been shown in [19, 40] that the map T satisfying (i) and (ii) has an absolutely
continuous invariant measure µ whose density h(x) is of bounded variation on [0, 1].

Generally, T need not be ergodic. The interval [0, 1] can be decomposed into a
finite number of ergodic components [19, 40]. On every ergodic component T need
not be mixing. In turn, every component can be decomposed into a finite number of
“mixing subcomponents”, which are permuted cyclically by T , and on each of which an
appropriate iterate of T is an exact endomorphism. Such a decomposition of [0, 1] is
obtained and described [19, 40] by spectral properties of the adjoint operator in L1(M),
and so it is commonly referred to as the spectral decomposition.

From now on we assume that T is weakly mixing. It has been shown in [19, 40]
that T is then mixing, a K-system and Bernoulli. Furthermore, for functions of bounded
p-variation on [0, 1] with p ≥ 1 (see below) the correlations decay exponentially fast and
the central limit theorem along with its invariance principle holds. A function F (x) on
[0, 1] is said to be of bounded p-variation if

sup
n∑

i=1

|F (xi)− F (xi−1)|p <∞

where the supremum is taken over all finite subsets a0 < a1 < · · · < an of [0, 1]. Any
Hölder continuous function on [0, 1] with exponent 1/p is of bounded p-variation.

Lemma 6.1 Any function F (x) on [0, 1] of bounded p-variation, p ≥ 1, is bounded and
satisfies HF (d) ≤ const · da with a = min{1/2, 1/p}.

Proof. Boundedness of F is obvious. If the lemma holds for an F (x), it will hold
for any cF (x) + d with c, d ∈ IR. Therefore, we can assume that 0 < F (x) < 1 for all
x ∈ [0, 1]. In computing the function HF (d) the integration can be done with respect
to the Lebesgue measure m rather than the invariant measure µ, because the density
h(x) of the latter is bounded. Denote d = diamA and for any subset B ⊂ [0, 1] denote
osc(F,B) = supB F (x)− infB F (x). Then we have

〈(∆AF )2〉 ≤
∑

i

osc2(F,Ai)m(Ai)

≤ 4d
[(4d)−1]∑

j=0

osc2(F, [4jd, (4j + 4)d]) + 4d
[(4d)−1]∑

j=0

osc2(F, [(4j + 2)d, (4j + 6)d])

If p ≤ 2, we get a bound 〈(∆AF )2〉 ≤ const · d. If p > 2, we apply Hölder’s inequality
and get 〈(∆AF )2〉 ≤ const · d2/p. Lemma 6.1 is proven.

Consider partitions Bk,n = T−kB0 ∨ · · · ∨ T−nB0 for all n ≥ k ≥ 0, and denote

β(B)
∗ (n) = sup

k,l≥0
β(B0,k,Bk+n,k+n+l)
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Then we have two key estimates from [19] and [40]:

diamB0,n ≤ Λ−n

(see Lemma 2 in [19] and Lemma 3 in [40]) and

β(B)
∗ (n) ≤ Krn

for certain K > 0 and r ∈ (0, 1) (see Theorem 4 in [19] and Theorem 5 in [40]).
These estimates show that the expanding interval maps are, in our terminology, dy-

namical systems with exponential mixing rates. Corollary 1.7 immediately applies to
these systems. It covers phase functions of bounded p-variation and far larger classes of
functions as well. For instance, it covers continuous functions with modulus of continuity
O(1/| ln d|2+ε), ε > 0. It also covers piecewise smooth functions with a finite number of
cusps of type (x− a)−b with b < 1/2.

The character of mixing in these systems is, however, stronger than the one assumed
in our Corollary 1.7. We refer the reader to [14, 23] for more detail. This strong mixing
allowed Keller [25] to apply Gordin’s results in the theory of weakly dependent stationary
processes and to prove the CLT for any function F ∈ L2([0, 1]) such that there are
functions Fn of bounded variation satisfying∑

n≥1

〈|F − Fn|2〉1/2 <∞ and

lim
n→∞

var (Fn)(1 + h)−n = 0 for all h > 0

This class is larger than the one covered by Corollary 1.7. It includes, in particular,
piecewise smooth functions with a finite number of cusps of type (x−a)−1/2| ln(x−a)|−p

with p > 3/2.
Remark. The CLT and WIP hold for ergodic, but not necessarily mixing expanding

transformations T . This follows from the spectral decomposition and our Propositions 3.6
and 4.4.

In the case of nonergodic expanding interval maps H. Ishitani [22, 23] has proven that
the limit distribution of SN/||SN ||2, as N →∞, is a mixture of normal distributions.

All the results obtained in [19, 40, 25] and here will work if, instead of a one-step
expansive condition (i), one assumes that

inf |(Tm)′x| = Λ > 1 (66)

for some finite iterate Tm of the map T . For example, the famous Gauss transformation
Tx = {1/x} on (0, 1), where {·} stands for the fractional part of a real number, has
an absolutely continuous invariant measure with density h(x) = (ln 2)−1(1 + x)−1 and
satisfies (66) for m = 2 but not for m = 1.

6.2 Nonuniformly expanding maps. The interval maps described by (66) are still
uniformly expanding ‘eventually’. Further relaxation of the assumption (i) inevitably
leads to maps T (x) such that

inf |(Tm)′x| = 1 (67)
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for all m ≥ 1 (such maps are said to be almost expanding). In particular, the map T
or one of its iterates, T r, r ≥ 1, may have a so called indifferent fixed point, T rx0 =
x0, |(T r)′x0| = 1. In order to ensure the existence of a finite absolutely continuous
invariant measure for such a map, one has to discard the C2 smoothness of T at indifferent
fixed points. Some examples of such maps have been studied in the literature [28, 37, 48],
and they have proven to enjoy relatively rich statistical properties.

We consider one example of this type, introduced by P. Gaspard and X.-J. Wang
[18, 48]. It does not pretend to be a typical one, nor has it any physical applications, it
will only illustrate our theorems.

Let T be a piecewise linear map on [0, 1] defined by

T (x) =


ξk−2−ξk−1

ξk−1−ξk
(x− ξk) + ξk−1, if ξk ≤ x < ξk−1

x−ξ0
1−ξ0

if ξ0 ≤ x ≤ 1

with ξk = ξ0/(1 + k)α, k = 1, 2, . . . and ξ0 < 1. This map is linear on each segment
∆k = [ξk, ξk−1], k ≥ 1 and on ∆0 = [ξ0, 1]. The point x = 0 is fixed, and the one-sided
derivative of T at x = 0 is equal to one. The function T ′(x) is only Hölder continuous at
x = 0 with an exponent 1/α. For any α > 1 the map T has a finite invariant measure µ
with a density that is constant on each ∆k and takes a value

ρ(x) = ρk =
(1− ξ0)ρ0

1− (k/(k + 1))α

for x ∈ ∆k, k ≥ 1, where ρ0 is the value of the density on ∆0. The density ρ(x) approaches
infinity as x→ 0. The following asymptotic formulas help to study the map T :

|∆k| ∼
αξ0
kα+1

, ρk ∼
(1− ξ0)ρ0k

α
, µ(∆k) ∼

ξ0(1− ξ0)ρ0

kα

as k →∞. The map T is ergodic and mixing.
The partition B = {∆k}, k ≥ 0, of the unit interval is a Markov partition for the map

T , because T (∆k) = ∆k−1 for every k ≥ 1 and T (∆0) = [0, 1]. Since T is linear on each
atom of B, the measure µ is Markov as well. In particular, the Markov approximation
generated by B (as defined in Section 5) is perfect, i.e., νN = 0 in (53) for all N ≥ 1.

Statistical properties of the map T have been studied by Wang [48] and Lambert
et al. in [28]. It has been proven that for all α > 3 the correlations for any Hölder
continuous functions F,G on [0, 1] decay by a power law. Also, for Hölder continuous
functions on [0, 1] a central limit theorem has been established provided α > 30. This
is one of a few known examples where a CLT is proven for a system with an algebraic
decay of correlations.

Let n ≥ 1, n1 = [nν ] and n2 = [nz] with some 0 < z < ν < 1 specified below (we use
here the notations of [28] for the reader’s easy reference). Let B̃ = {∆0,∆1, . . . ,∆n2 ,∆−1}
be a finite partition of [0, 1], where ∆−1 = ∪i>n2∆i. Denote ∆−1(n) = ∪n−1

k=0T
−k∆−1. It
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has been shown in [28, Lemma 3.1] that

µ(∆−1(n)) ≤ C1

nα−1
2

·max
{
1,
n

n2

}
(68)

Now consider a partition A = ∨n1−1
i=0 T−iB̃. It has been shown in [28] (see Eq. (3.7) there)

that

max{diamA : A ∈ A, A⊂/ ∆−1(n1)} ≤ const ·
(
1 +

α+ 1

n2

)−n1

(69)

We now estimate the mixing coefficient β(n) of the partition A based on [28, Lemma 3.8]:

β(n) ≤ 4

1− 1

n2

(
1− C2n

nα
2

)n2+1


n−n1
n2+1

+
C1n

nα
2

(70)

The last term in the RHS comes from the bound (68) on the measure of the ‘residual’
set ∆−1(n). As in [28], we assume that α > 3 and z ∈ ((α− 1)−1, 1/2), in which case the
first term in the RHS of (70) decays as a stretched exponential function in n, and the
second term is then the leading one. Thus, (70) reduces to

β(n) ≤ C3n

nαz
(71)

where the constant C3 > 0 depends on the choice of z.
We now estimate the mixing coefficient βN(n) of the partition A. This partition is

not Markov, but the Markovness of B allows us to compute βN(n) in the same way as we
have computed β(n). We skip the calculation – the result is almost the same, we only
have to replace C1n by C1N in the last term in the RHS of (70), and for any α > 3 we
get

βN(n) ≤ C3N

nαz
(72)

Since the last term in (70) comes from the bound (68) on the measure of the ‘residual’
set ∆−1(n), one can partition this set into arbitrarily small fragments, and the estimates

(70)-(72) will survive. In other words, if ∆−1 = ∪j≥1∆
(j)
−1 for arbitrarily small disjoint

subsets ∆
(j)
−1, then one can redefine B̃ to be {∆0,∆1, . . . ,∆n2 ,∆

(1)
−1,∆

(2)
−1, . . .} and again

set A = ∨n1−1
i=0 T−iB̃, and still have the bounds (70)-(72). A refinement of ∆−1 is only

necessary for a better control on the value of diamA, since the bound (69) does not cover
the atoms of A within the residual set ∆−1(n1). After an appropriate refinement of ∆−1

we convert (69) into

diamA ≤ const ·
(
1 +

α+ 1

n2

)−n1

≤ const · e−(α+1)nν−z

(73)

We are now ready to apply our Theorems 1.3 and 1.4.
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Theorem 6.2 Let F ∈ L2([0, 1]) and HF (d) ≤ const/| ln d|p with a sufficiently large
p > 0. Assume that either of the following two conditions holds:
(i) F is essentially bounded and α > 6;
(ii) F ∈ L2+δ([0, 1]) with some δ > 0 and α > (8 + 6δ)/δ.
Then both CLT and WIP hold provided σF 6= 0.

The proof consists of a simple inspection of necessary relations between the involved
parameters, and we leave it to the reader. One only has to choose z in (72) sufficiently
close to 1/2.

The central limit theorem in the clause (i) recovers Theorem 2 from [28] and extends
to larger classes of functions. In addition, it covers a larger region in the parameter space
(α > 6 instead of α > 30) and partially answers a conjecture stated in [28] that the CLT
holds for Hölder continous functions and any α > 2. The invariance principle established
here is a novel result. 2

7 Applications to hyperbolic maps

Here we apply our theorems to hyperbolic maps: Anosov and Axiom A diffeomorphisms,
chaotic billiards and hyperbolic attractors. Technically, these maps differ from the inter-
val maps by their invertibility and hyperbolicity (instead of expandingness).

7.1 Anosov maps and Smale’s Axiom A diffeomorphisms. These are two basic types
of smooth invertible chaotic dynamical systems. An extensive study of those has been
done in an excellent monograph by R. Bowen [5], and we will follow his notations here.
For the reader’s convenience, we provide necessary definitions.

Let T : M →M be a diffeomorphism of a compact C∞ manifold M . A closed subset
Λ ⊂ M is said to be hyperbolic if TΛ = Λ and for any x ∈ Λ the tangent space TxM is
a direct sum TxM = Eu

x ⊕ Es
x, so that

(i) DT (Eu,s
x ) = Eu,s

Tx (invariance under DT );
(ii) there are constants c > 0 and λ ∈ (0, 1) such that

||DT nv|| ≤ cλn||v|| for all v ∈ Es
x, n ≥ 0

||DT−nv|| ≤ cλn||v|| for all v ∈ Eu
x , n ≥ 0

(iii) Eu
x and Es

x depend on x continuously.
A point x ∈M is said to be nonwandering if U∩(∪n>0T

nU) 6= ∅ for any neighborhood
U of x. The set Ω = Ω(T ) of all the nonwandering points is closed and T -invariant.

A diffeomorphism T is said to satisfy Axiom A [45] if Ω(T ) is a hyperbolic set and
periodic points are dense in Ω(T ).

If the entire manifold M is a hyperbolic set, then T is called an Anosov diffeomor-
phism, see [5, 2]. In that case T always satisfies Axiom A.

2After this manuscript had been submitted to the journal, the author learned that the CLT for
functions of bounded variations and any α > 3/2 was proven in [31].

35



For any point x ∈ Λ there is a local stable manifold W s(x) ⊂M and a local unstable
manifold W u(x) ⊂M such that TxW

u,s(x) = Eu,s
x and diamT nW s(x) (diamT−nW u(x))

approaches zero exponentially fast in n as n → ∞. Analytically, W u,s(x) are Cr disks
provided T is a Cr diffeomorphism. The manifolds W u,s allow one to define local coor-
dinates in Ω(T ): there is a δ > 0 such that if dist(x, y) < δ for some x, y ∈ Ω(T ), then
the intersection W s(x)∩W u(y) consists of one point denoted by [x, y], and [x, y] ∈ Ω(T ).
This describes the local structure of Ω(T ).

The first (global) property of Ω(T ) is a spectral decomposition, see [5, Theorem 3.5]:
Ω(T ) = Ω1 ∪ · · · ∪ Ωr, where {Ωi} are disjoint closed T -invariant sets (called basic sets)
such that T |Ωi

is topologically transitive for every i. Furthermore, Ωi = Ωi,1 ∪ · · · ∪Ωi,ri
,

where Ωi,j are disjoint closed subsets such that T (Ωi,j) = Ωi,j+1 (and T (Ωi,ri
) = Ωi,1) and

T ri|Ωi,1
is topologically mixing.

From now on we work on an arbitrary basic set Ωs. A subset R ⊂ Ωs is called a
rectangle if [x, y] ∈ R for all x, y ∈ R. A rectangle R is said to be proper if it is closed
and R = intR (where intR stands for the interior of R in Ωs). For x ∈ R we put
W u,s(x,R) = W u,s(x) ∩R.

A Markov partition of Ωs is, by definition, a finite covering R = {R1, . . . , Rm} of Ωs

by proper rectangles such that
(i) intRi∩ intRj = ∅ for i 6= j;
(ii) TW u(x,Ri) ⊃ W u(Tx,Rj) and TW s(x,Ri) ⊂ W s(Tx,Rj) if x ∈ intRi and Tx ∈
intRj.

Bowen [5, Theorem 3.12] has proven that for any basic set Ωs there are Markov
partitions with rectangles of arbitrary small diameter.

Notice that no invariant measure for T has been defined or introduced so far. So,
one has to be constructed. Bowen did that by using symbolic dynamics. Let R =
{R1, . . . , Rm} be a Markov partition of Ωs. Define a transition matrix A = A(R) by

Aij =

{
1 if intRi ∩ T−1intRj 6= ∅
0 otherwise

(74)

We then invoke the symbolic dynamics defined in Section 5, in a slightly modified form.
Consider Ω̃s ⊂ Ωs, a T -invariant set of points such that T nx ∈ intRωn(x) for all n ∈ ZZ

(the set Ω̃s is residual in topological sense). To any point x ∈ Ω̃s we assign a symbolic
sequence ω(x) = {ωn(x)}∞−∞ as we did in Section 5. The closure of the space of all the

sequences {ω(x) : x ∈ Ω̃s} is the following set:

ΣA = {ω ∈ {1, . . . ,m}ZZ : Aωiωi+1
= 1 for all −∞ < i <∞}

Therefore, a symbolic representation of the map T on Ω̃s is a subshift of finite type, also
called topological Markov chain, (ΣA, σL) with the transition matrix A and the left shift
σL. The shift σL is topologically transitive, as is the map T on Ω̃s, hence the matrix A
is irreducible. It is convenient to fix a metric on ΣA such that dist(ω′, ω′′) = dn, where n
is the maximal nonnegative integer such that ω′i = ω′′i for all |i| < n, and d ∈ (0, 1) is a
fixed parameter.
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From now on we assume that the map T on Ωs is topologically mixing. Then the
subshift (ΣA, σL) is topologically mixing, too [5, Theorem 3.19], i.e. AM contains no
zeroes for some M > 0. Due to Bowen [5, Theorem 1.4], for any Hölder continuous
function ϕ∗ on ΣA there is a (unique) Gibbs σL-invariant measure µ∗ = µ∗ϕ∗ on ΣA,
see [5] for definitions and basic properties of Gibbs measures. Any Hölder continuous
function ϕ on Ωs lifted up to ΣA yields a Hölder continuous function ϕ∗ on ΣA [5, Lemma
4.2], and so it produces a Gibbs measure µ∗ on ΣA. That Gibbs measure can be then
projected down to Ωs and will yield a T -invariant measure µ = µϕ on Ωs, which is called
an equilibrium state for ϕ [5]. Every equilibrium measure is ergodic, mixing and Bernoulli
[5, Theorem 4.1].

Bowen has established an exponential bound on the decay of correlations [5, Theorem
1.26] and a central limit theorem [5, Theorem 1.27] for all Hölder continuous functions
and Gibbs measures on ΣA. These are automatically carried over to Hölder continuous
functions and equilibrium states on Ωs. Ruelle has also bounded correlations for C1

functions on Axiom A attractors in a separate paper [39]. We now cite certain technical
estimates from [5].

Consider partitions Rk,n = T−kR∨ · · · ∨ T−nR for all n ≥ k, and denote

β(R)
∗ (n) = sup

k,l≥0
β(R0,k,Rk+n,k+n+l)

Then we have two key estimates:

diamR−n,n ≤ αn (75)

for a certain α ∈ (0, 1) (see Lemma 4.2 in [5]), and

β(R)
∗ (n) ≤ A′γn (76)

for certain A′ > 0 and γ ∈ (0, 1) (see the proof of Theorem 1.25 in [5]).
These estimates show that Axiom A diffeomorphisms are, in our terminology, dy-

namical systems with exponential mixing rates. Corollary 1.7 immediately applies to
these systems. It covers Hölder continuous functions as well as far larger classes of phase
functions, for instance, those with modulus of continuity O(1/| ln d|2+ε), ε > 0.

M. Denker [14] has noticed that the label process {Xn} : Σ → {1, . . . ,m} defined
by Xn(ω) = ωn, n ∈ ZZ, is not only β-mixing as specified by (76) but also ψ-mixing
with exponentially decaying ψ-mixing coefficients. Those coefficients are defined to be
ψ(n) = supk,l≥0 ψ(R0,k,Rk+n,k+n+l), where for any two σ-algebras A and B we have

ψ(A,B) = sup
A,B

∣∣∣∣∣ µ(A ∩B)

µ(A)µ(B)
− 1

∣∣∣∣∣
the supremum being taken over all A ∈ A and B ∈ B. Bowen [5] has shown that
ψ(n) ≤ cost · γn for a γ ∈ (0, 1). Based on this observation, Denker [14] concluded that
all the functions F ∈ L2(M) such that∑

n≥1

||F − 〈F |R−n,n〉||2 <∞ (77)

37



satisfy the CLT. In particular, all the functions F ∈ L2(M) withHF (d) ≤ const/| ln d|1+ε,
for any ε > 0 are covered, with no restrictions on LF (d) whatsoever. This class of
functions is far larger than the one covered by our Corollary 1.7.

Remark. The CLT and WIP hold in the case of ergodic, but not necessarily mixing
transformation T on Ωs. This follows from the spectral decomposition of Ωs and our
Propositions 3.6 and 4.4.

Remark. Smooth Anosov diffeomorphisms with absolutely continuous invariant mea-
sures are very popular in studies of chaotic dynamical systems. As Bowen has shown [5,
Corollary 4.13], if T is a topologically mixing C2 Anosov diffeomorphism of M with an
absolutely continuous invariant measure µ, then µ = µϕu for the Hölder continuous func-
tion ϕu(x) = − log λ(x), where λ(x) is the Jacobian of the linear map DT : Eu

x → Eu
Tx.

Thus, our Corollary 1.7 and Denker’s result cover this class of systems as well.
7.2 Chaotic billiards. Apparently, the first class of chaotic dynamical systems with

direct physical applications and with mathematically established statistical properties
is that of billiards. However, all the papers on billiards involve so heavy and specific
techniques that many researches stay away from this class of systems. We cannot go into
any detailed discussion of billiards. We only sketch necessary definitions and then focus
on the differences between Anosov diffeomorphisms and billiard maps.

Let Q be a compact closed domain on a plane or 2-torus with a piecewise smooth
(of class C3) boundary ∂Q. We call Q a billiard table. A point particle inside Q moves
freely at unit speed and elastically bounces off the boundary ∂Q. Let

M = {x = (q, v) : q ∈ ∂Q, v is a unit vector attached to q pointing inside Q}

The transformation T on M sends each point x = (q, v) along its velocity vector v to
the point of the next reflection at ∂Q at which the velocity vector after the reflection
is attached. The map T is called the billiard ball map. It preserves a finite measure µ
absolutely continuous with respect to the natural uniform measure m on M ⊂ ∂Q× S1.
The density dµ/dm = cosϕ, where ϕ is the angle between the velocity vector v and the
normal vector to ∂Q at q. More detailed definitions may be found in [9, 10, 17].

The billiard ball map T on M is invertible and smooth, except for some discontinuity
curves. The map T is chaotic (has nonzero Lyapunov exponents a.e.) for certain classes
of billiard tables: Sinai’s billiards with strictly concave boundary (also called dispersing
billiards) [43], generic tables with nonstrictly concave boundary (called semidispersing
billiards) and certain special tables with convex components of the boundary (see [9, 10]
for a more detailed discussion and references). We call such billiards chaotic.

Locally, the map T for any chaotic billiard is similar to Anosov diffeomorphisms.
There is a difference, however, in their global structures: the map T has a finite or count-
able number of discontinuity lines in M . Local stable and unstable manifolds W u,s(x)
exist for a.e. point x ∈ M , but unlike those for Anosov maps they may be arbitrary
short, depending on x, and arbitrary short W u,s(x) are dense in M .

Markov partitions for chaotic billiards are defined, but in a weaker sense than for
Axiom A maps. A Markov partition is a countable (mod 0) covering R = {Ri} of M by
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rectangles (which are closed but not proper) such that
(i) µ(Ri ∩Ri) = 0 for i 6= j;
(ii) TW u(x,Ri) ⊃ W u(Tx,Rj) and TW s(x,Ri) ⊂ W s(Tx,Rj) for every x ∈ Ri ∩ T−1Rj

provided µ(Ri ∩ T−1Rj) > 0.
Markov partitions with rectangles of arbitrary small diameter exist [9, 27], but they

are always countable. There are several reasons why those partitions are not good (at
least now) to study statistical properties of billiards. First, they are constructed mostly
by topological arguments and do not generate any good Markov approximations in the
sense of Section 5. Second, even if they generated good approximations by Markov chains,
those chains would not satisfy the Doeblin condition (cf. [16] and Section 5). Thus, in
order to bound the mixing coefficients and correlations in that Markov chain, one would
have to do a cut-off and lump an infinite number of states into one ‘bad’ state. Such a
plan has been elaborated in [7], but the arguments there were complicated and not quite
conclusive (see [8]).

Another strategy has been implemented in [10], wich did not require Markov parti-
tions. A finite collection of rectangles in M with a weaker Markov property was con-
structed, and it generated a good approximation for T by a finite Markov chain. The
measure of the residual set (the one not covered by the rectangles) was bounded sepa-
rately. We called that collection a Markov sieve.

Definition 7.1 Given two integers, N > m > 0, a Markov sieve RN,m is a collection of
disjoint rectangles R1, . . . , RI in M such that
(i) maxi{diamRi} ≤ c1α

m
1 ;

(ii) for the residual set R0 := M \ ∪I
i=1Ri one has µ(R0) ≤ c2α

m
2 ;

(iii) For any l ≤ N and i0, . . . il ∈ [1, I] one has

µ(T−lRil/T
−(l−1)Ril−1

∩ · · · ∩Ri0) = µ(T−1Ril/Ril−1
)(1 + ε) (78)

with some |ε| ≤ c3α
m
3 ;

(iv) there are constants g0, g1 > 0 independent of N and m such that for every k ≥ [g0m]
and for a majority of pair i, j ∈ [1, I] one has

µ(T−kRj/Ri) ≥ g1µ(Rj) (79)

where the “majority of pairs” means that∑
i:
∑

j: (79) holds
µ(Bj)>1−q

µ(Bi) > 1− q (80)

with q = c4Nα
m
4 . The constants ci > 0 and αi ∈ (0, 1) in these estimates do not depend

on N or m.

The Markov sieves have been constructed for several classes of planar chaotic bil-
liards in [10]. Those are generic Sinai’s dispersing billiards (the Lorentz gases with and
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without horizon included), generic semidispersing billiards, Bunimovich’s stadium and
other examples of Bunimovich’s focusing billiard tables. In [12] Markov sieves have been
constructed for multidimensional Lorentz gas with finite horizon.

Theorem 7.2 Let (M,T, µ) be a billiard ball map for which Markov sieves exist. Then
the dynamical system (M,T, µ) has stretched exponential mixing rates with γ = 1/2.

Proof. Pick an a ∈ (0, 1] and for any N ≥ 1 put n1 = [Na] − 1 and m = [n
1/2
1 ]. We

define a partitionA(N,a) to be one into the rectangles R1, . . . , RI of the Markov sieveRN,m

and some sufficiently small fragments of the residual set R0 constructed in an arbitrary
manner. Then

diamA(N,a) ≤ c1α
m
1 ∼ c1α

Na/2

1

Based on the properties (iii) and (ii) of the Markov sieves we bound the quantity (53)
for the partition A = A(N,a):

νN ≤ c3α
m
3 +Nc2α

m
2

The property (iv) allows us to bound the quantity (65):

qµ
3 (k, g1) ≤ 2(Nc4α

m
4 + c2α

m
2 )

for any k ≥ [g0m]. Therefore, Corollary 5.9 yields a bound

β̂(n) ≤ 2 (1− g1/8)[n/g0m] + 4[n/g0m] ·
(
4Nc4α

m
4 + 4g0g

−1
1 m · (c3αm

3 +Nc2α
m
2 )
)1/2

for any n > g0m. We now assume that n ∈ [n1, N − 1]. Combining the above estimates
with Corollary 5.2 gives

βN(n) ≤ N2c5α
m
5 ∼ N2c5α

Na/2

5

with some c5 > 0 and α5 ∈ (0, 1) for any n ∈ [Na − 1, N − 1]. Theorem 7.2 is proven.
Thus, Corollary 1.8 applies to chaotic billiards. It ensures the CLT and WIP for

Hölder continuous functions and for much larger classes of phase functions as well. In
particular, continuous functions with modulus of continuity O(1/| ln d|4+ε), ε > 0, are
covered. Piecewise smooth functions with a finite number of cusps of type ||x−a||−p, a ∈
M, p < 1, also satisfy the CLT and WIP.

We should like to note that Theorem 1.1 cannot provide an exponential bound on
the correlation function even for Hölder continuous or smooth observables in the case of
billiards. This is not a drawback of the method we use. The bound we get is the best
one that Markov sieves can provide. A possibility of improvement of this bound is, at
present, an open problem.

7.3 Hyperbolic attractors. Attractors have become a very popular type of dynamical
systems during the past two decades. Recently Ya. Pesin [35] has introduced a large class
of generalized hyperbolic attractors. It covers, for example, popular attractors generated
by Lorenz, Lozi and Belykh maps, see [1, 35, 41]. Statistical properties of 2-dimensional
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generalized hyperbolic attractors have been studies by Afraimovich, Chernov and Sataev
[1]. We briefly outline necessary definitions from the ref. [1].

Let M be a smooth two-dimensional manifold, U ⊂M an open connected subset with
compact closure, Γ ⊂ U a closed subset. We assume that the set S+ = Γ∪∂U consists of
a finite number of compact smooth curves. Let T : U \ Γ → U be a C2-diffeomorphism
from the open set U \Γ onto its image T (U \Γ). We assume that T is twice differentiable
on U \Γ up to its boundary S+. The set S+ is the singularity set for the map T . Denote
U+ = {x ∈ U : T n(x) /∈ S+, n = 0, 1, 2, . . .} and D = ∩n≥0T

n(U+). The set D is
invariant for both T and T−1. Its closure Λ = D̄ is called the attractor for T .

A hyperbolic structure, essentially similar to that of Axiom A diffeomorphisms, is
defined for the map T . Technically, it is defined in terms of families of stable and
unstable cones [35, 41] rather than stable and unstable invariant subspaces Eu,s

x . There
are two other technical assumptions on the singularity set Γ. First, it is supposed to
be transversal to the unstable cones. Second, for any k ≥ 1 the number of smooth
components of the singularity set for the map T k that can intersect at any point in M
does not exceed c(1 + ε)k for some c > 0 and a sufficiently small ε > 0.

Generally, the map T contracts Riemannian volume in M , and then it cannot preserve
an absolutely continuous measure. An invariant measure for T can be constructed by
a weak Cesaro limit of any absolutely continuous measure evolving under the map T .
Such limits are called u-Gibbs invariant measures, and also Sinai-Bowen-Ruelle (SBR)
measures. For any u-Gibbs measure almost every point of the attractor Λ has stable
and unstable manifolds, called also fibers. Conditional measures on unstable fibers are
absolutely continuous unlike those on stable fibers.

Ya. Pesin [35] and E. Sataev [41] have studied topological and ergodic properties of
generalized hyperbolic attractors with u-Gibbs measures. Their main result is a spectral
decomposition. In our context, it is a decomposition of the attractor Λ into a finite num-
ber of ergodic components. That decomposition is very similar to the ones for expanding
interval maps and Axiom A diffeomorphisms, and we omit the details.

We then take an arbitrary mixing subcomponent Λ∗ of the attractor Λ, the conditional
measure µ∗ on Λ∗ and study an appropriate iterate T∗ of the map T that leaves Λ∗
invariant. The dynamical system (Λ∗, T∗, µ∗) is mixing. Its structure is similar, in many
respects, to that of chaotic billiards. Both systems are locally hyperbolic, have stable and
unstable manifolds and singularities. However, unlike billiards, attractors are essentially
nonsymmetric under time reversal. In particular, conditional measures on unstable fibers
are absolutely continuous, but those on stable fibers are singular.

In ref. [1], Markov sieves have been constructed for the above system (Λ∗, T∗, µ∗).
The definition of Markov sieves for hyperbolic attractors differs from that for billiards in
the clause (iv). One has to replace the clause (iv) in the definition of Markov sieves by
the following one:
(iv’) there are constants g0, g1 > 0 independent of N and m such that for every k ≥ [g0m]
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and for any pair (i, j) ∈ [1, I] one has

1

2

I∑
l=0

|µ∗(T−k
∗ Rl/Ri)− µ∗(T

−k
∗ Rl/Rj)| ≤ 1− g1 (81)

The reason of such a difference is the above nonsymmetry of the dynamics in forward
and backward evolution.

We are now ready to obtain a counterpart of Theorem 7.2 in the context of attractors.

Theorem 7.3 Let (Λ∗, T∗, µ∗) be an induced mixing dynamical system on a mixing sub-
components of a generalized hyperbolic attractor, for which Markov sieves exist. Then
this dynamical system has stretched exponential mixing rates with γ = 1/2.

The proof of this theorem is nearly a replica of that of Theorem 7.2. The first half of
it goes word by word. In the last half we utilize the property (iv’) of the Markov sieves
to bound the quantity (62) by 1−g1, so that qµ∗

1 (k, g1) ≤ 2c2α
m
2 for any k ≥ [g0m]. After

that we employ Corollary 5.5 and complete the proof of Theorem 7.3.
Therefore, Corollary 1.8 applies to the dynamical system (Λ∗, T∗, µ∗). We then obtain

the CLT and WIP for the same classes of phase functions on Λ∗ as in the case of chaotic
billiards.

Remark. The CLT and WIP hold on every ergodic component of the attractor Λ as
well. This follows from Pesin-Sataev spectral decomposition of Λ and our Propositions 3.6
and 4.4.

Acknowledgements. This work has been done during my visit at Princeton univer-
sity, and I gladly acknowledge the hospitality. I should like to thank Ya. Sinai, M. Blank,
D. Kosygin and S. Troubetzkoy for helpful discussions. I am grateful to the referee for
pointing out some imprecisions in the manuscript.

References

[1] Afraimovich, V.S., Chernov, N.I. and Sataev, E.A.: Statistical properties of 2-D
generalized hyperbolic attractors. To appear in Chaos/Xaoc 4 (1994).

[2] Anosov, D.V.: Geodesic flows on closed Riemannian manifolds with negative curva-
ture. Proc. Steklov Inst. Math. 90 (1967).

[3] Adler, R. and Weiss, B.: Entropy a complete metric invariant for automorphisms of
the torus. Proc. Nat. Acad. Sci. USA 57, 1573–1576 (1967)

[4] Billingsley, P.: Convergence of Probability Measures. New York: Wiley, 1968.

[5] Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms.
Lect. Notes Math., 470. Berlin: Springer-Verlag 1975.

42



[6] Bradley, R.: On the central limit question under absolute regularity. Ann. Probab.
13, 1314–1325 (1985)

[7] Bunimovich, L.A. and Sinai, Ya.G.: Statistical properties of Lorentz gas with peri-
odic configuration of scatterers. Commun. Math. Phys. 78, 479–497 (1981)

[8] Bunimovich, L.A. and Sinai, Ya.G.: Markov partitions for dispersed billiards (Erra-
tum). Commun. Math. Phys. 107, 357–358 (1986)

[9] Bunimovich, L.A., Sinai, Ya.G. and Chernov, N.I.: Markov partitions for two-
dimensional billiards. Russ. Math. Surv. 45, 105–152 (1990)

[10] Bunimovich, L.A., Sinai, Ya.G. and Chernov, N.I.: Statistical properties of two-
dimensional hyperbolic billiards. Russ. Math. Surv. 46, 47–106 (1991)

[11] Burton, R. and Denker, M.: On the central limit theorem for dynamical systems.
Trans. Amer. Math. Soc. 302, 715–726 (1987)

[12] Chernov, N.I.: Statistical properties of the periodic Lorentz gas. Multidimensional
case. J. Stat. Phys. 74, 11–53 (1994)

[13] Crawford, J.D. and Cary, J.R.: Decay of correlations in a chaotic measure-preserving
transformation. Physica D 6, 223–232 (1983)

[14] Denker, M.: The central limit theorem for dynamical systems. Dyn. Syst. Ergod.
Th. Banach Center Publ., 23, Warsaw: PWN–Polish Sci. Publ., 1989.

[15] Dobrushin, R.L.: Central limit theorem for nonstationary Markov chains I. Prob.
Theory Probab. Its Appl. 1, 65–79 (1956)

[16] Doob, J.L.: Stochastic Processes. New York: Wiley, 1990.

[17] Gallavotti, G. and Ornstein, D.: Billiards and Bernoulli schemes. Commun. Math.
Phys. 38, 83–101 (1974)

[18] Gaspard, P. and Wang, X.-J.: Sporadicity: between periodic and chaotic dynamical
behaviors. Proc. Nat. Acad. Sci. USA 85, 4591–4595 (1988)

[19] Hofbauer, F. and Keller, G.: Ergodic properties of invariant measures for piecewise
monotonic transformations. Math. Z. 180, 119–140 (1982)

[20] Ibragimov, I.A.: Some limit theorems for stationary processes. Theory Probab. Its
Appl. 7, 349–382 (1962)

[21] Ibragimov, I.A. and Linnik, Y.V.: Independent and stationary sequences of random
variables. Groningen: Wolters-Noordhoff, 1971.

43



[22] Ishitani, H.: A central limit theorem of mixed type for a class of 1-dimensional
transformations. Hiroshima Math. J. 16, 161–188 (1986)

[23] Ishitani, H.: Perron Frobenius operator and central limit theorem. In: The Study
of Dynamical Systems (Kyoto, 1989), 122–139, World Sci. Adv. Ser. Dyn. Syst. 7,
Teaneck, NJ: World Sci. Publ., 1989.

[24] del Junco, A. and Rosenblatt, J.: Counterexamples in ergodic theory and number
theory. Math. Ann. 245, 185–197 (1979)
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Abstract

We develop a unified approach to study statistical properties of chaotic dynam-
ical systems, namely, to bound correlation functions and to prove the central limit
theorem and its (weak) invariance principle. Our methods are based on partitions
of the phase space of a dynamical system, for which certain bounds on mixing
coefficients are assumed. We also use partitions of the phase space to approximate
the dynamics by Markov chains and employ those to bound mixing coefficients in
applications. We apply our results to basic types of smooth chaotic dynamical
systems: expanding interval maps (both uniform and nonuniform), Axiom A dif-
feomorphisms, billiards and hyperbolic attractors. We recover the existing limit
theorems, obtain some new, and often extend those theorems to larger classes of
functions.
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