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Abstract
We consider a heavy piston in an infinite cylinder surrounded by ideal gases on

both sides. The piston moves under elastic collisions with gas atoms. We assume
here that the gases always exert equal pressures on the piston, hence the piston
remains at the so called mechanical equilibrium. However, the temperatures and
densities of the gases may differ across the piston. In that case some earlier studies
by Gruber, Piasecki and others reveal a very slow motion (drift) of the piston in
the direction of the hotter gas. At the same time the energy is slowly transferred
across the piston from the hotter gas to the cooler one. While the previous studies
of this interesting phenomenon were only heuristic or experimental, we provide first
rigorous proofs assuming that the velocity distribution of the ideal gas satisfies a
certain “cutoff” condition.

AMS Subj. Classification: 70F45,82C21
Key words: equilibrium, ideal gas, massive piston

1 Introduction

Consider an isolated cylinder filled with an ideal gas and divided into two compartments
by a large piston which is free to move along the axis of the cylinder, Fig. 1. The piston
interacts with the gas atoms via elastic collisions. Assume that the gas in each com-
partment separately is at equilibrium with temperature and density T−, n− and T+, n+,
respectively. Let the gases exert equal pressures on the piston, i.e. let

P− = n−kBT− = n+kBT+ = P+
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Then the system is at the so called mechanical equilibrium, and according to the laws of
thermodynamics this state should be (macroscopically) stable.

X

T P, T P, +_ _ +n ,+n_ ,

Figure 1: Piston in a cylinder filled with gas.

However, the system as a whole is not in a true equilibrium state, unless T− = T+,
hence microscopically it is not stable yet and should find ways to evolve to a true, thermal
equilibrium, in which T− = T+. This was predicted earlier by Landau and Lifshitz
[LL], Feynman [F] and others. Recently Gruber, Piasecki and Frachebourg and others
[GP, GF, GPL, P] derived heuristically, by means of kinetic theory and the Liouville
equation, exact formulas describing the slow drift of the piston and the slow heat transfer
from the hotter gas to the cooler gas.

Our goal is to derive rigorously the main formulas of [GP, GF, GPL, P] describing
the slow drift of the piston and the slow heat transfer between the gases.

The piston model trivially reduces to a one-dimensional system by the projection onto
the axis of the cylinder. Then one obtains an ideal gas on an interval, and the piston
itself becomes a heavy point particle. The motion of a heavy particle in an infinite ideal
gas of light particles is a classical example of Brownian motion studied by van Kampen
[vK] and many others [L, H, DGL, GF, GP, P].

We consider a one-dimensional ideal gas on the entire line, without boundaries. The
heavy piston is initially placed at the origin X(0) = 0 and is at rest V (0) = 0. The initial
configuration of gas atoms and their velocities is chosen at random as a realization of a
(two-dimensional) Poisson process on the (x, v)-plane with density p(x, v). This means
that for any domain D ⊂ IR2 the number ND of gas particles (x, v) ∈ D at time t = 0 is
a Poisson random variable with parameter

λD =
∫ ∫

D
p(x, v) dx dv

The system evolves according to the rules of elastic collisions. Denote the mass of the
piston by M and the mass of an atom by m. Since atoms have identical masses, their
collisions can be ignored. When an atom with velocity v collides with the piston, whose
velocity is V , their velocities after the collision are given by

V ′ =
M −m

M + m
V +

2m

M + m
v (1.1)

2



v′ = −M −m

M + m
v +

2M

M + m
V (1.2)

These rules preserve the total kinetic energy and the total momentum. Between collisions,
all the particles and the piston move with constant velocities.

The position X(t) and velocity V (t) = dX(t)/dt of the piston make a random process
whose characteristics are determined by the initial gas density p(x, v). It is natural to
assume that p(x, v) is symmetric in v and spatially homogeneous, i.e. p(x, v) = p(v) and
p(v) = p(−v). We can set p(v) = nf(v), where f(v) = f(−v) is a probability density
and n > 0 is a (constant) spatial density. Then one can approximate X(t) and V (t) by
certain Gaussian stochastic processes:

Theorem 1.1 (Holley [H]) Let the density f(v) have a finite fourth moment
∫

v4f(v) dv <
∞. Then for every finite t0 < ∞, the function V (t)

√
M on the interval [0, t0] converges,

in distribution, as M, n → ∞ and M/n → const, to an Ornstein-Uhlenbeck velocity
process Vt, while X(t)

√
M converges to an Ornstein-Uhlenbeck position process Xt.

An Ornstein-Uhlenbeck process (Xt,Vt) is defined by [Ne]

dXt = Vt dt, dVt = −aVt dt +
√

D dWt

where a > 0, D > 0 are constants and Wt a Wiener process. The Ornstein-Uhlenbeck
position process Xt converges in an appropriate limit (e.g. a → ∞, a2/D = const) to a
Wiener process.

We note that Dürr et al [DGL] extended the above theorem to arbitrary dimensions.
Our paper concerns with another physically interesting situation, where the initial

density is not spatially homogeneous, but a spatial homogeneity is assumed separately
for the gases to the right and to the left of the piston. So we assume that

p(x, v) =

{
p+(v) for x > 0
p−(v) for x < 0

and we also assume symmetry: p−(v) = p−(−v) and p+(v) = p+(−v). We can set
p±(v) = n±f±(v), where f±(v) = f±(−v) are probability densities and n± > 0 are
(constant) spatial densities.

In addition, we want to exclude a “macroscopic motion” of the piston in either direc-
tion by requiring that its velocity vanishes as m/M → 0. This is equivalent to

n−
∫ ∞

0
v2f−(v) dv = n+

∫ ∞

0
v2f+(v) dv (1.3)

as it was shown heuristically in [LPS] and under some conditions rigorously in [CLS].
The physical interpretation of Eq. (1.3) is the pressure balance. If we define the pressures
of the gases by

P± = mn±
∫ ∞

−∞
v2f±(v) dv
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(which would be a proper thermodynamical pressure if the velocity distributions were
Maxwellian), then the condition (1.3) means exactly that P− = P+. Similarly, we can
define the temperature of the gases by

T± = k−1
B m

∫
v2p± dv∫
p± dv

(this is sometimes called the “effective temperature”), here kB is Boltzmann’s constant.
To simplify some technical considerations we assume that the initial densities of the

gases satisfy the following velocity cutoff:

p±(v) = 0, if |v| ≤ vmin or |v| ≥ vmax (1.4)

for some 0 < vmin < vmax < ∞. Hence, the initial velocities of atoms are bounded away
from zero and infinity. Under these conditions, our arguments are rigorous. We also
discuss in Section 4 how to relax these assumptions, leaving this work for the future.

2 Markov approximation

Our cutoff condition (1.4) has an important implication. As long as the speed of the
piston remains small enough, every gas atom collides with the piston at most once.
Indeed, let |V (t)| < Vmax, where

Vmax =
M −m

3M + m
vmin

Note that Vmax is close to vmin/3 when M À m. Then it follows directly from (1.4) and
(1.2) that the atoms’ velocities after collisions are at least

M −m

M + m
vmin − 2M

M + m
Vmax = Vmax

the last equality holds due to our choice of Vmax. Therefore, the atoms after collisions
remain faster than the piston, so the latter cannot “catch up” with them.

Hence, as long as |V (t)| < Vmax, the velocity of the piston V (t) evolves as a Markov
process with piecewise constant trajectories (a jump or step process). Moreover, this is a
stationary (homogeneous in time) Markov process due to our requirements on the density
p(x, v). We will slightly change the function V (t) so that it will evolve as a stationary
Markov process unconditionally. Fix some V̄ ∈ (0, Vmax) and require that whenever the
velocity V ′ of the piston after a collision, in the notation of (1.1), exceeds V̄ in absolute
value, it gets “reflected” at V̄ , i.e. it instantaneously changes from V ′ to V ′′ by the rules

V ′ > +V̄ =⇒ V ′′ = +2V̄ − V ′

V ′ < −V̄ =⇒ V ′′ = −2V̄ − V ′ (2.1)
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These rules are in the spirit of random walks with reflecting boundary conditions.
We will denote the velocity of the piston in the so defined dynamics by W (t). It is

clear that W (t) = V (t) for all t < T such that sup0<t<T |V (t)| < V̄ . We first study the
Markov process W (t) and later estimate the difference V (t)−W (t).

Denote by P(u, dw; ∆t) for every ∆t > 0 the transition probability for the process
W (t), i.e.

P ( W (t + ∆t) ∈ A/W (t) = u ) =
∫

A
P(u, dw; ∆t)

for every Borel set A ⊂ IR. It is clear that the piston does not experience any collisions
with the atoms during the interval (t, t + ∆t) if and only if the trapezoidal domain

D = D(t, ∆t) =

{
(x, v) :

v − u

x−X(t)
< − 1

∆t
, vmin < |v| < vmax

}
(2.2)

does not contain gas atoms. Therefore, the probability that W (t + ∆t) = W (t) = u is

P(u, {u}; ∆t) = exp
(
−

∫

D
p(x, v) dx dv

)
(2.3)

To evaluate this integral, we partition the domain D = D(t, ∆t) into two trapezoids,
D = D− ∪D+ as shown on Fig. 2. Under our assumptions (1.4)

∫

D
p(x, v) dx = ∆t

[∫ vmax

vmin

(v − u) p−(v) dv +
∫ −vmin

−vmax

(u− v) p+(v) dv
]

We introduce the following notation: for each k ≥ 0 let

∫ vmax

vmin

vkp−(v) dv = F−
k and

∫ −vmin

−vmax

vkp+(v) dv = F+
k

and
Qk = F−

k − F+
k

Then we obtain
∫

D
p(x, v) dx = ∆t

[
F−

1 − F+
1 − (F−

0 − F+
0 )u

]

= ∆t [Q1 −Q0u] (2.4)

where u = W (t).
It is clear that for every u and ∆t > 0 the probability measure P(u, dw; ∆t), besides

having an atom at u with probability given by (2.3), has an absolutely continuous com-
ponent with a positive density on the interval (−V̄ , V̄ ) (in fact, that density is bounded
away from zero for every fixed u and ∆t > 0).

Proposition 2.1 The stationary Markov process W (t) has a unique stationary measure
µ0, which is absolutely continuous on the interval (−V̄ , V̄ ). Any other initial distribution
converges to µ0 uniformly exponentially fast in time.
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Figure 2: Region D = D− ∪D+.

Proof. The process W (t) satisfies the so called Doeblin condition [D]: there exist ε > 0
and ∆t > 0 such that for every Borel set A ⊂ (−V̄ , V̄ ) and every u ∈ (−V̄ , V̄ ) we have

m(A) < ε =⇒
∫

A
P(u, dw; ∆t) < 1− ε

where m(A) is the Lebesgue measure of A. Then our result follows from general theorems
[D]. But we also outline a simple direct argument.

Since the transition probability P(u, dw; ∆t) defines, for each ∆t > 0, a continuous
map on the convex space of probability distributions on the interval (−V̄ , V̄ ), the exis-
tence follows from a general Schauder-Tychonoff theorem [DS], p. 456. Since P(u, dw; ∆t)
has an absolutely continuous component whose density is bounded away from zero, the
stationary distribution µ0 is absolutely continuous with density f0(w) ≥ c0 > 0.

To prove the uniqueness of µ0, suppose µ′0 6= µ0 is another stationary measure with
density f ′0(w) ≥ c′0 > 0. Then (1 + c)f0 − cf ′0 for small c > 0 is also a stationary density.
Let

c̄ = sup{c > 0 : inf
|w|<V̄

[(1 + c)f0(w)− cf ′0(w)] ≥ 0}

Then (1 + c̄)f0 − c̄f ′0 is a stationary density, hence it must also be bounded away from
zero on (−V̄ , V̄ ). But this contradicts our choice of c̄.

To prove the convergence, we take an arbitrary initial distribution ν0 and consider its
image νt at time t. Fix a t > 0. The measure νt has an absolutely continuous component
whose density is bounded away from zero. Hence νt = (1−α)ν(1) + αµ0 with some small
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α > 0 and some measure ν(1). The value of α depends on t but not on ν0. This implies,
by induction, that νkt = (1 − α)kν(k) + [1 − (1 − α)k]µ0 for all k ≥ 1, which proves the
exponential convergence of νt to µ0. 2

We now derive one useful equation. Fix a ∆t > 0 and for every u ∈ (−V̄ , V̄ ) denote
by

E(u, ∆t) =
∫

wP(u, dw; ∆t)

the conditional expectation of the process W (t+∆t) given that W (t) = u. The invariance
of the measure µ0 implies

∫
E(u, ∆t) dµ0(u) =

∫
w dµ0(w) (2.5)

Now suppose that
E(u, ∆t) = u + g(u) ∆t + R(u, ∆t) (2.6)

so that
|R(u, ∆t)| ≤ const · (∆t)2

Substituting this into (2.5) and taking the limit as ∆t → 0 gives

∫
g(u) dµ0(u) = 0 (2.7)

Our next step is to derive (2.6) for small ∆t > 0 and compute g(u) explicitly. Let
X(t) = X and W (t) = u. Due to our assumption (1.4) the probability that the domain

D1 =
{
(x, v) : 0 < (X − x) · sgn v < V̄ ∆t, vmin < |v| < vmax

}

contains more than one atom is O((∆t)2), hence we can ignore it and assume that D1

contains at most one atom. Note that D1 is much larger than D defined by (2.2). Now
it is easy to see that the piston experiences at most one collision during the interval
(t, t + ∆t). Precisely, a collision occurs if and only if the domain D = D+ ∪D− contains
an atom. When it does, and the atom has velocity v at time t, then the piston’s velocity
at time t + ∆t is computed by (1.1):

W (t + ∆t) = u +
2m

M + m
(v − u) (2.8)

Therefore, the conditional expectation E(u, ∆t) is

E(u, ∆t) = u +
2m

M + m

[∫

D
vp dx dv − u

∫

D
p dx dv

]
+O((∆t)2) (2.9)

(the last term comes from our assumption that D contains at most one atom). While
the second integral in (2.9) is already computed in (2.4), the calculation of the first one
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is similar. For every k ≥ 0 we have
∫

D
vk p(x, v) dx = ∆t

[∫ vmax

vmin

vk(v − u) p−(v) dv +
∫ −vmin

−vmax

vk(u− v) p+(v) dv
]

= ∆t
[
F−

k+1 − F+
k+1 − (F−

k − F+
k )u

]

= ∆t [Qk+1 −Qku] (2.10)

Thus,

E(u, ∆t) = u +
2m

M + m

[
Q2 − 2Q1u + Q0u

2
]
∆t +O((∆t)2)

This gives us

g(u) =
2m

M + m

[
Q2 − 2Q1u + Q0u

2
]

We now apply the key identity (2.7) and arrive at

Q2 − 2Q1〈u〉+ Q0〈u2〉 = 0

where 〈·〉 means averaging with respect to the stationary measure µ0 (we note that Qi

do not depend on u). Thus, the average velocity of the piston is given by

〈W 〉 =
Q0〈W 2〉+ Q2

2Q1

(2.11)

The mechanical equilibrium is defined by the equality of pressures on both sides of
the piston, i.e. by

Q2 = F−
2 − F+

2 = 0

and we will restrict ourselves to this case in the rest of the paper. Then (2.11) reduces
to

〈W 〉 =
Q0〈W 2〉

2Q1

(2.12)

which is still different from zero, albeit very small.
It is well known that at mechanical equilibrium the average value of 〈W 2〉 is O(m/M),

see, e.g. [H, DGL]. But we will estimate it more accurately below.
Similarly to E(u, ∆t), we define

E2(u, ∆t) =
∫

w2P(u, dw; ∆t)

the conditional expectation of the square velocity W 2(t + ∆t) given that W (t) = u. The
stationarity of the distribution µ0 implies

∫
E2(u, ∆t) dµ0(u) =

∫
u2 dµ0(u)

Assume that
E2(u, ∆t) = u2 + g2(u) ∆t + R2(u, ∆t)
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with |R2(u, ∆t)| ≤ const · (∆t)2. Then, as in (2.7)

∫
g2(u) dµ0(u) = 0 (2.13)

Now, squaring the equation (2.8) we obtain

W 2(t + ∆t) = u2 +
4m

M + m
(v − u)u +

4m2

(M + m)2
(v − u)2

Then, as in (2.9),

E2(u, ∆t) = u2 +
4m

M + m

∫

D
(v − u)up dx dv

+
4m2

(M + m)2

∫

D
(v − u)2p dx dv +O((∆t)2)

Computing these integrals as before gives

g2(u) =
4m

M + m
(Q2u− 2Q1u

2 + Q0u
3)

+
4m2

(M + m)2
(Q3 − 3Q2u + 3Q1u

2 −Q0u
3)

We included the terms with Q2 for the sake of clarity, even though we had assumed that
Q2 = 0. In the subsequent expressions we remove all Q2’s. The equation (2.13) gives

2Q1〈W 2〉 −Q0〈W 3〉 =
m

M + m
(Q3 + 3Q1〈W 2〉 −Q0〈W 3〉)

For brevity, we denote ε = m/M . By making one step further and analyzing E3(u, ∆t) =∫
w3 P(u, dw; ∆t) in the same manner one can see that 〈W 3〉 = O(ε2), we omit details.

Hence we arrive at

〈W 2〉 =
Q3

2Q1

ε +O(ε2) (2.14)

Substituting this into (2.12) yields

〈W 〉 =
Q0Q3

4Q2
1

ε +O(ε2) (2.15)

3 Thermodynamical analysis

In this section we express our rigorous results in statistical mechanical terms, such as
temperature, density, pressure, and heat transfer.
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First, we consider the heat flow across the piston, from right to left. Even though
both gases are infinite, the heat transfer from one to the other is well defined and its rate
can be computed. The thermodynamical definition of the heat transfer [GF] is

R+→− = 〈dE−/dt〉 − 〈dM−/dt〉〈W 〉 (3.1)

where dE−/dt is the rate of change of kinetic energy and dM−/dt the rate of change of
momentum on the left hand side. By the conservation of energy and momentum during
collisions, it is enough to compute the average change of energy and momentum of the
piston when it collides with an atom on the left hand side.

According to (1.1), the momentum of the piston at one collision changes by

δMM =
2mM

M + m
(v −W )

The conditional average change of momentum during the interval (t, t + ∆t), given that
W (t) = u, is

Eu(δMM) =
2mM

M + m

∫

D−
(v − u) dx dv +O((∆t)2)

=
2mM

M + m
(F−

2 − 2F−
1 u + F−

0 u2) ∆t +O((∆t)2)

where only collisions with atoms on the left are taken into account. Negating and aver-
aging with respect to the stationary measure µ0 gives the average momentum transfer to
the left gas:

〈dM−/dt〉 = −2m[F−
2 − 2F−

1 〈W 〉+ F−
0 〈W 2〉] +O(m2/M) (3.2)

By squaring (1.1) we find the change of the kinetic energy of the piston at one collision:

δEM = 2mεv2 + 2mV v − 2mV 2 + · · ·
where only essential terms are shown (the rest will eventually end up in O(m3/M2) in
the expression (3.3) below, so we omit them). The conditional average change of kinetic
energy during the interval (t, t + ∆t), given that W (t) = u, is (again only collisions with
atoms on the left are taken into account)

Eu(δEM) = 2m(εF−
3 − εF−

2 u + F−
2 u− 2F−

1 u2 + F−
0 u3) ∆t + · · ·+O((∆t)2)

Negating and averaging with respect to the stationary measure µ0 gives the average
kinetic energy transfer to the left gas:

〈dE−/dt〉 = −2m[εF−
3 + F−

2 〈W 〉 − 2F−
1 〈W 2〉] +O(m3/M2) (3.3)

Combining (3.2) and (3.3) we obtain the expression for the heat transfer

R+→− = −2m[εF−
3 − 2F−

1 〈W 2〉] +O(ε2) (3.4)
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Substituting (2.14) gives

R+→− =
2mε

Q1

(F+
1 F−

3 − F−
1 F+

3 ) +O(ε2) (3.5)

Now, even though the thermodynamical temperatures of the gases are not defined,
unless their velocity distributions are Maxwellian, we can define the “effective tempera-
tures” via the second moment of the velocity distributions:

T± = k−1
B m

∫
v2p± dv∫
p± dv

= k−1
B m

F±
2

F±
0

where kB is Boltzmann’s constant. We recall that the pressures of the gases are given
by P± = 2mF±

2 and their spatial densities by n± = 2F±
0 , hence the classical law P± =

n±kBT± holds.
The piston’s velocity distribution µ0 is, generally, not Maxwellian, but its effective

temperature can be computed similarly:

TM = k−1
B M(〈W 2〉 − 〈W 〉2) ' k−1

B m
Q3

2Q1

where we used (2.14) and (2.15). Hence TM is of the same order of magnitude as T±, but
for generic distributions p± there is no simple relation between the exact values of these
temperatures.

However, we can derive some interesting relations assuming that the distributions p±
are Maxwellian. Since this would violate our assumptions (1.4), our further analysis is
heuristic. Assume that the densities p± satisfy

p±(x, v) = n±f±(v)

where n± are (constant) spatial densities and

f±(v) =
1√

2πσ2±
exp

(
− v2

2σ2±

)

the Maxwellian distributions with temperatures T± = k−1
B mσ2

±. As before, we assume
that the pressures are equal, i.e. n−T− = n+T+. It is then easy to compute

Q0 =
1

2
(n− − n+)

Q1 =
1√
2π

(n−σ− + n+σ+) =

√
kB√

2πm

(
n−T

1/2
− + n+T

1/2
+

)

Q2 =
1

2
(n−σ2

− − n+σ2
+) =

kB

2m
(n−T− − n+T+) = 0
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Q3 =

√
2

π
(n−σ3

− + n+σ3
+) =

√
2k3

B√
πm3

(
n−T

3/2
− + n+T

3/2
+

)

Now the effective temperature of the piston is

TM =
mQ3

2kBQ1

=
n−T

3/2
− + n+T

3/2
+

n−T
1/2
− + n+T

1/2
+

=
√

T−T+ (3.6)

where we used the equality of the pressures. The average velocity of the piston is

〈W 〉 =

√
2πkBm

4M

(n− − n+)(T−T+)1/2

n−T
1/2
− + n+T

1/2
+

+O(ε2)

=

√
2πkBm

4M

(√
T+ −

√
T−

)
+O(ε2) (3.7)

Lastly, the heat transfer across the piston (from right to left) given by (3.5) is now

R+→− =
2mε

√
2k3

B√
πm3

× n−n+(T
3/2
+ T

1/2
− − T

3/2
− T

1/2
+ )

n−T
1/2
− + n+T

1/2
+

+O(ε2)

=
kB

M

√
8kBm

π

n−n+(T−T+)1/2

n−T
1/2
− + n+T

1/2
+

(T+ − T−) +O(ε2) (3.8)

Hence, the heat flow is proportional to the temperature gradient, T+ − T−, and the heat
conductivity is thus

κ =
kB

M

√
8kBm

π

n−n+(T−T+)1/2

n−T
1/2
− + n+T

1/2
+

(3.9)

The formulas (3.6)–(3.9) were obtained earlier in [GP, GF, GPL] by means of kinetic
theory and the Liouville equation.

Let us examine closely what happens when the pressures are equal, P− = P+, but
the temperatures are different. Without loss of generality, assume that T− < T+, i.e.
the gas on the left is cooler but denser and the gas on the right is hotter but sparser.
Then 〈W 〉 > 0, i.e. the piston slowly drifts in the direction of the hotter gas. At the
same time R+→− > 0, i.e. the heat slowly flows from the hotter gas to the cooler gas.
This demonstrates that the mechanical equilibrium is not a stable state. If our gases
were finite, there would be a continuing evolution toward thermal equilibrium, in which
the temperatures become equal, too. Of course, this conclusion makes no sense in the
idealized model of infinite gases.

We note that the evolution of the system is somewhat counterintuitive. When the
piston moves to the right, i.e. V (t) > 0, then by (1.2) the atoms on the right bounce off
it with a higher speed and so gain energy, while the atoms on the left collide with the
piston and slow down, hence lose some energy. When the piston moves to the left, i.e.
V (t) < 0, it is vice versa. Since, on the average, the heat flows from right to left, one
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may conclude that the piston’s movements to the left dominate. On the other hand, the
piston slowly drifts to the right, so its displacements in that direction actually dominate.

To explain this “paradox”, we first recall that the average speed of the piston is of
order 〈W 2〉1/2 ∼ ε1/2, which is much larger than the speed of the drift 〈W 〉 ∼ ε. Hence
the piston jiggles back and forth much faster than it drifts in one direction. The heat
flow is due to “jiggling” rather than “drifting”. Indeed, when the piston jiggles to the
right, the slow atoms on the left have less chance to collide with the piston, since the
relative velocity is small. Most of the collisions between the slow atoms on the left and
the piston occur when the latter jiggles to the left. This is why the cooler atoms speed
up and gain energy, on the average. On the other hand, the hotter atoms on the right
are less sensitive to the variations in the piston’s velocity, and the reason why they cool
down is different, as we explain next.

The piston’s vibrations are not spatially symmetric. During excursions to the right,
relatively few collisions with atoms on the right occur, since they are more energetic and
able to quickly reverse the velocity of the piston. On the contrary, when the piston drifts
to the left, the atoms on the left are weak and it takes them longer to turn the piston
back to the right. During these intervals, the fast atoms on the right continue hitting
the piston and lose energy. This explains why the hotter atoms mostly slow down. We
must admit though that the precise mechanism of the heat flow across the piston in our
model remains unclear. Some physicists call it a “conspiracy” between the microscopic
vibrations of the piston and the incoming atoms of the gases [GF, GP].

4 Justification of Markov approximation

Here we estimate the difference between the true velocity of the piston V (t) and our
Markov approximation W (t).

Recall that 〈W 2〉 ∼ ε = m/M , i.e. the typical speed of the piston (in the Markov
approximation) is of order

√
ε. The following theorem, which is essentially proved in

[CLS] (see remarks below), estimates large deviations of the true velocity V (t):

Theorem 4.1 ([CLS]) Let |V (0)| < ε1/2. There are constants C, d > 0 such that for
every T > 0 we have

P

(
sup

0<t<T
|V (t)| > C ε1/2 ln ε−1

)
< T 2ε−d ln ln ε

This gives a good bound on large deviations during time intervals of length T ∼ ε−A

for any large but fixed constant A > 0: it shows that the true velocity V (t) of the piston
remains O(ε1/2 ln ε−1) with “overwhelming” probability.

In our construction of the Markov approximation W (t) we can choose any small but
positive cutoff value V̄ > 0, and then assume that ε is so small that C ε1/2 ln ε−1 < V̄ .
Then we arrive at
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Corollary 4.2 For all sufficiently small ε and all T > 0 we have

P
(
V (t) = W (t) ∀t ∈ (0, T )

)
≥ 1− T 2ε−d ln ln ε

Therefore, during time intervals of length T ∼ ε−A for any fixed constant A > 0,
the true velocity V (t) of the piston coincides with its Markov approximation W (t) with
“overwhelming” probability. If V (t) and W (t) differ, though, then we have an obvious
bound: |V (t)| ≤ vmax. So we obtain analogues of our main formulas (2.15) and (2.14):

Corollary 4.3 Let ε > 0 be small and |V (0)| < ε1/2. Then for any fixed A > 0 and all
0 < t < T = ε−A we have

E(V (t)) =
Q0Q3

4Q2
1

ε +O(ε2)

and

E(V 2(t)) =
Q3

2Q1

ε +O(ε2)

where E(·) is the mean value.

It follows from the results of [CLS] that whenever the true velocity V (t) exceeds
C ε1/2 ln ε−1, then with “overwhelming” probability it will be driven back toward zero by
further collisions with the gas atoms. Hence, the estimates of the last corollary should
remain true for all t > 0, but we do not pursue such a goal, because the drift of the piston
becomes evident on the time scale of order ε−A already for A > 2, as we show next, so
the estimates in Corollary 4.3 are sufficient for practical purposes.

Indeed, let X(0) = 0 and consider the random position of the piston X(t) at time t.
Also, let Y (t) =

∫ t
0 W (s) ds be the corresponding function in the Markov approximation

model. We obviously have

〈Y (t)〉 = t〈W 〉 =
Q0Q3

4Q2
1

εt +O(ε2t) (4.1)

We also need to estimate the variance of Y (t), which is a little harder. We claim that

Var[Y (t)] ≤ Dt (4.2)

with some constant D > 0 independent of ε. Below we outline the argument, suppressing
some technical details that are based on the estimates obtained in [CLS].

It is standard that

Var[Y (t)] =
∫ t

0

∫ t

0
Cov(W (s), W (u)) ds du

By the stationarity of the process W (t), the covariance here equals

Cov(W (s),W (u)) = ρs−u Var(W )
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where ρs−u is the correlation between W (s) and W (u), which only depends on |s − u|.
Also recall that

Var(W ) = 〈W 2〉 − 〈W 〉2 =
Q3

2Q1

ε +O(ε2)

Therefore,

Var[Y (t)] ≤ const · t ε
∫ t

0
ρs ds (4.3)

It remains to estimate the decay of the velocity autocorrelation function ρs.
Suppose during the interval (u, u + s) the piston experiences k collisions with gas

atoms with velocities v1, . . . , vk numbered in the order in which the collisions occur.
Then (1.1) implies

W (u + s) = (1− α)kW (u) + α
k∑

j=1

(1− α)k−j · vj (4.4)

where α = 2m/(M + m) ' 2ε. This equation can be easily verified by induction on k.
Now, the number of collisions k grows as const·s, on the average, in fact

P (|k − c1s| ≥ c2

√
s ln s) ≤ s2ε−d ln ln ε (4.5)

with some positive constants c1, c2, see [CLS]. For s < ε−A this gives a good bound on
large deviations, so we can safely assume that k ≥ c1ε/2. Next, the velocities vi are
almost independent of W (u). In fact, there is a dependence, since the time of collision
between a particular atom and the piston depends on the velocity of the latter, but the
correlation between W (u) and velocities vj for every fixed j is negative. This follows
from a simple observation: if W (u) > 0, the piston is more likely to collide with atoms
on the right, for which vj < 0, and vice versa. Therefore, the correlation ρs is determined
by the first term in (4.4), hence

|ρs| ≤ (1− α)c1s/2

This implies ∫ t

0
ρs ds ≤

∫ ∞

0
(1− α)c1s/2 ds = − 2

c1 ln(1− α)
' 1

c1ε

and combining with (4.3) proves (4.2).
The estimates (4.1) and (4.2) show that the piston’s displacement due to the drift

exceeds its typical random fluctuations at times t = εA for all A > 2. On such time scales
the drift is “physically evident” and it is possible to verify it experimentally. Numerical
experiments of this sort were done by [GF].

We now comment on the proofs of Theorem 4.1 and the estimate (4.5). The corre-
sponding results were proven in [CLS] in a slightly different context. That paper dealt
with a heavy piston in a cubical container of side L filled by an ideal gas. That model,
too, reduced by a trivial projection onto the axis perpendicular to the piston surface to
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a one-dimensional gas on an interval [−L/2, L/2]. The velocity cutoff assumptions in
[CLS] were identical to our (1.4). The piston had mass M = aL2 (a > 0 was a constant)
and the spatial density of the one-dimensional gases was proportional to M = aL2, but a
simple rescaling of time and space by M reduces the spatial density to values O(1) and
makes it independent of M . Hence, we arrive exactly at the same initial conditions as
in the present paper, except the gases in [CLS] were finite – they evolved on an interval
[−aL3/2, aL3/2] with the piston initially placed at X(0) = 0.

Due to the velocity cutoff (1.4) the gas atoms in [CLS] cannot interact with the piston
more than once unless they travel across the half interval [−aL3/2, aL3/2], reflect at an
endpoint x = ±aL3/2 and then travel back to the piston in the middle. This takes
time T = O(L3), as it was proven in [CLS]. Thus, during the initial interval (0, T ) with
T = O(M3/2) the evolution of the piston studied in [CLS] is identical to ours. Hence,
all the results and estimates derived in Section 3 of [CLS] directly apply to our present
context. Furthermore, with some minor obvious changes those results can be extended
to arbitrary time intervals as we did in Theorem 4.1 and (4.5).

Lastly, we have assumed the velocity cutoff (1.4) here and in the paper [CLS] mostly
for convenience. It might be true that the upper bound on velocities is quite essential
in [CLS], since arbitrarily fast atoms could bounce back and forth between the piston
and the wall many times during short time intervals thus making significant impact on
the piston, as it was remarked in Section 5 of [CLS]. But in the present work, if we
had arbitrarily fast particles, they would hit the piston once and get away never to come
back, so their impact would be quite limited.

As for the lower bound on velocities, it seems to be less essential in both models. It
was conjectured in Section 5 of [CLS] that the results of that paper could be extended
to velocity distributions without lower bounds (i.e. with vmin = 0). If so, then the
estimate in Theorem 4.1 implies that the typical velocity of the piston remains of order
ε1/2 ln ε−1. As long as this is true, only atoms with smaller velocities can experience two
or more collisions with the piston, thus violating the Markovian character of the piston’s
velocity process V (t). It is customary to redefine the dynamics so that the collisions
with slow atoms are ignored altogether, and then the resulting process W (t) will be
Markovian. The difference |V (t)−W (t)| should be estimated separately and presumably
is negligible. Such a strategy was successfully implemented in earlier works [H, DGL] in
somewhat different context, and it is likely to go through in our case as well. This is the
subject of our future work.
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