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Facultad de Ingenieŕıa. Universidad de la República

C.C. 30, Montevideo, Uruguay
E-mail: roma@fing.edu.uy; Fax: (598-2)-715-446

. To the memory of Ricardo Mañé

Abstract

We study Anosov diffeomorphisms on manifolds in which some ‘holes’ are cut.
The points that are mapped into those holes disappear and never return. The
holes studied here are rectangles of a Markov partition. Such maps generalize
Smale’s horseshoes and certain open billiards. The set of nonwandering points of
a map of this kind is a Cantor-like set called repeller. We construct invariant and
conditionally invariant measures on the sets of nonwandering points. Then we
establish ergodic, statistical, and fractal properties of those measures.
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1 Introduction and main results

Let T : M ′ → M ′ be a topologically transitive Anosov diffeomorphism of class C1+α on
a compact Riemannian manifold M ′. Recall that a diffeomorphism T : M ′ → M ′ is said
to be Anosov if at every point x ∈ M ′ there is a DT -invariant splitting

TxM
′ = Eu

x ⊕ Es
x(1.1)

such that

||DT−nv|| ≤ CT λn
T ||v|| for all v ∈ Eu

x and n > 0,

||DT nv|| ≤ CT λn
T ||v|| for all v ∈ Es

x and n > 0,(1.2)

for some constants CT > 0 and λT ∈ (0, 1) independent of v and x. The splitting (1.1) is
continuous in x. Topological transitivity of T means that it has a dense orbit in M ′.

Sinai [23] and Bowen [2] constructed Markov partitions for transitive Anosov diffeo-
morphisms1. Let R′ be a Markov partition of M ′ into rectangles R1, . . . , RI′ . We assume
that these rectangles are small enough, so that the symbolic dynamics can be defined
[23, 2].

Let I < I ′. Put H = ∪I′
i=I+1(int Ri) and M = M ′ \ H. Then M is a manifold with

boundary. We will study the dynamics of T on M , thinking of H as a ‘hole’ into which
some points of M will be mapped by T , and then they disappear (escape). Equivalently,
one can think that H ‘absorbs’ points mapped into it by T .

A pictorial model of this type of dynamics was proposed by Pianigiani and Yorke [22].
Imagine a Sinai billiard table (with dispersing boundary) in which the dynamics of the
ball is strongly chaotic. Let one or more holes be cut in the table, so that the ball can
fall through. One can also think of those holes as ‘pockets’ at the corners of the table.
Let the initial position of the ball be chosen at random with some smooth probability
distribution (e.g., equilibrium distribution). Denote by p(t) the probability that the ball
stays on the table for at least time t and, if it does, by ρ(t) its (normalized) distribution
on the table at time t. Natural questions are: at what rate does p(t) converge to zero
as t →∞? what is the limit probability distribution limt→∞ ρ(t), and does it depend on
the initial distribution ρ(0)? These questions still remain open.

We assume that the symbolic dynamics generated by the partition R = {R1, . . . , RI}
of M is rich enough, i.e., it is a topologically mixing subshift of finite type. General case
is discussed in Section 8.

Notations. For any n ≥ 0 we put

Mn = ∩n
i=0T

iM and M−n = ∩n
i=0T

−iM,

1Bowen’s construction actually covers larger systems – Axiom A diffeomorphisms – which we do not

consider here.
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and also
M+ = ∩n≥1Mn, M− = ∩n≥1M−n, Ω = M+ ∩M−

All these sets are closed, T−1M+ ⊂ M+, TM− ⊂ M− and TΩ = T−1Ω = Ω.
Denote by

U ′ = ∨∞n=0T
nR′ and S ′ = ∨∞n=0T

−nR′

the partitions of M ′ into unstable and stable manifolds (fibers), respectively. The re-
strictions of U ′ to M , Mn and M+ are denoted by U , Un and U+, respectively. Similarly,
we have partitions S, S−n, S− of the sets M , M−n, M− into stable fibers. Atoms U ∈ U
and S ∈ S are closed domains on unstable and stable manifolds, respectively, whose
boundary has Riemannian volume zero. Riemannian volume on fibers is induced by the
Riemannian metric in M .

For any x ∈ M ′ we denote by Ju(x) and Js(x) the Jacobians of the map DT restricted
to Eu

x and Es
x, respectively. We also put

Ju,s
n (x) = Ju,s(x)Ju,s(Tx) · · · Ju,s(T n−1x)

the Jacobians of DT n on unstable and stable fibers.
Our first result deals with measures on unstable fibers U ∈ U+.

Definition. A family of probability measures, νu
U , on unstable fibers U ∈ U , is said to

be conditionally invariant under T , if
(i) on every fiber U ∈ U the measure νu

U is absolutely continuous with respect to the
Riemannian volume on U , and its density, ρu

U(x), x ∈ U , is Hölder continuous (see a
convention below);
(ii) for any x ∈ U1 ∈ U and Tx ∈ U2 ∈ U we have

ρu
U1

(x) = νu
U1

(T−1U2) · Ju(x) · ρu
U2

(Tx)(1.3)

Convention. All the densities of measures on unstable and stable fibers are assumed
to be Hölder continuous with the same Hölder exponent α, as the derivative of the map
T .

Theorem 1.1 There is a unique conditionally invariant family of probability measures,

νu
U , on fibers U ∈ U+. Any other family of probability measures on U ∈ U+ with Hölder

continuous densities will converge, under naturally defined action of T (see Sect. 3), to

this unique family.

Remark. The family νu
U , U ∈ U+, is a part of a ‘bigger’ conditionally invariant

family of probability measures νu
U , U ∈ U ′, ‘inherited’ from the Anosov diffeomorphism
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T : M ′ → M ′ with the Markov partition R′. The densities ρu
U(x) of the measures νu

U ,
U ∈ U ′ satisfy the equation [23]

ρu
U(x)

ρu
U(y)

= lim
n→∞

Ju
n (T−ny)

Ju
n (T−nx)

(1.4)

for all x, y ∈ U ∈ U ′. Note that this equation defines the densities ρu
U and measures νu

U

completely, because of normalization.

Remark. If the Anosov diffeomorphism T : M ′ → M ′ is of class C2, then the densities
ρu

U are at least Lipschitz continuous on every unstable fiber U , see [23].

Remark. The invariance condition (1.3) implies the following. Let n ≥ 1, U ∈ U and
T n(U ∩M−n) = U1 ∪ · · · ∪ UL for some fibers U1, . . . , UL ∈ U . Then

νu
U(T−n(A ∩Mn) ∩ U) =

L∑
i=1

νu
U(T−nUi) · νu

Ui
(A ∩ Ui)(1.5)

for any Borel set A ⊂ M . This is the analog of the Chapman-Kolmogorov equation in
the theory of Markov processes, see [23].

The next three theorems are related to the evolution of measures on M under the
action of T . Denote by M the class of all Borel measures on M . For any µ ∈M we put
||µ|| = µ(M). We denote by T∗ : M→M the adjoint operator defined by

(T∗µ)(A) = µ(T−1(A ∩M1))

for any Borel set A ⊂ M . We denote by T+ the (nonlinear) transformation of M defined
by the normalization of the measure T∗µ:

T+µ =
T∗µ

||T∗µ||
=

T∗µ

µ(M−1)
(1.6)

We denote by Mn, n ≥ 1, the class of Borel measures supported on Mn. Obviously,
T n
∗M = Mn. We denote by Mu

+ ⊂ M the class of measures supported on M+ whose
conditional measures on fibers U ∈ U+ coincide with the above conditionally invariant
measures νu

U . Any measure µ ∈ Mu
+ is then completely defined by its factor measure2,

µ̂, on the set U+ (this set can be naturally equipped with a metric, see Sect. 2).

Definition. A measure µ ∈ Mu
+ is said to be conditionally invariant under T if

T+µ = µ, i.e. there is a λ > 0 such that µ(T−1A ∩M+) = λµ(A ∩M+) for any Borel set
A ⊂ M .

2For any measure µ ∈ M its factor measure µ̂ on U is defined by µ̂(W ) = µ(∪U∈W U) for any Borel

subset W ⊂ U .
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Theorem 1.2 The map T has a unique conditionally invariant probability measure µ+ ∈

Mu
+. For any other µ ∈Mu

+ the sequence T n
+µ weakly converges, as n →∞, to µ+.

We also call this unique measure µ+ the eigenmeasure of the map T , and the corre-
sponding factor λ+ = λ ∈ (0, 1) the eigenvalue of T .

Theorem 1.3 For any smooth measure µ on M (see a convention below) the sequence

T n
+µ weakly converges, as n → ∞, to the eigenmeasure µ+. Furthermore, the sequence

λ−n
+ ·T n

∗ µ weakly converges, as n →∞, to the measure c[µ] ·µ+, where c[µ] > 0 is a linear

functional on smooth measures on M .

Remark. The conditionally invariant measure µ+ constructed in this way is very
natural according to the above Pianigiani-Yorke physical motivation [22]. This measure
coincides with Sinai-Bowen-Ruelle measure in the case H = ∅.

Convention. We call a measure on M smooth if it is absolutely continuous with
respect to the Riemannian volume on M , and its conditional measures on unstable fibers
have Hölder continuous densities (cf. also the previous convention!).

This theorem shows that the eigenmeasure µ+ can be naturally obtained by iterating
smooth measures under T on M .

One can think of an experiment in which we place N = N(0) points (particles) in
M at random according to a smooth probability distribution µ. Then those points are
mapped by successive iterations of T . The number of points that stay in M (do not
escape) after n iterations, N(n), is approximately

N(n) ∼ N(0) · c[µ] · e−n ln λ−1
+(1.7)

We call γ+ = ln λ−1
+ the escape rate, cf. [10, 12, 11].

Next, we show that the eigenmeasure µ+ can be also obtained by iterating singular
measures supported on individual unstable fibers.

For any unstable fiber U ∈ U let µu
U ∈ M be a (canonical) singular probability

measure supported on U , which coincides on U with the measure νu
U , described in the

remark after Theorem 1.1.

Theorem 1.4 For any U ∈ U and any singular measure µU ∈ M supported on U with

a Hölder continuous density with respect to the Riemannian volume on U , the sequence

T n
+µU weakly converges, as n → ∞, to µ+. Furthermore, the sequence of measures

λ−n
+ ·T n

∗ µu
U weakly converges, as n →∞, to a measure supported on M+ and proportional

to µ+.
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Proposition 1.5 The function e(U) on the set of unstable fibers U ∈ U defined by

lim
n→∞

λ−n
+ · T n

∗ µu
U = e(U) · µ+(1.8)

is bounded away from 0 and ∞ and its restriction on the set of fibers U ∈ U+ satisfies

the equation ∫
U+

e(U) dµ̂+(U) = 1(1.9)

where µ̂+ is the factor measure of the eigenmeasure µ+.

Next, since the set M+ is invariant under T−1, it makes sense to define the inverse
images of µ+ under T∗, i.e. T−n

∗ µ+ for n ≥ 1, by

(T−n
∗ µ+)(A) = µ+(T n[A ∩M−n])(1.10)

for any Borel set A ⊂ M . In virtue of Theorem 1.2 the measure T−n
∗ µ+, n ≥ 1, simply

coincides with the conditional measure µ+(·/M−n) defined by

µ+(A/M−n) = µ+(A ∩M−n)/µ+(M−n) = λ−n
+ · µ+(A ∩M−n)(1.11)

Theorem 1.6 The sequence of measures T−n
∗ µ+ = µ+(·/M−n) weakly converges, as n →

∞, to a probability measure, η+ ∈M, supported on the set Ω = M+ ∩M−. The measure

η+ is T -invariant, i.e.

η+(T−1A) = η+(TA) = η+(A)(1.12)

for every Borel set A ⊂ M .

Proposition 1.7 The factor measure η̂+ of the measure η+ on the set of unstable fibers

U ∈ U+ is absolutely continuous with respect to the factor measure µ̂+ of the eigenmeasure

µ+, and its Radon-Nikodym derivative is

dη̂+

dµ̂+

(U) = e(U)(1.13)

where e(U) is the function introduced in Proposition 1.5.
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We call the closed set Ω = M+ ∩ M− the repeller of the map T . It is normally a
Cantor-like set. The T -invariant measure η+ on Ω can be obtained naturally by iterating
smooth measures on M as follows. For any probability measure µ ∈M and n, m ≥ 1 we
denote by µn,m the measure T n

+µ conditioned on M−m, i.e.

µn,m(A) = T n
+µ(A ∩M−m) · [T n

+µ(M−m)]−1(1.14)

for any Borel A ⊂ M .

Theorem 1.8 For any smooth probability measure µ on M the sequence of measures

µn,m weakly converges, as m, n → ∞, to the invariant measure η+ on the repeller Ω.

Moreover, the sequence of measures µ∗n,m defined by

µ∗n,m(A) = λ−n−m
+ · T n

∗ µ(A ∩M−m)(1.15)

weakly converges, as m, n →∞, to the measure c[µ] · η+, where c[µ] is the positive linear

functional on measures, involved in Theorem 1.3.

Next, we establish the ergodic properties of the invariant measure η+ on the repeller
Ω.

Theorem 1.9 The measure η+ is an equilibrium measure for the Hölder continuous

potential

g+(x) = − log Ju(x)(1.16)

on Ω and the topological pressure P (η+) = − log λ−1
+ = −γ+. Thus, η+ is a Gibbs

measure.

Corollary 1.10 The measure η+ is ergodic, mixing, K-mixing and Bernoulli. Its correla-

tions decay exponentially fast and it satisfies the central limit theorems and its invariance

principle.

Remark. There are certainly other Gibbs invariant measures on Ω, see [7]. Some
particularly interesting ones are the measure of maximal entropy and the Hausdorff
measure [14]. Our measure η+ is the only one generated by originally smooth measures µ
on M , in the sense of Theorems 1.3 and 1.8 and the original Pianigiany-Yorke philosophy
[22]. Let us note that Theorems 1.3 and 1.8 cannot be obtained by the study of the
symbolic dynamics on the repeller Ω alone.
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Theorem 1.11 The sum of positive Lyapunov exponents of the map T is

χ+
η+

=
∫
Ω

log Ju(x) dη+(x) > 0 a.e.(1.17)

and the sum of negative Lyapunov exponents of T is

χ−η+
=
∫
Ω

log Js(x) dη+(x) < 0 a.e.(1.18)

The variational principle

−γ+ = hη+(T )−
∫
Ω

log Ju(x) dη+(x) = sup
η
{hη(T )−

∫
Ω

log Ju(x) dη(x)}(1.19)

holds, where hη(T ) denotes the Kolmogorov-Sinai entropy of the measure η, and the

supremum is taken over all T -invariant probability measures on the repeller Ω. The left

equation in (1.19) is equivalent to

χ+
η+

= hη+(T ) + γ+(1.20)

The equation (1.20) generalizes Pesin’s formula for smooth hyperbolic maps, for which
h = χ+ and γ+ = 0. This equation can be understood as follows. The exponential rate of
separation of nearby trajectories, characterized by χ+, contributes to both the chaoticity
of the dynamics on the repeller, measured by h(T ), and the scattering away from the
repeller measured by the escape rate γ+.

In a particular case, where dim M ′ = 2, let δu
+ and δs

− be the Hausdorff dimensions
of the invariant measure η+ on unstable fibers U ⊂ M+ and on stable fibers U ⊂ M−,
respectively.

Theorem 1.12 Let dim M = 2. According to Manning’s formula [18], we have

hη+(T ) = δu
+χ+

η+
= −δs

+χ−η+
(1.21)

This agrees with Young’s formula [25] for the Hausdorff dimension of the measure η+:

HD(η+) = hη+(T )

(
1

χ+
η+

− 1

χ−η+

)
= δu

+ + δs
+(1.22)
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By reversing the time, we can define the eigenmeasure µ− on M− for the map T−1,
whose eigenvalue is λ− ∈ (0, 1). We then can define the corresponding invariant measure
η− on the repeller Ω. These also have all the properties described in the above theorems.
The measure η− and the values of λ− and χ±η− are, generally, different from the previously
described measure η+ and the quantities λ+ and χ±η+

, see some examples in [4]. However,
there are remarkable exceptions.

Definition. We say that the repeller Ω is time-symmetric if η+ = η−, λ+ = λ−,
χ+

η+
= χ+

η− = |χ−η+
| = |χ−η−|.

Theorem 1.13 The measures η+ and η− on the repeller Ω coincide if and only if there

is a constant Z > 0 such that for every periodic point x ∈ Ω, T kx = x, we have

det DT k(x) = Ju
k (x) · Js

k(x) = Zk

Moreover, the repeller Ω is time-symmetric if and only if Z = 1.

Corollary 1.14 If the original Anosov diffeomorphism T : M ′ → M ′ preserves an ab-

solutely continuous invariant measure on M ′, then the repeller Ω is time-symmetric.

The history of the subject goes back to 1979, when Pianigiani and Yorke [22] con-
structed conditionally invariant measures for expanding (noninvertible) maps. Their
results are analogous to our Theorems1.2 and 1.3. In 1981-86 Čencova [3, 4] undertook a
detailed study of both invariant and conditionally invariant measures for smooth Smale’s
horseshoes (her results are a particular case of our Theorems 1.1-1.8). In 1994, Collet,
Martinez and Schmitt [6] constructed invariant measures on the sets of nonwandering
points for Pianigiani-Yorke transformations (their results are similar to our Theorems
1.6-1.9). In a later manuscript [7] the same authors constructed conditionally invariant
measures for some symbolic subshifts of finite type. Smooth hyperbolic systems other
than horseshoes were first considered in this context by Lopes and Markarian recently
[16]. They studied an open billiard system – a particle bouncing off three circular scat-
terers placed sufficiently far apart. Their results are a particular case of our Theorems
1.2, 1.3, 1.6, and 1.9-1.12. Theorem 1.13 applies to open billiards, answering a question
posed in [16]. Let us also point out physical papers by Gaspard et. al. [9, 10, 11, 12, 15]
in which the dynamics on repellers was discussed and some equations, like our (1.7) and
(1.20), were conjectured and their connections with other equations in statistical physics
established.

From measure-theoretic point of view, our systems resemble probabilistic Markov
chains with absorbing states. For such chains, conditionally invariant distributions (called
quasi-stationary distributions) have been studied in [8, 19].
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The purpose of the present paper is threefold. First, we cover much larger classes
of smooth hyperbolic systems with ‘holes’ than the previous papers did. Second, we
collect all the existing results in this direction scattered in other papers, add some new
ones (e.g., 1.13 and 1.14), and present the complete (up-to-date) program for studying
smooth hyperbolic repellers. Third, we simplify and improve the matrix techniques for
the construction of conditionally invariant measures used by Čencova [4]. The matrix
method she used goes back to Sinai [24], but its realizations are sometimes lengthy and
heavy, as it unfortunately happened to [4]. In our framework, this method works quite
effectively and easily. Moreover, at present it is nearly the only workable method in
the context of systems with countable Markov partitions, like billiards with ‘holes’, open
Lorentz gases [11, 12] and other models of physical interest. We sharpen the matrix
method preparing it for an attack on billiards, but such an attack is beyond the scopes
of this paper.

The paper is organized as follows. Section 2 provides necessary results on Markov
partitions and symbolic dynamics for Anosov diffeomorphisms. Section 3 contains a
proof of Theorem 1.1 and other properties of conditional measures on unstable fibers. In
Section 4 we describe, in general terms, the matrix techniques for constructing invariant
measures. Then we construct the conditionally invariant measure µ+ proving Theo-
rem 1.2. In Section 5 we prove the limit theorems 1.3 and 1.4 along with Proposition 1.5.
In Section 6 we construct the invariant measure η+ and prove statements 1.6-1.8. In
Section 7 we prove the ergodic and fractal properties of the measure η+ described by the
statements 1.9-1.14. In Section 8 we discuss possible generalizations of our main results
and related open problems. Appendix provides necessary techniques from the theory of
positive matrices.

Acknowledgements. R.M. is indebted to S. Mart́ınez for introducing him to the
subject and stimulating discussions. This work was initiated during the authors’ visits
at Princeton university, for which we are grateful to Ya. Sinai and J. Mather. Special
thanks go to Ya. Sinai who mentioned to us Čencova’s papers. This work was essentially
completed when N.Ch. visited IMERL, Facultad de Ingenieŕıa, Uruguay, for which he is
the most indebted. N.Ch. acknowledges the support of NSF grant DMS-9401417.

2 Background on Anosov diffeomorphisms

This section provides necessary tools from the theory of Anosov diffeomorphisms. It is
known that Anosov diffeomorphisms enjoy strong ergodic properties if they are of class
C1+α, not just C1, i.e.

||DT (x)−DT (y)|| ≤ Cα · [d(x, y)]α

for some Cα > 0, where d(x, y) is the distance in the Riemannian metric. The constant
α ∈ (0, 1] will be fixed throughout the paper.
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The local unstable manifolds W u
ε (x), x ∈ M ′, are defined by

W u
ε (x) = {y ∈ M ′ : d(T nx, T ny) ≤ ε ∀n ≤ 0}

for small ε > 0. Similarly, local stable manifolds W s
ε (x) are defined taking positive n.

It is known that these manifolds are ‘as smooth as the map’ T , see [1]. Precisely,
they are of class C1+α, i.e. the tangent space Eu

x is Hölder continuous along each W u,
with the Hölder exponent α, and the same is true for Es

x along stable manifolds. The
tangent bundles Eu

x and Es
x over the whole of M ′ are also Hölder continuous [1, 17], but

the exponent may be different from α.
Therefore, the Jacobians Ju(x) and Js(x) are Hölder continuous function on M ′.

Moreover, the restrictions of log Ju(x) on unstable manifolds are Hölder continuous with
the exponent α:

| log Ju(x)− log Ju(y)| ≤ CJ · [du(x, y)]α(2.1)

with some CJ > 0, for all x, y ∈ U , U ∈ U ′ (the same is true for Js, of course). Here and
elsewhere du and ds are intrinsic metrics on unstable and stable manifolds, respectively,
induced by the Riemannian metric on M ′.

For any x, y ∈ M ′ we put

[x, y] = W s
ε (x) ∩W u

ε (y)

There is a δ > 0 such that if d(x, y) < δ, then [x, y] consists of a single point. A subset
R ⊂ M ′ is called a rectangle if diam R < δ and [x, y] ∈ R whenever x, y ∈ R. A
rectangle R is called proper if R = intR and for any point x ∈ R the sets W u

ε (x) ∩ ∂R
and W u

ε (x) ∩ ∂R have zero Riemannian volumes in the manifolds W u
ε (x) and W s

ε (x),
respectively. For x ∈ R we put

W u,s(x, R) = W u,s
ε (x) ∩R

Recall [2] that R′ ⊂ R is called a u-subrectangle in a rectangle R if W u(R, x) ⊂ R′ for
all x ∈ R′. Similarly, R′ ⊂ R is an s-subrectangle in R if W s(R, x) ⊂ R′ for all x ∈ R′.

A Markov partition of M ′ is a finite covering R′ = {R1, R2, . . . , RI′} of M ′ by proper
rectangles such that
(i) intRi ∩ intRj = ∅ for i 6= j;
(ii) if x ∈ intRi and Tx ∈ intRj, then TW u(x, Ri) ⊃ W u(Tx, Rj) and TW s(x, Ri) ⊂
W s(Tx, Rj)

Equivalently, for any Ri, Rj and n ≥ 1 such that int(T nRi∩Rj) 6= ∅ the set T nRi∩Rj

is a u-subrectangle in Rj and Ri ∩ T−nRj is an s-subrectangle in Ri.
Every topologically transitive Anosov diffeomorphism T : M ′ → M ′ has Markov

partitions of arbitrary small diameter.
We work with a fixed Markov partition R′ of a sufficiently small diameter.
For every z ∈ Ri we define the projection hs

z : Ri → W u(z, Ri) by hs
z(x) = [x, z].

For every x ∈ Ri this is a one-to-one map from W u(x, Ri) to W u(z, Ri), which is called
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canonical isomorphism or holonomy map. This map is absolutely continuous in the sense
that its Jacobian with respect to Riemannian volume on unstable fibers is bounded and
positive. Moreover, the Jacobian Dhs

z(x) of the map hs
z : W u(x, Ri) → W u(z, Ri) satisfies

the Anosov-Sinai formula [1]

Dhs
z(x) = lim

n→∞
Ju

n (x)/Ju
n (hs

z(x))

The Jacobian of the holonomy map is Hölder continuous in the following sense: for any
x, y ∈ W u(x, Ri) we have

|Dhs
z(x)−Dhs

z(y)| ≤ C ′ · [du(x, y)]α
′

(2.2)

and
|Dhs

z(x)| ≤ exp
(
C ′ · [ds(x, hs

z(x))]α
′)

(2.3)

for some constants C ′ > 0, α′ > 0. (For proofs of these results, see for example, the book
by Mañé [17], Chapter 3, Lemmas 2.7 and 3.2).

We now recall the basic definitions of symbolic dynamics. A transition matrix A′ =
(A′

ij) of size I ′ × I ′ is defined by

A′
ij =

{
1 if int Ri ∩ T−1(int Rj) 6= ∅
0 otherwise

In the space Σ′ = {1, 2, . . . , I ′}ZZ of doubly infinite sequences ω = {ωi}∞−∞ with the
product topology we consider a closed subset

Σ′
A′ = {ω ∈ Σ′ : A′

ωiωi+1
= 1 for all −∞ < i < ∞}

The left shift homeomorphism σ : Σ′
A′ → Σ′

A′ is defined by (σ(ω))i = ωi+1. This symbolic
system is called a subshift of finite type, or a topological Markov chain.

There is a natural projection Π : Σ′A′ → M ′, continuous, surjective and commuting
with the dynamics: Π ◦ σ = T ◦ Π. This projection is one-to-one on the set M ′ \
∪

j∈ZZT j(∂R′).

Now, the covering R = {R1, . . . , RI} of M = M ′ \ H defines a I × I submatrix
A = (Aij) of A′. We call A the transition matrix for the restriction of T on M . It defines
a new subshift of finite type by

ΣA = {α ∈ Σ = {1, . . . , I}ZZ, Aαi,αi+1
= 1 for all i ∈ ZZ}.

Mixing assumption. The matrix A is irreducible and aperiodic. This means that
σ : ΣA → ΣA is topologically mixing. Equivalently, there is a k0 ≥ 1 such that Ak0 has
all positive entries. We call k0 the mixing power of A.

Next, for every n ≥ 0 we denote by Rn the restriction of the partition R′∨TR′∨ . . .∨
T nR′ of M ′ to the set Mn. It is a partition of Mn into u-subrectangles of the Markov

12



rectangles Ri. Likewise, R−n is the restriction of R′ ∨ T−1R′ ∨ . . . ∨ T−nR′ to M−n,
which is a partition of M−n into s-subrectangles of Ri. Also, for any n ≥ 1 let R+

n be the
restriction of the partition Rn of Mn to the set M+ ⊂ Mn. Note that each atom of R+

n

consists of some fibers U ∈ U+.
We equip the sets U and S defined in Introduction with the following metrics. For

any U,U ′ ∈ U we put

dU(U,U ′) = sup{ds(x, [x, y]) : x ∈ U, y ∈ U ′}

if U,U ′ belong in one Markov rectangle Ri, otherwise we set dU(U,U ′) = diam M . Simi-
larly, we define a metric dS on S.

For any atom B ∈ Rm, m ≥ 0, we put

UB = {U ∈ U : U ⊂ B}

For any µ ∈M and U ∈ U we will denote by µU the conditional probability measure
of µ on U. Note that if two measures, µ and µ′ are proportional, then µU = µ′U for all
U ∈ U . For any U ∈ U ′ we denote by mU the Riemannian volume on U . The conditional
measures satisfy the following properties.

Let n ≥ 1, U ∈ U and T n(U ∩M−n) = U1 ∪ · · · ∪ Ul for some fibers Ui ∈ Un. Then

µU [T−n(A ∩Mn) ∩ U ] =
l∑

i=1

µU(T−nUi) · (T n
∗ µ)Ui

(A ∩ Ui)(2.4)

for any Borel subset A ⊂ M. In addition, if the measure µU is absolutely continuous
with respect to the Riemannian volume mU on U with density fµ(x) = dµU/dmU(x) and
T nx ∈ Ui, then the measure (T n

∗ µ)Ui
has a density on Ui, which is

fT n
∗ µ(T nx) = [µU(T−nUi)]

−1fµ(x)/Ju
n (x)(2.5)

We denote by H(G), G > 0, the class of measures µ ∈M such that their conditional
measures µU on unstable fibers U ∈ U are absolutely continuous with respect to the
Riemannian volume mU with densities fµ(x) whose logarithms are Hölder continuous
with the exponent α and constant G > 0:

| log fµ(x)− log fµ(y)| ≤ G · [du(x, y)]α(2.6)

for all x, y ∈ U and U ∈ U .

3 Conditionally invariant measures on unstable fibers

In this Section we prove Theorem 1.1 and some lemmas on the evolution of measures
under T∗, that will be used in the forthcoming sections.

13



Proof of Theorem 1.1. Our Theorem 1.1 is in fact an adapted version of a result by
Sinai for ordinary Anosov systems (without holes). In our notations, his result reads

Fact [23, Lemma 2.3]. Let T be a C2 transitive Anosov diffeomorphism. Then there
exists a unique family of conditionally invariant probability measures νu

U on unstable
fibers U ∈ U ′ satisfying (1.3) with Lipschitz continuous densities ρu

U(x) = dνu
U/dmU(x).

Remarks. Actually, Sinai constructed measures on stable fibers, but this does not
matter because one can take T−1 instead of T . Our map T need not be C2, it may be
less regular than Sinai’s. This is why our densities are only Hölder continuous.

We now start the proof. Let µ ∈ H(G). Our proof works for measures defined on
M ′ with (2.6) valid on all U ∈ U ′. Take a fiber U ∈ U ′. The measure µn = T n

∗ µ on M ′

conditioned on U has a density fn(x) = dµn,U/dmU(x). Due to (2.5), we have

fn(x)

fn(y)
=

Ju(T−1y) · · · Ju(T−ny)

Ju(T−1x) · · · Ju(T−nx)
· fµ(T−nx)

fµ(T−ny)
(3.1)

for every x, y ∈ U .
Note that

du(T
−nx, T−ny) ≤ CT λn

T · du(x, y)

Since both Ju and fµ are Hölder continuous on unstable fibers, see (2.1) and (2.6), we
have

| log Ju(T−ny)− log Ju(T−nx)| ≤ CJ · Cα
T λαn

T [du(x, y)]α(3.2)

and
| log fµ(T−nx)− log fµ(T−ny)| ≤ G · Cα

T λαn
T [du(x, y)]α(3.3)

Hence, the ratio in (3.1) converges, as n →∞, to

r(x, y) = lim
n→∞

fn(x)/fn(y) = lim
n→∞

Ju
n (T−ny)/Ju

n (T−nx)

Moreover, this convergence is uniformly exponential in n:

|log[fn(x)/fn(y)]− log r(x, y)| ≤ (c1 + c2G)λαn
T

with some c1, c2 independent of x, y, U, µ and G.
We define a function ρu

U(x) on U by

ρu
U(x) =

(∫
U

r(x, x0) dmU(x)
)−1

r(x, x0)

for any x0 ∈ U . The function ρu
U(x) so defined does not depend on x0 and is a density of

a probability measure, νu
U , on U . It is a direct calculation that

ρu
U(x) = lim

n→∞
fn(x)(3.4)
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and
| log fn(x)− log ρu

U(x)| ≤ (c3 + c4G)λαn
T(3.5)

with some c3, c4 independent of x, y, U, µ and G.
Obviously, the function ρu

U(x) is bounded away from zero and infinity, and it is Hölder
continuous with the exponent α:

| log ρu
U(x)− log ρu

U(y)| ≤ G∗ · [du(x, y)]α(3.6)

with

G∗ = CJ · Cα
T ·

∞∑
n=0

λαn
T

which is independent of U .
The conditional invariance (1.3) now follows from the fact that

fn(x) = µn,U(T−1U ′) · Ju(x) · fn+1(Tx)

for all x ∈ U , Tx ∈ U ′, which is just a particular case of (2.5). Taking the limit as
n →∞ yields (1.3).

The uniqueness of the conditionally invariant family of measures follows from the
convergence to it of any other family of measures with Hölder continuous densities on
unstable fibers, under the iterates of T∗, due to (3.4).

The restriction of the conditionally invariant family of measures νu
U to U+ will then

satisfy Theorem 1.1. Theorem 1.1 is now proved.

We now establish a few useful lemmas.

Lemma 3.1 There is a constant G0 > 0, and for any G > 0 there is an integer nG ≥ 1

such that if µ ∈ H(G), then T n
∗ µ ∈ H(G0) for all n ≥ nG.

Proof. It follows from (3.1)-(3.3) that if µ ∈ H(G), then T n
∗ µ ∈ H(Gn) with

Gn ≤ G · Cα
T λαn

T + G∗

Lemma 3.1 is then established for any G0 > G∗.
Lemma 3.1 means the following. If the densities of the conditional measures µU on

U ∈ U oscillate wildly (G is big), then the map T stretching unstable fibers will quickly
‘smooth out’ those densities. In fact, the Hölder constant Gn decreases basically like a
geometric progression as n grows. There is a natural bound, G∗, however, under which
the values of Gn will not drop.

Lemma 3.2 The function ρu
U(x) and its logarithm are Hölder continuous (with some

exponent α′ > 0) on every Markov rectangle Ri ∈ R′.
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Proof. The Hölder continuity of ρu
U(x) along every unstable fiber U ∈ U ′ (with the

exponent α) was established by (3.6). Its Hölder continuity along stable fibers (with some
positive exponent) follows from the Hölder continuity of Ju(x) along stable manifolds and
the Hölder continuity of the holonomy map (2.3).

Let µ ∈ H(G0). For any n ≥ 0 and U ∈ Un denote by µn,U the measure µn = T n
∗ µ

conditioned on U .

Lemma 3.3 For any U ∈ Un the above measure µn,U is equivalent to νu
U and

e−cλn ≤ dµn,U

dνu
U

≤ ecλn

where c > 0 and λ ∈ (0, 1) are independent of U, n, µ.

Proof. This follows from (3.5) with λ = λα
T and c = c3 + c4G0.

In the notations of the previous lemma, let m ≥ 0 and B ∈ Rm be an atom of the
partition Rm of the set Mm, and U,U ′ ⊂ B two unstable fibers. Let A ⊂ U and A′ ⊂ U ′

be two canonically isomorphic Borel subsets, i.e. A′ = hs
z(A) for any z ∈ U ′.

Lemma 3.4 For any n ≥ m we have

e−cλm ≤ νu
U(A)

νu
U ′(A′)

≤ ecλm

(3.7)

and

e−cλm ≤ µn,U(A)

µn,U ′(A′)
≤ ecλm

(3.8)

with some c > 0 and λ ∈ (0, 1) independent of U, n, µ.

Proof. First, note that
dU(U,U ′) ≤ DsCT λm

T

where Ds is the maximum diameter of stable fibers S ∈ S ′. The bound (3.7) now follows
from Lemma 3.2 and the Hölder continuity of the Jacobian of the holonomy map (2.3).
The bound (3.8) follows from (3.7) and the previous lemma.

Convention. Without loss of generality, we can assume that the values of c and λ are
the same in both lemmas.

The next three statements involve the mixing power k0 of the transition matrix A.
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Lemma 3.5 There is a constant β > 0 such that for any µ ∈ H(G0) and Rj ∈ R we

have

inf
U∈U

µU(T−k0(Rj ∩Mk0) ∩ U) ≥ β(3.9)

Proof. In virtue of the mixing assumption, for any U ∈ U and any Rj ∈ R we have
νu

U(T−k0(Rj ∩Mk0)∩U) > 0. For every i = 1, . . . , I we pick an arbitrary ‘representative’
fiber Ũi ⊂ Ri and from Lemmas 3.3 and 3.4 it follows that for any other U ⊂ Ri we have

µU(T−k0(Rj ∩Mk0) ∩ U) ≥ e−2cνu
Ũi

(T−k0(Rj ∩Mk0) ∩ Ũi)

The bound (3.9) follows with

β = e−2c ·min
j,i

νu
Ũi

(T−k0(Rj ∩Mk0) ∩ Ũi) > 0

Lemma 3.6 There is a β > 0 such that for any µ ∈ H(G0) and Rj ∈ R and all k ≥ k0

we have

inf
U∈U

µU(T−k(Rj ∩Mk) ∩ U) ≥ β · sup
U∈U

µU(T−k(Rj ∩Mk) ∩ U)(3.10)

Proof. Put m = k− k0. For U ∈ U , let T k0(U ∩M−k0) = U1 ∪ · · · ∪UL for some fibers
Ul ∈ Uk0 . From (2.4) we obtain

µU(T−k(Rj ∩Mk) ∩ U) =
L∑

l=1

µU(T−k0Ul) · (T k0
∗ µ)Ul

(T−m(Rj ∩Mm) ∩ Ul)

=
I∑

i=1

∑
l:Ul⊂Ri

µU(T−k0Ul) · (T k0
∗ µ)Ul

(T−m(Rj ∩Mm) ∩ Ul)

Using once again ‘representatives’ Ũi ⊂ Ri and Lemmas 3.3 and 3.4, we get an upper
bound,

µU(T−k(Rj ∩Mk) ∩ U) ≤ e2c ·
I∑

i=1

µU(T−k0(Ri ∩Mk0) ∩ U) · νu
Ũi

(T−m(Rj ∩Mm) ∩ Ũi)

≤ e2c ·
I∑

i=1

νu
Ũi

(T−m(Rj ∩Mm) ∩ Ũi)

By invoking (3.9), we get a lower bound,

µU(T−k(Rj ∩Mk) ∩ U) ≥ e−2c ·
I∑

i=1

µU(T−k0(Ri ∩Mk0) ∩ U) · νu
Ũi

(T−m(Rj ∩Mm) ∩ Ũi)

≥ e−2c · β ·
I∑

i=1

νu
Ũi

(T−m(Rj ∩Mm) ∩ Ũi)

Then we decrease the value of β by a factor of e−4c and complete the proof.
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Corollary 3.7 There is a β > 0 such that for any µ ∈ H(G0) and any s-subrectangle

D ∈ Ri (in particular for any atom D ∈ R−m, m ≥ 0) and all k ≥ k0 we have

inf
U∈U

µU(T−k(D ∩Mk) ∩ U) ≥ β · sup
U∈U

µU(T−k(D ∩Mk) ∩ U) ,(3.11)

Without loss of generality, the values of β ∈ (0, 1) are assumed to be the same in
these statements.

4 Conditionally invariant measure µ+ on M+

In this section we prove Theorem 1.2. First, we describe the concepts on which our proofs
in this and the following sections are based.

We invoke the Perron-Frobenius theorem for positive matrices and related techniques
developed by Sinai and Čencova. One can think of the matrices we will work with as
finite-dimensional approximations to the usual Perron-Frobenius operator on (infinite-
dimensional) space of measures. To clarify this connection, let us sketch how these
matrix techniques work for an arbitrary measurable transformation T : M → M .

The adjoint operator, T∗, on the space of measures on M acts by T∗µ(A) = µ(T−1A)
for any measurable subset A ⊂ M . Constructions of the invariant measures and studies
of their statistical properties usually rely on the convergence of the sequence of measures
µn = T n

∗ µ, as n → ∞, to a T -invariant measure µ0 on M . To study this convergence,
one can take an increasing sequence of finite partitions ξ1 < ξ2 < · · · of M , where
ξm = {A(m)

1 , . . . , A
(m)
km
}, that converges to a partition into single points. Then one can

represent any measure µ on M by a sequence of (row) vectors pm(µ) with components

(pm(µ))i = µ(A
(m)
i ), 1 ≤ i ≤ km. A probability measure µ is represented by unit vectors,

|pm(µ)| = 1, the norm | · | for (row) vectors being defined below. Then, under certain
regularity conditions that we leave out here, the weak convergence of a sequence of
measures µn, as n →∞, to a measure µ0 is equivalent to the componentwise convergence
of the sequence of vectors pm(µn), as n →∞, to the vector pm(µ0) for every m ≥ 1.

For a fixed m ≥ 1 and a measure µ, the vectors pm(µ) and pm(T∗µ) are related by

pm(T∗µ) = pm(µ)Πm(µ)(4.1)

where Πm(µ) is a km×km matrix with components (Πm(µ))ij = µ(T−1A
(m)
j ∩A

(m)
i )/µ(A

(m)
i )

(we assume µ(A
(m)
i ) 6= 0 for all m, i). Therefore, we have

pm(T n
∗ µ) = pm(µ)Πm(µ) · Πm(T∗µ) · · ·Πm(T n−1

∗ µ)(4.2)
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If the partitions ξm have nice geometric properties (e.g., they are Markov partitions or
alike), then the matrices in (4.2) are very close to each other, and so one can replace
their product by Π̃n

m with some matrix Π̃m close to all of the matrices in (4.2). All
these matrices have nonnegative entries, and usually some power, Π̃nm

m , nm ≥ 1, has
all positive entries. In that case Perron-Frobenius theorem for positive matrices, see
Appendix, applies. It provides a (unique) positive unit eigenvector, p̃m, for the matrix
Π̃m, corresponding to its largest eigenvalue λ̃m > 0 (of multiplicity one). We call p̃m the
Perron eigenvector and λ̃m the Perron eigenvalue. Moreover, for any other positive unit
vector qm the sequence of vectors qΠ̃n

m converges, as n →∞, to p̃m (exponentially fast in
L = n/nm). These facts can be used to prove that for some suitable probability measures
µ the vectors pm(T n

∗ µ) will be close to the Perron eigenvector pm for large enough n.
Now, the limit of the Perron eigenvectors p̃m, as m →∞, defines a measure µ0 on M ,

which will be the weak limit of T n
∗ µ, as n →∞. The details of this scheme depend on the

specific dynamical system and specific sequence of partitions ξm. Various versions of this
matrix method work well for systems with sufficiently strong hyperbolic or expanding
properties.

We prefer this matrix machinery to the Perron-Frobenius functional operator tech-
niques for two reasons. First, it allows us to compute some characteristics of limit in-
variant measures which are not readily available otherwise, like the ones in our Proposi-
tions 1.5 and 1.7. Second, this machinery looks flexible enough to work well for nonuni-
formly hyperbolic systems, in particular billiards, where other techniques fail.

We now make a few conventions. As it is already clear, we will study vectors p whose
components correspond to atoms A ∈ ξ of some finite partitions ξ of M . We will not
enumerate or even order those atoms, so our ‘vectors’ will be just collections of numbers,
denoted by pA, A ∈ ξ. Likewise, we will work with ‘matrices’ Π whose entries correspond
to (ordered) pairs A, B of atoms of the partition ξ, and we denote them by ΠA,B. Despite
the lack of order, we think of our vectors as row vectors, and the product q = pΠ is
naturally defined to be another (row) vector with components

qB =
∑
A∈ξ

pAΠA,B

Next, for any (row) vector p we define its norm by

|p| =
∑
A∈ξ

|pA|

and we call a positive vector p a unit vector if |p| = 1. For a positive matrix Π the ratio
of rows, P , is defined by

P = max
A′,A′′,B∈ξ

ΠA′,B/ΠA′′,B

Any two positive matrices, Π and Π′, are said to be close with the constant of proximity
R ≥ 1 if for all A, B ∈ ξ we have

R−1 ≤ ΠA,B/Π′
A,B ≤ R
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We now begin the proof of Theorem 1.2. Recall that any measure µ ∈ Mu
+ is sup-

ported on M+, has conditional measures νu
U on fibers U ∈ U+ and is then completely

defined by its factor measure µ̂ on U+. Due to Theorem 1.1 the operator T∗ and the
transformation T+ leave Mu

+ invariant. The conditionally invariant measures µ ∈ Mu
+

are fixed points of the transformation T+.
Consider the increasing sequence of partitions R+

1 < R+
2 < · · · of M+ defined in

Sect. 2
Any measure µ ∈Mu

+ can be represented by a sequence of (row) vectors

pm(µ) = {µ(B) : B ∈ R+
m}

The weak convergence of a sequence of measures, µn → µ, in Mu
+, is equivalent to the

componentwise convergence pm(µn) → pm(µ), as n →∞, for every m ≥ 1.
According to (4.1), for any µ ∈Mu

+ and k ≥ 1 we have

pm(T k
∗ µ) = pm(µ)Π(k)

m (µ)(4.3)

where Π(k)
m (µ) is a matrix with components

{µ(T−k[B′′ ∩Mk] ∩B′)/µ(B′) : B′, B′′ ∈ R+
m}(4.4)

(here B′ is the ‘row number’ and B′′ is the ‘column number’). Note that if µ′ is propor-
tional to µ, µ′ = a ·µ with some constant a > 0, then Π(k)

m (µ′) = Π(k)
m (µ) for all m, k ≥ 1.

Remark. Some entries of Π(k)
m (µ) may not be defined by (4.4) if µ(B′) = 0. In that

case we can define them arbitrarily without doing any harm to the equation (4.3). We
simply pick a U ⊂ B′ and set the component (4.4) to νu

U(T−k[B′′ ∩Mk] ∩ U).

Next, the equation (4.3) directly implies that

pm(T k
+µ) =

pm(µ)Π(k)
m (µ)

|pm(µ)Π
(k)
m (µ)|

(4.5)

Lemma 4.1 For any m ≥ 1 and k ≥ k0 the matrices Π(m+k)
m (µ), µ ∈ Mu

+, satisfy two

conditions:

(i) the ratio of its rows is bounded by P = β−1:

β ≤ µ(T−m−k[B′′ ∩Mm+k] ∩B′
1)/µ(B′

1)

µ(T−m−k[B′′ ∩Mm+k] ∩B′
2)/µ(B′

2)
≤ β−1(4.6)

for all B′
1, B

′
2, B

′′ ∈ R+
m;

(ii) the matrices Π(m+k)
m (µ1) and Π(m+k)

m (µ2), for any µ1, µ2 ∈ Mu
+, are close to each
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other with the constant of proximity R = exp(cλm), i.e.

e−cλm ≤ µ1(T
−m−k[B′′ ∩Mm+k] ∩B′)/µ1(B

′)

µ2(T−m−k[B′′ ∩Mm+k] ∩B′)/µ2(B′)
≤ ecλm

(4.7)

for all B′, B′′ ∈ R+
m.

Proof. Put U+,B = {U ∈ U+ : U ⊂ B} for B ∈ R+
m. Then the components of the

matrix Π(m+k)
m (µ) can be expressed by

µ(T−m−k[B′′ ∩Mm+k] ∩B′)

µ(B′)
=

1

µ̂(UB′,+)

∫
UB′,+

νu
U(T−m−k[B′′ ∩Mm+k] ∩ U) dµ̂(U)(4.8)

For any B′′ ∈ R+
m there is an atom D ∈ R−m such that T−mB′′ = M+ ∩D. So, for any

k ≥ 0 we have T−m−k[B′′∩Mm+k] = T−k[D∩Mk]∩M+. Now, the estimate (4.6) follows
from (4.8) and Corollary 3.7.

To prove (4.7), notice that the set T−k[D ∩Mk] is a finite union of s-subrectangles
(some atoms of R−m−k). Thus, for any two unstable fibers U,U ′ ⊂ B′ the sets T−k[D ∩
Mk] ∩ U and T−k[D ∩Mk] ∩ U ′ are canonically isomorphic, and Lemma 3.4 implies

e−cλm ≤ νu
U(T−k[D ∩Mk] ∩ U)

νu
U ′(T−k[D ∩Mk] ∩ U ′)

≤ ecλm

(4.9)

This and (4.8) prove (4.7). Lemma 4.1 is proved.
We continue the proof of Theorem 1.2. For any m ≥ 1 and B ∈ R+

m we pick an
arbitrary ‘representative’ unstable fiber ŨB ⊂ B. For any m ≥ 1, k ≥ 1, denote by Π̃(k)

m

the matrix with components

{νu
ŨB′

(T−k[B′′ ∩Mk] ∩ ŨB′) : B′, B′′ ∈ R+
m}(4.10)

Note that Π̃(k)
m = Π(k)

m (µ̃) for any measure µ̃ ∈ Mu
+ supported on the union of repre-

sentative fibers ŨB, B ∈ R+
m, and such that µ̃(ŨB) > 0 for all B ∈ R+

m. Thus, the
matrix Π̃(m+k)

m , k ≥ k0, satisfies the bound (4.6) on the ratio of rows and is close to any
Π(m+k)

m (µ), µ ∈Mu
+, with the constant of proximity Rm, see (4.7).

According to the Perron-Frobenius theorem, provided in Appendix, the matrix Π̃(m+k0)
m

has a positive unit (row) eigenvector, p̃m, corresponding to its largest eigenvalue.
We put

γ = max{λ, 1− β/2}

and fix an m0 such that
(1− β)e2cλm0 < γ
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Proposition 4.2 There is a constant C1 > 0 such that for all m ≥ m0, m1 = m + k0,

and n ≥ m we have

|pm(T n
+µ)− p̃m| ≤ C1(γ

[n/m1] + λm)

Proof. Put L = [n/m1] and l = n−m1L, so that n = m1L + l, 0 ≤ l < m1. Then

pm(T n
∗ µ) = pm(T l

∗µ)Π(m1)
m (T l

∗µ)Π(m1)
m (Tm1+l

∗ µ) · · ·Π(m1)
m (T (L−1)m1+l

∗ µ)

and

pm(T n
+µ) =

pm(T n
∗ µ)

|pm(T n
∗ µ)|

Theorem A.6 now implies Proposition 4.2.
Next, for any m > l ≥ 1 and any vector pm whose components correspond to atoms

B ∈ R+
m, we denote by pm↓l the vector with components

(pm↓l)B′ =
∑

B⊂B′
(pm)B

corresponding to atoms B′ ∈ R+
l .

Proposition 4.3 For any l ≥ 1 there exists a limit

rl = lim
m→∞

p̃m↓l

The sequence of vectors rl satisfies the equations

|rl| = 1 and rl↓k = rk(4.11)

for all l > k ≥ 1. Moreover, for all m ≥ l we have

|p̃m↓l − rl| ≤ 4C1γ
m(4.12)
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Proof. Let µ ∈ Mu
+, l ≥ 1 and n > m(≥ l) be large enough. For any s ≥ n(n + k0)

Proposition 4.2 yields
|pm(T s

+µ)− p̃m| ≤ 2C1γ
m

and
|pn(T s

+µ)− p̃n| ≤ 2C1γ
n

By using an obvious fact that pn↓m(T s
+µ) = pm(T s

+µ), we get

|p̃m↓l − p̃n↓l| ≤ |p̃m − p̃n↓m| ≤ 4C1γ
m(4.13)

Thus, for any l ≥ 1 the sequence of vectors p̃n↓l, n ≥ 1, is a Cauchy sequence, so it
converges to a vector that we denote by rl. Now (4.12) follows from (4.13). It, in turn,
readily implies (4.11). Proposition 4.3 is proved.

Due to (4.11), the sequence of vectors rl, l ≥ 1, specifies a probability measure
µ+ ∈Mu

+ such that pl(µ+) = rl for all l ≥ 1.

Corollary 4.4 For any measure µ ∈ Mu
+ the sequence {T n

+µ} weakly converges, as

n →∞, to µ+. Moreover, for all l ≥ 1 and n > max{m2
0, l

2} we have

|pl(T
n
+µ)− pl(µ+)| ≤ C2γ

√
n,

with some constant C2 > 0.

Clearly, T+µ+ = µ+ and

T∗µ+ = λ+µ+ with λ+ = µ+(M−1)

Theorem 1.2 is now proved.

5 Limit theorems for the measure µ+

Here we prove Theorems 1.3 and 1.4. The proofs require the extension of the previous
analysis from the class of measures Mu

+ to the larger classes Mn.
For any measure µ ∈Mn we denote by µU its conditional measures on unstable fibers

U ⊂ Mn, and by µ̂ its factor measure on Un. For any measure µ ∈ Mn we can consider
a finite sequence of vectors,

pm(µ) = {µ(B) : B ∈ Rm}

for 1 ≤ m ≤ n. Note that if we have a sequence of measures µn ∈ Mn, for which the
sequence of factor measures µ̂n weakly converges, then its limit is a factor measure µ̂ of
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some µ ∈Mu
+. This is equivalent to a componentwise convergence pm(µn) → pm(µ), as

n →∞, for every m ≥ 1.
According to (4.1), for any n ≥ m ≥ 1, k ≥ 1 and µ ∈Mn we have T k

∗ µ ∈Mn+k and

pm(T k
∗ µ) = pm(µ) · Π(k)

m (µ)

where Π(k)
m (µ) is the matrix with components

{µ(T−k[B′′ ∩Mk] ∩B′)/µ(B′) : B′, B′′ ∈ Rm}

(here, as in (4.4), B′ is the ‘row number’ and B′′ is the ‘column number’). The equation
(4.5) holds without changes. The remark before Lemma 4.1 also applies, but now B′, B′′

are atoms of Rm instead of R+
m. The following lemma is an analog of Lemma 4.1:

Lemma 5.1 Let µ ∈ H(G) with some G > 0. Then for any m ≥ 1, k ≥ k0 and

n ≥ m + nG the matrix Π(m+k)
m (µn) for the measure µn = T n

∗ µ ∈ Mn satisfies two

conditions:

(i) the ratio of its rows is bounded by β−1:

β ≤ µn(T−m−k[B′′ ∩Mm+k] ∩B′
1)/µn(B′

1)

µn(T−m−k[B′′ ∩Mm+k] ∩B′
2)/µn(B′

2)
≤ β−1(5.1)

for all B′
1, B

′
2, B

′′ ∈ Rm;

(ii) for all B′, B′′ ∈ Rm we have

e−2cλm ≤ µn(T−m−k[B′′ ∩Mm+k] ∩B′)/µn(B′)

µ+(T−m−k[B′′ ∩Mm+k] ∩B′)/µ+(B′)
≤ e2cλm

(5.2)

Proof. Note that µn ∈ H(G0) due to Lemma 3.1. for B ∈ Rm. Then the components
of the matrix Π(m+k)

m (µn) can be expressed by

µn(T−m−k[B′′ ∩Mm+k] ∩B′)

µn(B′)
=

1

µ̂n(UB′)

∫
UB′

µn,U(T−m−k[B′′ ∩Mm+k] ∩ U) dµ̂n(U)(5.3)

For any B′′ ∈ Rm the set D = T−mB′′ is an atom of R−m. So, for any k ≥ 0 we have
T−m−k[B′′ ∩ Mm+k] = T−k[D ∩ Mk]. Now, the estimate (5.1) follows from (5.3) and
Corollary 3.7.
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The first part of the proof of (5.2) repeats word by word that of (4.7), but then (4.9)
must be combined with Lemma 3.3. This gives

e−2cλm ≤ µn,U(T−k[D ∩Mk] ∩ U)

νu
U ′(T−k[D ∩Mk] ∩ U ′)

≤ e2cλm

for all U,U ′ ⊂ B′. This and (4.8) with (5.3) prove (5.2). Lemma 5.1 is proved.
The following proposition is an analog of Proposition 4.2:

Proposition 5.2 There is a constant C3 > 0 such that for all m ≥ m0, m1 = m + k0,

n ≥ m and any G > 0, µ ∈ H(G) we have

|pm(T n+nG
+ µ)− p̃m| ≤ C3(γ

[n/m1] + λm)

It is enough to prove this for µ ∈ H(G0) and nG = 0. The proof then repeats that of
Proposition 4.2 word by word.

Combining Propositions 5.2 and 4.3 gives

Corollary 5.3 Let G > 0 and µ ∈ H(G). For every l ≥ 1 the sequence of vectors

pl(T
n
+µ) converges to rl = pl(µ+). Moreover, for all n ≥ max{m2

0, l
2} we have

|pl(T
n+nG
+ µ)− pl(µ+)| ≤ C4γ

√
n,

with some constant C4 > 0.

Corollary 5.4 Let G > 0 and µ ∈ H(G). The sequence of factor measures µ̂n, where

µn = T n
+µ, weakly converges, as n →∞, to the factor measure µ̂+ on U+.

We now begin the proofs of Theorems 1.3 and 1.4.

Proposition 5.5 Let G > 0 and µ ∈ H(G). The sequence of measures µn = T n
+µ,

n ≥ 1, weakly converges to the measure µ+.
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Proof. Since T nG
+ µ ∈ H(G0), we may assume that µ ∈ H(G0). It is enough to show

that for every l ≥ 0, k ≥ 0, every atom B ∈ Rl and every atom D ∈ R−k we have a
convergence

µn(B ∩D) → µ+(B ∩D) as n →∞(5.4)

In the following, B and D may be also unions of some atoms of Rl and R−k, respectively,
in one Markov rectangle Ri ∈ R. Let n ≥ max{m2

0, l
2}. Put m = [

√
n]. Then B is the

union of some atoms of Rm, let us denote them by B1, . . . , BL. In every Bi we pick a
‘representative’ fiber Ũi ⊂ Bi. Note that

µn(B ∩D) =
∫
UB

µn,U(D ∩ U) dµ̂n(U)

where µn,U is µn conditioned on the fiber U and µ̂n is its factor measure on Un. Due to
Lemmas 3.3 and 3.4 we have

µn(B ∩D) ≤ ecλm
L∑

i=1

µn,Ũi
(D) · µn(Bi)

≤ e2cλm
L∑

i=1

µu
Ũi

(D) · µn(Bi)

The corresponding estimate from below with negative exponents also holds. In the same
way Lemma 3.4 yields

µ+(B ∩D) ≤ ecλm
L∑

i=1

µu
Ũi

(D) · µ+(Bi)

and the corresponding lower bound with the negative exponent.
Now, Corollary 5.3, in which we can set l = m, implies

µn(B ∩D) ≤ e3cλm

µ+(B ∩D) + e3c · sup
U∈UB

µu
U(D) · |pm(µn)− pm(µ+)|

≤ e3cλm

µ+(B ∩D) + e3c · sup
U∈UB

µu
U(D) · C4γ

m(5.5)

and, respectively,

µn(B ∩D) ≥ e−3cλm

µ+(B ∩D)− e3c · sup
U∈UB

µu
U(D) · C4γ

m(5.6)

These two bounds readily imply (5.4). Proposition 5.5 is proved.
The first statement of Theorem 1.3 now follows immediately. To prove the second, it

is enough to establish the following:

Proposition 5.6 For any G > 0 and µ ∈ H(G) the limit

c[µ] = lim
n→∞

λ−n
+ ||T n

∗ µ||(5.7)

exists and c[µ] > 0.
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Proof. Clearly,

||T n
∗ µ|| =

n−1∏
i=0

||T∗(T i
+µ)|| =

n−1∏
i=0

(T i
+µ)(M−1)(5.8)

Let µn = T n
+µ for n ≥ 0. It is enough to show that the series

∞∑
n=0

log
µn(M−1)

λ+

=
∞∑

n=0

log
µn(M−1)

µ+(M−1)

converges. Note that µnG
∈ H(G0), so we may again assume that µ ∈ H(G0).

Now, let Ri ∈ R and D = Ri ∩ M−1. Let P−1
0 = minj µ+(Rj ∩ M−1). Then the

bounds (5.5) and (5.6) combined with (3.7) imply that

e−3cλm − P0 · C4γ
m ≤ µn(D)/µ+(D) ≤ e3cλm

+ P0 · C4γ
m

for all n > m2
0 with m = [

√
n]. Therefore,∣∣∣∣∣log

µn(M−1)

µ+(M−1)

∣∣∣∣∣ ≤ C5γ
√

n

with some constant C5 > 0. Proposition 5.6 is proved.
Theorem 1.3 is then proved also.

Remark. For every G > 0 the convergence in (5.7) is uniform in µ ∈ H(G). In
particular, if µ ∈ H(G0), then for all m ≥ m2

0

| log c[µ]− log(λ−m
+ ||Tm

∗ µ||)| ≤ C5 ·
∞∑

n=m

γ
√

n(5.9)

We conclude this section with proofs of Theorem 1.4 and Proposition 1.5. The first
part of Theorem 1.4 is a particular case of Proposition 5.5. Next, since µu

U ∈ H(G0),
Proposition 5.6 applies and ensures the second part of Theorem 1.4 with

e(U) = c[µu
U ] = lim

n→∞
λ−n

+ µu
U(M−n)(5.10)

In virtue of Corollary 3.7, the function e(U) is positive and bounded:

sup
U∈U

e(U) ≤ β−1 inf
U∈U

e(U)(5.11)

This bound and (5.9) imply the following:

Corollary 5.7 There is C6 > 1 such that for any m ≥ 0 and any U ∈ U we have

C−1
6 ≤ λ−m

+ µu
U(M−m) ≤ C6
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Due to (5.9), the normalization (1.9) will follow if we show that for all n ≥ 0

λ−n
+

∫
U+

||T n
∗ µu

U || dµ̂+(U) = 1

This equation is verified as follows:∫
U+

||T n
∗ µu

U || dµ̂+(U) =
∫
U+

µu
U(M−n) dµ̂+(U) = µ+(M−n) = λn

+

Proposition 1.5 is proved.

Remark. There is an alternative proof of Theorem 1.4, along the lines of [4], based on
the following observation. Recall that the matrix Πm+k0

m (µ+), cf. Sect. 4, has the largest
eigenvalue λm+k0

+ and the Perron row eigenvector pm(µ+). According to the Perron-
Frobenius theorem, see Appendix, it also has a positive column eigenvector, p∗m(µ+),
such that

Πm+k0
m (µ+)p∗m(µ+) = λm+k0

+ p∗m(µ+)

The sequence of vectors p∗m(µ+) ‘converges’, as m → ∞, to the function e(U) on U+ in
the following sense: for any U ∈ U+ the numerical sequence

{(p∗m(µ+))B, where B ∈ R+
m is such that B ⊃ U}

converges, as m → ∞, to e(U) exponentially fast in m. We do not elaborate this proof
here, it is given in full detail in [4] for the case where T is a smooth horseshoe.

6 Invariant measure η+ on the repeller Ω

Here we prove Theorems 1.6 and 1.8.
For any n ≥ 1 the measure µ

(n)
+ = T−n

∗ µ+ defined by (1.10) is supported on M+∩M−n.
Its conditional measures on U ∩ M−n, U ⊂ M+, i.e. νu

U(·/M−n), they are absolutely
continuous with respect to the Riemannian volume on U with densities

ρu
n,U(x) = [νu

U(U ∩M−n)]−1ρu
U(x), x ∈ U ∩M−n

Its factor measure, µ̂
(n)
+ , on U+ is absolutely continuous with respect to µ̂+, and its

Radon-Nikodym derivative is

dµ̂
(n)
+

dµ̂+

(U) = λ−n
+ · νu

U(U ∩M−n)

for U ⊂ U+, in virtue of (1.11). Due to (5.10), we have

lim
n→∞

dµ̂
(n)
+

dµ̂+

(U) = e(U)

for any U ∈ U+.
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Corollary 6.1 The sequence of measures µ̂
(n)
+ weakly converges to the measure µ̂0 on U+

defined by

dµ̂0(U) = e(U)dµ̂+(U)

We now complete the proof of Theorem 1.6. Let k ≥ 1, l ≥ 1, and consider two
arbitrary atoms B ∈ Rl and D ∈ R−k. For all n ≥ k we have

µ
(n)
+ (B ∩D) = µ+(T n[(B ∩D) ∩M−n])

= µ+(T n−k[T k(B ∩D) ∩M−n+k]) = µ
(n−k)
+ (T k(B ∩D))

The set T k(B ∩D) is an atom of Rk+l. Due to Corollary 6.1 we have

lim
n→∞

µ
(n)
+ (B ∩D) = lim

n→∞
µ

(n−k)
+ (T k(B ∩D)) = µ̂0{U ∈ U+ : U ⊂ T k(B ∩D)}

Hence, the sequence of measures µ
(n)
+ = T−n

∗ µ+ weakly converges, as n →∞, to a measure
η+, which is supported on the closed set M+ ∩ (∩n≥1M−n) = Ω. The invariance of η+

under T follows from two equations:

µ
(n)
+ (T (B ∩D)) = µ

(n−k+1)
+ (T k(B ∩D))

and
µ

(n)
+ (T−1(B ∩D)) = µ

(n−k−1)
+ (T k(B ∩D))

(B and D are the same as above). By taking the limit as n → ∞, we obtain (1.12).
Theorem 1.6 is proved.

Proposition 1.7 follows from Corollary 6.1.
We now prove Theorem 1.8.

Proposition 6.2 For any G > 0 and any measure µ ∈ H(G) the sequence of measures

µn,m defined by (1.14) weakly converges, as m, n →∞, to η+.

Proof. Since T nG
+ µ ∈ H(G0), we may assume that µ ∈ H(G0). It is enough to show

that for every k, l ≥ 0, every atom B ∈ Rl and every atom D ∈ R−k we have

lim
m,n→∞

µn,m(B ∩D) = η+(B ∩D)

Let m > k and n > l. Note that η+(B ∩ D) = η+(T k(B ∩ D)) and µn,m(B ∩ D) =
µn+k,m−k(T

k(B ∩ D)), and T k(B ∩ D) is an atom of Rk+l. Thus, it is enough to show
that

lim
m,n→∞

µn,m(B) = η+(B)(6.1)
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Recall that µ
(n)
+ (B) → η+(B) as n →∞ by Theorem 1.6. Thus, (6.1) is equivalent to

the following:

lim
m,n→∞

µn,m(B)

µ
(m)
+ (B)

= 1(6.2)

Let µn = T n
+µ. The ratio of the above measures can be rewritten as

µn,m(B)

µ
(m)
+ (B)

=
µn(B ∩M−m)

µ+(B ∩M−m)
· µ+(M−m)

µn(M−m)

First, we will show that

lim
m,n→∞

µn(B ∩M−m)

µ+(B ∩M−m)
= 1(6.3)

A direct application of bounds (5.5), (5.6) and Corollary 5.7 gives

µn(B ∩M−m) ≤ e3cλ
√

n

µ+(B ∩M−m) + e4c · C6λ
m
+ · C4γ

√
n

and
µn(B ∩M−m) ≥ e−3cλ

√
n

µ+(B ∩M−m)− e4c · C6λ
m
+ · C4γ

√
n

for all n ≥ max{m2
0, l

2} and m ≥ m2
0. Due to Corollary 5.7 we have

C−1
6 µ+(B) ≤ µ+(B ∩M−m)

λm
+

≤ C6µ+(B)

Combining all the previous bounds yields (6.3).
The equation (6.3) holds, in particular, for l = 0 and B = Ri, 1 ≤ i ≤ I. Since

M−m = ∪I
i=1(Ri ∩M−m), we immediately obtain

lim
m,n→∞

µ+(M−m)

µn(M−m)
= 1

thus completing the proof of (6.2) and Proposition 6.2.
The first part of Theorem 1.8 is then established.

Proposition 6.3 For any G > 0 and µ ∈ H(G) the limit (see (1.15))

c[µ] = lim
m,n→∞

||µ∗n,m||

exists, and c[µ] is the same as in Proposition 5.6.

Proof. We have

lim
m,n→∞

||µ∗n,m|| = lim
m,n→∞

λ−n−m
+ (T n

∗ µ)(M−m)

= lim
m,n→∞

λ−n−m
+ µ(M−n−m)

which is equal to c[µ] due to Proposition 5.6. Proposition 6.3 is proved.
The proof of Theorem 1.8 is completed.
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7 Ergodic properties of the measure η+

Here we prove the ergodic and fractal properties of the invariant measure η+ on the
repeller, given by statements 1.9-1.14.

Let k, l ≥ 0, and take arbitrary atoms B ∈ Rl and D ∈ R−k. Assume that int(B ∩
D) 6= ∅ and pick a point x ∈ B ∩D.

Lemma 7.1 There is a constant C7 > 1 independent of x, B, D, k, l such that

C−1
7 ≤ λk+l

+ Ju
k+l(T

−lx) · η+(B ∩D) ≤ C7

Proof. The set E = T k(B ∩D) is an atom of Rk+l, and due to (1.13)

η+(B ∩D) = η+(T k(B ∩D)) =
∫
UE

e(U) dµ̂+(U)

In virtue of (1.9) and (5.11) we have

β ≤ inf
U∈U

e(U) ≤ sup
U∈U

e(U) ≤ β−1

so that

β ≤ η+(B ∩D)

µ+(E)
≤ β−1

Next, the conditional invariance of µ+ implies that

µ+(E) = λ−k−l
+ µ+(F ) = λ−k−l

+

∫
U(F )

νu
U(F ∩ U) µ̂+(U)

where F = T−l(B ∩D) is an atom of R−k−l and U(F ) = {U ∈ U : U ∩ F 6= ∅}.
To estimate this last integral, recall that the measures νu

U on unstable fibers U ∈ U
have densities uniformly bounded away from zero and infinity, and note that for all
U ⊂ U(F )

0 < const ≤ mU(F ∩ U) · Ju
k+l(T

−lx) ≤ const < ∞

which follows from the absolute continuity of stable and unstable foliations, Sect. 2. This
completes the proof of Lemma 7.1.

This lemma immediately implies that η+ is a Gibbs measure with the potential
g+(x) = − log Ju(x) and the topological pressure P (η+) = log λ+ = −γ+, see [2].

Theorems 1.9 and 1.11 are now proved. Corollary 1.10 mostly follows from [2], for
more advanced limit theorems than the central limit theorem see, e.g., [13].

Theorem 1.12 is self-evident.
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We now turn to Theorem 1.13.
The measure η− is also a Gibbs measure, with potential

g−(x) = log Js(T−1x)

and topological pressure P (η−) = − log λ−1
− = −γ−. The next lemma is a direct conse-

quence of [2, Proposition 4.5].

Lemma 7.2 The following three conditions are equivalent:

(i) η+ = η−;

(ii) there is a constant Z > 0 such that for any periodic point x ∈ Ω, T kx = x, we have

Ju
k (x) · Js

k(x) = Zk;

(iii) the functions g+(x) and g−(x) are cohomologous, i.e. there is a constant R and a

Hölder continuous function u(x) such that g+(x)− g−(x) = R + u(Tx)− u(x).

If those conditions are satisfied, then

− ln Z = R = P (η+)− P (η−) = γ− − γ+

Theorem 1.13 now follows immediately. This theorem, combined with Proposition 4.14
from [2], gives Corollary 1.14.

Possible applications of Theorem 1.13 and Corollary 1.14 cover hyperbolic repellers
constructed on the base of Hamiltonian systems (those preserve Liouville measures that
are absolutely continuous). In particular, these include billiard systems, like the open
billiard with three circular scatterers studied in [16], where repellers are thus always
time-symmetric.

Another interesting class of repellers are linear repellers. Let the rectangles R1, . . . , RI

be subset in IRd and all Eu
x and all Es

x be parallel. Let the map T be linear on each Ri,
with the constant derivative DT =const on M , so that the functions Ju(x) = Ju and
Js(x) = Js are constant on M . In this case the measures η+ and η− always coincide,
and both coincide with the measure of maximal entropy on Ω, see [2] for definitions and
details. In this case the repeller Ω is, however, time symmetric if and only if det DT =
Ju · Js = 1, i.e. if T preserves the Lebesgue measure in IRd.

8 Generalizations and open problems

In our arguments, we never essentially relied on the fact that T was a diffeomorphism of
a connected manifold, in fact the action of T on H = M ′ \M never came into play. All
our results hold true under the following, more general assumptions:
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Let M be a finite union of disjoint closed domains R1, . . . , RI in a smooth Riemannian
manifoldM. Let T : M →M be a diffeomorphism of M onto its image, which is C1+α up
to the boundary ∂M . We assume the Anosov splitting (1.1) at every x ∈ M , and require
(1.2) if the corresponding iterations of T are defined. Let the bundles Eu,s

x be Hölder
continuous and integrable over every Ri, so that Ri is foliated by Hölder continuous
families of C1+α submanifolds W u,s

x such that TW u,s
x = Eu,s

x at every x ∈ Ri. Assume
that every Ri is a rectangle and {R1 . . . , RI} is a Markov partition of M in the sense of
Section 2.

Under these assumptions our results remain true. The above setting is very convenient
for horseshoe-like maps, studied in [4, 21].

We now discuss what happens if we relax the mixing assumption in Section 2. First,
we can classify the rectangles like one does states of Markov chains. We call a rectangle
Ri recurrent if its points come back to itself under T , i.e. intRi ∩ T n(Ri ∩M−n) 6= ∅ for
some n ≥ 1. In the trivial case, where all the rectangles are nonrecurrent (transient), the
sets M+, M− and Ω are empty, and the phase space M ‘escapes’ entirely.

The recurrent rectangles can be grouped, in each group points from any rectangle can
be mapped into any other rectangle, so that the symbolic dynamics within every group
is transitive.

Let us assume first that there is only one transitive group of rectangles R1, · · · , RI0 ,
and put M0 = R1 ∪ . . . ∪ RI0 . This group is periodic if there is a k ≥ 1 such that the
periods of all the periodic points in M0 are multiples of k. In that case this group can
be divided into k subgroups cyclicly permuted by T , and the restriction of T k to any
subgroup is topologically mixing. The study of the map T admits a standard reduction
to that of T k, well known in the theory of Axiom A diffeomorphisms [2], so that we can
restrict ourselves to the case k = 1. Then the repeller Ω belongs in M0. The nonrecurrent
rectangles Ri, i > I0, can be of three types: isolated (such that intT nRi ∩M0 = ∅ for all
n ∈ ZZ), incoming (such that intT nRi ∩M0 6= ∅ for some n > 0) and outgoing (such that
intT nRi ∩M0 6= ∅ for some n < 0). The set M+ intersects only recurrent and outgoing
rectangles, M− only recurrent and incoming ones. The measures µ± conditioned on M0

coincide with the corresponding measures for the restriction of T to M0. The measures η±
and the escape rates γ± will be the same for T |M and T |M0 . So, nonrecurrent rectangles
do not really affect the properties of the repeller Ω studied in this paper, they only may
enlarge the sets M± and ‘stretch’ the measures µ± accordingly.

A more involved situation occurs when there are two or more groups of recurrent
rectangles. For simplicity, consider two groups, R′

1, . . . , R
′
I0

and R′′
1, . . . , R

′′
J0

, and put
M ′

0 = ∪R′
i and M ′′

0 = ∪R′′
j . If there is no connection between these groups, i.e.

int(T nM ′
0∩TmM ′′

0 ) = ∅ for all m, n ∈ ZZ, then we have two trivially independent repellers
in M ′

0 and M ′′
0 , respectively. On the contrary, if there is a route from M ′

0 to M ′′
0 , i.e.

int(T nM ′
0 ∩M ′′

0 ) 6= ∅ for some n ≥ 1, then the picture gets intricate. The rate of escape
from M ′

0 is still the same as for the map T |M ′
0
, as if M ′′

0 did not exist. The escape from
M ′′

0 , however, is combined with the influx of points from M ′
0. The resulting escape rate

from M will be than influenced by three factors: the escape rates from M ′
0, M ′′

0 and by
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the fraction of M ′
0 transmitted to M ′′

0 after escaping from M ′
0. We did not investigate

here these interesting phenomena.
Another natural extension would be to study Axiom A diffeomorphisms rather than

Anosov ones. Let T : M ′ → M ′ be an Axiom A diffeomorphism with the basic set Ω.
Let M ⊂ M ′ be a proper closed subdomain such that Ω = ∩∞−∞T nM . Then it might be
possible to construct conditionally invariant measures on M+ = ∩∞0 T nM and invariant
measures on Ω in the same way as we did for Anosov diffeomorphisms. We leave this for
future researches.

Lastly, there are nonuniformly hyperbolic diffeomorphisms and hyperbolic maps with
singularities, like billiards, which have countable Markov partitions and the derivatives
growing to infinity at singularities. Extension of our results to those models is the most
challenging problem at present.

Appendix

This appendix contains the Perron-Frobenius theorem on positive matrices and related
results. Most of these results are taken from [4].

Let Vm be the space of row m-vectors, and V ∗
m the space of column m-vectors. We

equip them with norms

|a| =
m∑

i=1

|ai|, |b∗| = max
1≤i≤m

|bi|(A.1)

and scalar product
(a, b∗) = a1b1 + · · ·+ ambm

for all a ∈ Vm and b∗ ∈ V ∗
m. We call vectors a ∈ Vm and b∗ ∈ V ∗

m positive if their
components are all positive.

Note that |(a,b∗)| ≤ |a||b∗|.
Let Pm be the set of m×m matrices with positive entries:

A = (Aij) ∈ Pm if Aij > 0 ∀ 1 ≤ i, j ≤ m

Stochastic (
∑

j Aij = 1) and substochastic (
∑

j Aij ≤ 1) matrices are the best studied
classes of matrices in Pm.

Theorem A.1 (Perron-Frobenius theorem) Every positive matrix A ∈ Pm has a

positive row eigenvector p and a positive column eigenvector p∗:

pA = λp and Ap∗ = λp∗
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where λ > 0 is the largest (in absolute value) eigenvalue of the matrix A. These vectors

are unique up to a scalar multiple, i.e. the multiplicity of λ is one.

We put p and p∗ for the Perron eigenvectors of A normalized so that

m∑
i=1

pi = |p| = 1 and
m∑

i=1

pip
∗
i = (p∗,p) = 1(A.2)

For a fixed matrix A ∈ Pm, we introduce other norms in Vm and V ∗
m by

||a||r =
m∑

i=1

|ai|p∗i , ||b∗||c = max
1≤j≤m

(|b∗j |/p∗j)(A.3)

If the components of a are non-negative, then

||a||r = (a,p∗) and ||aA||r = λ||a||r

Note that |(a,b∗)| ≤ ||a||r||b∗||c.
We will say that P ≥ 1 is an estimate of the ratio of rows of A ∈ Pm if

P−1 ≤ Aij/Akj ≤ P ∀ 1 ≤ i, j, k ≤ m

If A satisfies this estimate, we write A ∈ Pm(P ).
If A ∈ Pm(P ), then the components of its Perron eigenvectors satisfy

P−1 ≤ p∗i /p
∗
j ≤ P, λP−1 ≤ Aij/pj ≤ λP, P−1 ≤ p∗i ≤ P

for all 1 ≤ i, j ≤ m. The norms defined by (A.1) and (A.3) are then equivalent:

P−1|a| ≤ ||a||r ≤ P |a| and P−1|b∗| ≤ ||b∗||c ≤ P |b|

for all a ∈ Vm and b∗ ∈ V ∗
m.

The following estimate on the so called coefficients of ergodicity is also satisfied if
A ∈ Pm(P ):

m∑
j=1

p∗j · inf
1≤i≤m

(Aij/p
∗
i ) ≥ λP−1

Denote by Lm and L∗m the orthogonal complements to the Perron eigenvectors:

Lm = {a ∈ Vm : (a,p∗) = 0} and L∗m = {b∗ ∈ V ∗
m : (p,b∗) = 0}

Then we have the decompositions

a = (a,p∗)p + a0 with a0 ∈ Lm

and
b∗ = (p,b∗)p∗ + b∗0 with b∗0 ∈ L∗m

35



Lemma A.2 If A ∈ Pm(P ), then for any a ∈ Lm we have

||aA||r ≤ λ(1− P−1)||a||r

and for any b∗ ∈ L∗m we have

||Ab∗||c ≤ λ(1− P−2)||b∗||c
If λ < 1 (this is the case if A is a proper substochastic matrix), then this lemma says

that the contraction in the orthogonal subspaces Lm and L∗m is stronger than that in the
eigenspaces spanned by the Perron eigenvectors.

Corollary A.3 If A ∈ Pm(P ) and θ = 1− P−1, then

lim
n→∞

λ−nAn = p∗ ⊗ p

where (p∗ ⊗ p)ij = p∗i pj is the tensor product of p∗ and p. Moreover,

||(λ−nAn − p∗ ⊗ p)k||r ≤ 2θnp∗k

where Bk, for a matrix B, means the k-th row.

Remark. If A is a stochastic matrix (
∑

j Aij = 1), then λ = 1 and p∗j = 1 for all
1 ≤ j ≤ n, and we recover a well known ergodic theorem for finite Markov chains.

We now compare the action on positive row vectors by two positive matrices which
are close to each other. We say that B ∈ Pm is close to A ∈ Pm, with the constant of
proximity R ≥ 1 if

R−1 ≤ Bij/Aij ≤ R ∀ 1 ≤ i, j ≤ m(A.4)

In the following statements, A ∈ Pm(P ) is a fixed matrix, p is its Perron row eigenvec-
tor normalized by (A.2) and λ is the corresponding eigenvalue. We also set θ = 1−P−1.

Lemma A.4 Let q be an arbitrary positive row vector such that ||q||r = 1. Let B ∈ Pm

be another matrix close to A with the constant of proximity R ≥ 1. Then

R−1||pA||r ≤ ||qB||r ≤ R||pA||r

and

||qB− pA||r ≤ λθ||q− p||r + λ(R− 1)
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Lemma A.5 Let B ∈ Pm be as in Lemma A.4. For any positive row vector q ∈ Vm we

have ∣∣∣∣∣
∣∣∣∣∣ qB

||qB||r
− pA

||pA||r

∣∣∣∣∣
∣∣∣∣∣
r

≤ θR||q− p||r + 2R(R− 1)

Theorem A.6 Let B1,B2, . . . ,Bn ∈ Pm be matrices, all close to A with the same con-

stant of proximity R ≥ 1. For any positive row vector q ∈ Vm we put qn = qB1 · · ·Bn.

In addition, assume that θR < 1. Then we have∣∣∣∣∣
∣∣∣∣∣ qn

||qn||r
− p

∣∣∣∣∣
∣∣∣∣∣
r

≤ 2θnRn + 2R(R− 1)(1− θR)−1

and ∣∣∣∣∣ qn

|qn|
− p

∣∣∣∣∣ ≤ 4PθnRn + 4PR(R− 1)(1− θR)−1
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