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Abstract

We study Anosov diffeomorphisms on manifolds in which some ‘holes’ are cut.
The points that are mapped into our holes will disappear and never return. We
study the case where the holes are rectangles of a Markov partition. Such maps
with holes generalize Smale’s horseshoes and certain open billiards. The set of
nonwandering points of our map is a Cantor-like set we call a repeller. In our pre-
vious paper, we assumed that the map restricted to the remaining rectangles of the
Markov partition is topologically mixing. Under this assumption we constructed
invariant and conditionally invariant measures on the sets of nonwandering points.
Here we relax the mixing assumption and extend our results to nonmixing and

nonergodic cases.
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1 Introduction

Let T : M ′ → M ′ be a topologically transitive Anosov diffeomorphism of class C1+α

on a compact Riemannian manifold M ′. Sinai [12] and Bowen [1] constructed Markov
partitions for transitive Anosov diffeomorphisms. LetR′ be an arbitrary Markov partition
of M ′ into rectangles R1, . . . , RI′ . We assume that these rectangles are small enough, so
that the symbolic dynamics is well defined [12, 1].

Let I < I ′. Put H = ∪I′
i=I+1(int Ri) and M = M ′ \ H. Then M is a manifold with

boundary. We study here the dynamics of T restricted to M , thinking of H as a ‘hole’
into which some points of M will be mapped by T , and then they disappear (escape).

Notation. For any n ≥ 0 we put

Mn = ∩n
i=0T

iM and M−n = ∩n
i=0T

−iM,

and also
M+ = ∩n≥1Mn, M− = ∩n≥1M−n, Ω = M+ ∩M−

All these sets are closed, T−1M+ ⊂ M+, TM− ⊂ M− and TΩ = T−1Ω = Ω. The set Ω
consists of nonwandering points, i.e. those which never escape through holes, either in
the future or in the past. The sets M+ and M− consist of nonwandering points in the
past and the future, respectively. The purpose of this paper is the study of the dynamics
T on Ω, M+ and M−.

A pictorial model of this type of dynamics was proposed by Pianigiani and Yorke
[10]. Imagine a Sinai billiard table (with dispersing boundary), so that the dynamics of
the ball are strongly chaotic. Let one or more holes be cut in the table, so that the ball
can fall through. In particular, one can place those holes at the corners of the table and
make ‘pockets’. Let the initial position of the ball be chosen at random with some smooth
probability distribution (this may be the equilibrium distribution). Denote by p(t) the
probability that the ball stays on the table for at least time t and, if it does, by µ(t) its
(normalized) distribution on the table at time t. Natural questions are: does p(t) converge
to zero at some exponential rate, as t → ∞? is there a limit probability distribution
µ+ = limt→∞ µ(t); is that limit distribution independent of the initial distribution µ(0)?
These questions still remain open.

Pianigiani and Yorke [10] introduced a simpler class of dynamical systems - expanding
(noninvertible) maps with holes, for which the above questions were answered positively
in Refs. [10, 5]. The limit probability distribution µ+ is called conditionally invariant
measure. The measure µ+ is not invariant under T , it cannot be because of the holes.
Instead, its image under T is proportional to itself: µ+(T−1(A∩M1)) = λ+µ+(A) for any
Borel A ⊂ M with some constant λ+ ∈ (0, 1), which we call the eigenvalue of µ+, cf. [4].

In 1981-86 Čencova [2, 3] studied a class of invertible transformations with holes,
namely smooth Smale’s horseshoes. She also answered the above questions positively.
In addition, she studied an inverse limit of the iterations of the measure µ+ (pulled
backward in time). The resulting limit measure, η+, is invariant under the dynamics and
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supported on the set Ω of nonwandering points. That set is a Cantor-like closed set,
sometimes called a repeller or a semi-attractor.

In 1994, Collet, Martinez and Schmitt [5] constructed invariant measures on the sets
of nonwandering points (repellers) for Pianigiani-Yorke noninvertible transformations.
They proved that the measure η+ is a Gibbs measure, and thus it enjoys good statistical
properties.

An special example of invertible hyperbolic systems with holes other than horseshoes
was studied by Lopes and Markarian in [9]. That was an open billiard system – a particle
bouncing off three circular scatterers placed sufficiently far apart on an open plane. They
constructed measures µ+ and η+ and showed that η+ was a Gibbs measure, too.

In Ref. [4] we generalized the above classes of invertible transformations with holes.
We studied C1+α Anosov diffeomorphisms with ‘rectangular’ holes just as described
above, under an additional ‘mixing condition’:

Mixing condition. The symbolic dynamics generated by the partitionR = {R1, . . . , RI}
of M is a topologically mixing subshift of finite type. Equivalently, there is a k0 ≥ 1 such
that intRi ∩ T k0(Rj ∩M−k0) 6= ∅ for all i, j ≤ I.

This class covered both Smale’s horseshoes and open billiard tables (in any dimen-
sions). We proved the existence and uniqueness of the measures µ+ and η+. We showed
that η+ was a Gibbs measure and found its potential function and topological pressure.
We found necessary and sufficient conditions under which the measure η+ coincided with
the measure η− constructed in the same way for the inverse map T−1. This last result
was never discussed in [2, 3, 9]. In particular, we showed that η+ = η− for open billiard
tables answering a question posed in [9].

In this paper we relax the mixing condition, thus allowing multiple ergodic compo-
nents, periodic structure of ergodic components and nonrecurrent states as well. We
prove the existence of the measures µ+ and ν+ and discuss their uniqueness and other
properties. One of the most remarkable results is that the eigenvalue λ+ of the map
T on M equals the largest of the eigenvalues of T restricted to its ergodic components
components. The conditionally invariant measure µ+ is determined by that of the com-
ponent with the largest eigenvalue. The invariant measure ν+ coincides with the one on
the ergodic component with the largest eigenvalue, as if the others did not exist.

The importance of the present study is in the following possible construction. Let
T : M ′ → M ′ be an Anosov diffeomorphism and H ⊂ M ′ be an arbitrary hole with
smooth boundary, not necessarily connected (this is a physically interesting model!). To
study the dynamics of T on M = M ′ \H one can approximate the hole H by a union,
H(r), of ‘rectangular’ holes taking, for a sufficiently fine Markov partition, all its rectangles
intersecting H. The union H(r) of ‘rectangular’ holes can be made arbitrarily close to
the original hole H, and then one can possibly approximate the measures µ+, η+ for the

map T on M by the measures µ
(r)
+ , η

(r)
+ for the map T on M (r) = M ′ \ H(r). The work

in this direction is currently underway. However, the map T on M (r) most certainly fails
to satisfy the above mixing condition, so we cannot use our previous results in Ref. [4]
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directly. We have to relax the mixing condition first, and here we do just that.
Section 2 contains necessary results from Ref. [4]. In Section 3 we establish new results

(still under the mixing condition), which we will need further. In Section 4 we discuss
the case where the subshift generated by R is topological transitive but not topologically
mixing. In Section 5 we study nonrecurrent rectangles. In Section 6 we consider the
coexistence of two transitive classes of rectangles. Section 7 covers the cases of three or
more transitive classes. Section 8 contains general conclusions on arbitrary number of
transitive classes.

2 Necessary results for the mixing case

Here we recall the results of [4] which we are going to extend to nonmixing cases.
Denote by

U ′ = ∨∞n=0T
nR′ and S ′ = ∨∞n=0T

−nR′

the partitions of the rectangles R ∈ R′ into unstable and stable manifolds (fibers),
respectively. The restrictions of U ′ to M and M+ are denoted by U and U+, respectively.
Similarly, we have partitions S and S− of the sets M and M− into stable fibers. Atoms
U ∈ U and S ∈ S of these partitions are closed domains on unstable and stable manifolds.
For any x ∈ M ′ denote by Ju(x) and Js(x) the Jacobians of the map DT restricted to
the unstable and unstable subspaces at x, respectively.

Fact [12, 4]. There is a unique family of probability measures νu
U on fibers U ∈ U ′

such that
(i) (smoothness) νu

U is absolutely continuous with respect to the Riemannian volume on
U , and its density, ρu

U(x), x ∈ U , is Hölder continuous (see a convention below);
(ii) (conditional invariance) for any x ∈ U1 ∈ U ′ and Tx ∈ U2 ∈ U ′ we have

ρu
U1

(x) = νu
U1

(T−1U2) · Ju(x) · ρu
U2

(Tx) (2.1)

Equivalently, if TU = U1 ∪ · · · ∪ UL, where Ui ∈ U , then

νu
U(U ∩ T−1A) =

L∑
i=1

νu
U(T−1Ui) · νu

Ui
(A ∩ Ui) (2.2)

for any Borel set A ⊂ M ′. The densities ρu
U(x) satisfy the equation [12]

ρu
U(x)

ρu
U(y)

= lim
n→∞

Ju(T−ny) · · · Ju(T−1y)

Ju(T−nx) · · · Ju(T−1x)
(2.3)

for all x, y ∈ U .

Convention [4]. All the densities of measures on unstable and stable fibers are assumed
to be Hölder continuous with the same Hölder exponent α, as the one of the derivative
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of the map T . We call a measure µ on M smooth if its conditional measures on unstable
fibers U ∈ U are absolutely continuous with Hölder continuous densities.

Recall that every transitive Anosov diffeomorphism has a unique Sinai-Bowen-Ruelle
[13, 1, 11] measure (SBR-measure), whose conditional distributions on unstable manifolds
U ∈ U ′ are exactly our νu

U . Motivated by that, we will call νu
U u-SBR measures (on

unstable manifolds).
For any Borel measure µ on M we define its norm by ||µ|| = µ(M). We denote by T∗

the adjoint operator on the class of Borel measures on M defined by

(T∗µ)(A) = µ(T−1(A ∩M1))

for any A ⊂ M . Due to the holes, the operator T∗ does not preserve norm. We denote
by T+ the (nonlinear) transformation on the set of probability measures defined by the
normalization of the measure T∗µ:

T+µ =
T∗µ

||T∗µ||
=

T∗µ

µ(M−1)
(2.4)

Definition. A measure µ on M is said to be conditionally invariant under T if T+µ = µ.
Obviously, any conditionally invariant measure µ is supported on M+, and there is a λ > 0
such that µ(T−1A ∩M+) = λµ(A ∩M+) for any A ⊂ M .

Theorem 1 Assume the mixing condition. The map T has a unique conditionally in-
variant probability measure µ+ whose conditional measures on unstable fibers are Hölder
continuous. In fact, those conditional measures are u-SBR measures νu

U , U ∈ U+. For
any smooth measure µ on M (see again the above convention) the sequence T n

+µ weakly
converges, as n → ∞, to the measure µ+. Furthermore, the sequence λ−n

+ · T n
∗ µ weakly

converges, as n → ∞, to the measure c[µ] · µ+, where c[µ] > 0 is a linear functional on
smooth measures on M .

Remark. The conditionally invariant measure µ+ constructed in this way is physi-
cally natural according to the original Pianigiani-Yorke motivation [10]. This measure
coincides with the Sinai-Bowen-Ruelle measure in the case H = ∅.

Corollary 1 Let U ∈ U . If µ is a singular measure supported on U with Hölder contin-
uous density (on U), then the sequence T n

+µ weakly converges to µ+.

We call γ+ = ln λ−1
+ the escape rate, cf. [6, 8, 7, 4].

Next, since the set M+ is invariant under T−1, the measures T−n
∗ µ+ for n ≥ 1 are

probability measures for all n ≥ 0. In virtue of Theorem 1 they coincide with the
conditional measures µ+(·/M−n) satisfying

µ+(A/M−n) = µ+(A ∩M−n)/µ+(M−n) = λ−n
+ · µ+(A ∩M−n) (2.5)
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Theorem 2 The sequence of measures T−n
∗ µ+ = µ+(·/M−n) weakly converges, as n →

∞, to a probability measure, η+, supported on the set Ω = M+ ∩M−. The measure η+ is
T -invariant, i.e.

η+(T−1A) = η+(TA) = η+(A) (2.6)

for every Borel set A ⊂ M .

Theorem 3 The measure η+ is an equilibrium state for the Hölder continuous potential

g+(x) = − log Ju(x) (2.7)

on Ω and its topological pressure is P (η+) = − log λ−1
+ = −γ+. Thus, η+ is a Gibbs

measure. The sum of positive Lyapunov exponents of the map T is

χ+
η+

=
∫
Ω

log Ju(x) dη+(x) a.e. (2.8)

The variational principle

−γ+ = hη+(T )−
∫
Ω

log Ju(x) dη+(x) = sup
η
{hη(T )−

∫
Ω

log Ju(x) dη(x)} (2.9)

holds, where hη+(T ) denotes the Kolmogorov-Sinai entropy of the measure η+, and the
supremum is taken over all T -invariant probability measures on Ω. The left equation in
(2.9) is equivalent to the following escape rate formula

χ+
η+

= hη+(T ) + γ+ (2.10)

3 Symbolic dynamics and new results for the mixing

case

We translate Theorems 1-3 into the language of symbolic dynamics to obtain new prop-
erties of the measures µ+ and η+ under the mixing condition.

Define a transition matrix A′ = (A′ij) of size I ′ × I ′ by

A′ij =

{
1 if int Ri ∩ T−1(int Rj) 6= ∅
0 otherwise

In the space Σ′ = {1, 2, . . . , I ′}ZZ of doubly infinite sequences ω = {ωi}∞−∞ with the
product topology we consider a closed subset

Σ′A′ = {ω ∈ Σ′ : A′ωiωi+1
= 1 for all −∞ < i < ∞}
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The left shift homeomorphism σ : Σ′A′ → Σ′A′ is defined by (σ(ω))i = ωi+1. This symbolic
system is a subshift of finite type.

There is a natural projection Π : Σ′A′ → M ′, continuous, surjective and commuting
with the dynamics: Π ◦ σ = T ◦ Π. This projection is one-to-one on the set M ′ \
∪

j∈ZZT j(∂R′).

The partition R = {R1, . . . , RI} of M = M ′ \H defines a I × I submatrix A = (Aij)
of A′. We call A the transition matrix for the restriction of T on M . It defines a new
subshift of finite type by

ΣA = {ω ∈ Σ′A′ : ωi ≤ I for all −∞ < i < ∞}.

It is clear that Π(ΣA) = Ω.
Consider also a ‘hybrid’ symbolic space

Σ+ = {ω ∈ Σ′A′ : ωi ≤ I for all i ≤ 0}.

Its positive semi-sequences {ωi}∞i=1 are defined just like those in Σ′A′ , while its negative
semi-sequences {ωi}0

i=−∞ are defined in the same way as those in ΣA. This space is not
σ-invariant, but it is σ−1-invariant. It is easy to check that Π(Σ+) = M+.

Fact [13, 1, 11]. Every topologically transitive Anosov diffeomorphism T : M ′ → M ′

of class C1+α has a unique SBR measure µu. Its conditional measures on unstable fibers
are absolutely continuous with Hölder continuous densities. The measure µu is a weak
limit of the iterates of any smooth measure on M ′ under T n as n → ∞. For any
Markov partition R′ with sufficiently small rectangles the measure µ̄u = Π−1 ◦ µu on the
symbolic space Σ′A′ is a Gibbs measure with potential function ḡ(ω) = − log Ju(Π(ω))
and topological pressure P = 0.

The measure µu conditioned on M is smooth under our convention in Section 2. Thus,
T n

+µu weakly converges, as n → ∞, to µ+. Since µu is T -invariant on M ′, we actually
have T n

+µu = µu(·/Mn). Therefore, the measure µu conditioned on Mn approaches, as
n → ∞, the measure µ+ on M+. It follows from the results in [4] (see Corollary 5.7
there) that there are constants C1, C2 > 0 such that for all n ≥ 0

C1 ≤ µu(Mn)/enγ+ ≤ C2

Combining the above facts gives the following property of the measure µ̄+ = Π−1µ+

on the symbolic space Σ+.

Theorem 4 For any admissible cylinder C = (ω−n, . . . , ωm) ⊂ Σ+ and every symbolic
sequence ω ∈ C we have

C3 ≤
µ̄+(C)

exp
(∑m

i=−n ḡ(σiω) + nγ+

) ≤ C4 (3.1)

where C3, C4 > 0 are constants independent of the cylinder C or the values of n, m.
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Comparing this theorem to Bowen’s definition of Gibbs measures [1] suggests us to
call the measure µ̄+ on Σ+ a ‘hybrid’ Gibbs measure with the potential function ḡ(ω).
Unlike Bowen’s definition, however, here the ‘positive’ and ‘negative’ components of the
cylinder C have different ‘topological pressures’, P+ = 0 and P− = −γ+ respectively.

For any n ≥ 1 the measure σ−n
∗ µ̄+ is supported on σ−nΣ+. This space has the same

cylinders of length 2n + 1, i.e. (ω−n, . . . , ωn), as the space ΣA. It is clear that σ−n
∗ µ̄+

converges, as n → ∞, to the Gibbs measure η̄+ = Π−1η+ on Σ+ corresponding to the
same potential function ḡ(ω). This is exactly what Theorems 2 and 3 say.

Lastly, let C = (ω0, . . . , ωk) be any admissible cylinder of length k + 1 in Σ′A′ , and
let ω0 ≤ I. Denote by µ̄+,C the measure µ̄+ conditioned on Σ+ ∩ C. Its inverse images
σ−n
∗ (µ̄+,C) behave asymptotically, as n → ∞, just like σ−n

∗ (µ̄+), because the cylinder
C is moved under σ−n to the right and eventually its influence vanishes. Thus, the
measure σ−n

∗ (µ̄+,C) weakly converges to the same Gibbs measure η̄+. Back on M , this
last conclusion means the following.

Corollary 2 Let R′ be any s-inscribed subrectangle in any rectangle Ri ∈ R (i.e., R′ is a
union of some stable fibers S ∈ S, S ⊂ Ri). Denote by µ+,R′ the measure µ+ conditioned
on R′ ∩M+. Then the sequence T−n

∗ µ+,R′ weakly converges, as n → ∞, to the measure
η+.

This corollary is dual to Corollary 1, for it shows that the measure η+ can be obtained
by backward iterations of a measure supported on just one stable fiber, S∩M+, the latter
measure is µ+ conditioned on S ∩ M+. This corollary was missing in Ref. [4], and we
need it in this paper.

4 Topologically transitive case

Here we replace the mixing condition by the following weaker one.

Transitivity condition. The symbolic dynamics generated by the partition R =
{R1, . . . , RI} of M is a topologically transitive subshift of finite type. Equivalently, for
any Ri, Rj ∈ R there is a kij ≥ 1 such that intRi ∩ T kij(Rj ∩M−kij

) 6= ∅.

Under this condition the subshift is either topologically mixing (i.e. T satisfies the
mixing condition) or periodic. The latter means that there is a finite p ≥ 2 (period) and
a partition of R into p subgroups R1, . . . ,Rp cyclically permuted by the shift. Precisely,
intRi ∩ T (Rj ∩M−1) 6= ∅ if and only if Ri ∈ Rl and Rj ∈ Rl+1 for some l (here and on l
is a cyclic index, i.e. l = p + 1 is identified with l = 1). Besides, the map T p restricted
to M (l) = ∪R∈Rl

R for any l satisfies the mixing assumption.
The map T p restricted to M (l) has all the properties listed in the previous section.

In particular, there are conditionally invariant measures µ
(l)
+ on M

(l)
+ = M+ ∩ M (l) and

T p-invariant measures η
(l)
+ on the sets Ω(l) = Ω ∩ M (l). We call these basic measures.

These measures satisfy Theorems 1-3 with T replaced by T p and M by M (l).
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It is standard in the ergodic theory to reduce transitive but nonmixing subshifts to
mixing ones by replacing T with its appropriate iterate, T p. It is interesting, however, to
extend Theorems 1-3 directly to the nonmixing map T , the task we accomplish in this
section.

According to Theorem 1, every basic measure µ
(l)
+ is a weak limit of c[µ]·

[
λ

(l)
+

]−n
T pn
∗ µ,

as n →∞, for any smooth measure µ on M (l). It is then clear that the eigenvalues of the
measures µ

(l)
+ under T p coincide, i.e. λ

(l)
+ = λ̄+ for all l. Also, for any l the measure T∗µ

(l)
+

is proportional to µ
(l+1)
+ , i.e. T∗µ

(l)
+ = λlµ

(l+1)
+ with some λl ∈ (0, 1]. Then λ̄+ = λ1 · · ·λp.

From these remarks and the cyclic character of the map T we derive the following.

Theorem 5 There is a unique conditionally invariant measure µ+ for the map T , whose
conditional measures on unstable fibers are smooth. These are, in fact, the u-SBR mea-

sures νu
U . The eigenvalue of µ+ is λ+ =

(
λ̄+

)1/p
. The measure µ+ is a weighted sum of

basic measures
µ+ = w1µ

(1)
+ + · · ·+ wpµ

(p)
+

where the weights wl > 0 are uniquely determined by the equations wlλl = wl+1λ+ for all
l and w1 + · · ·+ wp = 1.

Example. Let p = 2, and λ1 = 1, λ2 = 1/4. Then the eigenvalue of the measure µ+

is 1/2 and the weights are w1 = 1/3 and w2 = 2/3.

However, the images T n
+µ of an arbitrary smooth measure µ on M generally need

not converge, as n → ∞, to the measure µ+. Normally, the sequence T n
+µ periodically

approaches a finite number (≤ p) of limit measures, all of them being some weighted

sums of the basic measures µ
(1)
+ , . . . , µ

(p)
+ (in particular, they are all equivalent to µ+).

The Cesaro limit of the sequence T n
+µ always exists and does not depend on µ. But it is

an equidistributed sum of the basic measures

µ0
+ =

1

p

(
µ

(1)
+ + · · ·+ µ

(p)
+

)
Even though this measure is equivalent to µ+, it is generally different from µ+.

Theorem 6 (i) The equidistributed sum of basic measures η
(p)
+ ,

η+ =
1

p

(
η

(1)
+ + · · ·+ η

(p)
+

)

is a T -invariant measure on Ω. It is the only T -invariant measure equivalent to η
(l)
+ on

M (l) for every l.
(ii) The weak Cesaro limit of the sequence T−n

∗ µ+, as n →∞, is η+.
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Proof. The basic measures η
(l)
+ on Ω(l) satisfy the invariance property T∗η

(l)
+ = η

(l+1)
+ .

This follows from Theorem 2 and Corollary 2. Then the part (i) is immediate.
It is easy to see that the measure η+ is the weak limit of the sequence T−n

∗ µ0
+ as

n →∞. However, the sequence T−n
∗ µ+ = µ+(·/M−n) generally does not converge to any

measure on Ω. Instead, it periodically approaches a finite number (≤ p) of measures on Ω

that will be weighted sums of the basic measures η
(l)
+ . In the above example, the two limit

measures for the sequence T−n
∗ µ+ have weight distributions (1/3, 2/3) and (2/3, 1/3). It

is now clear that the part (ii) of Theorem 6 holds.

Theorem 7 (i) The measure η+ is a Gibbs measure with potential function g(x) =
− ln Ju(x) and topological pressure P = ln λ+.
(ii) It satisfies the equation (2.10).

Proof. According to Theorem 3 the basic measures η
(l)
+ are Gibbs with potential

gl(x) = − ln(Ju(x) · · · Ju(T p−1x)), x ∈ Ω(l), and topological pressure Pl = ln λ̄+. Then
the part (i) easily follows.

The equation (2.10) holds for the measure η
(l)
+ and the map T p on Ω(l). It is easy

to check that every quantity involved in (2.10) decreases by a factor of p if we replace

T p : Ω(l) → Ω(l) by T : Ω → Ω and η
(l)
+ by η+. This gives the part (ii).

Summarizing, we find that Theorems 1- 3 still hold under the transitivity assumption,
with two exceptions. First, the images T n

+µ of an arbitrary smooth measure µ on M do
not exactly converge to µ+. They approach a finite number of limit measures on M+,
all equivalent to µ+. The same goes to the sequence T−n

∗ µ+ and the limit measure η+.
In the latter case, however, the Cesaro limit of T−n

∗ µ+ is always η+. Corollaries 1 and 2
cannot be extended to nonmixing cases.

5 Nonrecurrent rectangles

One can classify the rectangles R ∈ R just like states of Markov chains are classified in
probability theory. We call a rectangle R ∈ R recurrent if its interior points come back
to R under T , i.e. intR∩ T n(R∩M−n) 6= ∅ for some n ≥ 1. In the trivial case, where all
the rectangles are nonrecurrent (transient), the sets M+, M− and Ω are all empty, and
the phase space M ‘escapes’ entirely.

The recurrent rectangles can be grouped, within each group points from any rectangle
are eventually mapped into any other rectangle. The symbolic dynamics within every
group is a topologically transitive (TT) subshift of finite type.

In this section we still assume that there is just one transitive group of recurrent
rectangles R1, · · · , RI0 , but we allow some nonrecurrent rectangles RI0+1, . . . , RI as well.
Put M (1) = R1 ∪ . . . ∪RI0 .

Nonrecurrent rectangles are further subdivided into three groups:
(i) incoming: such that intT n(Ri ∩M−n) ∩M (1) 6= ∅ for some n ≥ 1;
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(ii) outgoing: such that intT−n(Ri ∩Mn) ∩M (1) 6= ∅ for some n ≥ 1;
(iii) isolated: such that intT n(Ri ∩M−n) ∩M (1) = ∅ for all n ∈ ZZ.

The set of nonwandering points Ω obviously belongs in M (1). The restriction of the
map T to M (1) satisfies the transitivity assumption in the previous section. Thus, there
is a conditionally invariant measure µ

(1)
+ on M

(1)
+ = M+ ∩M (1) with eigenvalue λ

(1)
+ , and

the corresponding T -invariant measure η
(1)
+ on Ω.

The isolated rectangles escape to H altogether in a finite time and have no influence
on the measures µ+, η+ whatsoever. The incoming rectangles are absorbed into M (1) in
a finite time, so their presence (or absence) cannot affect the properties of the measures
µ+ or η+ either.

The set M+ intersects only recurrent and outgoing rectangles. The measures T n
∗ µ

(1)
+

(the images of µ
(1)
+ under the maps T n on M) will be supported on M+, and their

restrictions to M
(1)
+ will be always proportional to µ

(1)
+ . It is then easy to check the

following.

Theorem 8 Under the above conditions, there is a unique conditionally invariant mea-
sure µ+ for the map T supported on M+ with absolutely continuous conditional measures
on unstable fibers. They are, in fact, the u-SBR measures νu

U . The measure µ+ is propor-

tional to µ
(1)
+ on the set M

(1)
+ . These two measures have the same eigenvalue λ+ = λ

(1)
+ .

If the transitive group of rectangles is topologically mixing, the sequence T n
+µ con-

verges, as n → ∞, to µ+ for any smooth measure µ on M . In nonmixing cases the
situation is equivalent to the one in the previous section.

Theorem 9 (i) The T -invariant measure η+ on Ω simply coincides with the measure

η
(1)
+ . Thus, it enjoys all the properties established by Theorems 3 and 7.

(ii) The measure η+ is the weak Cesaro limit of T−n
∗ µ+ as n → ∞ (in the mixing case,

it is just the weak limit).

Proof. Only the part (ii) needs a proof. According to Theorem 6, the weak Cesaro

limit of the sequence T−n
∗ µ

(1)
+ is η+. Consider the measure µ+ conditioned on outgoing

rectangles. It will be transferred under T−n
∗ into measures supported on some s-inscribed

subrectangles in some rectangles Ri ⊂ M (1) and on those subrectangles those measures
will be proportional to µ

(1)
+ . Due to Corollary 2, such measures converge to η+, as n →∞,

in the same way as the sequence T−nµ
(1)
+ . The theorem is proved.

6 Two TT groups of rectangles

As it was remarked in the previous section, recurrent rectangles can be divided into
topologically transitive (TT) groups so that in each group points from any rectangle can
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be mapped into any other rectangle. In this Section we will assume that there are just
two TT groups of rectangles: M (1) = R1 ∪ · · · ∪RI1 , M (2) = RI1+1 ∪ · · · ∪RI2 , and some
non-recurrent rectangles RI2+1, . . . , RI . If there is no connection between these groups,
i.e. int(T nM (1) ∩ TmM (2)) = ∅ for all m,n ∈ ZZ, then we have two trivially independent
repellers, one in M (1) and another in M (2).

There may be, however, a one-way route from M (1) to M (2), i.e. int(T nM (1)∩M (2)) 6=
∅ for some n ≥ 1. In this case the picture gets more intricate. The rate of escape from
M (1) is still the same as for the map T |M(1) , as if M (2) did not exist. The escape from
M (2), however, is combined with the influx from M (1). The resulting escape rate from
M and conditionally invariant measures will be then determined by three factors: the
escape of mass from M (1), M (2) and the transfer of mass from M (1) to M (2).

Nonrecurrent rectangles are now subdivided into four groups:

(i) incoming: such that intT n(Ri ∩ M−n) ∩ (M (1) ∪ M (2)) 6= ∅ for some n ≥ 1 but
intT−n(Ri ∩Mn) ∩ (M (1) ∪M (2)) = ∅ for all n ≥ 1;

(ii) outgoing: such that intT−n(Ri ∩ Mn) ∩ (M (1) ∪ M (2)) 6= ∅ for some n ≥ 1 but
intT n(Ri ∩M−n) ∩ (M (1) ∪M (2)) = ∅ for all n ≥ 1;

(iii) isolated: such that intT n(Ri ∩M−n) ∩ (M (1) ∪M (2)) = ∅ for all n ∈ ZZ;

(iv) transmitting: such that int T n(Ri ∩M−n) ∩M (2) 6= ∅ for some n ≥ 1 and
int T−m(Ri ∩Mm) ∩M (1) 6= ∅ for some m ≥ 1.

Slightly abusing the language, we will say that incoming rectangles have one-way
connections to M (1) ∪M (2), and the outgoing rectangles have one-way connections from
M (1) ∪M (2). We may also say that transmitting rectangles are connected from M (1) and
to M (2).

For the map T restricted to M (i), i = 1, 2, we denote by M
(i)
± and Ω(i) the corre-

sponding sets defined as in Introduction, and by µ
(i)
± and η

(i)
± their conditionally invariant

and invariant measures, respectively. We denote by λ
(i)
± , i = 1, 2, the corresponding

eigenvalues.
It is clear that M+ = ∪n≥0T

n(M
(1)
+ ∩M

(2)
+ ) and M− = ∪n≥0T

−n(M
(1)
− ∩M

(2)
− ). In the

present case, the set M+ consists, in addition to M
(1)
+ ∪M

(2)
+ , of some unstable fibers in

outgoing and transmitting rectangles, as well as some unstable fibers in M (2) not included
in M

(2)
+ . These fibers are images of M

(1)
+ under T n, n ≥ 1, and they are getting closer

and closer to M
(2)
+ as n →∞. Symmetric statements can be made of the set M−.

The set of nonwandering points Ω = M+ ∩ M− includes Ω(1) and Ω(2), but is not

limited to them. It also contains (i) points of intersection of stable fibers of M
(2)
− and

unstable fibers of (T nM
(1)
+ ) ∩ M (2), as well as (ii) similar points in M (1), and (iii) the

points in transmitting rectangles which belong in T nM
(1)
+ ∩ T−mM

(2)
− , n, m ≥ 1.

Standing assumption for all theorems in Sections 6 and 7. The map T restricted to
every TT component is not only topologically transitive, but also topologically mixing.

This is assumed for simplicity only. Nonmixing maps require the modifications to our
results completely described in Section 4.
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We now construct the conditionally invariant measure µ+ for T on M . Obviously,
isolated and incoming rectangles do not affect the measure µ+. Outgoing and transmit-
ting rectangles can capture some fraction of this measure as we described in the previous
section. A new twist here is a flow of mass into M (2) from the transmitting rectan-
gles or directly from M (1). The flowing mass then evolves in M (2) and approaches M

(2)
+

competing with the measure µ
(2)
+ . This flow is characterized by parameters described

below.
Denote by M (1+) the union of M (1) with all outgoing rectangles connected from M (1)

and all transmitting rectangles. Consider the restriction of the map T to M (1+). This
restriction has one TT group of rectangles (it is M (1)) and others act just like outgoing
rectangles in the previous section. We proved there that T on M (1+) has a conditionally
invariant measure µ

(1+)
+ with the same eigenvalue λ

(1)
+ as the measure µ

(1)
+ . Similarly,

denote by M (2+) the union of M (2) with all outgoing rectangles connected from M (2).
Let µ

(2+)
+ be the conditional invariant measure for the restriction of T to M (2+). Note

that, in a peculiar way, the sets M (1+) and M (2+) may have common outgoing rectangles.
But even in this case the measures µ

(1+)
+ and µ

(2+)
+ are supported on disjoint closed sets.

Now, let q
(12)
1 > 0 be the fraction of µ

(1+)
+ transmitted to M (2+) under the action of T ,

i.e. q
(12)
1 = T∗µ

(1+)
+ (M (2+)). Denote by µ

(12)
1 the measure T∗µ

(1+)
+ conditioned on M (2+).

For any k ≥ 2 let q
(12)
k > 0 be the fraction of µ

(1+)
+ transmitted to M (2+) and surviving

k − 1 iterations of T within M (2+), i.e. q
(12)
k = q

(12)
1 T k−1

∗ µ
(12)
1 (M (2+)). For any k ≥ 2

let µ
(12)
k = T k−1

+ µ
(12)
1 . The measure µ

(12)
1 is supported on some unstable fibers in M (2+).

Its further evolution under T k
+, k ≥ 1, within M (2+) will satisfy Theorem 8. According

to that theorem, µ
(12)
k will weakly converge to µ

(2+)
+ as k → ∞, and q

(12)
k ∼ [λ

(2)
+ ]k, i.e.

q
(12)
k [λ

(2)
+ ]−k → const > 0 as k →∞.

Theorem 10 Assume that the two TT groups of rectangles are topologically mixing.
(i) If λ

(1)
+ > λ

(2)
+ , then there are two conditionally invariant probability measures for T

whose conditional measures on unstable fibers are u-SBR measures. One coincides with
µ

(2+)
+ and has eigenvalue λ

(2)
+ . The other has eigenvalue λ

(1)
+ , it is a weighted sum

µ+ = Q−1 ·
(
µ

(1+)
+ +

∞∑
k=1

q
(12)
k [λ

(1)
+ ]−kµ

(12)
k

)
(6.1)

where Q−1 is the normalization factor:

Q = 1 +
∞∑

k=1

q
(12)
k [λ

(1)
+ ]−k

In particular, µ+(M (2+)) = 1−Q−1 and µ+(M
(2)
+ ) = 0.

(ii) If λ
(1)
+ ≤ λ

(2)
+ , then the only conditionally invariant probability measure for T with

u-SBR conditional distributions on unstable fibers is µ
(2+)
+ with eigenvalue λ

(2)
+ .
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For any smooth measure µ on M the sequence T n
+µ weakly converges, as n → ∞, to

one of the above conditionally invariant measures. In the case (i) this limit measure is

the one from (6.1) (rather than µ
(2+)
+ ) if and only if µ(M (1−)) 6= 0, where M (1−) is the

union of M (1) and all incoming rectangles connected to M (1).

Proof. It is enough to investigate the evolution under T∗ of the measure µ0 = xµ
(1+)
+ +

yµ
(2+)
+ with arbitrary x, y ≥ 0, x + y = 1. Its image, T∗µ0, is

xλ
(1)
+ µ

(1+)
+ + xq

(12)
1 µ

(12)
1 + yλ

(2)
+ µ

(2+)
+

Its k-th image, T k
∗ µ0, is

x[λ
(1)
+ ]kµ

(1+)
+ + x

k∑
i=1

q
(12)
i [λ

(1)
+ ]k−iµ

(12)
i + y[λ

(2)
+ ]kµ

(2+)
+ (6.2)

The norm of the second term in (6.2) is

x[λ
(1)
+ ]k

k∑
i=1

ci[λ
(2)
+ /λ

(1)
+ ]i

with some ci = O(1), i.e. ci are bounded away from 0 and ∞. This series converges iff

λ
(1)
+ > λ

(2)
+ . In this case the asymptotics of T k

∗ µ0 will be determined by the first two terms

in (6.2) provided x 6= 0 and by the third term alone otherwise. In the case λ
(1)
+ ≤ λ

(2)
+ we

use the convergence of µ
(12)
k to µ

(2+)
+ . Renormalizing and taking limit as k → ∞ prove

the theorem.

Theorem 11 (i) If λ
(1)
+ > λ

(2)
+ , then the measure η+ = lim T−n

∗ µ+ is either η
(1)
+ or η

(2)
+

depending on µ+ being defined by (6.1) or being equal to µ
(2+)
+ ;

(ii) If λ
(1)
+ ≤ λ

(2)
+ , then η+ = η

(2)
+ .

In either case η+ is a T -invariant Gibbs measure with potential function g(x) = − ln Ju(x)
and topological pressure P = ln λ+. It satisfies the equation (2.10).

This theorem readily follows from the previous one, in view of Theorems 2 and 3.

In the case (i) of Theorems 10 and 11, the options µ+ = µ
(2+)
+ and η+ = η

(2)
+ can

be regarded as quite singular. Indeed, these measures are generated by initially smooth
measures µ such that µ(M (1−)) = 0. From now on, we will rule out such degenerate
measures:

Definition. The measures µ+ and η+ are said to be regular if they are generated by
smooth measures on M that are positive on every open set.

In particular, µ(M (1−)) > 0, so that in each case in Theorems 10 and 11 the regular
measures are unique. We will restrict ourselves to regular measures. Then these theorems
can be summarized as follows.
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Rule 1. The eigenvalue λ+ of the map T on M equals the largest of the eigenvalues
of T restricted to TT components. The conditionally invariant measure µ+ is determined
by that of the component with the largest eigenvalue. The other components that have
one-way connections to the one with the largest eigenvalue, play no role. The other
components that have one-way connections from the one with the largest eigenvalue,
play the same role as outgoing rectangles, capturing a fraction of µ+. The invariant
measure η+ coincides with the one on the TT component with the largest eigenvalue, as
if the others did not exist.

Motivated by this rule, we will call the TT components with the largest eigenvalue
(i.e., the smallest escape rate) the dominating components. We will see later that the
above rule holds for maps with any number of TT components, provided the dominating
component is unique. Necessary corrections in the case of several dominating components
will be made below.

7 Three TT groups of rectangles

The description of measures µ+ and η+ gets more complicated in the case of more than
two TT groups of rectangles. However, the entire picture is still determined by the rates
of escape of mass from every transitive component and by the rates of transfer of mass
between components.

It is clear that there can be only one-way routes between components. These routes
make an oriented graph in which transitive components are vertices. Moreover, there can
be no (oriented) loops in this graph, so that it is actually a tree. We can assume that it
is a connected tree, otherwise it decomposes into two or more trivially independent trees.

In this section we study maps with three transitive components. Again, for simplicity
we assume that all these components are topologically mixing. Let us denote them by
M (1) = R1∪ . . .∪RI1 , M (2) = RI1+1∪ . . .∪RI2 and M (3) = RI2+1∪ . . .∪RI3 . In addition,
there may be some non-recurrent rectangles RI3+1, . . . , RI . For the map T restricted

to M (i), i = 1, 2, 3, we will use the notations M
(i)
+ , λ

(i)
± , µ

(i)
± and η

(i)
± introduced in the

previous section.
There are four nonisomorphic connected oriented trees with three vertices. They are

(up to renumbering of vertices):
(I) M (1) → M (2) → M (3),
(II) M (1) → M (2) and M (1) → M (3),
(III) M (1) → M (2) → M (3) and M (1) → M (3),
(IV) M (1) → M (3) and M (2) → M (3).

For every of these configurations, the nonrecurrent rectangles can be classified and
the sets M± and Ω can be described in a way similar to the one we gave in the previous
section. We do not dwell on this, since it will not be essential to our analysis. We turn
to the study of the measures µ+ and η+ for the map T on M .

The first configuration logically reduces to the study of two TT groups if we consider
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first the subgroup M (2) → M (3) independently of M (1) and then the pair M (1) and
M (2) ∪M (3). The results will then perfectly fit Rule 1 at the end of the previous section.
We leave out the details and turn to the more interesting configurations (II)-(IV).

The configurations (II) and (III) are characterized by flows of mass from M (1) into
M (2) and M (3) (directly or via transmitting nonrecurrent rectangles). The flowing mass

then evolves in both M (2) and M (3) approaching the sets M
(2)
+ and M

(3)
+ respectively. In

the configuration (III) there is also a flow of mass from M (2) to M (3). These flows are
characterized by parameters described below.

For simplicity, we assume that there are no outgoing or transmitting rectangles in the
system. If there are any, one has to take unions of M (i) with outgoing and transmitting
rectangles connected from M (i) like we did in the previous section. This amounts to
somewhat heavier notations but makes little difference in our arguments.

For any pair of components M (i) and M (j) we introduce a sequence of numbers {q(ij)
k }

similarly to the sequence {q(12)
k } in the previous section. Let q

(ij)
1 > 0 be the fraction

of µ
(i)
+ transmitted to M (j) under the action of T , i.e. q

(ij)
1 = T∗µ

(i)
+ (M (j)). Denote by

µ
(ij)
1 the measure T∗µ

(i)
+ conditioned on M (j). For any k ≥ 2 let q

(ij)
k > 0 be the fraction

of µ
(i)
+ transmitted to M (j) and surviving k − 1 iterations of T restricted to M (j), i.e.

q
(ij)
k = q

(ij)
1 T k−1

∗ µ
(ij)
1 (M (j)). For any k ≥ 2 let µ

(ij)
k be the measure T k−1

∗ µ
(ij)
1 conditioned

on M (j). The measure µ
(ij)
1 is supported on some unstable fibers in M (j). Its further

evolution under the restriction of T k, k ≥ 1, to M (j) will satisfy Theorem 1. According
to that theorem, µ

(ij)
k will weakly converge to µ

(j)
+ as k → ∞, and q

(ij)
k ∼ [λ

(j)
+ ]k, i.e.

q
(ij)
k [λ

(j)
+ ]−k → const > 0 as k →∞.

Theorem 12 Assume the configuration (II), the mixing condition within every TT group
of rectangles, and the absence of outgoing and transmitting rectangles in the system.

(i) If λ
(1)
+ > max{λ(2)

+ , λ
(3)
+ }, then the unique regular conditionally invariant measure

µ+ has eigenvalue λ
(1)
+ and is a weighted sum

µ+ = Q−1 ·
(
µ

(1)
+ +

∞∑
k=1

q
(12)
k [λ

(1)
+ ]−kµ

(12)
k +

∞∑
k=1

q
(13)
k [λ

(1)
+ ]−kµ

(13)
k

)
(7.1)

where Q−1 is the normalization factor:

Q = 1 +
∞∑

k=1

q
(12)
k [λ

(1)
+ ]−k +

∞∑
k=1

q
(13)
k [λ

(1)
+ ]−k

In particular, µ+(M
(2)
+ ∪M

(3)
+ ) = 0.

(ii) Let λ
(1)
+ ≤ max{λ(2)

+ , λ
(3)
+ } and λ

(2)
+ 6= λ

(3)
+ . Without loss of generality, assume that

λ
(2)
+ > λ

(3)
+ . Then the only regular conditionally invariant measure µ+ coincides with µ

(2)
+

and has eigenvalue λ
(2)
+ .

(iii) If λ
(1)
+ ≤ max{λ(2)

+ , λ
(3)
+ } and λ

(2)
+ = λ

(3)
+ , then any weighted sum of the measures

µ
(2)
+ and µ

(3)
+ is a regular conditionally invariant measure for T . Its eigenvalue is λ

(2)
+ =

λ
(3)
+ .
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For any smooth measure µ on M positive on every open set the sequence T n
+µ weakly

converges, as n →∞, to a regular conditionally invariant measure µ+. In the case (iii)
the resulting measure µ+ is determined by the initial distribution of µ between the TT
components.

Proof. As in the proof of Theorem 10, it is enough to investigate the evolution
under T∗ of the measure µ0 = xµ

(1)
+ + yµ

(2)
+ + zµ

(3)
+ with arbitrary x, y, z ≥ 0 such that

x + y + z = 1. Its image, T∗µ0, is

xλ
(1)
+ µ

(1)
+ + xq

(12)
1 µ

(12)
1 + yλ

(2)
+ µ

(2)
+

+ xq
(13)
1 µ

(13)
1 + zλ

(3)
+ µ

(3)
+

Its k-th image, T k
∗ µ0, is

x[λ
(1)
+ ]kµ

(1)
+ + x

k∑
i=1

q
(12)
i [λ

(1)
+ ]k−iµ

(12)
i + y[λ

(2)
+ ]kµ

(2)
+

+ x
k∑

i=1

q
(13)
i [λ

(1)
+ ]k−iµ

(13)
i + z[λ

(3)
+ ]kµ

(3)
+ (7.2)

The rest of the proof goes like that of Theorem 10.

Theorem 13 Under the conditions of the previous theorem we have
(i) If λ

(1)
+ > max{λ(2)

+ , λ
(3)
+ }, then the measure η+ = lim T−n

∗ µ+ coincides with η
(1)
+ .

(ii) Let λ
(1)
+ ≤ max{λ(2)

+ , λ
(3)
+ } and λ

(2)
+ > λ

(3)
+ as before. Then η+ = η

(2)
+ .

(iii) If λ
(1)
+ ≤ max{λ(2)

+ , λ
(3)
+ } and λ

(2)
+ = λ

(3)
+ , then η+ is a weighted sum of η

(2)
+ and

η
(3)
+ with the same weights as in the case (iii) of the previous theorem.

In every case η+ is a T -invariant Gibbs measure with potential function g(x) =
− ln Ju(x) and topological pressure P = ln λ+. It is ergodic in the cases (i) and (ii),
and has two ergodic components in the case (iii). The measure η+ satisfies the equation
(2.10).

We now turn to the configuration (III). A new twist here is a secondary flow of mass
from M (1) to M (3) via M (2). For any m, n ≥ 1 denote by M (1)

m,n the set of points of M (1)

whose first m images land in M (2) and the following n images land in M (3), i.e.

M (1)
m,n = {x ∈ M (1) : T ix ∈ M (2) for 1 ≤ i ≤ m and

T jx ∈ M (3) for m + 1 ≤ j ≤ m + n}

Let r(123)
m,n = µ

(1)
+ (M (1)

m,n) and µ(123)
m,n = Tm+n

∗ (µ
(1)
+ |M (1)

m,n), note that µ(123)
m,n is a probability

measure. Obviously, T−1
∗ µ

(123)
m,1 is the measure µ(12)

m conditioned on M (2)∩T−1M (3). There-

fore, the measure T−1
∗ µ

(123)
m,1 converges, as m →∞, to µ

(2)
+ conditioned on M (2)∩T−1M (3).

According to Theorem 1, the measure µ(123)
m,n then converges, as n →∞, to µ

(3)
+ , and this
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convergence is uniform in m. Also, r(123)
m,n ∼ [λ

(2)
+ ]m[λ

(3)
+ ]n, i.e. r(123)

m,n [λ
(2)
+ ]−m[λ

(3)
+ ]−n →

const > 0 as m, n →∞, and the values of r(123)
m,n [λ

(2)
+ ]−m[λ

(3)
+ ]−n are bounded away from 0

and ∞.

Theorem 14 Assume the configuration (III), the mixing condition within every TT
group of rectangles, and the absence of outgoing and transmitting rectangles in the system.

(i) If λ
(1)
+ > max{λ(2)

+ , λ
(3)
+ }, then the unique regular conditionally invariant measure

µ+ has eigenvalue λ
(1)
+ , and it is a weighted sum

µ+ = Q−1 ·
(
µ

(1)
+ +

∞∑
k=1

q
(12)
k [λ

(1)
+ ]−kµ

(12)
k +

∞∑
k=1

q
(13)
k [λ

(1)
+ ]−kµ

(13)
k

+
∞∑

m,n=1

r(123)
m,n [λ

(1)
+ ]−m−nµ(123)

m,n

)
(7.3)

where Q−1 is the normalization factor:

Q = 1 +
∞∑

k=1

q
(12)
k [λ

(1)
+ ]−k +

∞∑
k=1

q
(13)
k [λ

(1)
+ ]−k +

∞∑
m,n=1

r(123)
m,n [λ

(1)
+ ]−m−n

In particular, µ+(M
(2)
+ ∪M

(3)
+ ) = 0.

(ii) Let λ
(1)
+ ≤ λ

(2)
+ and λ

(2)
+ > λ

(3)
+ . Then the only regular conditionally invariant

measure µ+ has eigenvalue λ
(2)
+ and is a weighted sum

µ+ = Q−1 ·
(
µ

(2)
+ +

∞∑
k=1

q
(23)
k [λ

(2)
+ ]−kµ

(23)
k

)
(7.4)

where Q−1 is the normalization factor:

Q = 1 +
∞∑

k=1

q
(23)
k [λ

(2)
+ ]−k

In particular, µ+(M
(1)
+ ∪M

(3)
+ ) = 0.

(iii) Let λ
(3)
+ ≥ max{λ(1)

+ , λ
(2)
+ }. Then the only regular conditionally invariant measure

µ+ coincides with µ
(3)
+ and has eigenvalue λ

(3)
+ .

For any smooth measure µ on M positive on every open set the sequence T n
+µ weakly

converges, as n →∞, to a regular conditionally invariant measure µ+.

Proof. As in the proofs of Theorems 10 and 12, it is enough to investigate the evolution
under T∗ of the measure µ0 = xµ

(1)
+ + yµ

(2)
+ + zµ

(3)
+ with arbitrary x, y, z ≥ 0 such that

x + y + z = 1. Its k-th image, T k
∗ µ0, is

x[λ
(1)
+ ]kµ

(1)
+ + x

k∑
i=1

q
(12)
i [λ

(1)
+ ]k−iµ

(12)
i + y[λ

(2)
+ ]kµ

(2)
+
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+ x
k∑

i=1

q
(13)
i [λ

(1)
+ ]k−iµ

(13)
i + z[λ

(3)
+ ]kµ

(3)
+

+ y
k∑

i=1

q
(23)
i [λ

(2)
+ ]k−iµ

(23)
i + x

∑
i+j≤k

r
(123)
i,j [λ

(1)
+ ]k−i−jµ

(123)
i,j

The rest of the proof goes basically like that of Theorems 10 and 12. In the analysis of the
case (ii) the measures µ

(123)
i,j play some role. The necessary result follows from two facts:

(i) the measure T−1
∗ µ

(123)
i,1 converges, as i → ∞, to µ

(2)
+ conditioned on M (2) ∩ T−1M (3),

and (ii) for any j1, j2 ≥ 1 we have

lim
i→∞

r
(123)
i,j1 /r

(123)
i,j1 = q

(23)
j1 /q

(23)
j2

Theorem 15 Under the conditions of the previous theorem we have
(i) If λ

(1)
+ > max{λ(2)

+ , λ
(3)
+ }, then the measure η+ = lim T−n

∗ µ+ coincides with η
(1)
+ .

(ii) Let λ
(1)
+ ≤ λ

(2)
+ and λ

(2)
+ > λ

(3)
+ . Then η+ = η

(2)
+ .

(iii) If λ
(3)
+ ≥ max{λ(1)

+ , λ
(2)
+ } then η+ = η

(3)
+ .

In every case η+ is an ergodic T -invariant Gibbs measure with potential function
g(x) = − ln Ju(x) and topological pressure P = ln λ+. It satisfies the equation (2.10).

The last configuration, IV, can be reduced to III by eliminating the flow of mass
from M (1) to M (2) together with the secondary flow from M (1) to M (3) via M (2). In
the previous two theorems this forces q

(12)
k = 0 and r(123)

m,n = 0 for all k,m, n. Then the
results of those theorems apply to the configuration IV in the cases (i) and (iii). The

case (ii) goes through under an additional assumption that λ
(1)
+ < λ

(2)
+ . The possibility

λ
(1)
+ = λ

(2)
+ > λ

(3)
+ is treated separately in the following theorem.

Theorem 16 Assume the configuration (IV), the mixing condition within every TT
group of rectangles, and the absence of outgoing and transmitting rectangles in the sys-
tem. Let λ

(1)
+ = λ

(2)
+ > λ

(3)
+ . Then any regular conditionally invariant measure for T is a

weighted sum µ+ = w1µ+,1 + w2µ+,2, where

µ+,i = µ
(i)
+ +

∞∑
k=1

q
(i3)
k [λ

(i)
+ ]−kµ

(i3)
k

for i = 1, 2. The measures µ+,i are singular with respect to each other. The eigenvalue

of any such µ+ is λ
(1)
+ = λ

(2)
+ .

For any smooth measure µ on M positive on every open set the sequence T n
+µ weakly

converges, as n →∞, to some regular conditionally invariant measure µ+, whose weights
are determined by the initial distribution of µ between the TT components.

The T -invariant measure η+ = lim T−k
∗ µ+ is a weighted sum of η

(1)
+ and η

(2)
+ . It

is a Gibbs measure with potential function g(x) = − ln Ju(x) and topological pressure
P = ln λ+. It satisfies the equation (2.10) and has two ergodic components.
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8 General conclusions

Here we generalize (leaving out some technical details and exact proofs) the theorems
obtained in the previous two sections to systems with arbitrary number of TT compo-
nents.

First of all, if the system has an only dominating TT component (the one with the
largest eigenvalue), then Rule 1 describes the properties of measures µ+ and η+.

If the system has more than one dominating TT components, then we subdivide
them into essential and nonessential ones as follows. Any dominating component M (i)

that has a one-way connection to another dominating component (possibly, via some
transmitting rectangles and/or other TT components) is said to be nonessential. The
remaining dominating components are essential.

Rule 2. The measures µ+ and η+ always exist. They are determined by essential
dominating (ED) components only. If the system has just one ED component, the mea-
sures µ+ and η+ are unique and determined by that component according to the Rule 1,
as if all the other TT components were not even dominating.

Rule 3. If the system has two or more ED components, the measures µ+ and η+ are
not unique. Every ED component M (i) determines measures µ+,i and η+,i according to
the Rule 2. The measures µ+,i are singular with respect to each other. The set of regular
conditionally invariant measures µ+ for T is the convex hull of the measures µ+,i. They
have the same eigenvalue, which is the common eigenvalue of all ED components. The
set of regular invariant measures η+ for T is the convex hull of the measures η+,i. Every
η+ is a Gibbs measure with potential function g(x) = − ln Ju(x) and topological pressure
P = ln λ+, and it satisfies the equation (2.10). The number of its ergodic components
equals the number of ED components in the system.

We do not prove Rules 2 and 3 in the general case, since they directly generalize
our theorems proved in two previous sections. We also leave out detailed description of
the measures µ+,i that was provided in the previous sections. We could have given such
a description along the lines developed in the case (i) of Theorems 10, 12 and 14, but
it would involve unpleasantly heavy, though conceptually simple, calculations. So, we
restricted ourselves to the detailed analysis of two and three TT groups.

Finally, let us emphasize that Rules 2 and 3 do not require the topological mixing
condition within TT components. This condition only affects the way the iterations of
smooth measures converge to µ+, and the way the iterations of T−n

∗ µ+ converge to η+.
If the mixing condition within ED components fails, then the Cesaro limit of T n

∗ µ, for
any smooth measure µ, is a measure µ0

+ equivalent to µ+, cf. Sect. 4. Also, the Cesaro
limit of T−n

∗ µ+ (and the limit of T−n
∗ µ0

+) is η+.

Acknowledgements. This work was started when R.M. visited University of Al-
abama at Birmingham, for which he is the most indebted. Both authors thank S. Trou-
betzkoy for fruitful discussion and numerous remarks on the paper. N.Ch. acknowledges
the support of NSF grant DMS-9622547, and R.M. the support of CONICYT (Uruguay).

20



References

[1] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Lect. Notes Math. 470, Springer-Verlag, Berlin, 1975.
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