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Abstract

We study a dynamical system consisting of a massive piston in a cubical con-
tainer of large size L filled with an ideal gas. The piston has mass M ∼ L2

and undergoes elastic collisions with N ∼ L3 non-interacting gas particles of mass
m = 1. We find that, under suitable initial conditions, there is, in the limit L →∞,
a scaling regime with time and space scaled by L, in which the motion of the piston
and the one particle distribution of the gas satisfy autonomous coupled equations
(hydrodynamical equations), so that the mechanical trajectory of the piston con-
verges, in probability, to the solution of the hydrodynamical equations for a certain
period of time. We also discuss heuristically the dynamics of the system on longer
intervals of time.
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1 Introduction

The evolution of a macroscopic system consisting of a gas in a container divided by a
massive movable wall (piston) is an old problem in statistical physics with a colorful his-
tory. It was discussed by Landau and Lifshitz [LL] and later by Lebowitz [L1], Feynman
[F], Kubo [Ku], see recent surveys by Lieb [Li], Gruber [G] and others [KBM].

0 L
X

n T PLL L, , n T PRR R, ,

Figure 1: Piston in a cylinder filled with gas.

In its simplest form, the model consists of an isolated cylinder filled with gas and
divided into two compartments by a large piston which is free to move along the axis of
the cylinder, see Fig. 1. Initially, the piston is held fixed by a clamp and the gas in each
compartment evolves independently and is in equilibrium1. We denote the density and
temperature in the left and right compartments by nL, TL and nR, TR, respectively. The
gas exerts pressure (= force per unit area) on the piston, which is given by equilibrium
statistical mechanics as a function of density and temperature: PL = P (nL, TL) and
PR = P (nR, TR) on the left and on the right, respectively. At time t = 0 the clamp
is removed and the piston is released. Now one wants to describe the evolution of the
system, especially its limit (final) state as t →∞.

Starting with PL 6= PR, the piston moves under the net pressure difference and
compresses the gas whose pressure is lower, until its pressure builds up and it pushes
the piston back. Depending on the initial values of nL, TL, nR, TR and the dynamical
characteristics of the gases, the piston may follow a complicated trajectory, sloshing back
and forth, but gradually it comes to rest at a place where the pressures are equalized on
both sides: PL = PR. At that time one also expects that the gas in each compartment
will again be in equilibrium.

1For an isolated system of N atoms and total energy E, the equilibrium distribution is defined in
statistical mechanics by a uniform probability distribution ρeq on the energy surface E = const in the
phase space (ρeq is called a microcanonical ensemble, it remains invariant under the dynamics by the
Liouville theorem). One says that the system (gas) is “in equilibrium” if its states are “typical” for the
measure ρeq. In this state, a macroscopic gas will have (approximately, for large N) a uniform spatial
density and a Maxwellian velocity distribution. The latter is defined so that the x, y, z components of the
velocity vectors are independent normal random variables N(0, σ2) with the same variance σ2 = kBT/m,
where kB is Boltzmann’s constant, T the temperature of the gas (which is a function of E, see below),
and m the mass of an atom.
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We observe, however, that the equality of pressures PL = PR and the fact that the
gas in each compartment separately is at equilibrium does not guarantee that TL = TR.
In particular, for dilute gases (which we shall consider from now on), the pressure is
related to the density and temperature by P = nkBT , where kB is Boltzmann’s constant,
and it is possible that TL < TR while nL > nR, so that the gas in the left compartment
is cooler but denser, and in the right one hotter but more dilute (or vice versa). The
exact values of the temperatures TL and TR, at the time when there is no longer any
pressure difference between the left and right and the piston comes to rest, depend on
the initial conditions and other characteristics of the system, see [CPS, G], for example.
Therefore, we have two possibilities now. If it happens that TL = TR as well as PL = PR,
then the system as a whole will be in equilibrium, and we say that it came to a thermal
equilibrium. On the contrary, if PL = PR but TL 6= TR, the system is said to be at
mechanical equilibrium, or quasi-equilibrium.

One may now ask whether the mechanical equilibrium is stable in the sense that it can
last forever (assuming that the whole system remains perfectly isolated from the outside
world), or will the gases find ways to exchange energy through the piston and eventually
bring the system to a thermal equilibrium? It was claimed in some textbooks, based
on a simplistic interpretation of the laws of thermodynamics, see below, that indeed the
mechanical equilibrium could persist “forever”, cf. [G, GF] for some history.

On the other hand, Landau and Lifshitz [LL], Feynman [F] and many others argued
intuitively that the system should converge from the mechanical equilibrium to a thermal
equilibrium. They predicted that the cooler compartment should gradually heat up and
the hotter one cool down, while the piston slowly moves from the cooler side to the hotter
side, so that the pressure balance is maintained until the temperatures are equalized, and
the piston makes its final stop.

The confusion about the evolution of the gas after the establishment of mechanical
equilibrium is due to the following: Heat conduction through a wall is normally associated
with the internal motion of the molecules of the wall colliding with those of the gas
and thus exchanging momentum and energy. However, the piston and the walls in our
idealized model are supposed to be rigid, solid, and structureless bodies and the gas
atoms bounce off them elastically. This idealization is exactly the reason why the gases
in the different compartments could be in equilibrium at different temperatures when
the piston was clamped. The unclamped piston, on the other hand, interacts with gas
atoms as a whole, i.e. as one huge and massive molecule. It then makes tiny microscopic
movements (vibrations) induced by collisions with atoms on both sides. Hence, some
microscopic exchange of momentum and energy does take place. But these microscopic
vibrations of the piston are not part of macroscopic thermodynamics, in which the action
of the piston on the gas in each compartment is regarded as an external mechanical force.
Under this condition (and assuming that the piston has no entropy of its own) the second
law of thermodynamics would predict that the entropy of the gas, as it goes from some
initial equilibrium state to a final equilibrium state, could not decrease. When the gas in
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each compartment is in equilibrium, its thermodynamic entropy is known to be [LL, Ca]

Si = Ni [− log Pi + (1 + 3/2) log Ti] + f(Ni), i = L,R

where NL = nLVL and NR = nRVR denote the number of atoms in the gases, and the
explicit form of f(Ni) is irrelevant for us, since its value does not change in time. Now,
if our system does evolve from mechanical equilibrium to thermal equilibrium, keeping
the pressure balance PL = PR and the total kinetic energy 3

2
kB(NLTL + NRTR) fixed,

then one can easily compute (we leave this as an exercise) that the pressure of the
gases stays constant in time and the total entropy of the system S = SL + SR grows
until it reaches its maximum at the point of thermal equilibrium. At the same time,
the entropy SR decreases, while SL increases, since TR goes down, TL goes up, and the
pressure PR = PL remains constant. This decrease of the entropy would, as already
noted, violate the second law of thermodynamics, if the piston remained mechanical, see
further discussions in [Li, CPS] and critical remarks in [G, GF].

Therefore, the evolution of the system beyond the mechanical equilibrium cannot be
described by macroscopic thermodynamics (beyond the statement that any evolution in
an isolated macroscopic system will not decrease the total entropy). The actual evolution
is a result of microscopic energy transfer between the gases via collisions with the piston.
This process is purely microscopic and, in a sense, counterintuitive, as we explain next.
Under the collisions with gas atoms on both sides the piston vibrates, i.e. it jiggles back
and forth. When the piston moves toward the hotter side, the atoms of the hotter gas
bounce off the piston with an increased speed and so gain energy, while the atoms of
the cooler gas collide with the piston and slow down, hence lose some energy. When the
piston moves toward the cooler side it is vice versa. Since, on the average, the hotter
gas must cool down and the cooler gas must heat up, one may conclude that the piston’s
movements toward the cooler side dominate. On the other hand, the piston has to slowly
move toward the hotter side in order to maintain the pressure balance, see above, so its
displacements in the direction of the hotter gas actually dominate. It is not quite clear
how these seemingly opposite trends manage to coexist. Some physicists joke about a
“conspiracy” between the microscopic vibrations of the piston and the incoming atoms
of the gases [GF, GP]. In the words of Callen [Ca], “the movable adiabatic wall presents
a unique problem with subtleties”.

In order to understand the mechanism of the heat transfer across the piston at me-
chanical equilibrium (PL = PR), one usually considers the simplest gas of noninteracting
particles, that is an ideal gas. As early as in 1959, Lebowitz [L1] studied a piston inter-
acting with two infinite reservoirs filled with ideal gases held at different temperatures
TL 6= TR. His piston also interacted with an external potential, e.g. a spring, and it could
therefore come to a stationary nonequilibrium state under the influence of the infinite
reservoirs. He used an approximation by a Markov process and found the distribution
of the piston velocity to be Maxwellian corresponding to some intermediate tempera-
ture T ∈ (TL, TR), which led to a systematic heat transfer between the gases. Recently,
Gruber and others [GF, PG, GP] used kinetic theory to study a freely movable piston
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of mass M interacting with two infinite ideal gases of atoms of mass m ¿ M at equal
pressures but different temperatures. They use the expansion of the Boltzmann equation
in ε = m/M to show that a macroscopic heat flux across the piston does occur whenever
TL 6= TR, hence the system gradually approaches thermal equilibrium. They also found
a stationary distribution of the piston velocity, whose average value is given by

〈V 〉 =

√
2πm (

√
kBTR −

√
kBTL )

4M
+ o

(
m

M

)
(1.1)

(it is independent of the gas densities). We note that if TL < TR, then 〈V 〉 > 0, confirming
our previous observation that the piston moves from the cooler side to the hotter side.

Equation (1.1) shows that the average velocity of the piston is different from zero,
albeit just of order O(m/M), despite the perfect pressure balance PL = PR. We note,
however, that for a macroscopic-size piston the ratio m/M is so small that the time it
takes the piston to cover any noticeable distance is much longer than the age of the
universe [GF], so such a phenomenon cannot be observed experimentally.

We conclude that the evolution of the system proceeds in two different stages. The
first one is the convergence to a mechanical equilibrium, which is relatively fast and can,
in principle, be computed on the basis of macroscopic equations. The second stage is
the transition of the system from mechanical equilibrium to thermal equilibrium. This
process is very slow and much less understood.

In addition, for the ideal gas (in which the atoms do not interact) a new problem arises.
At time t = 0, before the piston is released, the gas atoms move independently of each
other – every atom bounces off the walls and the clamped piston, without exchanging
momentum or energy with other atoms. Therefore, the velocity distribution does not
have to be Maxwellian. A stationary state of the ideal gas can be described by any
Poisson process with a uniform spacial density and a symmetric velocity distribution.
For example, half of the atoms may move toward the piston with unit velocity v = 1
and the other half – in the opposite direction with velocity v = −1, and this state will
be stationary. However, once the piston is released, the atoms start interacting with
each other, indirectly, via collisions with the piston. This provides a way to exchange
momentum and energy between the atoms. One can expect that these interactions will
lead, ultimately, to a true thermal equilibration, when the velocity distribution becomes
Maxwellian, as we explain in Section 5. This process, however, may take even longer
than the equilibration of the mean kinetic energies described above.

To consider this new process in its “pure” form, we assume that initially the sys-
tem is already in a homogeneous state – the gas density is constant across the entire
cylinder and the velocity distribution is the same in both compartments (but different
from Maxwellian). Then there seem to be no forces of any kind that would drive the
piston anywhere. In particular, when the piston is initially placed in the middle of the
cylinder, then by symmetry there should be no reason for it to move either way! On
the other hand, the system is not in equilibrium until the velocity distribution becomes
Maxwellian, hence it should find ways to evolve toward equilibrium, thus changing its
macroscopic state. We discuss this further in Section 5.
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One can also consider a simpler case when that the container is infinitely long on both
sides of the piston and the ideal gases have infinite number of atoms, as in [L1, GP, PG].
In that case the problem reduces to the classical Rayleigh gas – a big massive particle
submerged in an ideal gas. In particular, our piston in an infinite cylinder becomes a
one-dimensional Rayleigh gas, which we describe in some detail.

Let a heavy tagged particle (called molecule) of mass M move on a line under elastic
collisions with atoms of mass m of an ideal gas with a uniform density n and some velocity
distribution f(v) dv. Denote by X(t) and V (t) = Ẋ(t) the position and velocity of the
molecule at time t. Even though f(v) need not be Maxwellian, the velocity function V (t)
and the coordinate function X(t) can be approximated by certain Gaussian stochastic
processes:

Theorem 1.1 (Holley [H]) Let the density f(v) be symmetric f(v) = f(−v) and have
a finite fourth moment

∫
v4f(v) dv < ∞. Then for every finite t0 < ∞, the function

V (t)
√

M on the interval [0, t0] converges, in distribution, as M, n → ∞ and M/n →
const, to an Ornstein-Uhlenbeck velocity process Vt, while X(t)

√
M converges to an

Ornstein-Uhlenbeck position process Xt.

An Ornstein-Uhlenbeck process (Xt,Vt) is defined by [Ne]

dXt = Vt dt, dVt = −aVt dt +
√

D dWt

where a > 0, D > 0 are constants and Wt a Wiener process. The Ornstein-Uhlenbeck
position process Xt converges in an appropriate limit (e.g. a → ∞, a2/D = const) to a
Wiener process.

We note that the typical velocity of the molecule V (t) is of order O(1/
√

M), which
agrees with the equipartition of energy in the system requiring that average energies of
all particles be equal, i.e. M〈V 2〉 = m〈v2〉 = m

∫
v2f(v) dv.

Dürr et al [DGL] extended the above theorem to arbitrary dimension and to asymmet-
ric velocity distributions. The main technical difficulty in the proof of this theorem comes
from the so called recollisions, which occur when an atom collides with the molecule more
than once. Recollisions result in intricate autocorrelations in the process (X(t), V (t)),
which otherwise would be Markovian. The proof essentially consists in estimating the
undesirable effect of recollisions and showing that it vanishes in the limit M →∞.

When the gas is confined in a finite cylinder, though, the effect of recollisions becomes
crucial. All atoms will travel to the walls, bounce off it and come back to the piston for
more and more collisions. The induced autocorrelations will build up. There is no
standard techniques available to estimate (let alone eliminate) the effect of recollisions
in general, but we make partial progress in this direction, see Section 4.

In summary, the piston problem raises serious mathematical questions and even leads
to confusions in the physical theories. The “notorious piston”, as it is known among
physicists, again attracted much attention recently due to a series of papers [GF, GP,
PG, LPS] where a more extensive mathematical apparatus was developed. At the same
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time, many new numerical experiments led to better theoretical understanding of the
underlying dynamics but also raised some new questions. We emphasize that very few
rigorous results are available, even for ideal gases, apart from the Rayleigh-type stochastic
approximations in the infinite cylinder mentioned above.

We study the piston in a finite cylinder filled with ideal gases. Since our gases are
ideal, we will not need to assume that the velocity distribution of atoms is Maxwellian.
Since autocorrelations induced by recollisions present a major difficulty, we specify the
initial state in such a way, that during a certain interval of time each gas atom collides
with the piston at most twice. The main goal of our work is to describe rigorously
the dynamics of the piston during that time interval. We show that, in an appropriate
limit, the evolution of the piston and the gas converges to a deterministic process, which
satisfies a certain closed system of differential equations. The assumptions that we make
here simplify technical considerations but by no means reduce the problem to a triviality.
In fact, many intriguing questions still remain open in our context, and we discuss them
in the last two sections of the paper.

Precise statement of problem and main results. Consider a cubical domain ΛL of
size L separated into two parts by a movable wall (piston). Each part of ΛL contains a
gas of noninteracting particles of mass m = 1. The particles collide with the outer (fixed)
walls of ΛL and with the moving piston elastically. The piston has mass M = ML and
moves along the x-axis under the collisions with the gas particles on both sides. The size
L of the cube is a large parameter of our model, and we are interested in the behavior as
L →∞. We will assume that ML is proportional to the area of the piston, i.e. ML ∼ L2,
and the number of gas particles N is proportional to the volume of the cube ΛL, i.e.
N ∼ L3, while the particle velocities remain of order one.

The position of the piston at time t is specified by a single coordinate X = XL(t),
0 ≤ X ≤ L, its velocity is then given by V = VL(t) = ẊL(t). Since the components of
the particle velocities perpendicular to the x-axis play no role in the dynamics, we may
assume that each particle has only one coordinate, x, and one component of velocity, v,
directed along the x-axis.

When a particle with velocity v collides with the piston with velocity V , their velocities
after the collision, v′ and V ′, respectively, are given by

V ′ = (1− ε)V + εv (1.2)

v′ = −(1− ε)v + (2− ε)V (1.3)

where ε = 2m/(M + m). We assume that M + m = 2mL2/a, where a > 0 is a constant,
so that

ε =
2m

M + m
=

a

L2
(1.4)

When a particle collides with a wall at x = 0 or x = L, its velocity just changes sign.
The evolution of the system is then completely deterministic, but one needs to specify

the initial conditions. We shall assume that the piston starts at the midpoint XL(0) =
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L/2 with zero velocity VL(0) = 0 (see also Section 2). The initial configuration of gas
particles and their velocities is chosen at random as a realization of a (two-dimensional)
Poisson process on the (x, v)-plane (restricted to 0 ≤ x ≤ L) with density L2pL(x, v),
where pL(x, v) is a function satisfying certain conditions, see below, and the factor of L2 is
the cross-sectional area of the container. This means that for any domain D ⊂ [0, L]×IR1

the number ND of gas particles (x, v) ∈ D at time t = 0 has a Poisson distribution with
parameter

λD = L2
∫ ∫

D
pL(x, v) dx dv

For any two nonoverlapping domains, say D1 ∩D2 = ∅, the corresponding numbers ND1

and ND2 are statistically independent. We remark that the total number of gas particles
N is a Poisson random variable, too. The total energy and the total initial momentum
are random as well.

Let ΩL denote the space of all possible configurations of gas particles in ΛL (i.e., all
countable subsets of [0, L]× IR1). For each realization2 ω ∈ ΩL the deterministic piston
trajectory will be denoted by XL(t, ω) and its velocity by VL(t, ω).

The above model is a mechanical system whose dynamical characteristics XL(t, ω)
and VL(t, ω) depend on the large parameter L and, for each L, are random (depend on
ω).

In order to obtain a deterministic description of the dynamics of the piston one needs
to take a limit as L →∞ and simultaneously rescale space and time. We introduce new
space and time coordinates by

y = x/L and τ = t/L. (1.5)

which corresponds to Euler scaling for the hydrodynamical limit transition. We call y
and τ the macroscopic (“slow”) variables, as opposed to the original microscopic (“fast”)
x and t. Now let

YL(τ, ω) = XL(τL, ω)/L, WL(τ, ω) = VL(τL, ω) (1.6)

denote the position and velocity of the piston in the macroscopic context. The initial
conditions are then YL(0) = XL(0)/L = 0.5 and W (0) = V (0) = 0.

It is now very natural to assume that the initial density pL(x, v) agrees with our
rescaling:

pL(x, v) = π0(x/L, v) (1.7)

where the function π0(y, v) is independent of L. Without loss of generality, we can assume
that π0 is normalized so that

∫ 1

0

∫ ∞

−∞
π0(y, v) dv dy = 1

2Technically, it is possible that two or more particles collide with the piston simultaneously, and then
the dynamics will no longer be defined, but multiple collisions are known to occur with probability zero
[H], so we will ignore such anomalies.
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Then the mean number of particles in the entire container ΛL is exactly equal to L3:

E(N) =
∫ ∫

L2pL(x, v) dv dx = L3

where E(·) is the expected value.
Furthermore, we assume that the function π0(y, v) satisfies several technical require-

ments stated below. The meaning and purpose of these assumptions will become clear
later.

(P1) Smoothness. π0(y, v) is a piecewise C1 function with uniformly bounded partial
derivatives, i.e. |∂π0/∂y| ≤ D1 and |∂π0/∂v| ≤ D1 for some D1 > 0.

(P2) Discontinuity lines. π0(y, v) may be discontinuous on the line y = YL(0) (i.e., “on
the piston”). In addition, it may have a finite number (≤ K1) of other discontinuity
lines in the (y, v)-plane with strictly positive slopes (each line is given by an equation
v = f(y) where f(y) is C1 and 0 < c1 < f ′(y) < c2 < ∞).

(P3) Density bounds. Let

π0(y, v) > πmin > 0 for v1 < |v| < v2 (1.8)

for some 0 < v1 < v2 < ∞, and

sup
y,v

π0(y, v) = πmax < ∞ (1.9)

The requirements (1.8) and (1.9) basically mean that π0(y, v) takes values of order
one.

(P4) Velocity “cutoff”. Let

π0(y, v) = 0, if |v| ≤ vmin or |v| ≥ vmax (1.10)

with some 0 < vmin < vmax < ∞. This means that the speed of gas particles is
bounded from above by vmax and from below by vmin.

(P5) Approximate pressure balance. π0(y, v) must be nearly symmetric about the piston,
i.e.

|π0(y, v)− π0(1− y,−v)| < ε0 (1.11)

for all 0 < y < 1 and some sufficiently small ε0 > 0.

The requirements (P4) and (P5) are crucial. We will see that they are made to ensure
that the speed of the piston |VL(t, ω)| will be smaller than the minimum speed of the gas
particles, with probability close to one, for times t = O(L). Such assumptions were first
made in [LPS].
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We think of D1, K1, c1, c2, v1, v2, vmin, vmax, πmin and πmax in (P1)–(P4) as fixed
(global) constants and ε0 in (P5) as an adjustable small parameter. We will assume
throughout the paper that ε0 is small enough, meaning that

ε0 < ε̄0(D1, K1, c1, c2, v1, v2, vmin, vmax, πmin, πmax)

It is important to note that the hydrodynamic limit does not require that ε0 → 0. The
parameter ε0 stays positive and fixed as L →∞.

Now we state our main result:

Theorem 1.2 There is an L-independent function Y (τ) defined for all τ ≥ 0 and a
positive τ∗ ≈ 2/vmax (actually, τ∗ → 2/vmax as ε0 → 0), such that

sup
0≤τ≤τ∗

|YL(τ, ω)− Y (τ)| → 0 (1.12)

and
sup

0≤τ≤τ∗
|WL(τ, ω)−W (τ)| → 0 (1.13)

in probability, as L →∞. Here W (τ) = Ẏ (τ).

This theorem establishes the convergence in probability of the random functions
YL(τ, ω),W (τ, ω) characterizing the mechanical evolution of the piston to the determin-
istic functions Y (τ),W (τ), in the hydrodynamical limit L →∞.

The functions Y (τ) and W (τ) satisfy certain (Euler-type) differential equations stated
in the next section. Those equations have solutions for all τ ≥ 0, but we can only
guarantee the convergence (1.12) and (1.13) for τ < τ∗. What happens for τ > τ∗,
especially as τ → ∞, remains an open problem. Some numerical results and heuristic
observations in this direction are presented in Section 5.

Remarks. The function Y (τ) is at least C1 and, furthermore, piecewise C2. On the
interval (0, τ∗), its first derivative W = Ẏ (velocity) and its second derivative A = Ÿ
(acceleration) remain ε0-small: supτ |W (τ)| ≤ const·ε0 and supτ |A(τ)| ≤ const·ε0, see
the next section.

We will also estimate the speed of convergence in (1.12) and (1.13). Precisely, we
show that there is a τ0 > 0 (τ0 ≈ 1/vmax) such that

|YL(τ, ω)− Y (τ)| = O(ln L/L)

for 0 < τ < τ0 and
|YL(τ, ω)− Y (τ)| = O(ln L/L1/7)

for τ0 < τ < τ∗. The same bounds are valid for |WL(τ, ω) −W (τ)|, see Sections 3 and
4. These estimates hold with “overwhelming” probability, specifically they hold for all
ω ∈ Ω∗

L ⊂ ΩL such that P (Ω∗
L) = 1−O(L− ln L).
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2 Hydrodynamical equations

The equations describing the deterministic function Y (τ) involve another deterministic
function – the scaled density of the gas π(y, v, τ). Initially, π(y, v, 0) = π0(y, v), and for
τ > 0 the density π(y, v, τ) evolves according to the following rules.

(H1) Free motion. Inside the container the density satisfies the standard continuity
equation for a noninteracting particle system without external forces:

(
∂

∂τ
+ v

∂

∂y

)
π(y, v, τ) = 0 (2.1)

for all y except y = 0, y = 1 and y = Y (τ).

Equation (2.1) has a simple solution

π(y, v, τ) = π(y − vs, v, τ − s) (2.2)

for 0 < s < τ such that y− vr /∈ {0, Y (τ − r), 1} for all r ∈ (0, s). Equation (2.2) has one
advantage over (2.1): it applies to all points (y, v), including those where the function π
is not differentiable.

(H2) Collisions with the walls. At the walls y = 0 and y = 1 we have

π(0, v, τ) = π(0,−v, τ) (2.3)

π(1, v, τ) = π(1,−v, τ) (2.4)

(H3) Collisions with the piston. At the piston y = Y (τ) we have

π(Y (τ)− 0, v, τ) = π(Y (τ)− 0, 2W (τ)− v, τ) for v < W (τ)

π(Y (τ) + 0, v, τ) = π(Y (τ) + 0, 2W (τ)− v, τ) for v > W (τ) (2.5)

where v represents the velocity after the collision and 2W (τ) − v that before the
collision; here

W (τ) =
d

dτ
Y (τ) (2.6)

is the (deterministic) velocity of the piston.

It remains to describe the evolution of W (τ). Suppose the piston’s position at time
τ is Y and its velocity W . The piston is affected by the particles (y, v) hitting it from
the right (such that y = Y + 0 and v < W ) and from the left (such that y = Y − 0 and
v > W ).
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(H4) Piston’s velocity. The velocity W = W (τ) of the piston must satisfy the equation

∫ ∞

W
(v −W )2π(Y − 0, v, τ) dv =

∫ W

−∞
(v −W )2π(Y + 0, v, τ) dv (2.7)

see also an additional requirement (H4’) below.

In physical terms, (2.7) is a pressure balance: the piston “chooses” velocity W so that
the pressure of the incoming particles balances out. Equation (2.7) is instrumental for
our deterministic approximation of the piston dynamics.

One can combine the two integrals in (2.7) into one by introducing the density of the
particles colliding with the piston (“density on the piston”) by

q(v, τ ; Y, W ) =

{
π(Y + 0, v, τ) if v < W
π(Y − 0, v, τ) if v > W

(2.8)

Then (2.7) can be rewritten as

∫ ∞

−∞
(v −W (τ))2 sgn(v −W (τ)) q(v, τ ; Y (τ),W (τ)) dv = 0

We also remark that for τ > 0, when (2.5) holds,

W (τ) =

∫
vπ(Y − 0, v, τ) dv∫
π(Y − 0, v, τ) dv

=

∫
vπ(Y + 0, v, τ) dv∫
π(Y + 0, v, τ) dv

i.e. the piston’s velocity is the average of the nearby particle velocities on each side.
The system of (hydrodynamical) equations given in (H1)–(H4) is closed and, given

appropriate initial conditions, should completely determine the functions Y (τ), W (τ)
and π(y, v, τ) for τ > 0, as we will see shortly.

To specify the initial conditions, we set π(y, v, 0) = π0(y, v) and Y (0) = 0.5. The
initial velocity W (0) does not have to be specified, it comes “for free” as the solution of
the equation (2.7) at time τ = 0. It is easy to check that the initial speed |W (0)| will be
smaller than vmin, in fact W (0) → 0 as ε0 → 0 in (P5).

We first determine conditions under which equation (2.7) has a solution W . Let

v−sup(τ) = sup{v : π(Y − 0, v, τ) > 0}
(with the convention that the supremum of an empty set is −∞) and

v+
inf(τ) = inf{v : π(Y + 0, v, τ) > 0}

(similarly, the infimum of an empty set must be set to +∞).

Lemma 2.1 We have three cases:

(a) If v−sup > v+
inf or v−sup = v+

inf ∈ IR, then (2.7) has a unique solution W ∈ [v+
inf , v

−
sup].
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(b) If v−sup < v+
inf , then the solutions of (2.7) occupy the entire interval [v−sup, v

+
inf ].

(c) If v−sup = v+
inf = ∞ or v−sup = v+

inf = −∞, then (2.7) has no real solutions.

Proof. In the case (a), the difference between the left hand side and the right hand side of
(2.7) is a continuous and strictly monotonically decreasing function of W . For W < v+

inf

it is positive, and for W > v−sup negative. The rest of the proof goes by direct inspection.
2

It is easy to show (we do not elaborate) that under our assumptions (P1)–(P4) for
every τ > 0 the density π(y, v, τ) has a compact support on the y, v plane, i.e. π(y, v, τ) ≡
0 for all |v| > vmax(τ). Therefore, the “no solution” case (c) never occurs. The multiple
solution case (b) is very unlikely, but not impossible. If that happens, the velocity W (τ)
must be defined uniquely by an additional requirement:

(H4’) If W (τ − 0) ∈ [v−sup, v
+
inf ], we define W (τ) by continuity, W (τ) = W (τ − 0). If

W (τ − 0) < v−sup or W (τ − 0) > v+
inf , we set W (τ) = v−sup or W = v+

inf , respectively.

This completes the definition of W (τ) started by (H4).
For generic piecewise smooth densities π(y, v, τ), the velocity W (τ) is continuous, but

in some cases the continuity of W (τ) might be broken. The following simple lemma will
be helpful, though:

Lemma 2.2 Suppose that for every τ ∈ [a, b] the density π(y, v, τ) is piecewise C1 and
has a finite number of C1 smooth discontinuity lines on the y, v plane with positive slopes,
as we require of π0(y, v) in Section 1. Then W (τ) will be continuous and piecewise
differentiable on the interval [a, b].

We now pause to make a few remarks. The piston mass is never used in our equations,
because its macroscopic mass is zero. Indeed, for the mechanical system described in
Section 1, the piston mass is ∼ L2, while the total mass of the gas particles is ∼ L3,
hence the relative mass of the piston vanishes as L → ∞. Consider now the total
(macroscopic) mass of the gas

Mtot(τ) =
∫ 1

0

∫
π(y, v, τ) dv dy

and the mass in the left and right compartments, separately,

ML(τ) =
∫ Y (τ)

0

∫
π(y, v, τ) dv dy

MR(τ) =
∫ 1

Y (τ)

∫
π(y, v, τ) dv dy

and the total kinetic energy

2Etot(τ) =
∫ 1

0

∫
v2π(y, v, τ) dv dy

The following lemma is left as a (simple) exercise:

13



Lemma 2.3 The quantities Mtot, ML, MR, and Etot remain constant in τ .

The main equation (2.7) also preserves the total momentum
∫ ∫

vπ(y, v, τ) dv dy, but
this quantity changes due to collisions with the walls.

Remark. Previously, Lebowitz, Piasecki and Sinai [LPS] studied the piston dynamics
under essentially the same initial conditions as our (P1)–(P5). They argued heuristically
that the piston dynamics could be approximated by certain deterministic equations in the
original (microscopic) variables x and t. In fact, the present work grew as a continuation
of [LPS]. The deterministic equations found in [LPS] correspond to our (2.2)–(2.6) with
obvious transformation back to the variables x, t, but our main equation (2.7) has a
different counterpart in the context of [LPS], which reads

d

dt
V (t) = a

[∫ ∞

V
(v − V (t))2π(Y − 0, v, t) dv −

∫ V

−∞
(v − V (t))2π(Y + 0, v, t) dv

]
(2.9)

Here X = X(t) and V = V (t) = Ẋ(t) denote the deterministic position and velocity of
the piston and π(x, v, t) the density of the gas (the constant a appeared in (1.4)). We
refer to [LPS] for more details and a heuristic derivation of (2.9). Since (2.9), unlike our
(2.7), is a differential equation, the initial velocity V (0) has to be specified separately,
and it is customary to set V (0) = 0. Equation (2.9) can be reduced to (2.7) in the limit
L → ∞ as follows. One can show (we omit details) that (2.9) is a dissipative equation
whose solution with any (small enough) initial condition V (0) converges to the solution
of (2.7) during a t-time interval of length ∼ ln L. That interval has length ∼ L−1 ln L
on the τ axis, and so it vanishes as L → ∞, this is why we replace (2.9) with (2.7) and
ignore the initial condition V (0) when working with the thermodynamic variables τ and
y. For the same reasons, it will be convenient to reset the initial value of the piston
velocity in the mechanical model of Section 1 to from V (0) = 0 to V (0) = W (0), see
Theorem 3.5 below. The equation (2.9) will not be used anymore in this paper.

We now describe the solution of the hydrodynamical equations (H1)–(H4) in more
detail. Assume that for some τ > 0 the gas density π(y, v, τ) satisfies the following
requirements, similar to (P1)–(P5) imposed on the initial function π0(y, v) in Section 1:

(P1’) Smoothness. π(y, v, τ) is a piecewise C1 function with uniformly bounded partial
derivatives, i.e. |∂π/∂y| ≤ D′

1 and |∂π/∂v| ≤ D′
1 for some D′

1 > 0.

(P2’) Discontinuity lines. π(y, v, τ) has a finite number (≤ K ′
1) of discontinuity lines

in the (y, v)-plane with strictly positive slopes (each line is given by an equation
v = f(y) where f(y) is C1 and 0 < c′1 < f ′(y) < c′2 < ∞).

(P3’) Density bounds. Let

π(y, v, τ) > π′min > 0 for v′1 < |v| < v′2 (2.10)
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for some 0 < v′1 < v′2 < ∞, and

sup
y,v

π(y, v, τ) = π′max < ∞ (2.11)

(P4’) Velocity “cutoff”. Let

π(y, v, τ) = 0, if |v| ≤ v′min or |v| ≥ v′max (2.12)

with some 0 < v′min < v′max < ∞.

Lastly, we want to assume, similarly to (P5), that π(y, v, τ) is nearly symmetric about
the piston, but this assumption requires a little extra work, since the piston does not
have to stay at the middle point Y (0) = 0.5. For every Y ∈ (0, 1) denote by hY the
unique homeomorphism of [0, 1] such that hY (0) = 1, hY (1) = 0, hY (Y ) = Y and hY is
linear on the subsegments [0, Y ] and [Y, 1]. Next, we consider [0, Y ] × IR as a manifold
in which points (0, v) and (0,−v) are identified for all v > 0, and so are the points (Y, v)
and (Y,−v) for v > 0. Similarly, let [Y, 1]× IR be a manifold in which one identifies (1, v)
with (1,−v) and (Y, v) and (Y,−v) for all v > 0. We denote by dY the distance on each
of these two manifolds induced by the Euclidean metric (dy2 + dv2)1/2. The reason why
we need this special distance will be clear later, in the proof of Proposition 2.10.

(P5’) Approximate pressure balance. We require that

|Y (τ)− 0.5| < ε′0 (2.13)

and for any point (y, v) with 0 ≤ y ≤ 1 and v′min ≤ |v| ≤ v′max there is another point
(y∗, v∗) “across the piston”, i.e. such that (y − Y )(y∗ − Y ) < 0, where Y = Y (τ),
satisfying

dY ((y∗, v∗), (hY (y),−v)) < ε′0 (2.14)

and
|π(y, v, τ)− π(y∗, v∗, τ)| < ε′0 (2.15)

for some sufficiently small ε′0 > 0. In addition, we require that

ε′0 < C ′
0ε0 (2.16)

with some constant C ′
0 > 0.

Actually, the map (y, v) 7→ (y∗, v∗) involved in (P5’), which we will denote by Rτ , is
one-to-one and will be explicitly constructed below, in the proof of Proposition 2.10.

Again, we think of D′
1, K ′

1, c′1, c′2, v′1, v′2, v′min, v′max, π′min, π′max, and now also C ′
0, as

global constants. They must be bounded on the time interval on which we consider the
dynamics (and v′min, π′min must be bounded away from zero), hence we may treat all these
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constants as independent of τ . By (2.16), ε′0 is, just like ε0 in (P5), a small adjustable
parameter.

Now we derive rather elementary but important consequences of the above assump-
tions. Since the density π(y, v, τ) vanishes for |v| < v′min, so does the function q(v, τ ; Y, W )
defined by (2.8). Moreover, for all |W | < v′min, the function q(v, τ ; Y, W ) will be indepen-
dent of W and can be redefined by

q(v, τ ; Y ) =

{
π(Y + 0, v, τ) if v < 0
π(Y − 0, v, τ) if v > 0

(2.17)

Also, the equation (2.7) can be simplified: the factor sgn(v − W ) can be replaced by
sgn v. Then, expanding the squares in (2.7) reduces it to a simple quadratic equation for
W :

Q0W
2 − 2Q1W +Q2 = 0 (2.18)

where
Q0 =

∫
sgn v · q(v, τ ; Y ) dv (2.19)

Q1 =
∫

v sgn v · q(v, τ ; Y ) dv (2.20)

Q2 =
∫

v2 sgn v · q(v, τ ; Y ) dv (2.21)

with Y = Y (τ). The integrals Q0,Q1,Q2 have the following physical meaning:

mQ0 = mL −mR

mQ1 = pL − pR

mQ2 = 2(eL − eR)

where mL, pL, eL represent the total mass, momentum and energy of the incoming gas
particles (per unit length) on the left hand side of the piston, and mR, pR, eR – those
on the right hand side of it. The value Q2 also represents the net pressure exerted on
the piston by the gas if the piston did not move. Of course, if Q2(τ) = 0, then we
must have W (τ) = 0, which agrees with (2.18). The following lemma easily follows from
(P1’)–(P5’). It means that the function q(v, τ ; Y (τ)) is nearly symmetric in v about
v = 0.

Lemma 2.4 For any smooth function f(v) defined for v > 0 we have

∣∣∣∣
∫ ∞

0
f(v) q(v, τ ; Y (τ)) dv −

∫ 0

−∞
f(−v) q(v, τ ; Y (τ)) dv

∣∣∣∣ ≤ Cf ε0

where the factor Cf > 0 depends on f but not on ε0.

16



Convention. We call constants that do not depend on our small adjustable parameter
ε0 involved in (P5) and (P5’) global constants (such as Cf in the above lemma). All the
constants in the requirements (P1)–(P5) and (P1’)–(P5’) are global, except ε0 itself and
the related ε′0. In many cases, we will denote various global constants by Ci, i ≥ 0, or
just by C.

Lemma 2.4 implies that Q0 and Q2 are small, more precisely

max{|Q0|, |Q2|} ≤ Cε0 (2.22)

where C > 0 is a global constant. At the same time, the assumption (P3’) guarantees
that

Q1 ≥ Q1,min > 0 (2.23)

where Q1,min is another global constant.
If ε0 is small enough, there is a unique root of the quadratic polynomial (2.18) on the

interval (−v′min, v
′
min), which corresponds to the only solution of (2.7). Since this root is

smaller, in absolute value, than the other root of (2.18), it can expressed by

W =
Q1 −

√
Q2

1 −Q0Q2

Q0

(2.24)

where the sign before the radical is “−”, not “+”. Of course, (2.24) applies whenever
Q0 6= 0, while for Q0 = 0 we simply have

W =
Q2

2Q1

(2.25)

Corollary 2.5 If ε0 is small enough, then

|W (τ)| ≤ Bε0 < v′min/3 (2.26)

with some global constant B > 0.

Proof. This immediately follows from equations (2.22)–(2.25). 2

We now make an important remark.

Remark (Extension). Consider the density of the incoming gas particles on the left
hand side of the piston, i.e. π(y, v, τ) for y = Y (τ) − 0 and v > v′min. This function
“terminates” on the piston, i.e. has a discontinuity in y at y = Y (τ). But it can be
naturally extended smoothly “across the piston”, i.e. for y > Y (τ) if one ignores the
interaction of the gas coming from the left compartment with the piston at times s ∈
(τ − δ, τ) and applies the rule (H1) instead, as if the gas “passed through the piston”.
This defines a smooth extension of π(y, v, τ) from the region y ≤ Y (τ) to the region
Y (τ) < y < Y (τ) + O(δ) for all v ≥ v′min. This extension allows us to differentiate
q(v, τ ; Y ) defined by (2.17) with respect to Y for any v ≥ v′min. A similar extension can

17



be made for the density π(y, v, τ) from the region y ≥ Y (τ) to the region Y (τ)−O(δ) <
y < Y (τ) for all v ≤ −v′min, hence q(v, τ ; Y ) becomes differentiable with respect to Y for
v ≤ −v′min. We note that our extension can be unambiguously defined because we only
need it for |v| ≥ v′min while the piston’s velocity remains smaller than v′min.

Now the quantities Q0, Q1, and Q2 defined by (2.19)–(2.21) become differentiable in
Y for each fixed τ , and the assumptions (P1’)–(P4’) easily imply that

|dQi/dY | ≤ C1, i = 0, 1, 2 (2.27)

where C1 > 0 is a global constant.

Corollary 2.6 The piston acceleration A(τ) = dW (τ)/dτ satisfies

|A(τ)| ≤ Cε0 (2.28)

with a global constant C > 0.

Proof. We differentiate the quadratic equation (2.18) with respect to τ and get

A(τ) =
(dQ0/dτ)W 2 − 2(dQ1/dτ)W + (dQ2/dτ)

2(Q1 −Q0W )

Clearly, the denominator is bounded away from zero, and the numerator has an upper
bound of order ε0, because |dQi/dτ | = |(dQi/dY )W | ≤ const·ε0 by (2.27) and (2.26). 2

More importantly, we can now derive the existence and uniqueness of the solution of
the hydrodynamical equations (H1)–(H4) as long as the conditions (P1’)–(P5’) continue
holding:

Lemma 2.7 If the hydrodynamical equations (H1)–(H4) have a solution on an interval
0 ≤ τ ≤ T and the conditions (P1’)–(P5’) hold on this interval, then the solution is
unique at τ = T and can be extended immediately beyond the point τ = T .

Proof. The only differential equation in our system (H1)–(H4) is (2.6), in which W (τ)
is the root of the quadratic equation (2.18) given by (2.24)–(2.25). Due to the above
Extension Remark we can think of W as an implicit function of Y , i.e. effectively W =
F (Y, τ). Then the differential equation (2.6) takes a canonical form

d

dτ
Y (τ) = F (Y (τ), τ) (2.29)

For this equation to have a unique solution, it suffices that F (Y, τ) has a bounded partial
derivative with respect to Y .

Since W is a root of the quadratic equation (2.18), we can differentiate (2.18) with
respect to Y and get

∂F (Y, τ)

∂Y
=

(dQ0/dY )W 2 − 2(dQ1/dY )W + (dQ2/dY )

2(Q1 −Q0W )
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We already know that the denominator is bounded away from zero. It follows from (2.27)
that the numerator stays bounded above, hence

∣∣∣∣∣
∂F (Y, τ)

∂Y

∣∣∣∣∣ ≤ κ (2.30)

with a global constant κ > 0. 2

Next we consider the evolution of a point (y, v) in the domain

G := {(y, v) : 0 ≤ y ≤ 1}
under the rules (H1)–(H3), i.e. as it moves freely with constant velocity and collides
elastically with the walls and the piston. Denote by (yτ , vτ ) its position and velocity at
time τ ≥ 0. Then (H1) translates into ẏτ = vτ and v̇τ = 0 whenever yτ /∈ {0, 1, Y (τ)},
(H2) becomes (yτ+0, vτ+0) = (yτ−0,−vτ−0) whenever yτ−0 ∈ {0, 1}, and (H3) gives

(yτ+0, vτ+0) = (yτ−0, 2W (τ)− vτ−0) (2.31)

whenever yτ−0 = Y (τ). Note that (2.31) corresponds to a special case of the mechanical
collision rules (1.2)–(1.3) with ε = 0 (equivalently, m = 0). Hence the point (y, v) moves
in G as if it was a gas particle with zero mass.

The motion of points in (y, v) is described by a one-parameter family of transfor-
mations F τ : G → G defined by F τ (y0, v0) = (yτ , vτ ) for τ > 0. We will also write
F−τ (yτ , vτ ) = (y0, v0). According to (H1)–(H3), the density π(y, v, τ) satisfies a simple
equation

π(yτ , vτ , τ) = π(F−τ (yτ , vτ ), 0) = π0(y0, v0) (2.32)

for all τ ≥ 0. Also, it is easy to see that for each τ > 0 the map F τ is one-to-one and
preserves area, i.e. det |DF τ (y, v)| = 1.

Now, because of (P4), the initial density π0(y, v) can only be positive in the region

G+ := {(y, v) : 0 ≤ y ≤ 1, vmin ≤ |v| ≤ vmax}
hence we will restrict ourselves to points (y, v) ∈ G+ only. At any time τ > 0, the
images of those points will be confined to the region G+(τ) := F τ (G+). In particular,
π(y, v, τ) = 0 for (y, v) /∈ G+(τ).

We now make an important observation. If a point (yτ , vτ ) collides with a piston
whose velocity is slow, |W (τ)| ¿ |vτ |, they cannot recollide too soon: the point must
travel to a wall, bounce off it, and then travel back to the piston before it hits it again.
This is quantified in the following lemma:

Lemma 2.8 Let a point (yτ , vτ ) ∈ G+(τ) collide with the piston, i.e. yτ = Y (τ). Then
during the interval (τ, τ + ∆) with

∆ =
1− 2Bε0τ

v′max + 3Bε0

it cannot recollide with the piston, i.e. ys 6= Y (s) for s ∈ (τ, τ + ∆), provided (P1’)–(P5’)
continue holding during this interval.
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Proof. The point’s speed after the collision is at least v′min−2Bε0 and at most v′max+2Bε0.
The piston cannot “catch up” with it, since |W (τ)| < v′min − 2Bε0 by (2.26). So, the
point travels to the wall, bounces off it, and travels back to the piston, and all that will
take time

∆ ≥ 2D/(v′max + 3Bε0)

where D = min{Y (τ), 1− Y (τ)} ≥ 0.5− Bε0τ . 2

Therefore, as long as (P1’)–(P4’) hold, the collisions of each moving point (yτ , vτ ) ∈
G+(τ) with the piston occur at well separated time moments, which allows us to effectively
count them. For (x, v) ∈ G+

N(y, v, τ) = #{s ∈ (0, τ) : ys = Y (s), vs 6= W (s)}

is the number of collisions of the point (y, v) with the piston during the interval (0, τ).
For each τ > 0, we partition the region G+(τ) into subregions

G+
n (τ) := {F τ (y, v) : (y, v) ∈ G+ & N(y, v, τ) = n}

so G+
n (τ) is occupied by the points that at time τ have experienced exactly n collisions

with the piston during the interval (0, τ).
Now, for each n ≥ 1 we define τn > 0 to be the first time when a point (yτ , vτ ) ∈ G+(τ)

experiences its (n + 1)-st collision with the piston, i.e.

τn = sup{τ > 0 : G+
n+1(τ) = ∅}

In particular, τ1 > 0 is the earliest time when a point (yτ , vτ ) ∈ G+(τ) experiences its
first recollision with the piston. Hence, no recollisions occur on the interval [0, τ1), and
we call it the zero-recollision interval. Similarly, on the interval (τ1, τ2) no more than
one recollision with the piston is possible for any point, and we call it the one-recollision
interval.

The time moment τ∗ mentioned in Theorem 1.2 is the earliest time when a point
(yτ , vτ ) ∈ G+(τ) either experiences its third collision with the piston or has its second
collision with the piston given that the first one occurred after τ1. Hence, τ∗ ≤ τ2, and
actually τ∗ is very close to τ2, see the next lemma.

Lemma 2.9 Let (P1’)–(P5’) hold on the interval (0, n/vmax + δ) for some n ≥ 1 and
δ > 0. Then, for all sufficiently small ε0

|τk − k/vmax| ≤ Cε0

for all 1 ≤ k ≤ n, where C > 0 is a global constant that may depend on n. Also,

|τ∗ − 2/vmax| ≤ Cε0
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Proof. The necessary lower bounds on τk follow from Lemma 2.8. The necessary upper
bounds are just as easy to obtain, we omit details. 2

It is clear at this point that the hydrodynamical equations (H1)–(H4) will have a
unique and “well behaved” solution as long as the conditions (P1’)–(P5’) continue holding
with some small ε0. Our next goal is to show that this is indeed the case.

Proposition 2.10 Let T > 0. If the initial density π0(y, v) satisfies (P1)–(P5) and ε0

in (P5) is small enough (for the given T ), then the conditions (P1’)–(P5’) will hold on
the interval 0 < τ < T .

Note: The corresponding global constants in (P1’)–(P5’) will depend on T as specified
below.

Proof. The main idea is to show that the restrictions on π(y, v, τ) imposed by (P1)–(P5)
at τ = 0 “deteriorate” very slowly, as time goes on, so that (P1’)–(P5’) will continue
holding (“propagate”) with the respective global constants slowly changing in time.

We first note that as long as (P1’)–(P5’) hold, the number of collisions grows at most
linearly in τ , i.e. on any interval (0, τ) on which (P1’)–(P5’) hold, every moving point
(ys, vs) ∈ G+(s) experiences at most τv′max + 1 collisions with the piston, if ε0 is small
enough, see Lemmas 2.8–2.9. Next, we examine the conditions (P1’)–(P5’) individually
and show that each of them should hold up to time T , provided that the others do.

We start with (P1). Due to (H1) we have

∂π(y, v, τ + s)

∂y
=

∂π(y − sv, v, τ)

∂y

and
∂π(y, v, τ + s)

∂v
=

∂π(y − sv, v, t)

∂v
− s

∂π(y − sv, v, τ)

∂y

for all s > 0 such that the moving point located at (y, v) at time τ + s did not experience
collisions with the piston during the interval (τ, τ + s). Thus, between collisions with the
walls and the piston, the partial derivatives of π(y, v, τ) can grow at most linearly with
τ . Collisions with the walls could only change the sign of the derivatives of p, but not
their absolute values.

Now consider the effect of interactions with the piston. We evaluate the partial
derivatives of π(y, v, τ) at a point (y, v) after a collision with the piston at some earlier
time s ∈ (0, τ). For simplicity, assume that there are no other collisions of the moving
point (y, v) with the piston or the walls on the interval (s, τ). Then s satisfies the equation

Y (s) = y − (τ − s)v (2.33)

Due to (H3) and (H1) we have

π(y, v, τ) = π(y − (τ − s)v, v, s + 0)

= π(y − (τ − s)v, 2W − v, s− 0)

= π(y − (τ − s)v − (s− s0)(2W − v), 2W − v, s0)
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where s0 < s is any earlier time (that we consider fixed) and W = W (s) is the piston
velocity at the time of collision. Let y0 = y−(τ−s)v−(s−s0)(2W−v) and v0 = 2W−v.
Then

∂π(y, v, τ)

∂y
=

∂π(y0, v0, s0)

∂y

[
1 + v

ds

dy
− 2(s− s0)

dW

dy
− (2W − v)

ds

dy

]

+
∂π(y0, v0, s0)

∂v
· 2 dW

dy

Differentiating (2.33) with respect to y gives

dY

ds
· ds

dy
= 1 + v

ds

dy

hence
ds

dy
=

1

W − v

Also,
dW

dy
=

dW

ds
· ds

dy
=

A

W − v

where A = A(s) is the piston acceleration at the time of collision. Now, as long as
(P1’)–(P5’) hold, we have W = O(ε0) and A = O(ε0), hence ds/dy = −v−1 + O(ε0) and
so

∂π(y, v, τ)

∂y
= −∂π(y0, v0, s0)

∂y
+ O(ε0)

In other words, the piston (due to its low speed and acceleration) acts almost as a wall,
which only changes the sign of ∂π/∂y. A similar calculation (we omit it) holds for the
partial derivative with respect to v.

Thus, as long as (P1’)–(P5’) hold, the density π(y, v, τ) remains piecewise C1 and its
partial derivatives can grow at most linearly with τ .

Next, we check the condition (P2’). We begin with three special discontinuity lines
that do not explicitly appear in (P2). They are created immediately by the reflections at
the walls and the piston at time τ = 0, since the initial density π(y, v, 0) does not have
to satisfy (H2)–(H3). Those discontinuity lines are y = 0, y = 0.5 and y = 1 at τ = 0,
and their images at τ > 0 will be slanted lines

y = vτ, y = 0.5 + vτ, y = 1 + vτ (2.34)

respectively, see Fig. 2. So, their slope at any time τ is positive and constant: dy/dv = τ .
It is not bounded away from zero as τ → 0, so we have a technical violation of (P2’) for
small τ , but it will be clear immediately why this does not bother us.

The singularity lines (2.34) only exist in the region vmin ≤ |v| ≤ vmax (elsewhere
p ≡ 0), hence they cannot intersect the piston y = Y (τ) for small τ . It will take some
time, at least

τ ∗ =
0.5

vmax + Bε0

> 0
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Figure 2: Slanted discontinuity lines.
The dashed vertical line shows the piston position.

before any of these singularity lines “reaches” the piston and its effect has to be reckoned
with. At that time the slopes of those lines will be bounded away from zero: dy/dv ≥
τ ∗ > 0, hence (P2’) will hold.

We now consider the evolution of all discontinuity curves of the function π(y, v, τ)
as τ increases. Let a discontinuity curve of the function π(y, v, s) at time s be given by
equation y = gs(v), and its slope is then hs(v) = dgs(v)/dv. Since the curve and its slope
change in time, the function gs and its derivative hs depend on s. According to (2.2), we
have gs+r(v) = gs(v) + vr between collisions with the piston and the walls, hence

dgs(v)

ds
= v and

dhs(v)

ds
= 1 (2.35)

Hence, between collisions with the piston, the slope of discontinuity curves grows linearly
with τ (note that, in particular, it remains positive).

Now, let the curve y = gs(v) cross the piston at some point

gs(v) = Y (s) (2.36)

(this equation makes v a function of s). After the collision with the piston, this point
transforms to (Y, 2W − v), according to the rule (H3), here W = W (s) is the piston
velocity. If τ > s is some fixed time, then the image of our point at time τ is (Y + (τ −
s)(2W − v), 2W − v). Such points make a curve on the y, v plane, parameterized by s
(the collision time). This will be the discontinuity curve for the density π(y, v, τ) at time
τ . Let ys = Y + (τ − s)(2W − v) and vs = 2W − v be the coordinates of a point on that
curve. To compute the slope dys/dvs of that curve, we first differentiate ys and vs with
respect to the parameter s:

dys

ds
= W + (τ − s)

[
2
dW

ds
− dv

ds

]
− (2W − v)
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= v −W + (τ − s)

[
2A− dv

ds

]

and
dvs

ds
= 2

dW

ds
− dv

ds
= 2A− dv

ds

where A = A(s) is the piston acceleration (at the collision time s). Also, differentiating
(2.36) with respect to s and using (2.35) gives

dgs(v)

dv
· dv

ds
+ v = W

hence
dv

ds
=

W − v

hs(v)

Therefore, the slope of our singularity curve at time τ is

dy

dv
(τ) =

(v −W ) [hs(v) + τ − s] + 2Ahs(v)(τ − s)

v −W + 2Ahs(v)
(2.37)

As long as (P1’)–(P5’) hold, we have W = O(ε0) and A = O(ε0), hence

dy

dv
(τ) = hs(v) + τ − s + O(ε0) (2.38)

Hence, every collision with the piston only adds a O(ε0) correction to the linear growth
of the slopes of discontinuity curves.

Next we check the conditions (P3’)–(P5’) based on the following lemma:

Lemma 2.11 Let (P1’)–(P5’) hold on an interval (0, τ). Then for every point (y, v) ∈
G+(τ) there is another point (y0, v0) ∈ G+ such that π(y, v, τ) = π(y0, v0, 0) and

| |v| − |v0| | = 2(v′maxτ + 1)Bε0

Proof. We set (y0, v0) = F−τ (y, v) and use (2.32). At each collision of the point (y0, v0)
with the piston, its speed |v| changes by 2|W | ≤ 2Bε0 according to (2.31) and (2.26),
and the number of collisions is bounded by v′maxτ + 1. 2

Lemma 2.11 immediately implies that (P3’) and (P4’) continue holding with global
constants v′1, v′2, v′min and v′max slowly changing with time – they change at most by CTε0

on the interval (0, T ), with a global constant C > 0. In particular, v′1 and v′min remain
positive, provided ε0 is small enough. The constants π′min and π′max do not change at all.

To check (P5’), we explicitly construct the map Rτ : (y, v) 7→ (y∗, v∗) involved in
(2.14) and (2.15), it is defined here by Rτ = F τ ◦R0 ◦ F−τ , where R0(y, v) = (1− y,−v)
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is a simple reflection “across the piston” at time τ = 0. Now, (2.13) follows from (2.26),
and (2.15) follows from (P5).

Lastly, we derive (2.14) from the Lemma 2.11. Let (y, v) be a moving point at time
τ and (y0, v0) = F−τ (y, v) ∈ G+ its preimage to time zero. Compare the evolution of the
point (y0, v0) and its mirror image R0(y0, v0) = (1 − y0,−v0) ∈ G+ “across the piston”
during the interval (0, τ). Due to (2.13) and (2.26), these two points will experience
collisions with the walls and the piston at time moments that differ at most by O(ε0).
And their velocities will also differ at most by O(ε0), hence their positions at time T will
be almost symmetric about the piston, up to O(ε0). This implies (2.14).

Note that by the given time T the above two moving points may have experienced
a different number of collisions, as one point may have just collided with the piston or
a wall, while the other may be about to collide with it. To take care of this case, we
introduced the special distance dY in (P5’). 2

We summarize our main results in the following theorem:

Theorem 2.12 Let T > 0 be given. If the initial density π0(y, v) satisfies (P1)–(P5)
with a sufficiently small ε0, then

(a) the solution of our hydrodynamical equations (H1)–(H4) exists and is unique on the
interval (0, T );

(b) the density π(y, v, τ) satisfies (P1’)–(P5’) for all 0 < τ < T ;

(c) The piston velocity and acceleration remain small, |W (τ)| = O(ε0) and |A(τ)| =
O(ε0), and its position remains close to the midpoint 0.5 in the sense |Y (τ)−0.5| =
O(ε0), for all 0 < τ < T ;

(d) we have |τk − k/vmax| = O(ε0) for all 1 ≤ k < Tvmax, and if Tvmax > 2, then also
|τ∗ − τ2| = O(ε0).

Corollary 2.13 If ε0 = 0, so that the initial density π0(y, v) is completely symmetric
about the piston, the solution is trivial: Y (τ) ≡ 0.5 and W (τ) ≡ 0 for all τ > 0.

Lastly, we demonstrate the reason for our assumption that all the discontinuity curves
of the initial density π(y, v) must have positive slopes. It would be quite tempting to let
π(y, v) have more general discontinuity lines, e.g. allow it be smooth for vmin < |v| < vmax

and abruptly drop to 0 at v = vmin and v = vmax. The following example shows why this
is not acceptable.

Example. Suppose the initial density π0(y, v) has a horizontal discontinuity line v = v0

(say, v0 = vmin or v0 = vmax). After one interaction with the piston the image of this
discontinuity line can oscillate up and down, due to the fluctuations of the piston accel-
eration (Fig. 3). As time goes on, this oscillating curve will “travel” to the wall and come
back to the piston, experiencing some distortions on its way, caused by the differences
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Figure 3: A horizontal discontinuity line (bottom) comes off the piston as an oscillating
curve (top).

in velocities of its points (Fig. 3). When this curve comes back to the piston again, it
may well have “turning points” where its tangent line is vertical, or even contain vertical
segments of positive length. This produces unwanted singularities or even discontinuities
of the piston velocity and acceleration. The same phenomena can also occur when a
discontinuity line of the initial density π0(y, v) has a negative slope.

3 Dynamics before the first recollision

In this section we begin to study the mechanical model of the piston in the ideal gas
described in Section 1. We will show that the random trajectory of the piston described
by the functions YL(τ, ω) = XL(τL, ω)/L and WL(τ, ω) = VL(τL, ω), cf. (1.6), converges
in probability, as L → ∞, to the solution of the hydrodynamical equations Y (τ) and
W (τ) found in the previous section, on the zero-recollision interval (0, τ1).

Convention. For brevity of notation, we will suppress the dependence of L and ω in
our expressions, when it does not cause confusion. For example, we will write X(t) and
V (t) instead of XL(t, ω) and VL(t, ω), respectively, etc.

We will work here with the microscopic time t. First, we define the “microscopic”
gas density, which we will denote by p(x, v, t), for all t ≥ 0. For t = 0 it is initialized by
p(x, v, 0) = π0(x/L, v), see (1.7). For t > 0, its evolution is defined by the rules similar
to (H1)–(H3): the free motion between collisions

p(x, v, t) = p(x− vs, v, t− s) (3.1)

for s > 0 such that x− vr /∈ {0, X(t− r), L} for all r ∈ (0, s); reflections at the walls

p(0, v, t) = p(0,−v, t) and p(L, v, t) = p(L,−v, t) (3.2)
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and elastic collisions with the piston

p(X(t)± 0, v, t) = p(X(t)± 0, 2V (t)− v, t) (3.3)

Since the last equation involves the random functions X(t) and V (t), the density p(x, v, t)
will depend on ω, i.e. it is now a random function.

The evolution of the density p(x, v, t) can be conveniently described with the help of
a one-parameter family of transformations F t similar to F τ defined in Section 2. Let
(x, v) be a point in the domain

G := {(x, v) : 0 ≤ x ≤ L}

Its trajectory (xt, vt) for t > 0 is defined by the free motion inside the container, ẋt = vt

and v̇t = 0 whenever xt /∈ {0, X(t), L}, reflections at the walls (xt+0, vt+0) = (xt−0,−vt−0)
whenever xt−0 ∈ {0, L}, and collisions with the piston

(xt+0, vt+0) = (xt−0, 2V (t)− vt−0) (3.4)

whenever xt−0 = X(t). Now the family of transformations F t is defined by F t(x0, v0) =
(xt, vt) for t > 0. We will also write F−t(xt, vt) = (x0, v0). Now we simply have

p(xt, vt, t) = p(F−t(xt, vt), 0) = p(x0, v0, 0) (3.5)

Note that for each t > 0 the map F t is a bijection of G and preserves area, i.e.

det |DF t(x, v)| = 1 (3.6)

We emphasize that the transformation F t, just as the density p(x, v, t), is random, i.e.
depends on ω.

Remark. The piston velocity V (t) is a piecewise constant function updated at the
moments of collision with gas atoms by the rules (1.2)–(1.3). If t is such a collision
moment, then V (t) in equation (3.3) must be replaced by the average of its one-sided
limit values (V (t− 0) + V (t + 0))/2. This modification is important, since it makes the
rule (3.3) equivalent to (1.2)–(1.3) when (xt, vt) represents an actual gas particle of mass
m. Otherwise, it will correspond to the motion of a particle of zero mass, and we may
call it a virtual particle.

Because of (P4), the initial density p(x, v, 0) can only be positive in the region

G+ := {(x, v) : 0 ≤ x ≤ L, vmin ≤ |v| ≤ vmax}

which therefore contains all the gas particles at time t = 0. For any t > 0, the region
G+(t) := F t(G+) contains all the actual gas particles at time t, and p(x, v, t) = 0 for all
(x, v) /∈ G+(t).
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For each point (x, v) ∈ G and t > 0 we define the number of collisions with the piston
during the interval (0, t)

N(x, v, t) = #{s ∈ (0, t) : xs = X(s), vs 6= V (s)}

Then we partition the region G into subregions

Gn(t) := {F t(x, v) : (x, v) ∈ G & N(x, v, t) = n}

and put G+
n (t) := G+(t) ∩ Gn(t). The region G+

n (t) is occupied by the points that have
experienced exactly n collisions with the piston during the time interval (0, t).

We emphasize that our transformations F t and the regions Gn(t) and G+
n (t) depend

on ω, i.e. are random. We note, however, that they are completely determined by the
trajectory of the piston, i.e. by the function X(s), 0 < s < t.

The family of transformations F τ : G → G introduced in Section 2 induces a (de-
terministic) family F̃ t : G → G defined as follows: if F τ (y, v) = (yτ , vτ ), then we put
F̃ τL(yL, v) := (yτL, v). The transformations F̃ t define a deterministic density function
on G by p̃(x, v, t) := p(F̃ t(x, v), 0), which is related to the density π(y, v, τ) studied in
Section 2 by p̃(x, v, t) = π(x/L, v, t/L). We also put G̃+(t) := F t(G+).

The gas particles in G0(t) make a Poisson process, as the following lemma shows. Let
ω ∈ Ω and t > 0. Fix the trajectory of the piston X(s), 0 < s < t. That completely
specifies the region G0(t) and the density p(x, v, t).

Lemma 3.1 The conditional distribution of the gas particles in G0(t) (given the tra-
jectory X(s), 0 < s < t, of the piston) is Poisson with density function L2p(x, v, t).

Proof. Let D ⊂ G0(t) be any domain. Then its preimage F−(t−s)(D) stays positive
distance away from the piston X(s) for all s ∈ (0, t). Hence, the particles starting out in
the region F−t(D) and ending up in the region D could not affect the piston during the
time interval (0, t). Therefore, the number of particles in D at time t, being equal to the
number of particles in F−t(D) at time 0, is independent of the piston trajectory, so it is
a Poisson random variable with parameter

λD(t) = L2
∫ ∫

F−t(D)
p(x, v, 0) dx dv = L2

∫ ∫

D
p(x, v, t) dx dv

The identity of the above integrals follows from (3.5) and (3.6). 2

Remark. For any domain D ⊂ G0(t) its preimage F−t(D) is actually independent of ω.
Indeed, let F t

0 be another family of transformations on G defined by the free motion on
the entire interval 0 < x < L and elastic reflections at the walls x = 0 and x = L only (as
if the piston did not exist). Then we have F−t(D) = F−t

0 (D) for any domain D ⊂ G0(t).
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For n ≥ 1, we define Tn to be the earliest time the piston interacts with points from
G+

n (t) (thus creating the region G+
n+1(t)), or, equivalently,

Tn = sup
t>0
{G+

n+1(t) = ∅} (3.7)

The time moments Tn = Tn(ω) are random analogues of τn introduced in Section 2. In
particular, T1 is the time of the first recollision in the system (by an actual or a virtual
particle).

Lemma 3.2 For all ω ∈ Ω
T1 ≤ T1,max := L/vmax (3.8)

Proof. The fastest particles (x, v) ∈ G+ that collide with the piston at time 0 will move
with the speed vmax and recollide with the piston at time t that satisfies vmaxt + |X(t)−
L/2| = L. For all such t we have

T1 ≤ t =
L− |X(t)− L/2|

vmax

This proves the lemma. 2

During the time interval (0, T1) the piston interacts with particles in G+
0 (t). Denote

by

X0(t) = {(x, v) : x = X(t) + 0, −vmax < v < −vmin}
∪{(x, v) : x = X(t)− 0, vmin < v < vmax}

two immediate one-sided vicinities of the piston which contain all “incoming” particles,
which are about to collide with the piston.

In order to study the piston dynamics on the zero-recollision interval, it is convenient
to assume that the piston is slow enough and only interacts with the original particles
that started in G+ at time 0. A subinterval (0, S1) ⊂ (0, T1) where the piston satisfies
these requirements will be called a “slow” interval:

Definition We define (0, S1) ⊂ (0, T1) to be the maximal time interval on which
(a) |V (t)| < vmin;
(b) X0(t) ⊂ G0(t).

Note that by the condition (b) all the incoming particles that are about to hit the
piston at time t have started out in G+ at time zero and have never interacted with the
piston during the time interval (0, t).

Almost all of our considerations in this section are restricted to the “slow” interval
(0, S1). But in the end of the section we will see that for typical ω ∈ Ω the “slow” interval
coincides with the entire interval (0, T1), i.e. S1 = T1.
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Now, for every t ∈ (0, S1) we define the density of colliding particles “on the piston”
q(v, t) by

q(v, t) =

{
p(X(t)− 0, v, t) if v > 0
p(X(t) + 0, v, t) if v < 0

(3.9)

cf. (2.17). Next, we define

Q0(t) =
∫

(sgn v) q(v, t) dv (3.10)

Q1(t) =
∫

v (sgn v) q(v, t) dv (3.11)

Q2(t) =
∫

v2 (sgn v) q(v, t) dv (3.12)

in a way similar to (2.19)–(2.21) in Section 2.
Since p(x, v, t), restricted to the domain G0(t), coincides with p̃(x, v, t) = π(x/L, v, t/L),

the conditions (P1’)–(P2’) imply

Lemma 3.3 The density p(x, v, t) restricted to the region G0(t) is piecewise C1 smooth
on the x, v plane. We also have |∂p(x, v, t)/∂x| ≤ D′

1/L. The discontinuity lines of
p(x, v, t) within the region G0(t) have slope of order O(1/L) (for large L, they are almost
parallel to the x axis).

Due to the above lemma the quantities Qi, i = 0, 1, 2, are, as functions of the piston
position X, smooth and have derivatives

∣∣∣∣∣
∂Qi

∂X

∣∣∣∣∣ ≤
const

L
(3.13)

where const is a global constant.
The following theorem gives a key technical estimate of this section.

Theorem 3.4 For sufficiently large L there is a set Ω∗
0 ⊂ Ω of initial configurations of

gas particles such that
(i) for some constant c > 0

P (Ω∗
0) > 1− L−c ln ln L

(ii) for each configuration ω ∈ Ω∗
0, for each time interval

(t, t + ∆t) ⊂ (0, S1)

such that
1

L2
< ∆t <

1

L2/3 ln L
(3.14)

the change of the velocity of the piston during (t, t + ∆t) satisfies

V (t + ∆t)− V (t) = D(t) ∆t + χ (3.15)
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where
D(t)/a = Q0(t)V

2(t)− 2Q1(t)V (t) + Q2(t) (3.16)

and

|χ| ≤ C
ln L

√
∆t

L
(3.17)

with some constant C > 0.

Remark. The function D(t)/a in (3.16) is the random analogue of the quadratic polyno-
mial (2.18). The term D(t) ∆t in (3.15) is the main (“deterministic”) component of the
dynamics of the piston velocity. The term χ represents random fluctuations.

Proof. The set Ω∗
0 will consist of all configurations that satisfy certain requirements. We

start with preliminary requirements.
Consider a discrete set of time moments ti = i/L2, where i = 0, 1, . . . , I and I =

[T1,maxL
2]. Partition the domain G into the strips Sj := {(x, v) : j/L2 ≤ x < (j+1)/L2},

where j = 0, 1, . . . , L3 − 1. For each i and j denote by Ni,j the number of gas particles
in the region Sj ∩G0(ti) at time ti. Our preliminary requirements are

Ni,j ≤ ln L (3.18)

for all 0 ≤ i ≤ I and 0 ≤ j < L3. We observe that Ni,j equals the number of gas particles
in the region F−ti(Sj ∩G0(ti)) at time 0, and

F−ti(Sj ∩G0(ti)) ⊂ F−ti
0 (Sj)

So, Ni,j does not exceed the number of gas particles in F−ti
0 (Sj) at time 0, denote the

latter by Ñi,j. Now, Ñi,j is a Poisson random variable whose parameter λi,j is bounded
by

λi,j ≤ L2πmax|Sj| ≤ 2πmax(vmax − vmin)

According to Corollary A.4, for each i, j our requirement (3.18) will fail with probability
< L−d ln ln L with some d > 0. The total number of pairs i, j equals L3I = L5T1,max ≤
L6/2vmax. Hence, all our preliminary requirements hold with probability > 1−L−c′ ln ln L

with some global constant c′ > 0.
We now turn to the proof of (3.14)–(3.16). Let i = [L2t] and t1 = (i + 1)/L2. Note

that t1 − t ≤ L−2. One can easily derive from our preliminary requirements that the
number of gas particles colliding with the piston on the time interval (t, t1) is less than
const· ln L. Hence, the piston velocity V does not change by more than const· ln L/L2

during this interval. This amount is less than the bound on χ in (3.17) for all ∆t satisfying
(3.14). Therefore, we can ignore the interval (t, t1) and assume that t = t1. Note that the
quantities Q0, Q1, Q2 in (3.16) will change, as the result of the substitution t = t1, also,
but only by the amount < const/L3 due to Lemma 3.3. This change can be obviously
ignored, too. So, we suppose that t = i/L2 for some i = 0, 1, . . . , I

Now we state our main requirements. We again partition the x axis into intervals
Sj := {j/L2 ≤ x < (j + 1)/L2}, where j = 0, 1, . . . , L3− 1. For each j we put xj = j/L2.
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For each integer p, |p| ≤ vminL
2, we put vp = p/L2 and for each integer 1 ≤ q ≤ L2 we

put dq = q/L2. For each triple (j, p, q) we now define two trapezoid-like domains on the
x, v plane (see Fig. 4 below):

D−
j,p,q :=

{
(x, v) :

v − vp

x− xj

< − 1

dq

, vmin < v < vmax

}
(3.19)

and

D+
j,p,q :=

{
(x, v) :

v − vp

x− xj

< − 1

dq

, −vmax < v < −vmin

}
(3.20)

(here −1/dq is the slope of the oblique side of these trapezoids), and two strips

U−
j,p,q := {(x, v) : |x− xj + dq(v − vp)| < 10vmax/L

2, vmin < v < vmax}

and

U+
j,p,q := {(x, v) : |x− xj + dq(v − vp)| < 10vmax/L

2, −vmax < v < −vmin}

Note that U±
j,p,q are the neighborhoods of the oblique sides of the trapezoids D±

j,p,q.
Consider all time moments ti = i/L2 for i = 0, 1, . . . , I. Denote by N±

i,j,p,q the number

of particles in the region F−ti
0 (D±

j,p,q) at time 0. And denote by M±
i,j,p,q the number of

particles in the region F−ti
0 (U±

j,p,q) at time 0. These are Poisson random variables. The
parameter of the variable N±

i,j,p,q is

λ±i,j,p,q = E(N±
i,j,p,q) = L2

∫

F
−ti
0 (D±j,p,q)

p(x, v, 0) dx dv

One can verify directly that λ±i,j,p,q are uniformly bounded below by a positive constant
(even for the smallest dp, i.e. for dq = 1/L2), due to the assumption (1.8) on the initial
density. Also note that the parameters of M±

i,j,p,q are uniformly bounded above, by

E(M±
i,j,p,q) < πmax|U±

j,p,q| < 20vmax(vmax − vmin)πmax

Our main requirements are

|N±
i,j,p,q − λ±i,j,p,q| ≤ ln L

√
λ±i,j,p,q (3.21)

and
M±

i,j,p,q ≤ ln L (3.22)

By Lemma A.3 and Corollary A.4 the probability that any of these requirements fails
will be less than L−d ln ln L with some constant d > 0. The total number of quadruples
(i, j, p, q) does not exceed L9T1,max ≤ LA′′ with some fixed A′′ > 0. Therefore, all our
main requirements hold with probability > 1− L−c′′ ln ln L with some constant c′′ > 0.
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In addition, let
Z±

i,j,p,q =
∑

(x,v)∈F
−ti
0 (D±j,p,q)

v

taken at time 0. This is an “integrated” Poisson random variable, as defined in Appendix.
(Technically, we require there that the domain must be on one side of the x axis, and
now it may happen here that the region F−ti

0 (D±
j,p,q) crosses the wall x = 0 or x = L and

then lies on both sides on the x-axis; in that case we need to replace ti by a nearby time
moment ti′ < ti so that F

−ti′
0 (D±

j,p,q) lies entirely on one side of the x axis and define
Z±

i,j,p,q at time ti − ti′ rather than 0; Some obvious modifications need to be made then,
we omit details.) The estimates obtained in Appendix yield

E(Z±
i,j,p,q) = L2

∫

F
−ti
0 (D±j,p,q)

v p(x, v, 0) dx dv (3.23)

Var(Z±
i,j,p,q) = L2

∫

F
−ti
0 (D±j,p,q)

v2p(x, v, 0) dx dv (3.24)

Our last main requirement is

|Z±
i,j,p,q − E(Z±

i,j,p,q)| ≤ ln L
√

Var(Z±
i,j,p,q) (3.25)

for all i, j, p, q. The probability of failure for these requirements is estimated exactly as
above, by using Lemma A.6.

We now turn to the estimation of the piston velocity on the time interval (t, t + ∆t).
Recall that t = ti for some i = 0, 1, . . . , I.

Velocity decomposition scheme. Here we obtain a general formula for the piston
velocity, which we will use in the proof of several theorems. The laws of elastic collisions
imply [LPS]

V (t + ∆t) = (1− ε)kV (t) + ε
k∑

j=1

(1− ε)k−j · vj (3.26)

Here k is the number of particles colliding with the piston during the time interval
(t, t+∆t), and vj are their velocities numbered in the order in which the particles collide.
Equation (3.26) can be easily verified by induction on k.

We modify the formula (3.26) as follows:

V (t + ∆t) = (1− εk)V (t) + ε
k∑

j=1

vj + χ(1) + χ(2) (3.27)

where
χ(1) = V (t)[(1− ε)k − 1 + εk]

and

χ(2) = ε
k∑

j=1

vj[(1− ε)k−j − 1]
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Let us assume that the fluctuations of the velocity V (s) on the interval (t, t + ∆t), are
bounded:

sup
s∈(t,t+∆t)

|V (s)− V (t)| ≤ δV (3.28)

Consider two regions on the x, v plane:

D1 =

{
(x, v) :

v − V (t)− (sgn v) δV

x−X(t)
< − 1

∆t
, vmin < |v| < vmax

}
(3.29)

and

D2 =

{
(x, v) :

v − V (t) + (sgn v) δV

x−X(t)
< − 1

∆t
, vmin < |v| < vmax

}
(3.30)

Each of them is a union of two trapezoids Di = D+
i ∪ D−

i , i = 1, 2, where D−
i denotes

the upper and D+
i the lower trapezoid, see Fig. 4.

x

v

D

D+

v

v

max

min

X(t)

i

i
-

Figure 4: Region D1 is bounded by solid lines. Region D2 is bounded by a dashed line.

Note that D1 ⊂ D2. The bound (3.28) implies that all the particles in the region
D1 necessarily collide with the piston during the time interval (t, t + ∆t). Moreover, the
trajectory of every point (x, v) ∈ D1 hits the piston within time ∆t, hence D1 ⊂ G0(t)
by the condition (b) in the definition of the “slow” interval (0, S1). The bound (3.28)
also implies that all the particles actually colliding with the piston during the interval
(t, t + ∆t) are contained in D2 (though it is not necessarily true that D2 ⊂ G0(t)).
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We now obtain an upper bound on k. Since the velocities of the gas particles and the
piston are bounded by vmax all the particles colliding with the piston during the interval
(t, t + ∆t) are contained in the region S ′ ∩G0(t), where

S ′ = {(x, y) : |x−X(t)| < 2vmax∆t}
Hence, k does not exceed the number of particles in the region F−t

0 (S ′) at time zero. Our
preliminary requirements imply

k ≤ 2vmax∆t L2 ln L (3.31)

This allows us to bound the quantities χ(1) and χ(2), for large L, by

|χ(u)| ≤ vmaxε
2k2 ≤ 4a2v3

max(ln L)2 (∆t)2 (3.32)

for u = 1, 2. It also follows from (3.27) that

δV ≤ 5avmax∆t ln L (3.33)

We denote by k±r the number of particles in the regions D±
r ∩G0(t) for r = 1, 2 at time

t = ti. We also denote by k− the number of particles colliding with the piston “on the
left”, and by k+ that number “on the right” (of course, k− + k+ = k). Clearly,

k±1 ≤ k± ≤ k±2 (3.34)

Since D1 ⊂ G0(t), then k±1 equals the number of particles in the region F−t
0 (D±

1 ) at
time 0. Similarly, k±2 equals the number of particles in the region F−t

0 (D±
2 ∩ G0(t)) at

time 0.
The trapezoids D±

r , r = 1, 2, can be well approximated by some trapezoids D±
j,p,q

defined earlier in our main requirements. In fact, the horizontal sides v = ±vmin and v =
±vmax are common for all trapezoids, only the vertical side x = X(t) and the oblique side
need approximation. The symmetric difference between D±

r and the approximating D±
j,p,q

will lie inside some strips Sj and U±
j,p,q also defined above. Then our main requirements

will guarantee that

k±1 ≥ λ±1 − ln L
√

λ±1

and
k±2 ≤ λ±2 + ln L

√
λ±2

where
λ±1 = L2

∫

F−t
0 (D±1 )

p(x, v, 0) dx dv = L2
∫

D±1
p(x, v, t) dx dv

and

λ±2 = L2
∫

F−t
0 (D±2 ∩G0(t))

p(x, v, 0) dx dv

≤ λ±1 + L2πmax|D±
2 \D±

1 |
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where we used the boundedness of the density (1.9). The area of the domain D±
2 \D±

1 is
bounded by

|D±
2 \D±

1 | < 4vmax δV ∆t

Also, (1.9) implies that

λ±1 ≤ L2πmax|D±
1 | ≤ 2πmaxv

2
maxL

2 ∆t

Combining the above estimates gives

|k± − λ±1 | ≤ const · (L ln L
√

∆t + L2 δV ∆t) (3.35)

We now turn to the quantity

Z =
k∑

j=1

vj

also involved in the main equation (3.27). Again we can decompose Z = Z−+Z+, where
Z− and Z+ denote the sum of velocities of the particles colliding with the piston “on the
left” and “on the right”, respectively. We put

Z±
1 =

∑

(x,v)∈D±1

v

(taken at time t). Analysis similar to the previous one and the requirement (3.25) with
formulas (3.23)–(3.24) give

|Z± − E(Z±
1 )| ≤ const · (L ln L

√
∆t + L2 δV ∆t) (3.36)

We now combine (3.27) with all the subsequent estimates and obtain

V (t + ∆t)− V (t) = −ελ1V (t) + εE(Z1) + χ(3) (3.37)

where
λ1 = λ+

1 + λ−1 = L2
∫

D1

p(x, v, t) dx dv

E(Z1) = E(Z+
1 ) + E(Z−

1 ) = L2
∫

D1

v p(x, v, t) dx dv

and
|χ(3)| ≤ const ·

[
L−1 ln L

√
∆t + δV ∆t + (ln L)2 (∆t)2

]

Using Lemma 3.3 (as we already did in deriving (3.13)) to bound possible fluctuations
of the density p(x, v, t) within D1 gives

∫

D1

p(x, v, t) dx dv = (Q1(t)−Q0(t)) V (t) ∆t + χ(4) (3.38)
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and ∫

D1

v p(x, v, t) dx dv = (Q2(t)−Q1(t)) V (t) ∆t + χ(5) (3.39)

with
|χ(u)| ≤ const ·

[
(∆t)2/L + δV ∆t

]
(3.40)

for u = 4, 5.
Therefore, we get

V (t + ∆t)− V (t) = D(t) ∆t + χ (3.41)

where
|χ| ≤ const ·

[
L−1 ln L

√
∆t + δV ∆t + (ln L)2 (∆t)2

]
(3.42)

By using (3.14) and (3.33) it is easy to incorporate the second and the third terms in
(3.42) into the first one. Theorem 3.4 is proved. 2

For the next theorem, we rewrite (P5) in terms of the microscopic coordinates:

|p(x, v, 0)− p(L− x,−v, 0)| < ε0 (3.43)

We also assume also that the initial velocity of the piston is set to V (0) = W (0) rather
than to 0, see a remark Section 2 and another remark below.

Theorem 3.5 Assume that ε0 > 0 is small enough. For all sufficiently large L, for each
configuration ω ∈ Ω∗

0 and for all t ∈ (0, S1) we have
(i) there is a constant B > 0 such that

|V (t)| < Bε0 (3.44)

(ii) there is a constant C0 > 0 such that

|V (t)− V0(t)| < C0(ln L)3/2

L2/3
(3.45)

where V0(t) is defined by

V0(t) =
Q1(t)−

√
Q2

1(t)−Q0(t)Q2(t)

Q0(t)
(3.46)

whenever Q0(t) 6= 0 and by

V0(t) =
Q2(t)

2Q1(t)
(3.47)

otherwise.
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Proof. We will start proving (i) and obtain (ii) as a “side result”.
Assume that (i) is false and let t∗ < S1 be the first time (3.44) fails, i.e. let

|V (t∗ + 0)| ≥ Bε0 (3.48)

Since (3.44) holds for t < t∗, the piston’s position satisfies

|X(t)− L/2| ≤ Bε0t (3.49)

for all t < t∗. Assume for the moment that the piston did not move at all, i.e. X(s) = L/2
for all 0 < s < t. Then, by (3.43), the density q(v, t) of the gas “on the piston” would be
almost symmetric, i.e.

|q(v, t)− q(−v, t)| < ε0

Hence, we would have
|Qi(t)| < C1ε0, i = 0, 2 (3.50)

with C1 = v3
max. We emphasize that C1 does not depend on the choice of B in (3.44).

Below we will introduce some more constants Ci, i ≥ 2, so that none of them will depend
on B.

When the piston actually moves and covers the distance X(t)−L/2, then (3.13) and
(3.50) imply

|Qi(t)| < C1ε0 + C2L
−1|X(t)− L/2|, i = 0, 2 (3.51)

with some constant C2 > 0. At the same time, Q1(t) stays bounded above and below by
positive constants for all t < t∗:

0 < Q1,min ≤ Q1(t) ≤ Q1,max < ∞ (3.52)

where Q1,min and Q1,max are constants determined by πmin and πmax in (P3).
By (3.49), (3.51) and (3.8) we have

|Qi(t)| < (C1 + Bv−1
max) ε0, i = 0, 2 (3.53)

for all t < t∗. This and (3.52) imply that the quadratic polynomial (3.16) has two real
roots, and the smaller one (the one closer to zero) is given by (3.46)–(3.47), cf. (2.24)
and (2.25) in Section 2. Due to (2.22) and (3.52) we have

|V0(t)| < C3ε0 + C4L
−1|X(t)− L/2| (3.54)

for all t < t∗ and some constants C3, C4 > 0 (independent of the choice of B).
We note that (3.54) and (3.8) imply the boundedness of V0(t)

|V0(t)| ≤ const = C3ε0 + C4v
−1
max (3.55)

for all t < t∗.
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Next, we need to estimate the derivative dV0(t)/dt. (Note: the function V0(t) defined
by (3.46)–(3.47) is continuous and piecewise differentiable, it should not be confused with
the piston velocity V (t), which is piecewise constant and hence not even continuous). Due
to (3.13) ∣∣∣∣∣

dQi(t)

dt

∣∣∣∣∣ =

∣∣∣∣∣
dQi(t)

dX
· V (t)

∣∣∣∣∣ ≤
const · ε0

L
(3.56)

for i = 0, 1, 2. Differentiating the quadratic equation

Q0(t)V
2
0 (t)− 2Q1(t)V0(t) + Q2(t) = 0

with respect to t gives

dV0(t)

dt
=

(dQ0/dt)V 2
0 − 2(dQ1/dt)V0 + (dQ2/dt)

2(Q1 −Q0V0)
(3.57)

Due to (2.22), (3.52), (3.55) and (3.56) we have

∣∣∣∣∣
dV0(t)

dt

∣∣∣∣∣ ≤
E0 ε0

L
(3.58)

where E0 > 0 is a constant.
Now consider the quantity D defined by (3.16) as a function of V (with fixed Qi,

i = 0, 1, 2). Its derivative is
∂D
∂V

= 2a[Q0V −Q1]

Due to (3.52) and (3.53) there are positive constants 0 < E1 < E2 such that for all t < t∗
we have

−E2 <
∂D
∂V

< −E1

therefore, by the mean value theorem, for all t < t∗

−E2 <
D(t)

V (t)− V0(t)
< −E1 (3.59)

We now prove (3.45) for all t < t∗ with some constant C0 > 0 independent of the choice
of B in (3.44). Recall that we have set the initial velocity of the piston to V (0) = W (0)
and that W (0) = V0(0), see Section 2. Now, by way of contradiction, let t ∈ (0, t∗) be
the first time (3.45) fails. Denote by

∆0 =
1

L2/3 ln L

the maximal allowed time increment in Theorem 3.4. Let s = t−∆0. Due to Theorem 3.4

V (t) = V (s) +D(s)∆0 + χ (3.60)
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with

|χ| ≤ C
√

∆0 ln L

L
=

C
√

ln L

L4/3

Due to (3.58) we have
V0(t) = V0(s) + χ0 (3.61)

with

|χ0| ≤ E0 ε0 ∆0

L
=

E0 ε0

L5/3 ln L

For brevity, put U(s) = V (s)− V0(s) for all s. Subtracting (3.61) from (3.60) then gives

U(t) = U(s) +D(s)∆0 + χ′ (3.62)

with χ′ = χ− χ0, so that for large L

|χ′| ≤ 2C
√

ln L

L4/3
(3.63)

Now assume, without loss of generality, that U(t) > 0. Since (3.45) fails at time t, we
have

U(t) ≥ C0(ln L)3/2

L2/3
(3.64)

Now consider two cases. If U(s) ≤ 0, then by (3.59)

U(t) ≤ |D(s)|∆0 + |χ′| ≤ E2 |U(s)|∆0 + |χ′| ¿ (ln L)3/2

L2/3

for large L, which contradicts to (3.64). If U(s) > 0, then, again due to (3.62) and (3.59),

U(t) < U(s)[1− E1∆0] + χ′,

hence

U(s) >
U(t)− χ′

1− E1∆0

> (U(t)− χ′)(1 + E1∆0)

> U(t) + U(t)E1∆0 − 2χ′ (3.65)

Now, if C0 in (3.45) is large enough, say C0 = 5C/E1, then U(t)E1∆0 > 2χ′ by (3.64)
and (3.63). This fact and (3.65) imply U(s) > U(t), so (3.45) fails at an earlier time
s < t, a contradiction. Hence, (3.45) is proved for all t < t∗ and C0 = 5C/E1.

Now, combining (3.54) and (3.45) gives, for large L and all t < t∗

|dX(t)/dt| < 2C3ε0 + C4L
−1|X(t)− L/2|

Using the standard Gronwall inequality in differential equations, see, e.g., Lemma 2.1 in
[TVS], gives

|X(t)− L/2| < 2ε0C3C
−1
4 L(eC4L−1t − 1)
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and
|V (t)| < 2ε0C3e

C4L−1t

for all t < t∗. By (3.8) we have

|V (t)| < 2ε0C3e
C4v−1

max (3.66)

Now we choose B = 3C3e
C4v−1

max . Clearly, (3.66) then contradicts (3.48). This com-
pletes the proof of (3.44) for all t < S1. Theorem 3.5 is now proved. 2

Corollary 3.6 Assume that ε0 > 0 in (1.11) is small enough. Then, for all large L and
all ω ∈ Ω∗

0, we have S1 = T1, i.e. the previous theorems hold on the entire zero-recollision
interval (0, T1).

Proof. Recall that the “slow” interval (0, S1) ⊂ (0, T1) is defined by two conditions, (a)
and (b). If S1 < T1, then either (a) or (b) fails at S1. Clearly, (a) cannot fail “abruptly”
since (3.44) holds for all t < S1.

Suppose (b) fails at some s < T1, while (a) still holds. The failure of (b) means
that at time s the piston “collides” with a point (x, v) such that vmin < |v| < vmax and
(x, v) /∈ G0(s). Therefore, the backward trajectory F−(s−t)(x, v), 0 < t < s, of the point
(x, y) hits the piston at some time t > 0. Now, during the time interval (0, t) the piston
covers the distance |X(t)−L/2| ≤ Bε0t, and during the time interval (t, s) the trajectory
of our point covers the distance |v|(s− t) < vmax(s− t). Hence we have

L ≤ |X(t)− L/2|+ |v|(s− t) + |X(s)− L/2|
≤ |X(s)− L/2|+ vmaxs− (vmax −Bε0)t

On the other hand, since s < T1, we have

L > |X(s)− L/2|+ vmaxs

see the proof of Lemma 3.2. This contradiction shows that (b) cannot fail either. The
proof of Corollary 3.6 is completed. 2

Remark. We have reset the initial velocity of the piston to V (0) = W (0) here, while
in Section 1 it was set to zero. If V (0) = 0, then Theorem 3.4 would imply that
V (t) converges to V0(t) exponentially fast in t, until it gets δ-close to V0(t) with δ =
C0(ln L)3/2L−2/3. After that all our results will apply without change. The initial inter-
val on which the convergence takes place will be of order ln L, and in the hydrodynamical
time it is L−1 ln L, which vanishes as L →∞. This is why we simply opted for the most
convenient setting V (0) = W (0) here.

The following theorem improves the results of Theorems 3.4 and 3.5.
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Theorem 3.7 Assume that ε0 > 0 in (1.11) is small enough. Then there is a constant
C > 0 such that for all large L, all ω ∈ Ω∗

0 and all t < T1

|V (t)− V0(t)| < C ln L

L
(3.67)

and for any time interval (t, t + ∆t) ⊂ (0, T1) such that L−2 < ∆t ≤ 1 we have

|V (t + ∆t)− V (t)| < C
ln L

√
∆t

L
(3.68)

Proof. Due to our choice of the initial velocity, V (0) = V0(0), hence (3.67) holds for at
least small t. Assume that it fails at some t∗ < T1, and t∗ is the earliest time of failure.
Without loss of generality, assume

V (t∗)− V0(t∗) ≥ C ln L

L
(3.69)

Let 0 < t0 < t∗ be the latest time when

V (t0)− V0(t0) ≤ C ln L

2L
(3.70)

Then we have
V (t0)− V0(t0) ≤ V (t)− V0(t) ≤ V (t∗)− V0(t∗) (3.71)

for all t ∈ (t0, t∗). Let
∆t = min{1, t∗ − t0} (3.72)

We will analyze the dynamics of the piston during the time interval (t0, t0 + ∆t). Due to
(3.58) we have

|V0(t)− V0(t0)| < δV := E0 ε0L
−1∆t (3.73)

for all t ∈ (t0, t0 + ∆t), hence (3.71) implies

V (t) > V (t0)− δV (3.74)

We note that ∆t is not too small, it is at least ∆t > (L2/3 ln L)−1. Indeed, otherwise we
would have t∗ = t0 + ∆t and then (3.69), (3.70) and (3.73) would imply

V (t∗)− V (t0) ≥ 2−1CL−1 ln L− E0 ε0L
−5/3

which would contradict Theorem 3.4, since D(t0) < 0 (because V (t0) > V0(t0)).
Next, we develop a generalized version of the velocity decomposition (3.27) in the

proof of Theorem 3.4. We partition the interval (t0, t0 + ∆t) into subintervals of length

42



δ (to be chosen shortly) with endpoints ti = t0 + iδ, i = 0, 1, . . . , I, where I = ∆t/δ. We
select δ so that

0.5

L ln L
< δ <

1

L ln L
(3.75)

and ∆t/δ is an integer (for convenience). Preliminary requirements in the proof of The-
orem 3.4 allow us to adjust time so that L2t0 and L2δ are integers, hence L2ti will be an
integer for every i. The velocity decomposition in the proof of Theorem 3.4 now applies
to each subinterval (ti, ti+1) of length δ. In particular, (3.27) implies

V (ti+1)− V (ti) = −εkiV (ti) + ε
ki∑

j=1

vj + χ
(1)
i (3.76)

where ki is the number of particles colliding with the piston during the time interval
(ti, ti+1) and vj, 1 ≤ j ≤ ki, are their velocities. The fluctuation term χ

(1)
i can be

bounded by (3.32):

|χ(1)
i | ≤ 8a2v3

max(ln L)2δ2 (3.77)

Due to (3.74), the expansion (3.76) can be rewritten as

V (ti+1)− V (ti) ≤ −εkiV (t0) + ε
ki∑

j=1

vj + χ
(1)
i + χ

(2)
i (3.78)

with
|χ(2)

i | ≤ εki δV ≤ 2avmaxE0 ε0L
−1 ln L ∆t δ

where in the last step we used (3.31) and (3.73). Summing (3.78) up over i yields

V (t0 + ∆t)− V (t0) ≤ −εkV (t0) + ε
k∑

j=1

vj + χ(3) (3.79)

where k is the number of particles colliding with the piston during the time interval
(t0, t0 + ∆t) and vj, 1 ≤ j ≤ k, are their velocities, and we have

|χ(3)| ≤ 8a2v3
max(ln L)2δ∆t + 2avmaxE0 ε0L

−1 ln L (∆t)2

≤ (8a2v3
max + 2avmaxE0 ε0) L−1 ln L ∆t (3.80)

(where we used (3.73) and the assumption ∆t ≤ 1).
The expansion (3.79) can be analyzed similarly to (3.27) in the proof of Theorem 3.4.

Define a region on the x, v plane:

D1 =

{
(x, v) :

v − V (t0) + δV

x−X(t0)
< − 1

∆t
, vmin < |v| < vmax

}
(3.81)

It is the union of two trapezoids D1 = D+
1 ∪D−

1 , where D−
1 denotes the upper and D+

1

the lower one, see Fig. 4. The bound (3.74) implies that all the particles in the region
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D+
1 necessarily collide with the piston during the time interval (t0, t0 + ∆t) and all the

particles actually colliding with the piston on its left hand side during this interval of
time are contained in D−

1 .
Since v > V (t0) for all particles (x, v) ∈ D−

1 and v < V (t0) for all (x, v) ∈ D+
1 ,

we can remove from (3.79) the particles that do not belong in D+
1 and simultaneously

add to (3.79) the particles that belong in D−
1 but do not collide with the piston. This

modification only makes the right hand side of (3.79) larger, hence

V (t0 + ∆t)− V (t0) ≤ −εk1V (t0) + ε
k1∑

j=1

vj + χ(3) (3.82)

where k1 is the number of particles in D1 at time t0, and the summation runs over all
those particles. Let Z1 =

∑
(x,v)∈D1

v. Just like in the proof of Theorem 3.4, our main
requirements stated there guarantee that

|k1 − E(k1)| ≤ c3L ln L
√

∆t

and
|Z1 − E(Z1)| ≤ c4L ln L

√
∆t

where the constant c3, c4 > 0 do not depend on the choice of C in (3.67), which we
have not made yet. Now, computing the mean values of k1 and Z1 as in the proof of
Theorem 3.4 we arrive at

V (t0 + ∆t)− V (t0) ≤ D(t0) ∆t + χ(3) + χ(4) (3.83)

with
|χ(4)| ≤ a(c3 + c4)L

−1 ln L
√

∆t + c5 δV ∆t (3.84)

where c5 > 0 is a constant independent of the choice of C in (3.67). The last term in
(3.84) comes from the adjustment δV to the velocity V (t0) in (3.81). This last term is
bounded by c5E0 ε0L

−1(∆t)2, and since ∆t ≤ 1, it can be incorporated into the first term
in (3.84). Recall that V (t0)−V0(t0) ≈ 2−1CL−1 ln L > 0 (here we have an approximation
up to a quantity of order 1/L2, since the piston velocity changes by O(1/L2) at each
collision). Then due to (3.59) we have

D(t0) ≤ −E1(V (t0)− V0(t0)) ≈ −2−1CE1L
−1 ln L

Therefore, combining the above estimates gives

V (t0 + ∆t)− V (t0) ≤ −2−1CE1L
−1 ln L ∆t + χ(5) (3.85)

with χ(5) = χ(3) + χ(4) bounded by (3.80) and (3.84):

|χ(5)| ≤ c6(L
−1 ln L ∆t + L−1 ln L

√
∆t)
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where c6 > 0 is a constant independent of the choice of C in (3.67). Now we chose the
constant C there as

C = max{c6, 6E
−1
1 c6} (3.86)

Then (3.85) implies

V (t0 + ∆t)− V (t0) ≤ c6L
−1 ln L (−2∆t +

√
∆t)

and hence, due to (3.73),

V (t0 + ∆t)− V0(t0 + ∆t) ≤ V (t0)− V0(t0)

+c6L
−1 ln L (−2∆t +

√
∆t) + E0 ε0L

−1∆t (3.87)

We now have two cases. First, let t∗− t0 ≤ 1, hence ∆t ≤ 1. The expression −2∆t+
√

∆t
has a maximum, equal to 1/8, at the point ∆t = 1/16. Therefore, (3.87) implies

V (t∗)− V0(t∗) < V (t0)− V0(t0) + 8−1c6L
−1 ln L + E0 ε0L

−1

This contradicts (3.69) and (3.70) when L is large enough, recall our choice of C in (3.86).
Consider the second case: t∗ − t0 > 1. Then ∆t = 1 and (3.87) implies, for large L,

V (t0 + 1)− V0(t0 + 1) < V (t0)− V0(t0)− 2−1c6L
−1 ln L

which contradicts (3.71). This completes the proof of (3.67).
We now prove (3.68). If ∆t < (L2/3 ln L)−1, then we can use Theorem 3.4:

|V (t + ∆t)− V (t)| ≤ |D(t)|∆t + CL−1 ln L
√

∆t

The early estimates (3.59) and (3.67) imply

|D(t)| ≤ E2|V (t)− V0(t)| ≤ CE2L
−1 ln L (3.88)

so that (3.68) follows (with some larger value of C than above).
Now let (L2/3 ln L)−1 ≤ ∆t ≤ 1. Without loss of generality, assume that V (t + ∆t) >

V (t). Moreover, we can assume that

V (s) > V (t) for all s ∈ (t, t + ∆t) (3.89)

Indeed, if this is not the case, we can replace t by t′ = max{s < t + ∆t : V (s) ≤ V (t)}
and prove (3.68) for the smaller interval (t′, t + ∆t).

Next, our plan is to apply some estimates from the proof of (3.67) and then argue along
the lines of the proof of Theorem 3.4. Denote t0 = t and partition the interval (t0, t0+∆t)
into subintervals of length δ satisfying (3.75). Then we again have decomposition (3.76)–
(3.77). Due to (3.89) we have V (ti) > V (t0) for all i, hence (3.76) implies

V (ti+1)− V (ti) < −εkiV (t0) + ε
ki∑

j=1

vj + χ
(1)
i
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Summing this up over i gives (3.79) with the bound (3.80), in which the second term

can be simply removed, since we do not have χ
(2)
i anymore. Next, possible fluctuations

of the piston velocity V (s) during the time interval (t0, t0 + ∆t) can be estimated with
the help of (3.67) and (3.73):

|V (s)− V (t0)| ≤ δV := 2CL−1 ln L + E0 ε0L
−1∆t

for all s ∈ (t0, t0 + ∆t). Then we estimate the random variables k and Z =
∑

j vj along
the lines of the proof of Theorem 3.4, starting with construction of two domains D1 and
D2 by (3.29)–(3.30), etc. Repeating the argument almost word by word we arrive at an
analogue of (3.41):

V (t + ∆t)− V (t) < D(t) ∆t + χ′

where
|χ′| ≤ const ·

[
L−1 ln L

√
∆t + δV ∆t + L−1 ln L ∆t

]

where the last term comes from (3.80), which we have now, instead of (3.32) (note: (3.32)
would not be nearly enough anymore, since ∆t is large; this is why we needed to partition
the interval (t, t + ∆t) into smaller subintervals). We now combine the above estimates
with (3.88) and complete the proof of (3.68) and Theorem 3.7. 2

We finally prove the convergence, as L →∞, of the random trajectory of the piston
to the solution Y (τ),W (τ) of the hydrodynamical equations found in Section 2.

Theorem 3.8 Assume that ε0 > 0 in (1.11) is small enough. Then, for all large L and
all ω ∈ Ω∗

0, there is a constant C > 0 such that

|YL(τ, ω)− Y (τ)| ≤ C ln L

L
(3.90)

and

|WL(τ, ω)−W (τ)| ≤ C ln L

L
(3.91)

for all 0 < τ < min{τ1, T1/L} and

|τ1 − T1/L| ≤ C ln L

L
(3.92)

Proof. In Section 2 we defined the function F (Y, τ) so that the hydrodynamical solution
Y (τ) satisfies

dY (τ)/dτ = F (Y, τ), Y (0) = 1/2 (3.93)

see (2.29). Now Theorem 3.7 implies that for all ω ∈ Ω∗
0 the random trajectory satisfies

∂YL(τ, ω)/∂τ = F (Y, τ) + χ(τ, ω), YL(0, ω) = 1/2 (3.94)

46



with some

|χ(τ, ω)| ≤ C ln L

L

Recall that |∂F (Y, τ)/∂Y | ≤ κ, see (2.30). Therefore, the difference ZL(τ, ω) := YL(τ, ω)−
Y (τ) satisfies

|Z ′
L(τ, ω)| ≤ κ|ZL(τ, ω)|+ C ln L

L

and ZL(0, ω) = 0. By the standard Gronwall inequality in differential equations, see,
e.g., Lemma 2.1 in [TVS], we have

|ZL(τ, ω)| ≤ C ln L

κL

(
eκτ − 1

)

and

|Z ′
L(τ, ω)| ≤ C ln L

L
eκτ

for all τ < min{τ1, T1/L}, which imply (3.90) and (3.91).
Lastly, we verify (3.92). By (3.91), random fluctuations of the piston velocity are

bounded by CL−1 ln L. Hence, random fluctuations of the velocities of particles that have
had one collision with the piston are bounded by 2CL−1 ln L. The random fluctuations of
the positions of both the piston and particles at every moment of time t < min{τ1L, T1}
are bounded by the same quantities (with, possibly, a different value of C) in the coor-
dinate y = x/L. On the other hand, the relative velocity of the piston and the particles
stays bounded away from zero (by, say, vmin − 4Bε0 > 0). Hence the time of the first
recollision T1/L can differ from τ1 by at most const·L−1 ln L. Theorem 3.8 is proved. 2

4 Dynamics between the first and second recollisions

In this section we study the one-recollision interval (τ1, τ2), on which gas particles expe-
rience the second collision (i.e., the first recollision) with the piston.

The particles that have collided with the piston no longer make a Poisson process,
hence their distribution is much harder to control. This is our main trouble. On the
other hand, we will be satisfied with much weaker estimates than those in the previous
section. Also, many arguments and constructions in this section are similar to those in
Section 3, and we omit some details. We will focus on new ideas.

Here our analysis is always restricted to the configurations ω ∈ Ω∗
0. Later on we will

put additional requirements on ω.
Recall that for ω ∈ Ω∗

0 the piston velocity is small, |V (t)| < Bε0, see (3.44), on the
zero recollision interval (0, T1). Hence, the velocities of gas particles that experience one
collision with the piston on the interval (0, T1) are bounded

v1,min < |v| < v1,max (4.1)
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with
v1,min := vmin − 2Bε0 and v1,max := vmax + 2Bε0 (4.2)

The first time of the second recollision T2 = T2(ω) is defined by T2 = supt>0{G+
3 = ∅},

see (3.7). Due to (3.44) and (4.1) the following bound can be easily obtained as in the
proof of Lemma 3.2:

T2 ≤ L

vmax

+
L

vmax − 2Bε0

≤ 3L

vmax

(4.3)

Now let (x, v) ∈ G+ and (xt, vt) = F t(x, v) for t > 0. Denote by

s1(x, v) = min{t : xt = X(t)}

the time of the first collision with the piston. The region

G+
∗ (t) := {(xt, yt) ∈ G+

1 (t) : s1(x, v) < T1}

is occupied by points that by the time t have experienced one collision with the piston,
which occurred before time T1. By removing the superscript + in the above formula we
define G∗(t). Let T∗ ≤ T2 be the earliest time the piston interacts with the particles

(x, v) ∈ [G+
1 (t) \G+

∗ (t)] ∪G+
2 (t)

The time T∗ is a random analogue of τ∗ introduced in Section 2. During the interval
(T1, T∗) the piston only interacts with the particles from G+

0 (t) ∪ G+
∗ (t), hence their

velocities must be bounded by (4.1). Denote by

X1(t) = {(x, v) : x = X(t) + 0, −v1,max < v < −v1,min}
∪{(x, v) : x = X(t)− 0, v1,min < v < v1,max} (4.4)

two immediate one-sided vicinities of the piston which contain all “incoming” particles
for every t ∈ (T1, T∗).

Again, as in the previous section, we define a subinterval (T1, S2) ⊂ (T1, T∗) on which
the piston is slow enough:

Definition Let (T1, S2) ⊂ (T1, T∗) be the maximal time interval during which
(a) |V (t)| < v1,min;
(b) X1(t) ⊂ G0(t) ∪G∗(t).

The condition (b) means that the particles with velocities v1,min < |v| < v1,max that
are about to interact with the piston at time t have interacted with the piston during
the interval (0, t) at most once, and if they did, the interaction occurred before T1.

Next we estimate how large the interval (T1, S2) is. Suppose

|V (t)−W (t/L)| ≤ ∆ (4.5)
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for all t < S2 and some small ∆ (we will later estimate ∆ and show that ∆ → 0 as
L → ∞). This immediately implies |V (t)| ≤ ∆ + Bε0, according to (2.26). Integrating
(4.5) with respect to t gives

|X(t)− LY (t/L)| ≤ t∆

and hence
|X(t)− L/2| ≤ (∆ + Bε0)t (4.6)

Proposition 4.1 If (4.5) holds for t < S2 with some small ∆ > 0, then T2 − S2 ≤
CL(∆ + ε0), where C > 0 is a constant.

Proof. If S2 = T2, then the statement is trivial. If S2 < T2, then either S2 < T∗, and so
the condition (a) or (b) in the previous definition fails at time S2, or S2 = T∗ < T2. Note
that the condition (a) cannot fail abruptly, since we assume |V (t)| ≤ ∆+Bε0, on (0, S2),
i.e. V (t) remains small. If (b) fails, then at time S2 the piston collides with a point (x, v)
such that v1,min ≤ |v| ≤ v1,max and the past trajectory (xt, vt) := F t−S2(x, v) of that point
for t ∈ (0, S2) hits the piston at some time t1 ≥ T1. If S2 = T∗ < T2, then at time S2 the
piston recollides with a gas particle (x, v) whose past trajectory (xt, vt) := F t−S2(x, v)
experiences the first collision with the piston at some time t1 ≥ T1. In the last case, by
(4.5)

|v| ≤ vmax + 2|V (t1)| ≤ vmax + 2(∆ + Bε0)

In either of the above two cases, the trajectory (xt, vt) collides with the piston twice -
once at time t1 ≥ T1 and the second time at t2 = S2. Denote by X1, X2 the positions
of the piston and by V1, V2 its velocities at times t1, t2, respectively. Without loss of
generality, assume that our trajectory (xt, vt) lies to the right of the piston. Note that
the speed |v| = |vt| for t1 < t < t2 satisfies

|v| ≤ max{v1,max, vmax + 2(∆ + Bε0)}
≤ vmax + 2(∆ + B1ε0) (4.7)

with B1 = max{B,B}. Then we write an obvious identity

|v|(t2 − t1) = (L−X1) + (L−X2)

hence, by (4.6) and (4.7)

t2 − t1 ≥ L− (∆ + Bε0)(t1 + t2)

vmax + 2(∆ + B1ε0)

On the other hand, consider the particle that experiences the very first recollision with
the piston (this happens at time T1). After the collision, that particle acquires velocity
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|v(T1 + 0)| ≥ vmax − 2|V (T1)|. The next collision of this particle with the piston occurs
after T2. Therefore,

T2 − T1 ≤ L/2 + |X(T1)− L/2|+ L/2 + |X(T2)− L/2|
vmax − 2|V (T1)|

≤ L + (∆ + Bε0)(T1 + T2)

vmax − 2(∆ + Bε0)

Combining the above estimates gives

T2 − S2 ≤ (T2 − T1)− (t2 − t1) ≤ CL(∆ + ε0)

with some C > 0 determined by B and B. 2

Next, we study the dynamics during the time interval (T1, S2). We again define
the density of colliding particles “on the piston” q(v, t) by the equation (3.9) and the
functions Qi(t), i = 0, 1, 2, by (3.10)–(3.12). We emphasize that now, unlike what we
had in the previous section, the density p(x, v, t) essentially depends on ω (at least for
(x, v) ∈ G+

∗ (t)), hence q(v, t) and Qi(t) will depend on ω not only through the piston
position X(t) but also through the surrounding density p(x, v, t).

In the previous sections we also introduced the deterministic density p̃(x, v, t). So,
now we can define the corresponding deterministic density “on the piston”

q̃(v, t) =

{
p̃(X(t) + 0, v, t) if v < 0
p̃(X(t)− 0, v, t) if v > 0

(4.8)

cf. (2.17) and the deterministic functions Q̃i(t), i = 0, 1, 2 by the equations similar to
(3.10)–(3.12) but with tildes over the corresponding functions. We use tildes to distin-
guish these deterministic functions from the random ones.

We now compare the random functions p, q, Qi with their deterministic counterparts
on the interval (T1, S2). Since the transformations F t : G+ → G+(t) and F̃ t : G̃+ →
G̃+(t) (recall that G̃+(t) = F̃ t(G+)) are invertible area-preserving maps, then so is the
map

Ψt = F̃ t ◦ F−t

which takes G+(t) onto G̃+(t). The next lemma easily follows from Theorem 3.8:

Lemma 4.2 Let t < S2 and ω ∈ Ω∗
0. For every (x, v) ∈ G+

∗ (t) put (x̃, ṽ) := Ψt(x, v).
Then

|x− x̃| ≤ C ln L and |v − ṽ| ≤ CL−1 ln L

with a constant C > 0. We also have

p(x, v, t) = p̃(x̃, ṽ, t)
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Next, the properties of the density p(x, v, t) stated in Lemma 3.3 obviously hold for
the deterministic density p̃(x, v, t) on the entire region G̃+. That is, the density p̃(x, v, t) is
piecewise C1 smooth with |∂p̃(x, v, t)/∂x| ≤ D′

1/L and the discontinuity lines of p̃(x, v, t)
have slope of order O(1/L) (so they are almost parallel to the x axis). Therefore, as in
(3.13), we have ∣∣∣∣∣

∂Q̃i

∂X

∣∣∣∣∣ ≤
const

L
(4.9)

Lemma 4.2 allows us to compare Qi and Q̃i considered as functions of X in the following
way:

Lemma 4.3 Let t < S2 and ω ∈ Ω∗
0. Then for i = 0, 1, 2

|Qi(t)− Q̃i(t)| ≤ CL−1 ln L

Note that Q̃i(t) is defined through q̃(v, t) which uses the (random) position of the
piston X(t) for the given ω, see (4.8). The above lemma shows that the dependence of
Qi(t) on ω through the density p(x, v, t) (which itself depends on ω) is very weak, because
L−1 ln L is small. In other words, the density p(x, v, t) of the gas surrounding the piston
fluctuates with ω very little.

The following theorem is an analogue of Theorem 3.4.

Theorem 4.4 For all sufficiently large L there is a set Ω∗
1 ⊂ Ω∗

0 of initial configurations
of particles such that
(i) there is a constant c > 0 such that

P (Ω∗
1) > 1− L−c ln ln L (4.10)

(ii) for each configuration ω ∈ Ω∗
1, for each time interval

(t, t + ∆t) ⊂ (T1, S2)

such that
(ln L)2

L1/3
≤ ∆t ≤ 1

L1/7
(4.11)

the change of the velocity of the piston satisfies

V (t + ∆t)− V (t) = D̃(t) ∆t + χ (4.12)

where
D̃(t) = a[Q̃0(t)V

2(t)− 2Q̃1(t)V (t) + Q̃2(t)] (4.13)

and

|χ| ≤ C
ln L (∆t)1/4

L1/4
(4.14)

with some global constant C > 0.
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Remark. Note that our bound (4.14) on random fluctuations represented by χ is much
weaker than (3.17) in Theorem 3.4. This is due to the lack of a good control over large
deviations for the distribution of gas particles, as it will be clear from the proof.

Proof. Our argument basically goes along the lines of the proof of Theorem 3.4. But it
involves a good deal of new constructions, which we describe in detail. The first step is
the velocity decomposition scheme, see (3.27),

V (t + ∆t) = (1− εk)V (t) + ε
k∑

j=1

vj + χ(1) + χ(2) (4.15)

The error terms χ(1) and χ(2) are defined in Section 3 after (3.27), and they are bounded
by

|χ(u)| ≤ vmaxε
2k2

for u = 1, 2, see (3.32). We will see later that

k ≤ const · L2 ∆t (4.16)

hence
|χ(u)| ≤ const · (∆t)2 (4.17)

for u = 1, 2.
Next, we need a crude upper bound δV on possible fluctuations of the piston velocity

V (s) during the interval (t, t + ∆t), as defined by (3.28). One can be easily derived from
(4.15):

δV ≤ 2vmaxεk ≤ const ·∆t (4.18)

We now define two regions D1 = D+
1 ∪ D−

1 and D2 = D+
2 ∪ D−

2 on the x, v plane
by equations (3.29)–(3.30), where vmin and vmax must be replaced by v1,min and v1,max,
respectively. As it is explained in Section 3, all the particles in D1 (at time t) will
necessarily collide with the piston during the interval (t, t + ∆t). And all the particle
that actually collide with the piston during that interval are contained in D2. Therefore,
we have

k±1 ≤ k± ≤ k±2 (4.19)

where k±, k±1 , k±2 are defined around (3.34). This gives upper and lower bounds on the
number of colliding particles.

Our next step is to estimate the numbers k±i , i = 1, 2. Since k±i no longer have
Poisson distribution, we estimate them by using a new approach. Let D be one of the
four trapezoids D±

i , i = 1, 2, and let kD,ω be the (random) number of particles in D at
time t. Obviously, kD,ω is equal to the number of particle in F−t(D) at time zero.

We note that the trapezoid D has height v1,max − v1,min = const and width O(∆t),
hence its area is bounded by

d1 ∆t ≤ |D| ≤ d2 ∆t (4.20)
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with some constants 0 < d1 < d2 < ∞.
Let us examine the region F−t(D) more closely. Since (t, t+∆t) ⊂ (T1, S2), it follows

from the condition (b) in the definition of S2 that D ⊂ G0(t)∪G∗(t). Put D0 = D∩G0(t)
and D1 = D ∩G∗(t), then F−t(D) = F−t(D0) ∪ F−t(D1). To emphasize the dependence
of the flow F t on ω we will write F t

ω for F t. Now the part F−t
ω (D0) will be obtained

by a simple linear transformation of D0 without collisions with the piston, hence it will
be actually independent of ω. The part F−t

ω (D1) is also obtained by pulling the domain
D1 back in time, but one collision with the piston will occur along the way. Since the
position and velocity of the piston are random, then the domain F−t

ω (D1) will depend on
ω. Hence, the domain Dω := F−t

ω (D) will depend on ω. The initial number of particles,
kD,ω, in a randomly selected domain Dω certainly need not be a Poisson random variable.

To estimate kD,ω we fix some ∆t satisfying (4.11) and construct finitely many domains
Dn ⊂ G, 1 ≤ n ≤ N∗, which have the following property. For every ω ∈ Ω∗

0, every
t ∈ (T1, S2 −∆t), and every trapezoid D defined above, there are two domains Dn′ , Dn′′

such that
Dn′ ⊂ F−t

ω (D) ⊂ Dn′′ (4.21)

and the area of the difference is relatively small:

|Dn′′ \Dn′| ≤ χ(3)|Dω| (4.22)

with some χ(3) → 0 as L →∞. We say that Dn′ and Dn′′ approximate Dω “from inside”
and “from outside”, respectively. We denote the collection of the domains Dn, for the
given ∆t, by

C = C∆t = {Dn}N∗
n=1

We postpone the construction of Dn’s for the moment and derive immediate benefits of
the above approximation. The inclusion (4.21) implies

kn′,ω ≤ kD,ω ≤ kn′′,ω (4.23)

where kn,ω is the (random) number of particles in the domain Dn at time zero. Since
Dn, for each n, is fixed (independent of ω), the random variable kn,ω does have a Poisson
distribution with mean value

λn := L2
∫

Dn

p(x, v, 0) dx dv

According to Lemma A.2, we have

P
(
ω : |kn,ω − λn| > B

√
λn

)
≤ 2e−cB2

(4.24)

for any B < b
√

λn, where b > 0 is a constant and c = c(b) > 0 another constant. We will
specify the value of B = B∆t (one for all Dn’s in C∆t) later. Due to (4.20), it is enough
to require

B∆t < L
√

∆t (4.25)
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Then we define Ω∗
1(∆t) as the set of configurations ω ∈ Ω∗

0 satisfying

|kn,ω − λn| ≤ B∆t

√
λn for 1 ≤ n ≤ N∗ (4.26)

Then by (4.24) we have

P (Ω∗
0 \ Ω∗

1(∆t)) ≤ 2N∗e−cB2
∆t (4.27)

Next, for all ω ∈ Ω∗
1(∆t) the bounds (4.23) and (4.26) imply

λn′ −B∆t

√
λn′ ≤ kD,ω ≤ λn′′ + B∆t

√
λn′′ (4.28)

Furthermore, consider the quantity

λD,ω = L2
∫

F−t
ω (D)

p(x, v, 0) dx dv = L2
∫

D
p(x, v, t) dx dv

Due to the inclusion (4.21) we have

λn′ ≤ λD,ω ≤ λn′′

It follows from (4.22) that

(1− cχ(3))λD,ω ≤ λn′ ≤ λn′′ ≤ (1 + cχ(3))λD,ω (4.29)

for some constant c > 0 (determined by πmax, πmin, v1, and v2 in (P3)).
Consider the deterministic quantity

λ̃D = L2
∫

D
p̃(x, v, t) dx dv

It easily follows from Lemma 4.2 and the properties of the function p̃(x, v, t) that

|λD,ω − λ̃D| ≤ CL−1 ln L λ̃D (4.30)

with some constant C > 0. Combining (4.29) and (4.30) we arrive at

(1− χ(4))λ̃D ≤ λn′ ≤ λn′′ ≤ (1 + χ(4))λ̃D (4.31)

with
χ(4) = const · (χ(3) + L−1 ln L) (4.32)

The bounds (4.28) and (4.31) will give the desired estimate on the number kD,ω.
We now construct the domains Dn that approximate the domains Dω = F−t

ω (D) for
all ω ∈ Ω∗

0 and all trapezoids D defined above. We first fix ω ∈ Ω∗
0 and a trapezoid D and

will construct two special domains D′, D′′ that approximate Dω = F−t
ω (D) from inside

and from outside, i.e. such that D′ ⊂ Dω ⊂ D′′.
The domain Dω is obtained by pulling D back in time. We consider its “trajectory”

D−
s = F s−t

ω (D) for 0 < s < t, so that D−
0 = Dω and D−

t = D. We examine the shape of
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the domain D−
s and how it changes as s runs from t down to 0. Recall that the trapezoid

D is adjacent to the piston at time t (it is about to run into the piston at that time).
As s goes from t downward, the domain D−

s comes off the piston and travels to a wall
(as in a movie running backward). During that period, the map F−(t−s)

ω restricted to D
is linear, hence D−

s is still a trapezoid. But since the velocities of points (x, v) ∈ D vary
(from v1,min to v1,max), the trapezoid D−

s will be “skewed” – its “outer” edge |v| = v1,max

will move toward the wall faster than the other edge |v| = v1,min. By the time it reaches
the wall, D−

s will be a long slanted trapezoid stretched the distance O(L) along the x
axis. Every vertical line (parallel to the v axis) will intersect D−

s in a segment of length
O(∆t/L). As s runs farther down, a collision with the wall occurs, and a new part of D−

s

appears directly across the x axis, moving now toward the piston. Its shape will be also
that of a long narrow trapezoid, whose vertical “thickness” is O(∆t/L). Eventually it will
move all the way (the distance O(L)) from the wall to the piston and contact the piston
at some time s∗ = s∗(D), see Fig. 5. Note that so far D−

s is completely independent of
ω.

D

_
sD

Figure 5: The domain D−
s . The arrows show its motion as s decreases.

The “outgoing” part of D−
s , as it comes off the piston, is shown on the right.

After the collision with the piston, a new part of D−
s appears across the x axis, coming

off the piston and moving back to the wall. This is the most interesting part, it will be
determined by the piston position and velocity, hence it will actually depend on ω. Recall
that the part of D−

s running into the piston before the collision (the “incoming” part)
is a narrow trapezoid bounded by two almost horizontal lines with slope O(1/L) lying
a distance O(∆t/L) apart. We call them the upper and lower boundaries of D−

s . The
part of D−

s coming off the piston after the collision (the “outgoing” part) also has upper
and lower boundaries (due to the reversal of velocities at collision, though, the upper
boundary after the collision is the image of the lower boundary before the collision, and
vice versa), see Fig. 5. The boundaries of the outgoing part of D−

s are quite irregular
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and depend on ω. It is them who need careful approximation.
The shape of the outgoing boundary of D−

s will be determined by the piston velocity
V (u) during the interval s < u < s∗. Since the collision between D−

s and the piston occurs
during the zero-recollision interval (s∗ < T1), we can apply the results of Section 3. By
Theorem 3.7 the piston velocity behaves as a Hölder continuous3 function:

|V (u + h)− V (u)| ≤ CL−1 ln L
√

h =: dh (4.33)

for all h ∈ (L−2, 1). We will only consider h satisfying L−a1 < h < L−a2 with some
0 < a2 < a1 < 2. Note that in this case

Ldh/h →∞ and dh/h → 0 (4.34)

as L →∞.
Let us consider the upper boundary of the outgoing domain D−

s after the collision.
It is a continuous curve that can be parameterized by the collision time (or contact
time between D−

s and the piston), call it u, and then it becomes a parametric curve
(xs(u), vs(u)) with parameter u ∈ (s, s∗). This means, in particular, that

Fw(xs(u), vs(u)) = (xs+w(u), vs+w(u))

for s < u < s∗ and w ≤ u− s, and the point

F u−s(xs(u), vs(u)) = (xu(u), vu(u))

is the endpoint of the upper boundary of D−
u , i.e. xu(u) = X(u) is the piston coordinate

at time u.

Claim 1. For each u ∈ (0, s∗ − h) and all sufficiently large L we have

|xu+h(u + h)− xu(u)| ≤ Bε0h, (4.35)

and
|vu+h(u + h)− vu(u)| ≤ 3dh (4.36)

Proof. The first bound means that |X(u + h) −X(u)| ≤ Bε0h and follows from (3.44).
To prove the second, we use the collision rule

vu(u) = −v−u (u) + 2V (u)

where v−u (u) is the v coordinate of the lower boundary of the “incoming” part of Du

where it contacts the piston (at time u). Similarly,

vu+h(u + h) = −v−u+h(u + h) + 2V (u + h)

3For any d > 0, d-dense sets in the space of Hölder continuous functions were constructed by Kol-
mogorov and Tihomirov [KT], our constructions here are in the same spirit.
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Since the lower boundary of the “incoming” part of D−
s is a straight line with slope

O(1/L), and the piston velocity is bounded, then

|v−u+h(u + h)− v−u (u)| ≤ const · h/L < dh

where the last bound follows from(4.34). This and (4.33) imply (4.36). 2

We now fix some h satisfying

(∆t/L)1/2 ≤ h ≤ 2(∆t/L)1/2 (4.37)

With our restrictions (4.11) on ∆t, this implies L−2/3 ≤ h ≤ L−4/7, hence (4.34) will
hold. Also, we note that

dh/(∆t/L) → 0 as L →∞ (4.38)

hence dh will be much smaller than the “thickness” of the domain D−
s .

Next we put a lattice on the x, v plane with the x-spacing rh and the v-spacing rdh,
where r > 0 is a sufficiently small constant (for example, r = Bε0/10). The lattice sites
are

(xi, vi) = (rhi, rdhj), i, j ∈ ZZ (4.39)

Now we are ready to define the boundary of D′ ⊂ D−
0 = F−t

ω (D) approximating
D−

0 from inside. We start with the upper boundary of the “outgoing” part of D−
0 . It

is parameterized as (x0(u), v0(u)), see above, with 0 < u < s∗. We consider discrete
parameter values uk = kh, k = 0, 1, . . . , [s∗/h]. For each such k, consider the point

F kh(x0(kh), v0(kh)) = (xkh(kh), vkh(kh))

This is the endpoint of the upper boundary of D−
kh, so that xkh(kh) = X(kh) is the

piston coordinate at time kh. Now we pick a site of the lattice (4.39) closest to the point
(xkh(kh), vkh(kh)) and lying on the same side of the piston as the domain D−

kh. Call this
site (xs

k, y
s
k). Next, we adjust this site by moving it down (along the v axis) the fixed

distance 10dh and obtain the adjusted point (xa
k, v

a
k):

xa
k = xs

k, va
k = vs

k − 10dh (4.40)

We note that Claim 1 (along with the smallness of r) implies

|xa
k − xa

k+1| = |xs
k − xs

k+1| ≤ 2Bε0h (4.41)

and
|va

k − va
k+1| = |vs

k − vs
k+1| ≤ 4dh (4.42)

Next, let
(x0

k, v
0
k) := F−kh(xa

k, v
a
k)
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Now join the points (x0
k, v

0
k) and (x0

k+1, v
0
k+1) with a straight line segment, call it Lk.

Then the upper boundary of the domain D′ is made by the segments Lk, i.e. it is

∪[s∗/h]−1
k=0 Lk

Claim 2. The upper boundary of D′ lies completely inside the domain D−
0 = F−t

ω (D).

Proof. It is enough to show that each link Lk lies inside D−
0 . It is easy to see that the

map F kh restricted to the link Lk is a linear map, and the image La
k := F kh(Lk) is a

straight line segment joining the points (xa
k, v

a
k) and

F−h(xa
k+1, v

a
k+1) = (xa

k+1 − va
k+1h, va

k+1)

We denote by
|La

k|x = |xa
k+1 − xa

k − va
k+1h|, |La

k|v = |va
k+1 − va

k |
the lengths of the projections of La

k onto the x and v axes, respectively. Note that
v1,min −Bε0 ≤ |va

k+1| ≤ v1,max + Bε0. Hence (4.35) implies that

(v1,min − 2Bε0)h ≤ |La
k|x ≤ (v1,max + 2Bε0)h

i.e. |La
k|x is of order h. By (4.36), |La

k|v < 3dh. Hence, the slope of La
k is O(dh/h) → 0 by

(4.34). Therefore, La
k is almost a horizontal segment. The inequality (4.36) shows that

the upper boundary (xkh(u), vkh(u)) of D−
kh for kh ≤ u ≤ kh+h, which lies directly above

La
k, oscillates in the v direction by less than 3dh. The adjustment (4.40) then ensures

that the segment La
k lies entirely below the upper boundary of the domain D−

kh. Also,
(4.38) implies that the domain D−

kh is much “thicker” than the distance between its upper
boundary and La

k, hence La
k lies entirely inside that domain. Hence, Lk = F−kh(La

k) lies
entirely inside D−

0 = F−kh(D−
kh), proving our claim. 2

It is also clear from the above argument that the segment La
k lies the distance < 20dh

below the actual upper boundary of the domain D−
kh so that the area between them is

bounded by const·hdh. Hence, the total area between the upper boundaries of D−
0 and

D′ is bounded by
const · hdh · (s∗/h) ≤ const · Ldh

In the same way we construct the lower boundary of the new domain D′. The only
difference is that we adjust the selected sites of the lattice (4.39) by moving them up,
so that the joining segments will be again inside D−

0 . The upper and lower parts of the
boundary will give us a new domain approximating the “outgoing” part of D−

0 after the
collision with the piston, i.e. the part F−t(D ∩ G∗(t)). Note that this part may itself
experience one collision with the wall (during the interval (0, s∗)), then it will consist of
two connected components lying across the x axis.

It remains to approximate the “good” part of F−t
ω (D) = D−

0 , which has not interacted
with the piston, i.e. the part F−t

ω (D ∩G0(t)). That one, as described above, consists of
one or two trapezoids bounded by two almost horizontal straight lines a distance O(∆t/L)
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apart. This is an easy task. We simply replace the upper (lower) boundary of the domain
F−t(D ∩G0(t)) with a polygonal line joining some sites of the lattice (4.39), picked one
on each vertical line x = xi crossing the domain D−

s and lying inside (outside) of this
domain and no farther than dh from the original boundary (recall that r in (4.39) is very
small, so the above choice is possible). That gives the boundary of D′. Note that if we
number the selected sites consecutively (say, from left to right), and call them (xs

k, y
s
k),

then the neighboring sites will again satisfy (4.41)–(4.42).
The complicated construction described above produces a domain D′ ⊂ Dω = F−t

ω (D)
such that

|Dω \D′| ≤ const · dhL = const · ln L
√

h (4.43)

In a completely similar way we construct another domain D′′ that approximates Dω from
outside and satisfies

|D′′ \Dω| ≤ const · dhL = const · ln L
√

h (4.44)

(we just need to adjust the sites along the upper boundary by moving them up and the
sites along the lower boundary by moving them down, so that the new boundaries will
be completely outside of Dω). Since |D| = O(∆t), the inequalities (4.43)–(4.44) imply

|D′′ \D′| ≤ const · ln L
√

h (∆t)−1 |D|

hence we get (4.22) with

χ(3) = const · ln L
√

h (∆t)−1 (4.45)

Note that χ(3) → 0 as L →∞ due to our choice of h in (4.37) and restrictions on ∆t in
(4.11).

Our domains D′, D′′ are constructed around Dω, hence they depend on ω. However,
the boundaries of D′, D′′ are polygonal lines whose vertices are derived from the sites of
a fixed lattice (4.39). Therefore, the total number of distinct domains D′, D′′ is finite.
Now we estimate their number N∗.

First, the total number of the sites of the lattice (4.39) in the relevant area 0 < x < L,
|v| < v1,max is

K1 = const · (L/h) · (2vmax/dh) ≤ const · L (hdh)
−1 (4.46)

Recall that the domain D0 = F−t(D) consists of at most four connected components.
The part F−t(D ∩ G∗(t)), or the “outgoing” part of D0 created after the collision with
the piston, consists of at most two components. And the part F−t(D∩G0(t)) consists of
at most two components, each is a regular, trapezoidal region. The upper (lower) part
of the boundary of D′ (D′′) will then consists of at most four disjoint polygonal lines
constructed from the lattice sites (4.39). In each polygonal line, the first point can be
constructed from any of the K1 sites of the lattice, see (4.46). But other points can be
constructed consecutively, and each point must be constructed from a site selected from

K0 := (4Bε0/r) · (8/r) = const (4.47)
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nearest neighbors of the previously selected site, according to (4.41)–(4.42). It is also
clear that each polygonal line has at most

M := const · L/h

links (vertices). Therefore, the total number of ways to construct one polygonal line does
not exceed K1K

M
0 . The total number of ways to construct the entire boundary of D′

(D′′) is then less than K8
1K

8M
0 . This gives an upper bound on the number of distinct

domains D′ (D′′):

N∗ ≤ K8
1K

8M
0 ≤ const · L8(hdh)

−8 · econst·L/h (4.48)

Of course, the exponential factor is dominant here and can absorb all the others.
We now set the value of B∆t in (4.25)–(4.28):

B∆t = c7

√
L/h (4.49)

with a sufficiently small constant c7 > 0. Then (4.27) and (4.48) imply

P (Ω∗
0 \ Ω∗

1(∆t)) ≤ const · e−c8L/h (4.50)

with some constant c8 > 0. Recall that h satisfies (4.37), hence

P (Ω∗
0 \ Ω∗

1(∆t)) ≤ const · e−const·L3/2(∆t)−1/2

Next, since ∆t satisfies (4.11), we have

P (Ω∗
0 \ Ω∗

1(∆t)) ≤ const · e−const·L11/7

(4.51)

Also, by (4.49) and (4.37)
B∆t ≤ c7L

3/4(∆t)−1/4

which implies (4.25) since ∆t À L−1/3.
Next, for each ω ∈ Ω∗

1(∆t), each t ∈ (T1, S2−∆t), and any trapezoid D defined above,
the number of particles kD,ω in D satisfies (4.28)–(4.32) with χ(3) given by (4.45) and h
given by (4.37), hence

kD,ω = λ̃D + χD,ω

with

|χD,ω| ≤ const ·
(
B∆t L

√
∆t + L2 ln L

√
h + L ln L

)

≤ const · L7/4 ln L (∆t)1/4

We note that λ̃D = O(L2 ∆t), hence |χD,ω| ¿ λ̃D for all ∆t satisfying (4.11). By the
way, this easily implies a rough bound kD,ω ≤ 2λ̃D ≤ const·L2 ∆t, which justifies (4.16)
and hence (4.18).

60



Next, using (4.19) and applying the above estimates to each of k±i , i = 1, 2, gives

k = L2
∫

D1

p̃(x, v, t) dx dv + χ′

with
|χ′| ≤ const · [L7/4 ln L (∆t)1/4 + L2 δV ∆t]

In a similar way we can estimate the other random factor in the main decomposition
formula (4.15), which is

Z =
k∑

j=1

vj

and get

Z = L2
∫

D1

v p̃(x, v, t) dx dv + χ′′

with the same upper bound on χ′′ as that on χ′ above.
Using the smoothness properties of the function p̃(x, v, t) described around (4.9) gives,

cf. (3.38)–(3.40),

∫

D1

p̃(x, v, t) dx dv = (Q̃1(t)− Q̃0(t)) ∆t + χ(4)

and ∫

D1

v p̃(x, v, t) dx dv = (Q̃2(t)− Q̃1(t)) ∆t + χ(5)

with
|χ(u)| ≤ const ·

[
(∆t)2/L + δV ∆t

]

for u = 4, 5.
Therefore, we get

V (t + ∆t)− V (t) = D̃(t) ∆t + χ (4.52)

where
|χ| ≤ const ·

[
L−1/4 ln L (∆t)1/4 + δV ∆t + (∆t)2

]
(4.53)

Recall that δV = O(∆t) by (4.18). It is now easy to check that the second and the
third terms are much smaller than the first one. This proves (4.12)–(4.14). It does not
prove Theorem 4.4 yet, because we have fixed one (arbitrary) value of ∆t, and our set
Ω∗

1 depended on ∆t.
Actually, for our main purpose it is enough to prove Theorem 4.4 for just one value of

∆t, namely for ∆t = 1/L1/7, as we will see later. But at a little extra effort we can prove
our theorem for all ∆t satisfying (4.11). We do that next. Divide the interval (4.11)
into subintervals of length e−L. That is, fix a finite collection of points (∆t)n = ne−L for
n = n1, . . . , n2 with n1 = L−1/3(ln L)2eL and n2 = L−1/7eL. Then we define

Ω∗
1 = ∩n2

n=n1
Ω∗

1((∆t)n)
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The bound (4.51) then implies

P (Ω∗
0 \ Ω∗

1) ≤ const · eL−const·L11/7

which is obviously sufficient to maintain the bound (4.10).
Now for any ∆t satisfying (4.11) we find (∆t)n such that |∆t − (∆t)n| ≤ e−L. For

any ω ∈ Ω∗
1 ⊂ Ω∗

1((∆t)n) we have all the above estimates with ∆t replaced by (∆t)n.
This replacement only causes an exponentially small error, e−L, in our estimates. It
will not spoil our bounds, which are all polynomial in L. This completes the proof of
Theorem 4.4. 2

The next theorem is an analogue of Theorem 3.5.

Theorem 4.5 Assume that ε0 > 0 is small enough. For all sufficiently large L, for each
configuration ω ∈ Ω∗

1 and for all t ∈ (T1, S2) we have
(i) there is a constant B > 0 such that

|V (t)| < Bε0 (4.54)

(ii) there is a constant C0 > 0 such that

|V (t)− V0(t)| < C0 L−1/7 ln L (4.55)

where V0(t) is defined by

V0(t) =
Q̃1(t)−

√
Q̃2

1(t)− Q̃0(t)Q̃2(t)

Q̃0(t)
(4.56)

whenever Q̃0(t) 6= 0 and by

V0(t) =
Q̃2(t)

2Q̃1(t)
(4.57)

otherwise.

Proof of this theorem very much repeats that of Theorem 3.5. The first half of it, up to
the formula (3.59) can be copied almost verbatim, with only replacement of S1 by S2, Qi

by Q̃i, and D by D̃. We omit that part. The rest of the proof requires more substantial
modifications, and we give it in detail.

First, recall that Theorem 3.5 deals with t ∈ (0, S1). On the interval (0, S1) the
functions Qi(t), i = 0, 1, 2, are independent of ω, they are defined by equations (3.9)–
(3.12) where p(x, v, t) was in fact the deterministic density now denoted by p̃(x, v, t).
Therefore, our functions Q̃i(t) for t > T1, are natural continuations of Qi(t) beyond the
interval (0, S1) = (0, T1) and they have the same properties, cf. (3.13) and (4.9). Hence,
the function V0(t) defined by (4.56)–(4.57) for t > T1 is the continuation of V0(t) defined
by (3.46)–(3.47) on the interval (0, T1).
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Next, in the first half of the proof (which we omitted since it almost coincided with
that of Theorem 3.5), we must introduce t∗ < S2 as the first time when (4.54) fails. Now
we prove (4.55) for all t < t∗ with some constant C0 > 0 (independent of the choice of B
in (4.54), which is to be made yet).

The bound (3.45) proved for all t ≤ T1 implies that (4.55) holds for at least some
t > T1. Next, if (4.55) fails for any t < t∗, then let t ∈ (T1, t∗) be the first time (4.55)
fails. Denote by

∆0 = L−1/7

the maximal allowed time increment in Theorem 4.4. Let s = t−∆0. Due to Theorem 4.4

V (t) = V (s) + D̃(s)∆0 + χ (4.58)

with
|χ| ≤ CL−1/4 ln L (∆0)

1/4 = CL−2/7 ln L

Due to the analogue of (3.58) obtained in the first half of the proof of the theorem,

V0(t) = V0(s) + χ0 (4.59)

with

|χ0| ≤ E0 ε0 ∆0

L
=

E0 ε0

L8/7

For brevity, put U(s) = V (s)− V0(s) for all s. Subtracting (4.59) from (4.58) then gives

U(t) = U(s) + D̃(s)∆0 + χ′ (4.60)

with χ′ = χ− χ0, so that for large L

|χ′| ≤ 2CL−2/7 ln L (4.61)

Now assume, without loss of generality, that U(t) > 0. Since (4.55) fails at time t, we
have

U(t) ≥ C0L
−1/7 ln L (4.62)

Now consider two cases. If U(s) ≤ 0, then by the analogue of (3.59)

U(t) ≤ |D̃(s)|∆0 + |χ′| ≤ E2 |U(s)|∆0 + |χ′| ¿ L−1/7 ln L

for large L, which contradicts to (4.62). If U(s) > 0, then, again due to (4.60) and the
analogue of (3.59),

U(t) < U(s)[1− E1∆0] + χ′,

hence

U(s) >
U(t)− χ′

1− E1∆0

> (U(t)− χ′)(1 + E1∆0)

> U(t) + U(t)E1∆0 − 2χ′ (4.63)
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Now, if C0 in (4.55) is large enough, say C0 = 3C/E1, then U(t)E1∆0 > 2χ′ by (4.62)
and (4.61). This fact and (4.63) imply U(s) > U(t), so (4.55) fails at an earlier time
s < t, a contradiction. Hence, (4.55) is proved for all t < t∗ and C0 = 3C/E1.

Lastly, the remaining part of the proof of Theorem 3.5 can be repeated verbatim,
concluding the proof of Theorem 4.5. 2

We finally prove the convergence, as L →∞, of the random trajectory of the piston
to the solution Y (t/L), W (t/L) of the hydrodynamical equations described in Section 2
for all t ∈ (T1, S2).

Theorem 4.6 Assume that ε0 > 0 in (P5) is small enough. Then, for all large L and
all ω ∈ Ω∗

1, there is a constant C > 0 such that

|YL(τ, ω)− Y (τ)| ≤ C ln L

L1/7
(4.64)

and

|WL(τ, ω)−W (τ)| ≤ C ln L

L1/7
(4.65)

for all min{τ1, T1/L} < τ < min{τ2, S2/L}. We also have

T2 − S2 ≤ Cε0L (4.66)

and
τ2 − S2/L ≤ Cε0 (4.67)

The fluctuations of the function S2 = S2(ω) for ω ∈ Ω∗
1 are bounded by

sup
ω,ω′∈Ω∗1

|S2(ω)− S2(ω
′)| ≤ C ln L

L1/7
(4.68)

Proof. According to (2.29), the deterministic function Y (τ) satisfies

dY (τ)/dτ = F (Y, τ), Y (0) = 1/2 (4.69)

Now Theorems 3.7 and 4.5 imply that for all ω ∈ Ω∗
1 the random trajectory satisfies

∂YL(τ, ω)/∂τ = F (Y, τ) + χ(τ, ω), YL(0, ω) = 1/2 (4.70)

with some

|χ(τ, ω)| ≤ C ln L

L1/7

Recall that |∂F (Y, τ)/∂Y | ≤ κ, see (2.30). Therefore, the difference ZL(τ, ω) := YL(τ, ω)−
Y (τ) satisfies

|Z ′
L(τ, ω)| ≤ κ|ZL(τ, ω)|+ C ln L

L1/7
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and ZL(0, ω) = 0. Using the standard Gronwall inequality in differential equations, see,
e.g., Lemma 2.1 in [TVS], gives

|ZL(τ, ω)| ≤ C ln L

κL1/7

(
eκτ − 1

)

and

|Z ′
L(τ, ω)| ≤ C ln L

L1/7
eκτ

for all τ < S2/L, which imply (4.64) and (4.65).
Next, (4.65) enables us to apply Proposition 4.1 with ∆ = CL−1/7 ln L and thus prove

(4.66). Now we employ the same argument as in the proof of Theorem 3.8. By (4.65),
random fluctuations of the piston velocity are bounded by CL−1/7 ln L. Hence, random
fluctuations of the velocities of particles that have had one or two collisions with the
piston are bounded by 4CL−1/7 ln L. The random fluctuations of the positions of both
piston and particles at every moment of time t < min{τ2L, S2} are bounded by the same
quantities (with, possibly, a different value of C) in the coordinate y = x/L. This implies
(4.68) in the same way, as (3.92) in Theorem 3.8. Now we can apply Proposition 4.1 to
the deterministic dynamics constructed in Section 2 with the same result, and thus prove
(4.67). 2

The bound (4.68) shows that the limit

τ∗∗ := lim
L→∞

S2(ω)/L

does not depend on ω ∈ Ω∗
1. We have |τ∗∗ − 2/vmax| ≤ const · ε0, due to (4.67) and the

estimates in Lemma 2.9.
The convergence claimed in Theorem 1.2 is now proved on the interval (0, τ∗∗), but,

generally, τ∗∗ < τ∗ with τ∗−τ∗∗ = O(ε0), so we may still be O(ε0) short of our target value
τ∗. To extend our results all the way to τ∗ we need to redefine S2 and the neighborhood
X1 introduced by (4.4) more accurately. We need to set

X1(t) = {(x, v) ∈ G+(t) : x = X(t) + 0, v < 0}
∪{(x, v) ∈ G+(t) : x = X(t)− 0, v > 0} (4.71)

The domain G+(t) = F t(G+) is random (it depends of ω), i.e. we should write G+(t) =
G+(t, ω), and this is why we could not adopt the above definition of X1(t) earlier and
opted for a cruder one (4.4). But now, as we have just shown in the proof of Theorem 4.6,
random fluctuations of the velocities and positions (in the y coordinate) of the particles
and the piston are bounded by const · L−1/7 ln L. Hence, at every time moment t <
min{τ2L, S2} all the domains G+(t, ω), are close to each other – the distance between
G+(t, ω) and G+(t, ω′) for ω, ω′ ∈ Ω∗

1 in the Hausdorff metric on the coordinate plane
y, v is bounded by const · L−1/7 ln L. By the same reason, every domain G+(t, ω) will be
O(L−1/7 ln L)-close in the Hausdorff metric to the deterministic domain G+(t/L) defined
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in Section 2. Hence we can easily make G+(t) in (4.71) independent of ω by, say, taking
the union

G+(t) = ∪ω∈Ω∗1G
+(t, ω) (4.72)

It is important to note that all the gas particles colliding with the piston at time t for
every ω ∈ Ω∗

1 will be in X1 defined by (4.71)–(4.72). With this new definition of X1

replacing (4.4) and with S2 changing accordingly, we have

lim
L→∞

|S2/L− τ∗| = 0

which follows from the O(L−1/7 ln L)-closeness of the random dynamics to the determin-
istic dynamics on the y, v plane. Thus we extend all our results to the interval (0, τ∗).

5 Beyond the second recollision

The main goal of our analysis in Sections 3 and 4 is to prove that under suitable initial
conditions random fluctuations in the motion of a massive piston in a closed container
filled with an ideal gas are small and vanish in the thermodynamic limit. We are, how-
ever, able to control those fluctuations effectively only as long as the surrounding gas of
particles can be described by a Poisson process, i.e. during the zero-recollision interval
0 < τ < τ1. In that case the random fluctuations are bounded by const·L−1 ln L, see The-
orem 3.8. Up to the logarithmic factor, this bound is optimal, according to Theorem 1.1
by Holley.

During the one-recollision interval τ1 < τ < τ∗, the situation is different. The proba-
bility distribution of gas particles that have experienced one collision with the piston is
no longer a Poisson process, it has intricate correlations. We are only able to show that
random fluctuations remain bounded by L−1/7, see Theorem 4.6. Perhaps, our bound
is far from optimal, but our numerical experiments reported below demonstrate that
random fluctuations indeed grow during the one-recollision interval and beyond.

At present, we do not know if our methods or results can be extended beyond the
critical time τ∗, this remains an open question. We emphasize, however, that our Theo-
rem 4.6 is the first rigorous treatment of the evolution of a piston in an ideal gas where
most or all of the particles experience more than one collision with the piston.

In order to understand what is going on beyond the critical time τ∗, and in particu-
lar whether random fluctuations grow or remain small, we undertook experimental and
heuristic studies of the piston dynamics on a large time scale. Below we describe our
findings and discuss further research in this direction. A detailed account of our work
can be found in [CL].

We set the initial density of the gas to

π0(y, v) = π0(|v|) =

{
1 if 0.5 ≤ |v| ≤ 1
0 elsewhere

(5.1)
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It satisfies our requirements (P1)–(P5), in particular vmin = 0.5 and vmax = 1, and most
importantly ε0 = 0. Therefore, by Corollary 2.13, the solution of the hydrodynamical
equations is trivial: Y (τ) ≡ 0.5, W (τ) ≡ 0, and π(y, v, τ) ≡ π0(y, v) for all τ > 0.

To generate an initial configuration of particles, we used a random number generator
described in [MN]. For our density (5.1), the x and v coordinates of all the particles
are independent random variables uniformly distributed in their ranges 0 < x < L
and vmin ≤ |v| ≤ vmax. Our computer program first selects the number of particles N
according to the Poisson law with mean L3, and then generates all (xi, vi), 1 ≤ i ≤ N ,
independently according to their uniform distributions. The parameter L changed in our
simulations from L = 30 to L = 300. For L = 300 the system contains≈ L3 = 27, 000, 000
particles.

Once the initial data is generated randomly, the program computes the dynamics by
using the elastic collision rules (1.2)–(1.3). All calculations were performed in double
precision, with coordinates and velocities of all particles stored and computed individu-
ally.

Figure 6 presents a typical trajectory of the piston. Here L = 100. The position and
time are measured in hydrodynamic variables Y = X/L, 0 < Y < 1, and τ = t/L.

τ

Y

0.45

0.5

0.55

0.6

0 5 10 15 20 25 30

Figure 6: The piston coordinate Y as a function of time τ . Here L = 100, N = 1000229.

Initially, the piston barely moves about its stationary point y = 0.5. Then, at times
τ between 3 and 5, the random vibrations of the piston grow and become quite visible on
the y-scale, but for a short while they look random, as a trajectory of a Brownian motion.
After that the piston starts travelling back and forth along the y axis in a more regular
manner, making excursions farther and farther away from the stationary point y = 0.5.
Very soon, at τ = τmax ≈ 8, the swinging motion of the piston reaches its maximum,
(∆Y )max = max |YL(τ) − 0.5| ≈ 0.1. Then the oscillations of the piston dampen in size
and seem to stabilize at an amplitude A ≈ 0.04. At the same time the trajectory of
the piston smoothes out and enters an oscillatory mode with a period τper ≈ 1.63. The
velocity of the piston W (τ) follows similar patterns, see Figure 7.

Both the coordinate and velocity of the piston continue almost perfect harmonic
oscillations for a long time with the same period τper ' 1.63 (this is independent of L)
but the amplitudes of both Y (τ) and W (τ) are slowly decreasing, see Figure 8.
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Figure 7: The piston velocity W as a function of time τ . The same run as in Fig. 6.
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Figure 8: The piston coordinate Y during the intervals (30, 35), (100, 105), (250, 255),
and (900, 905). The same run as in Fig. 6 and 7.

The oscillations of the piston with decaying amplitude can be described, in the interval
20 < τ < 1000, approximately by

Y (τ) ' Ae−λ(τ−20) sin ω(τ − α) (5.2)

with A = 0.046 and some constant λ > 0. Correspondingly, W = dY/dτ in the same
interval 20 < τ < 1000 is

W (τ) ' −λY (τ) + Ae−λ(τ−20)ω cos ω(τ − α)

= Ae−λ(τ−20)[−λ sin ω(τ − α) + ω cos ω(τ − α)]

= A1e
−λ(τ−20) sin ω(τ − β) (5.3)

with A1 = A
√

ω2 + λ2 and some β related to α.
To check how well our prediction (5.2) agrees with the experimental data, we com-

puted the amplitude A(τ) as a function of time τ , by fitting a sine function Y (τ) =
A sin ω(τ − α) “locally”, on the interval (τ − 5, τ + 5) for each τ . Fig. 9 shows A(τ) on
the logarithmic scale, which looks almost linear on the interval 30 < τ < 800.

We used the least squares fit to estimate λ = 0.00264 for the run shown on Figs. 6-9.
Since λ is small, the oscillations indeed die out very slowly. The “half-life” time (the
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Figure 9: The amplitude A(τ) on the logarithmic scale: experimental curve (bold) and
a linear fit (thin). The same run as the one shown in Fig. 6, 7 and 8.

time it takes to reduce the amplitude by a factor of two) is τ1/2 = λ−1 ln 2 ≈ 263. The
parameter λ and hence τ1/2 depend on the system size L. We estimated numerically that
τ1/2 ∼ L1.3, hence λ ∼ L−1.3.

The key characteristics of the piston trajectory described above, in particular, (∆Y )max,
Wmax, A, τper, appear to be independent of L. Even for L = 300 (the largest system tested
experimentally) the piston experiences large oscillations very similar to the ones shown
on Fig. 6 and 7. Some other quantities, such as τ1/2 and the related λ, depend in a
systematic way on L.

But most importantly, the time of the largest oscillations τmax and the related time
of the onset of the instability τc, see below, seem to slowly grow with L, very likely as
log L. To understand this fact, we looked into the mechanism of the build-up of random
fluctuations of the piston position and velocity displayed on Figures 6 and 7. To this end
we plotted the histogram of the (empirical) density of gas particles in the y, v plane at
various times 0 < τ < 30, see samples in Figure 10. The initial density (at time zero)
is almost uniform over the domain 0 < x < L and vmin ≤ |v| ≤ vmax (variations in the
initial configuration always exist, because it is generated randomly). Then, for 0 < τ < 1,
the piston experiences random collisions with particles and acquires a speed of order
M−1/2 = O(1/L), see Theorem 1.1. These small fluctuations of the piston velocity result
in bigger changes of the velocities of the particles which leave the piston after collisions
due to the rule (1.3). In particular, the outgoing particles on the right hand side of the
piston have velocities in the interval (vmin +2W (τ), vmax +2W (τ)) while those on the left
hand side of the piston have velocities in the interval (−vmin + 2W (τ),−vmax + 2W (τ)).
Hence, the region in the y, v plane where the density of the particles is positive is no
longer a rectangle with straight sides, now its boundaries are curves whose shape nearly
repeats the graph of the randomly evolving piston velocity W (τ). While the variations
of O(1/L) of these boundary curves may seem small, it is crucial that on opposite sides
of the piston they go in opposite directions. Indeed, when W (τ) > 0, then the outgoing
particles on the right hand side accelerate and those on the left hand side slow down.
When W (τ) < 0 the opposite happens.
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Figure 10: Six snapshots of the empirical gas density (in the x, v plane) at times τ = 0,
2.3, 4.2, 5.9, 7.4 and 18.6.

Next, the particles that have collided with the piston travel to the wall and come back
to the piston. Now their densities are less regular than they were initially – the regions in
the x, v plane where the density is positive, are curvilinear domains. When they hit the
piston, they shake it back and forth more forcefully than before, because the velocities of
the incoming particles on the opposite sides of the piston are now negatively correlated.
When particles on the right hand side are fast, those on the left hand side are slow, and
vice versa. The fluctuations of the gas densities thus “cooperate” to push the piston
harder, with a “double” force. This produces a resonance-type effect destabilizing the
piston dramatically and the velocity of the piston W (τ) experiences larger fluctuations
than before. The velocities of the newly outgoing particles will again go up and down in
opposite direction, on a greater scale than before.

As time goes on, the above phenomenon repeats over and over, with larger and
larger fluctuations of the gas and piston velocities, until the distribution of gas particles

70



completely breaks down. For L = 100, at times τ ∼ 10, two large clusters of particles
are formed, one on each side of the piston. When one cluster bombards the piston, the
other moves away from it and hits the wall, then they exchange their roles. The clusters
have sizes of about 0.3–0.5 in the y direction and the particle velocities range from about
0.2 to just over 1. The average velocity is about 0.5–0.6 and so the clusters hammer the
piston periodically with period 1.6–2.0, which is close to the experimentally determined
period of piston oscillations, see above.

Fig. 10 shows six snapshots of the empirical density of gas particles taken at different
times. At τ = 0 the gas fills (almost uniformly) two rectangles {(y, v) : 0.5 < |v| < 1, 0 <
y < 1}. At τ = 2.3 one can see some ripples on the boundaries of these rectangles. At
time τ = 4.2 the irregularities grow and at τ = 5.9 the rectangular shape is broken down.
Two large clusters of particles are formed, both appear in the upper half-plane v > 0, i.e.
at that time both clusters move to the right (one toward the piston, the other away from
it). Later the density undergoes strange formations (τ = 7.4) but eventually smoothes
out and enters a slow process of convergence to Maxwellian (τ = 18.6) described below.

The above analysis suggests that the fluctuations of the piston velocity roughly in-
crease by a constant factor during each time interval of length one. Indeed, initial random
fluctuations Wa ∼ O(1/L) result in additional changes of velocities of outgoing particles
by 2Wa. When those particles come back to the piston (in time ∆τ ≈ 1), they kick its
velocity to the level of 2Wa. Then the newly outgoing particles acquire an additional
velocity 4Wa, etc. Over each time interval of length one the fluctuations double in size.
This is an obvious oversimplification of the real dynamics, but it leads to a reasonable
conjecture

Wa(τ) ≈ C Rτ

L
(5.4)

where Wa(τ) are typical fluctuations of the piston velocity at time τ and C,R > 0 are
constants.

cτ

cW L)ln(2

4
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8

10
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Figure 11: The value τc as a function of ln(WcL): experimental points and a linear fit.

We tested the above formula numerically as follows. Let Wc > 0 be some preset
critical value of the piston speed and τc = inf{τ > 0 : |W (τ)| > Wc} the (random) time
when Wc is first exceeded. This time plays the role of the “onset” of large fluctuations
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of the piston velocity. One would expect, based on (5.4) that

τc ≈ ln(WcL/C)/ ln R (5.5)

i.e. τc grows as ln L when L increases.
We found τc experimentally for Wc = 0.1 and Wc = 0.15 and checked that (5.5)

agreed well with the data, see Fig. 11. By the least squares fit we estimated C = 0.45
and R = 1.6.

To summarize our experimental observations, we conclude that the random fluctu-
ations of the density function pL(y, v, τ) and the piston coordinate YL(τ) grow expo-
nentially in time τ , and at times τ ∼ log L they become large even on a macroscopic
scale. At that point the evolution of the system deviates far from the solution of the
hydrodynamical equations (H1)–(H4), and they become completely separated afterwards.

Interestingly, our observations do not indicate that the convergence (1.12)–(1.13)
claimed in Theorem 1.2 fails on any interval of time. In fact, if the random fluctuations
behave as CRτ/L, as predicted by (5.4), then (1.12)–(1.13) should hold as L → ∞
on every finite interval (0, τ∗). However, a rigorous proof of this fact would be a very
challenging task.

Next, we also examined numerically and heuristically how the system behaves asymp-
totically, as τ →∞. On physical grounds [B], we expect the system to approach thermal
equilibrium, see Section 1, i.e. the velocity distribution of gas particles should converge
to a Maxwellian.

We used the Kolmogorov-Smirnov statistical test to verify the convergence of the
velocity distribution to a normal law. At any given time τ > 0, let

Fτ (u) = #{i : vi < u}/N

be the empirical (cumulative) distribution function of particle velocities. For the corre-
sponding normal distribution function Φ(x), we compute

Dτ = sup
−∞<u<∞

|Fτ (u)− Φ(u)|

Initially, D0 ≈ 0.245 for our choice of π0(v) in (5.1). If the velocities vi were independent
normal random variables, then Dτ would be of order O(1/

√
N) and the product Dτ

√
N

would have a certain limit distribution, see, e.g. [Lu]. In particular, it is known that
the probability P (Dτ

√
N > 1) ≈ 0.2. Based on this, we opted to define the time of

convergence to equilibrium by

τeq = inf{τ > 0 : Dτ

√
N < 1} (5.6)

We estimated τeq for various L’s and found that τeq ≈ aLb with some constants a, b > 0.
By a least squares fit to experimental points we found a = 0.18 and b = 2.47.

The plot of the product S = Dτ

√
N versus τ is given on Fig. 12 (for a particular run

with L = 40). It shows that, after an initial sharp drop over the period 0 < τ < 20, the
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statistic S decreases exponentially in τ . Another commonly used (and popular among
experimentalists) statistic to measure closeness to a normal distribution is

S ′ = 3− M4

M2
2

where M2 and M4 are the second and the fourth sample moments of the empirical veloc-
ity distribution, respectively. Fig. 12 shows that S ′ converges to zero in a similar manner
(for the same run with L = 40).
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Figure 12: ln S (thick line) and ln S ′ (thin line) as functions of τ .

The convergence to a thermal equilibrium can also be justified mathematically. If
one fixes three integrals of motion – the total energy E and the numbers of particles in
the left and right compartments NL and NR – the dynamics can be reduced to a billiard
system in a high-dimensional polyhedron by standard techniques, as we show next.

Let {xi}, i = 1, . . . , NR, denote the x-coordinates of the particles to the right of the
piston, and {xi}, i = −1, . . . ,−NL, those to the left of it (ordered arbitrarily). Put
x0 = X

√
M , where X is the coordinate of the piston and M is its mass. Then the

configuration space of the system (in the coordinates xi, −NL ≤ i ≤ NR) is a polyhedron
Q ⊂ IRN+1 (recall that N = NL + NR) defined by inequalities

0 ≤ x−NL
, . . . , x−1 ≤ x0/

√
M ≤ x1, . . . , xNR

≤ L

It is known that the dynamics of our mechanical system corresponds to the billiard
dynamics in Q, see [CFS]. That is, the configuration point q ∈ Q moves freely and
experiences specular reflections at the boundary ∂Q. The velocity vector

p = q̇ = {v−NL
, . . . , v−1, V

√
M, v1, . . . , vNR

}
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has constant length, since ‖p‖2 = 2E = const. Therefore, the phase space of the billiard
system is M = Q× SN

ρ where SN
ρ is the N -dimensional sphere of radius ρ =

√
2E.

The billiard system has the Liouville invariant measure µ on M, which is the product
of a uniform measure on the polyhedron Q and a uniform (Lebesgue) measure on the
sphere SN

ρ , i.e. dµ = dq dp. The properties of billiard dynamics depend heavily on the
curvature of the boundary ∂Q. In our case Q is a polyhedron, hence its boundary consists
of flat sides with zero curvature. A prototype of such systems is billiard in a polygon. It
is well known that (see, e.g., [C])

Fact. For billiards in polygons and polyhedra (and hence, for our mechanical model of a
piston in the ideal gas) all Lyapunov exponents vanish, and so does the measure-theoretic
(Kolmogorov-Sinai) entropy.

Systems with zero Lyapunov exponents and zero entropy are not regarded as truly
chaotic, but they still may be ergodic. In fact, billiards in generic polygons are ergodic
[KMS]. Moreover, for many nonergodic polygons, the phase space is foliated by invariant
subsurfaces on which the dynamics is ergodic.

Even though there are no similar results, to our knowledge, for billiards in high-
dimensional polyhedra, one can expect that they, too, have similar properties. That is,
they are generically ergodic or become ergodic after trivial reductions. In our case, the
billiard in Q is, perhaps, ergodic for typical values of M , or else the phase space is foliated
by invariant submanifolds on which the dynamics is ergodic, and that those submanifolds
fill M pretty densely. In the latter case, one would hardly distinguish experimentally
between such a nonergodic system and a truly ergodic one.

Hence, we can assume that our system is ergodic or very close to ergodic in the above
sense. Then almost every trajectory eventually behaves according to the invariant mea-
sure µ, independently of the initial state. In particular, for any initial gas density and
velocity distribution (given by the function π0(y, v), see Section 1) the hydrodynamic
regime for a finite L is only valid on a finite interval of time – eventually the system will
relax to a thermal equilibrium. We expect in fact that in terms of the “macroscopic”
variables, say, the one particle distribution function, the system will relax to an effective
equilibrium, as defined by (5.6) in terms of τeq, which is much smaller than the exponen-
tially long time (in L) required for the ergodic theorem. So the real question is how does
this time depend on L. According to our earlier discussion τc ∼ log L and τeq ∼ L5/2.

At equilibrium, the distribution of coordinates xi and velocities vi are determined
by the Liouville measure µ, which is uniform in the phase space. Physically interesting
(and only observable) are its marginal measures, i.e. projections, on lower-dimensional
subspaces. The marginal measures of the velocities are approximately normal for large
N .

In particular, each individual velocity vi converges in distribution to a Maxwellian
(i.e., normal) random variable with zero mean and variance 2E/N = const. The same
holds for the “piston” component of the velocity, ẋ0 = V

√
M , hence the piston velocity

V will be normally distributed with zero mean and standard deviation const/
√

M =
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const/L, as L → ∞. In our case V has standard deviation
√

7/24/L ≈ 0.5/L. This
conclusion agrees well with Holley’s theorem 1.1 and our numerical data.

The equilibrium distribution of the piston coordinate X is also determined by the
projection of the uniform measure dq on Q onto the x0 axis. Before we do that, let us get
rid of M in the definition of both Q and x0. A simple change of variable X = x0/

√
M

allows us to redefine Q by

0 ≤ x−NL
, . . . , x−1 ≤ X ≤ x1, . . . , xNR

≤ L

Furthermore, rescaling Y = X/L and yi = xi/L gives a new, simpler, definition of Q:

0 ≤ y−NL
, . . . , y−1 ≤ Y ≤ y1, . . . , yNR

≤ 1

This is a variation of the so called Brownian bridge. “Integrating away” the variables yi

yields the following equilibrium density for Y :

f(Y ) = c Y NL(1− Y )NR (5.7)

for 0 < Y < 1, where c is the normalizing factor that can be computed explicitly:

c−1 =
∫ 1

0
Y NL(1− Y )NR dY =

NL!NR!

(NL + NR + 1)!
(5.8)

Asymptotically, as L →∞, we have NL ∼ L3/2 and NR ∼ L3/2. Assume, for simplicity,
that NL = NR = N/2 and denote K = N/2, then

c =
(2K + 1)!

(K!)2
' 2 · 4K

√
K√

π

Put z = (Y − 0.5)
√

8K, then the density of z is given asymptotically by

f(z) =
c√
8K

(
0.5 +

z√
8K

)K (
0.5− z√

8K

)K

=
c

4K
√

8K

(
1− z2

2K

)K

≈ 1√
2π

e−z2/2

Hence, Y is asymptotically gaussian with mean 0.5 and variance (4N)−1 = (4L3)−1.
Therefore, in equilibrium

|Y − 0.5| ∼ 1

2L
√

L
∼ 1

2
√

N

Note that this estimate is independent of the piston mass.
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Next, by using (5.7) one can easily compute the probability that the piston coordinate
Y deviates from its mean value 0.5 by a fixed amount d > 0, say d = 0.1: this probability
is < const · e−aN with some a = a(d) > 0. Therefore, we have observed experimentally
a very rare event whose probability was exponentially small in N . If we started with an
equilibrium state, such an observation would be practically impossible. But we started
with a state described by the density (5.1), which itself has probability less than const ·
e−bN , b > 0, with respect to the equilibrium measure µ. So we only observed how one
highly improbable initial state evolved to another highly improbable state along its (very
slow) transformation to an equilibrium state. It would be interesting to understand why
the system “chooses” such a strange evolution to equilibrium, i.e. why starting with a
state described by a “double-peaked” distribution (5.1) the system behaves as a damped
harmonic oscillator over an extended time interval, with initial oscillations as large as
1/10 of the system size.

We are currently working on this problem and will report results in a separate paper
[CCL]. Below we outline our program and mention some preliminary findings. For
simplicity, we assume that π0(y, v) = π0(|v|) and X(0) = L/2, V (0) = 0. Corollary 2.13
ensures that the hydrodynamical equations have the trivial solution Y (τ) ≡ 0.5, W (τ) ≡
0, and π(y, v, t) ≡ π0(y, v) for all τ > 0. Now, since the initial configuration of particles
is generated randomly from a Poisson process with the density π0(y, v), the “actual”
(empirical) density of the particles, such as the one shown on Fig. 10 at τ = 0, does
not exactly coincide with π0(y, v). Random fluctuations of the empirical density are
typically of order O(1/L). Hence, the “actual” initial distribution of particles can be
thought of as a small perturbation of the function π0(y, v) = π0(|v|) and can be written
as π0(|v|) + επ1(y, v) with ε = 1/L and some (random) function π1(y, v) of order one.

Now, we conjecture that the evolution of the mechanical system closely follows the
solutions of the hydrodynamical equations (H1)–(H4) with a perturbed initial density
π0(|v|) + επ1(y, v), rather than the stationary solution corresponding to the unperturbed
density π0(|v|). This accounts for significant differences between the behavior of the me-
chanical system and the stationary solution, if the latter is unstable. In particular, two
trajectories which are initially ε-close (in our case ε = 1/L) can deviate from each other
exponentially fast in time τ , and at times τ ∼ − log ε = log L will look completely dif-
ferent. This would be in agreement with our experimental observations and the estimate
(5.5) of the time τc ∼ log L of the onset of “instability”.

To test our conjecture, we solved the hydrodynamical equations (H1)–(H4) numer-
ically starting with a perturbed initial density obtained by adding to (5.1) a function
ε-small in the L1 metric (with ε ' 0.01). We found that the corresponding solution
resembled strikingly well the evolution of the mechanical system described above. In
particular, the coordinate and velocity of the piston followed large nearly harmonic oscil-
lations during the interval 10 < τ < 30. The corresponding plots of the piston position
and velocity along the perturbed solutions of (H1)–(H4) were almost indistinguishable
from our Figures 6 and 7. Hence, the behavior of the mechanical system can be traced
to that of the perturbed solutions of the hydrodynamical equations, and the instability
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of the latter becomes an important issue.
When we were finishing the present paper, we received a message from E. Caglioti

and E. Presutti who (a) proved that the hydrodynamical equations (H1)–(H4) are stable
when π0(|v|) is monotonically nonincreasing in |v|, i.e. π′0(|v|) ≤ 0, and (b) suggested that
they might be unstable for our class on non-monotone π0(|v|). We checked the suggestion
(b) for our particular density (5.1) and found that it was indeed correct; we proved that
small perturbations grow exponentially in τ .

Conversely, when we simulated a particle dynamics with a nonincreasing initial density
π0(|v|) the oscillations essentially disappeared (to this end we tried a uniform “flat”
function given by π0(|v|) = 1 for |v| ≤ vmax and a triangular one π0(|v|) = 1− |v|/vmax.).
On the other hand, the particle velocity distribution still approached a Maxwellian, albeit
at a somewhat slower pace.

Finally, we describe some other open problems related to the piston dynamics.

1. It is clear that recollisions of gas particles with the piston have a very “destructive”
effect on the dynamics in the system. However, we need to distinguish between two types
of recollisions.

We say that a recollision of a gas particle with the piston is long if the particle hits a
wall x = 0 or x = L between the two consecutive collisions with the piston. Otherwise
a recollision is said to be short. Long recollisions require some time, as the particle has
to travel all the way to a wall, bounce off it, and then travel back to the piston before it
hits it again. Short recollisions can occur in rapid succession.

We have imposed the velocity cut-off (P4) in order to avoid any recollisions for at
least some initial period of time (which we called the zero-recollision interval). More
precisely, the upper bound vmax guarantees the absence of long recollisions. Without it,
we would have to deal with arbitrarily fast particles that dash between the piston and
the walls many times in any interval (0, τ). On the other hand, the lower bound vmin was
assumed to exclude short recollisions.

There are good reasons to believe, though, that short recollisions may not be so de-
structive for the piston dynamics. Indeed, let a particle experience two or more collisions
with the piston in rapid succession (i.e. without hitting a wall in between). This can
occur in two cases: (i) the particle’s velocity is very close to that of the piston, or (ii)
the piston’s velocity changes very rapidly. The latter should be very unlikely, since the
deterministic acceleration of the piston is very small, cf. Theorem 2.12c. In case (i), the
recollisions should have very little effect on the velocity of the piston according to the
rule (1.2), so that they may be safely ignored, as it was done already in some earlier
studies [H, DGL].

We therefore expect that our results can be extended to velocity distributions without
a cut-off from zero, i.e. allowing vmin = 0.

2. In our paper, L plays a dual role: it parameterizes the mass of the piston (M ∼ L2),
and it represents the length of the container (0 ≤ x ≤ L). This duality comes from our
assumption that the container is a cube.
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However, our model is essentially one-dimensional, and the mass of the piston M and
the length of the interval 0 ≤ x ≤ L can be treated as two independent parameters. In
particular, we can assume that the container is infinitely long in the x direction (i.e., that
L is infinite), but the mass of the piston is still finite and given by M ∼ L2 (this L is the
size of the container in the y and z directions). In this case there are no recollisions with
the piston, as long as its velocity remains small. Hence, our zero-recollision interval is
effectively infinite. As a result, Theorem 1.2 can be extended to arbitrarily large times.
Precisely, for any T > 0 we can prove the convergence in probability:

P

(
sup

0≤τ≤T
|YL(τ, ω)− Y (τ)| ≤ CT ln L/L

)
→ 1

and

P

(
sup

0≤τ≤T
|WL(τ, ω)−W (τ)| ≤ CT ln L/L

)
→ 1

as L →∞, where CT > 0 is a constant and Y (τ) and W (τ) = Ẏ (τ) are the solutions of
the hydrodynamical equations described in Section 2.

3. Along the same lines as above, we can assume that the container is d-dimensional with
d ≥ 4. Then the mass of the piston and the density of the particles are proportional to
Ld−1 rather than L2.

When d is large, the gas particles are very dense on the x, v plane. This leads to a
much better control over fluctuations of the particle distribution and the piston trajectory.
During the zero-recollision interval, for example, the piston trajectory is L−(d−1)/2-close
to its deterministic trajectory. This is an easy modification of the results of our Sec-
tion 3. During the one-recollision interval, the piston trajectory is L−(2d−5)/7-close to its
deterministic trajectory. This can be shown with the methods developed in Section 4
but requires some extra work. Moreover, the methods and results of that section can be
extended to the k-recollision interval (τk, τk+1) for any k ≥ 1. It can be shown that there
is a dk ≥ 3 such that for all d ≥ dk we have

P

(
sup

τk<τ<τk+1

|WL(τ, ω)−W (τ)| ≤ L−b

)
→ 1

as L → ∞, here b > 0 depends on k and d. This extension, however, requires quite
substantial work, which is beyond the scope of this article. The upshot is that a high
dimensional piston is more stable than a lower dimensional one.

It would be interesting to investigate other modifications of our model that lead to
more stable regimes. For example, let the initial density π0(y, v) of the gas depend on the
factor a = εL2 in such a way that π0(y, v) = a−1ρ(y, v), where ρ(y, v) is a fixed function.
Then the particle density grows as a → 0. This is another way to increase the density
of the particles, but without changing the dimension. One may expect a better control
over random fluctuations in this case, too.
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Appendix

In this section, we derive various probabilistic estimates on the distribution of gas parti-
cles and their velocities. The number of particles K = ND in any domain D on the x, v
plane at time t = 0 is a Poisson random variable, and we need bounds on its large devi-
ations. Perhaps, some of our estimates are known in probability theory, but we include
proofs for the sake of completeness.

Lemma A.1 Let K be a Poisson random variable with parameter λ > 0. Then for any
A > λ we have

P (K > A) ≤ eA−λ−A ln(A/λ)

and for any A < λ
P (K < A) ≤ eA−λ−A ln(A/λ)

Proof. The moment generating function of K is

ϕK(t) = E(etK) = eλ(et−1)

First, let A > λ. Then, obviously, for all t > 0

ϕK(t) ≥ eAt · P (K > A)

Hence for all t > 0
P (K > A) ≤ eλ(et−1)−At

The expression on the right hand side takes minimum at

t = ln(A/λ) > 0

This proves the first part of the lemma.
Now let A < λ. Then for all t < 0

ϕK(t) ≥ eAt · P (K < A)
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Hence for all t < 0
P (K < A) ≤ eλ(et−1)−At

The expression on the right hand side takes minimum at

t = ln(A/λ) < 0

This proves the second part of the lemma. 2

Lemma A.2 Let K be a Poisson random variable with parameter λ > 0. For any b > 0
there is a c > 0 such that for all 0 < B < b

√
λ we have

P (|K − λ| > B
√

λ) ≤ 2e−cB2

Proof. A direct application of the previous lemma gives

P (|K − λ| > B
√

λ) ≤ 2e−B2g(q) (A.1)

where

g(q) =
(1 + q) ln(1 + q)− q

q2
=

∫ q
0 ln(1 + s) ds

2
∫ q
0 s ds

(A.2)

and q = B/
√

λ in (A.1). By direct inspection one can verify that the function g(q) is a
positive and strictly monotonically decreasing function on the interval 0 < q < ∞. We
complete the proof by setting c = g(b). 2

Lemma A.3 Let λ0 > 0 and a > 0. Then for all sufficiently large L > 0 and every
Poisson random variable with parameters λ ≥ λ0 we have

P (|K − λ| > a
√

λ ln L) ≤ L−d ln ln L

where d = a
√

λ0/2.

Proof. Using (A.1) with B = a ln L gives

P (|K − λ| > a
√

λ ln L) ≤ 2e−(a ln L)2g(a ln L/
√

λ0)

with g(q) defined by (A.2). Observe that, for large L,

g

(
a ln L√

λ0

)
∼
√

λ0 ln ln L

a ln L

This complete the proof. 2

Remark. In most of our applications, λ is large, of order λ ∼ Lb with some b > 0.
Hence, the factor ln L is small compared to

√
λ.
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Corollary A.4 Let λ0 > 0 and a > 0. Let K be a Poisson random variable with
parameter λ ≤ λ0. Then for all sufficiently large L > 0 we have

P (K > a ln L) ≤ L−d ln ln L

where d = a/2.

Proof. The case λ = λ0 easily follows from the previous lemma. Now, if λ < λ0, then the
event K > a ln L is even less likely than it is for λ = λ0. 2

Next, we need to study another random variable related to a Poisson process. For
any domain D on the x, v plane consider the sum of the velocities

Z = ZD =
∑

(x,v)∈D

v

of the particles in D at time 0. We assume that D ⊂ {vmin < v < vmax} (the case
D ⊂ {−vmax < v < −vmin} is completely symmetric and analogous). By projecting the
domain D onto the v axis we obtain a Poisson process on the interval

I = (vmin, vmax)

with density

π(v) = L2
∫

D∩{u=v}
pL(x, u) dx

Now the random variable Z can be described as follows.
Consider a one-dimensional Poisson process with density π(v) on the interval I. This

means that for any subinterval J ⊂ I the number of points in J , call it NJ , is a Poisson
random variable with mean

E(NJ) =
∫

J
π(v) dv

Each realization ω of this process is a finite subset of I. Consider a random variable

Z(ω) =
∑
v∈ω

v

We will call Z an integrated Poisson random variable.
If we fix a large n ≥ 1 and partition I into small intervals

∆i = I ∩
[
i

n
,
i + 1

n

)

i = 0, 1, 2, . . ., then we can obviously bound Z by

∑

i

i

n
N∆i

≤ Z <
∑

i

i + 1

n
N∆i

(A.3)
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where N∆i
is the number of points of the process in the interval ∆i. Note that N∆i

are
independent Poisson random variables with parameters

λi = E(N∆i
) =

∫

∆i

π(v) dv

Therefore, the moment generating function ϕZ(t) = E(etZ) of Z is bounded by

exp

[∑

i

λi(e
t i

n − 1)

]
≤ E(etZ) < exp

[∑

i

λi(e
t i+1

n − 1)

]

Taking the limit n →∞ we obtain

ϕZ(t) = E(etZ) = exp
[∫

I
(etv − 1)π(v) dv

]
(A.4)

By using (A.3), it is also easy to find the mean value

E(Z) = µZ =
∫

I
v π(v) dv (A.5)

and the variance
Var(Z) = σ2

Z =
∫

I
v2π(v) dv (A.6)

Note that Z is related to a Poisson random variable K = NI with parameter

λZ =
∫

I
π(v) dv

In particular, we have
vminK ≤ Z ≤ vmaxK (A.7)

hence
vminλZ ≤ µZ ≤ vmaxλZ (A.8)

We also have
v2

minλZ ≤ σ2
Z ≤ v2

maxλZ (A.9)

The random variable Z admits bounds on large deviations similar to the ones we
found for Poisson random variables:

Lemma A.5 For any b > 0 there is a c > 0 (determined by b, vmin and vmax) such that
for any integrated Poisson random variable Z and all 0 < B < b σZ we have

P (|Z − µZ | > BσZ) ≤ 2e−cB2

82



Proof. Put, for brevity, µ = µZ and σ = σZ . We will show that

P (Z > µ + Bσ) ≤ e−cB2

(A.10)

(the same bound for P (Z < µ−Bσ) is proved similarly, as we did that in Lemma A.1).
For all t > 0 we have

ϕZ(t) ≥ e(µ+Bσ)t · P (Z > µ + Bσ)

hence

P (Z > µ + Bσ) ≤ exp
[∫

I
(etv − 1)π(v) dv − (µ + Bσ)t

]

We substitute t = Bs/σ with s > 0 to be chosen later and expand etv into a Taylor series:

P (Z > µ + Bσ) ≤ exp

[∫

I

( ∞∑

n=1

(Bsv)n

σnn!

)
π(v) dv − Bsµ

σ
−B2s

]

The first two terms with n = 1 and n = 2 give

∫

I

Bsv

σ
π(v) dv =

Bsµ

σ

by (A.5) and ∫

I

(Bsv)2

2σ2
π(v) dv =

B2s2

2

by (A.6), respectively.
Therefore,

P (Z > µ + Bσ) ≤ exp
[
−B2

(
s− s2/2−

−s2
∞∑

n=3

(Bs/σ)n−2
∫
I vn π(v) dv

n! σ2

)]

Assuming B/σ < b and using (A.6) gives

∞∑

n=3

(Bs/σ)n−2
∫
I vn π(v) dv

n! σ2
<

∞∑

k=1

(sb)k vk+2
max

k! v2
min

<
v2

max

v2
min

(
esb vmax − 1

)

Now if s is small enough, then we have

c := s− s2

2
− s2 v2

max

v2
min

(
esb vmax − 1

)
> 0

This proves (A.10), and hence the lemma. 2

83



Lemma A.6 Let λ0 > 0. For all sufficiently large L > 0 and any integrated Poisson
random variable Z with λZ ≥ λ0

P (|Z − µZ | > σZ ln L) ≤ L−d ln ln L

where d > 0 is a constant determined by λ0, vmin, vmax.

Proof. Let

b =
2vmax

v2
min

First, if ln L < bσZ , then the result easily follows from the previous lemma.
Now, assume that

ln L ≥ bσZ (A.11)

Using the inequalities (A.8)–(A.9) gives

λZ ≤ σ2
Z

v2
min

≤ (ln L)2

b2v2
min

and hence

µZ ≤ vmaxλZ ≤ vmax(ln L)2

b2v2
min

(A.12)

and also
µZ ≤ vmaxλZ ≤ vmax

v2
min

σ2
Z (A.13)

Multiplying (A.12) and (A.13) and taking the square root gives

µZ ≤ vmax

bv2
min

σZ ln L =
1

2
σZ ln L (A.14)

Therefore, since Z is a positive random variable, we have

P (|Z − µZ | > σZ ln L) = P (Z > µZ + σZ ln L)

≤ P (Z > σZ ln L)

Moreover, combining (A.14) with (A.11) and (A.9) gives

1

2
σZ ln L =

vmax

bv2
min

σZ ln L ≥ vmax

v2
min

σ2
Z ≥ vmaxλZ

and also, by (A.9)
1

2
σZ ln L ≥ 1

2
vmin

√
λZ ln L

Now, since Z ≤ vmaxK by (A.7), we have

P (Z > σZ ln L) ≤ P
(
Z > vmaxλZ +

1

2
vmin

√
λZ ln L

)

≤ P
(
K > λZ +

vmin

2vmax

√
λZ ln L

)

Now the result follows from Lemma A.3. 2
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Corollary A.7 Let λ0 > 0. Let Z be an integrated Poisson random variable with λZ ≤
λ0. Then for all sufficiently large L > 0 we have

P (Z > ln L) ≤ L−d ln ln L

where d > 0 is determined by λ0, vmin, vmax.

This immediately follows from Corollary A.4.
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