
Stability of Solutions of Hydrodynamic Equations
Describing the Scaling Limit of a Massive Piston in an

Ideal gas

E. Caglioti1, N. Chernov2, and J. L. Lebowitz3

February 18, 2004

Abstract

We analyze the stability of stationary solutions of a singular Vlasov type hydro-
dynamic equation (HE). This equation was derived (under suitable assumptions)
as the hydrodynamical scaling limit of the Hamiltonian evolution of a system con-
sisting of a massive piston immersed in an ideal gas of point particles in a box.
We find explicit criteria for global stability as well as a class of solutions which are
linearly unstable for a dense set of parameter values. We present some numerical
evidence that when the mechanical system (with a large number of particles) has
initial conditions “close” to stationary stable solutions of the HE, then it stays
close to these solutions for a long time. On the other hand, if the initial state
of the particle system is close to an unstable stationary solution of the HE, then
the mechanical system rapidly diverges from that solution and later appears to
develop long lasting periodic oscillations. We find similar (approximately periodic)
solutions of the HE that are linearly stable.

1 Introduction

The time evolution of a system consisting of a piston of mass M moving parallel to
the x-axis in a cube containing non-interacting point particles of unit mass has been
studied extensively [CLS1, CLS2, CL, G, GF, GP, H, KBM, LPS, Li, PG]. After some
rescaling of space and time (by the length of the cube) the problem reduces to that of a
one dimensional system with NL (NR) particles in the interval [0, X] (resp., [X, 1]) where
X(t) is the position of the piston. The left (right) particles move freely between collisions
with the wall at x = 0 (x = 1) and the piston at x = X(t). At the walls the velocities
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of the particles get reversed while at x = X(t) the outgoing velocity v′ is related to the
incoming velocity v by the rules of elastic collisions [CLS2, CL, LPS],

v′ = −M − 1

M + 1
v +

2M

M + 1
V (1.1)

where V is the incoming velocity of the piston. It follows from (1.1) that NL, NR, as well
as the total kinetic energy, 1

2

∑N
i=1 v2

i + 1
2
MV 2 (N = NL + NR) are conserved quantities.

The dynamics of the system can be reduced to a billiard in a (2N + 1)-dimensional
domain (polyhedron), cf. [CL]. It was shown in [LPS, CLS1, CLS2], under certain quite
restrictive conditions on the initial distribution of gas particles, that, in the limit N →∞,
M ∼ N2/3, the dynamics of the piston and the gas satisfy a closed system of Euler-type
hydrodynamic equations (HE) for a time interval (0, τ) in which any particle had at most
two collisions with the piston.

The origin of the scaling M ∼ N2/3 is as follows. For N particles with velocities of
O(1) distributed with density of O(1) in a parallelopiped of length L and crossectional
area A the number of particles colliding with the piston per unit (unrescaled) time, and
hence the pressure (from each side), is proportional to A. To ensure that, on this time
scale, the acceleration of the piston stays of O(1) as L, A and N ∼ O(AL) grow to infinity,
it is necessary to make the mass of the piston grow as A. For a cube this corresponds to
M ∼ N2/3. In the rescaled units, the number of collisions experienced by the piston per
unit time is O(N) independent of A, and the HE hold for general M as long as M ∼ Nα,
α ∈ (0, 1), i.e. when the kinetic energy of the piston becomes negligible compared to
that of the gas. The time interval (in the scaled units) during which the derivation of
the HE remains valid depends on α (getting larger as α → 1), see Remarks 3 and 4 in
Sect. 4 of [CLS2]. For α = 2/3 this time interval is such that the piston suffers no more
than two collisions with any gas particle. It is however not clear from the derivation to
what extent those equations may actually approximate the real evolution of the particle
system with large N , for longer times.

This led us to carry out extensive computer simulations of particle systems, with
M ∼ N2/3 (precisely, M = 2N2/3), N as large as 27 × 106 [CL], and initial conditions
for which the hydrodynamic equations have a trivial stationary solution X(t) = 0.5 and
V (t) = 0 for all t > 0. We found nevertheless that for certain initial velocity distributions
(see later) the trajectory of the piston diverged greatly from these values after a few
collision times. In particular, it was observed in these simulations that the motion of
the piston, after experiencing large seemingly random fluctuations, quickly converges to
a more stable regime, in which the piston and the gas undergo regular (slowly damped)
oscillations lasting many collision times. The parameters of those oscillations (the period,
the amplitude, and the rate of damping) seem to depend little on the number of point
particles and some other details of the initial distributions.

It is reasonable to conjecture that the behavior of mechanical system for finite but
large N , is related to the solution of the HE subjected to random fluctuations arising
from the discrete nature of the gas particles. The large deviations of the motion of the
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mechanical system from the solution of HE, observed in [CL], may thus be due to the
instability of the HE for the initial conditions considered; c.f. discussion of hydrodynamic
fluctuation theory [S].

This interpretation requires that the HE describe the limit (as N → ∞) of the
mechanical evolution of the system for times much longer than those for which they were
derived in [CLS2]. This in turn would imply that when the solution of the hydrodynamic
equations is stable, then the mechanical evolution of the system should remain close to
that solution for arbitrarily long times as N → ∞. We note further that by choosing α
in M ∼ Nα close to one, the time for which the rigorous derivation of the HE remains
valid can be made arbitrary large. Motivated by these considerations we investigate
here stability properties of a special class of stationary solution of the HE. These are of
independent intrinsic interest since they represent, as far as we know, a first example
of a rigorous derivation of non-trivial continuum equations from a Hamiltonian system
(without any stochasticity).

The paper is organized as follows. In Section 2 we state the hydrodynamic equations
and discuss their structure. In Section 3 we prove (rigorously) global stability for a class
of stationary solution. We note that simulations of the mechanical systems with such
distributions in [CL] indeed yield a piston trajectory that remains close to the solution
of the HE, with V (t) ∼ 0 for all t > 0. In Section 4, we use a perturbative analysis
to find sufficient conditions for linear instability (our arguments here are heuristic, but
the conclusions are in good agreement with simulations). In Section 5 we investigate a
particular family of stationary solutions, which include those used in the [CL] simulations,
and show that, according to the criteria developed in Section 4, it contains both linearly
stable and unstable ones, alternating in a very intricate manner. We also describe there
numerical solutions of the HE for two initial conditions obtained by adding the same
perturbation to a linearly stable and a linearly unstable stationary state. After a short
initial time in which the solutions behave similarly, they exhibit interesting differences
(Figures 3–5). In Section 6 we compare a mechanical trajectory of the piston with a
solution of the HE with initial conditions obtained from those used for the simulation
of the mechanical system by a small perturbation. The two trajectories look startlingly
similar, thus confirming our previous analysis. After an initial period of 10-15 recollision
times, both trajectories evolve almost periodically for another 15-20 recollision times,
which is much longer than the time for which the equations were derived in [CLS2], but
sufficiently short so that the periodic motion of the mechanical system has no visible
damping. These observations suggest the existence of a periodic solution of the HE, and
we then carry out an approximate analytic construction of such periodic solutions.

2 Hydrodynamic equations

Let X(t) ∈ (0, 1) be the position of the piston at time t and V (t) its velocity. We denote
the continuum density of the gas in [0, 1]× IR by a function p(x, v, t). The HE describing
the time evolution of this, continuum fluid plus piston system, are as follows.
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(H1) Free motion. Inside the container the density satisfies the standard continuity
equation for a noninteracting particle system without external forces:

(
∂

∂t
+ v

∂

∂x

)
p(x, v, t) = 0 (2.1)

for all x ∈ (0, 1) except x = 0, x = 1 and x = X(t).

Equation (2.1) has a simple solution

p(x, v, t) = p(x− vs, v, t− s) (2.2)

for 0 < s < t such that x− vr /∈ {0, X(t− r), 1} for all r ∈ (0, s). Equation (2.2) has one
advantage over (2.1): it applies to all points (x, v), including those where the function p
is not differentiable, or even continuous.

(H2) Collisions with the walls. At the walls x = 0 and x = 1 we have

p(0, v, t) = p(0,−v, t) (2.3)

p(1, v, t) = p(1,−v, t) (2.4)

(H3) Collisions with the piston. At the piston x = X(t) we have (this is obtained from
(1.1) when M →∞)

p(X(t)− 0, v, t) = p(X(t)− 0, 2V (t)− v, t) for v < V (t)

p(X(t) + 0, v, t) = p(X(t) + 0, 2V (t)− v, t) for v > V (t) (2.5)

where v represents the velocity after the collision and 2V (t) − v that before the
collision; and

X(t) = X(0) +
∫ t

0
V (s) ds (2.6)

is the (deterministic) position of the piston.

It remains to describe the evolution of V (t) (which we take to be left continuous).
Suppose the piston’s position at time t is X and its velocity V . The piston is affected
by the fluid at (x, v) exerting pressure on it from the right (x = X + 0 and v < V ) and
from the left (x = X − 0 and v > V ). Accordingly, we define the density of the fluid in
contact with the piston before a collision (“density on the piston”) by

P (v, t; X, V ) =

{
p(X + 0, v, t) if v < V
p(X − 0, v, t) if v > V

(2.7)

(H4) Piston’s velocity. The velocity V = V (t) of the piston satisfies the equation
∫ ∞

−∞
(v − V )2 sgn(v − V ) P (v, t; X, V ) dv = 0 (2.8)
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The origin of eqs. (H1)–(H3) in the particle system is clear. Eq. (H4) is essentially a force
balance equation—since the rate of collision of the piston with particles on either side
and consequent force on piston is much larger than mass of the piston when N/M →
∞, V adjusts instantaneously to make the forces from the two sides balance exactly.
The system of (hydrodynamic) equations (H1)–(H4) is now closed and, given initial
conditions, satisfying (2.3)–(2.8) at t = 0, completely determine the functions X(t), V (t)
and p(x, v, t) for t > 0. When the initial conditions do not satisfy these equations one
has to imagine that they become satisfied instantaneously for t = 0+. The existence and
uniqueness of solutions of (H1)–(H4) were proven, under general conditions, in [CLS1,
CLS2]. We need only to assume that the p(x, v, 0) is bounded, piecewise differentiable,
and either has a compact support in the x, v plane or decays fast enough as |v| → ∞.
We also require that

∫
p(x, v, 0) dv > 0 for all x.

The HE, like the Vlasov equations for plasmas, are time-reversible, see [P] and [MP].
They preserve the classical integrals of motion. The mass of the fluid to the left and to
the right of the piston as well as the total kinetic energy of the fluid remain constant
along any solution.

(D1) Mass conservation

ML =
∫ X(t)

0

∫
p(x, v, t) dv dx, MR =

∫ 1

X(t)

∫
p(x, v, t) dv dx

(D2) Energy conservation

2E =
∫ ∫

v2p(x, v, t) dv dx (2.9)

Just like the energy, the total momentum of the fluid
∫ ∫

v p(x, v, t) dv dx is also left
unchanged by the fluid-piston interaction, but unlike the energy the momentum changes
due to reflections at the walls. The reason that the piston itself does not contribute to
the total momentum and energy of the system in this model is due to the fact that its
mass and energy vanish, when divided by N , in the limit N → ∞. (The mass, energy
and momentum of the fluid all correspond to the original quantities in the particle system
divided by N).

The HE define a dynamics on the domain G := {(x, v) : 0 ≤ x ≤ 1} in which every
point (x, v) ∈ G moves freely with constant velocity and collides elastically with the walls
and the piston. Denote by (xt, vt) the position and velocity of an arbitrary point at time
t ≥ 0. Then (H1) translates into ẋt = vt and v̇t = 0 whenever xt /∈ {0, 1, X(t)}, (H2)
becomes (xt+0, vt+0) = (xt−0,−vt−0) whenever xt−0 ∈ {0, 1}, and (H3) gives

(xt+0, vt+0) = (xt−0, 2V (t)− vt−0)

whenever xt−0 = X(t). Note that the point (xt, vt) moves in G and reflects at the walls
and the piston as if those had infinite mass.
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The motion of points in G is described by a one-parameter family of transformations
F t : G → G defined by F t(x0, v0) = (xt, vt) for t > 0. We will also write F−t(xt, vt) =
(x0, v0). According to (H1)–(H3), the density p(x, v, t) satisfies a simple equation

p(xt, vt, t) = p(F−t(xt, vt), 0) = p(x0, v0, 0)

for all t ≥ 0. It is easy to see that for each t > 0 the map F t is one-to-one and preserves
area, i.e. det |DF t(x, v)| = 1. Hence, the family F t describes an incompressible flow on
G and consequently:

(D3) Incompressibility. For any a < b the Lebesgue measures (areas) of the sets

{(x, v) : a < p(x, v, t) < b, 0 < x < X(t)}

and
{(x, v) : a < p(x, v, t) < b, X(t) < x < 1}

remain constant in time

A particular case in which it is possible to solve equations (H1)–(H4) analytically,
is when the initial distribution is stationary. This happens when p(x, v, 0) satisfies two
conditions:

(S1) Uniformity and symmetry. The initial density p(x, v, 0) = p(x, v) is of the form

p(x, v) =

{
pL(|v|) for x < X0

pR(|v|) for x > X0

for all v and X(0) = X0.

(S2) Pressure balance. The pressure on the piston from both sides is equal:

PL := 2
∫ ∞

0
v2pL(v) dv = PR := 2

∫ ∞

0
v2pR(v) dv (2.10)

Under conditions (S1)–(S2) the equations (H1)–(H4) have a simple solution: the
system remains frozen in its initial state:

X(t) ≡ X0, V (t) ≡ 0, p(x, v, t) ≡ p(x, v, 0) (2.11)

for all t > 0.
We will analyze in the next three sections the stability of this stationary solution.

Note that there is no requirement on the form of pL(|v|) or pR(|v|); all that is required is
a balance of forces (2.10).
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3 Globally stable solutions

Here we prove that stationary solutions p(x, v) satisfying (S1)–(S2) and an additional
monotonicity requirement:

pL(|v1|) ≥ pL(|v2|) and pR(|v1|) ≥ pR(|v2|) (3.1)

for all |v1| ≤ |v2| globally stable. This criteria is very similar to the stability criteria for
the Vlasov equation described by Penrose [P] and by Marchioro and Pulvirenti [MP].

Before we state our result, we introduce some notation. Denote by ‖ · ‖ the following
special norm on the space of functions on G

‖f(x, v)− g(x, v)‖ =
∫ ∫

|f(x, v)− g(x, v)| (1 + v2) dv dx (3.2)

Theorem 3.1 Let p(x, v) satisfy (S1), (S2) and (3.1). Then for any ε > 0, there exists
a δ > 0 such that if the initial density p(x, v, 0) satisfies ‖p(x, v, 0) − p(x, v)‖ < δ, and
X(0) = X0 then

(i) ‖p(x, v, t)− p(x, v)‖ < ε;

(ii) |X(t)−X(0)| < ε

for all t > 0.

Proof. Our theorem is an almost straightforward consequence of the stability theorem1

by Marchioro and Pulvirenti [MP] (in particular, when pL = pR, then (i) is exactly their
theorem), so we only outline the argument here.

It is clear from (2.9) that, given the position of the piston X and values of the areas
of the level sets, defined in (D3), the minimal possible value of the total energy for any
phase-space density π(x, v), is attained when π(x, v) is uniform in x and monotonically
decreasing in |v| in each compartment.

Consider first the case where π(x, v) has, in each compartment, the same area of the
level sets as some p(x, v) satisfying (S1) and (S2). Then the minimum of the energy
when the piston position is X is attained when

π(x, v) = pL(vX/X0), 0 < x < X

and
π(x, v) = pR(v(1−X)/(1−X0)), X < x < 1

1We note that the stability theorem in [MP] is stated in the L1 norm, but is, in fact, proven in the
(3.2) norm. It therefore needs additional conditions on the space of densities that make these two norms
equivalent.
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The minimal total energy is then

2Emin(t) =
∫ ∞

0

∫ X

0
v2π(x, v) dx dv +

∫ ∞

0

∫ 1

X
v2π(x, v) dx dv

=
X3

0

X2

∫ ∞

0
v2pL(v) dv +

(1−X0)
3

(1−X)2

∫ ∞

0
v2pR(v) dv

(we used a change of variable u = vX/X0 in the first integral and u = v(1−X)/(1−X0)
in the second one). Using the pressure balance (2.10) and denoting P = PL = PR gives

Emin(t) =
P

2

(
X3

0

X2
+

(1−X0)
3

(1−X)2

)

Consider now the above expression as a function of X. Its minimum is attained at the
point where dEmin/dX = 0, i.e.

X3
0

X3
=

(1−X0)
3

(1−X)3

which is only possible if X = X0. Therefore, the state X = X0 provides a unique
minimum of the total energy function under the incompressibility constraint (D3). Any
deviation of X from X0 would result in the increase of the total energy. Since only a
small increase of the total energy is allowed by a δ-perturbation of the initial density
then only small deviations of X from X0 are permitted. This proves claim (ii) and also
implies that EL and ER remain at all times very close to the values corresponding to
the unperturbed density. We can then apply the stability theorem by Marchioro and
Pulvirenti [MP] and obtain (i).

This proves the theorem in the case where p(x, v, 0) has exactly the same area of the
level sets, in each compartment, as p(x, v). For other perturbed initial densities p(x, v, 0),
the above estimates only hold approximately, and our results then follow by standard
approximation techniques. 2

Suppose, for example, that the initial density p(x, v, 0) satisfies (S1) and (3.1), but
(S2) only holds approximately: |PL − PR| = ∆ with a small ∆ > 0. This is a particular
case of our theorem, hence the piston will remain ε-close to its initial position X0 at all
times. Interestingly, we can estimate, in terms of ∆, how far the piston can swing from
its initial position. Indeed, the piston can move as long as

X3
0

X(t)2

∫ ∞

0
v2p(X(t)− 0, v, t) dv +

(1−X0)
3

(1−X(t))2

∫ ∞

0
v2p(X(t) + 0, v, t) dv ≤ 2E(0)

where X0 = X(0), as before, and E(0) is the initial total energy:

2E(0) = X0

∫ ∞

0
v2pL(v) dv + (1−X0)

∫ ∞

0
v2pR(v) dv

By simple calculations one obtains, to the leading order of ∆, the following bound on
the piston displacements:

|X(t)−X0| ≤ 2∆

3PL

(
1

X0

+
1

1−X0

)−1

+ O(∆2)
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4 Perturbative analysis

Here we analyze linear stability of the solutions of the HE corresponding to initial den-
sities p(x, v, 0) satisfying the following stricter version of (S1)–(S2):

(S3) Full uniformity and symmetry. The initial density p(x, v, 0) is uniform in x across
the entire cylinder, i.e. p(x, v, 0) = p0(|v|) for all v and 0 < x < 1.

We also assume that the piston is initially at the midpoint X(0) = 0.5. Of course, un-
der the conditions (S3), the hydrodynamic equations (H1)–(H4) have a simple stationary
solution (2.11). On the other hand, we no longer assume monotonicity (3.1).

We use perturbative analysis to investigate the stability of the stationary solution
(2.11). Our arguments are essentially heuristic: we perturb the initial density (by ε) in
the L1 norm (or, equivalently, in the (3.2) norm) and then expand all the equations in ε
up to first order and ignore terms of higher order.

¿From now on we denote by p0(v) = p0(|v|) an initial density satisfying (S3) and by
p(x, v, 0) a perturbed initial density, which we write as

p(x, v, 0) = p0(|v|) + εp1(x, v, 0)

where ε is small and ‖p1(x, v, 0)‖ = 1. For t > 0, we decompose the density p(x, v, t) as

p(x, v, t) = p0(|v|) + εp1(x, v, t)

We also set p1(x, v, t) = pL(x, v, t) for x < X(t) and p1(x, v, t) = pR(x, v, t) for x > X(t).
According to (2.8), the velocity V (t) of the piston is given by

∫ ∞

V
(v − V )2 [p0(v) + εpL(X, v, t)] dv =

∫ V

−∞
(v − V )2 [p0(v) + εpR(X, v, t)] dv

where X = X(t) is the position of the piston. Expanding in ε and ignoring terms of
order o(ε) gives

V (t) = ε

∫∞
0 v2pL(X, v, t) dv − ∫ 0

−∞ v2pR(X, v, t) dv

4
∫∞
0 v p0(v) dv

Integrating by parts we obtain (for piecewise smooth p0)

2
∫ ∞

0
v p0(v) dv = −

∫ ∞

0
v2p′0(v) dv

We define
h(v) = −p′0(v) for v > 0

and for the sake of completeness set h(−v) = h(v). Then

V (t) = ε

∫∞
0 v2pL(X, v, t) dv − ∫ 0

−∞ v2pR(X, v, t) dv

2
∫∞
0 v2h(v) dv

(4.1)
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When p0(v) is not differentiable we interpret −h(v) as the generalized derivative of p0(v).
Denote by 〈·〉+ the integration

∫∞
0 · dv, and by 〈·〉− the integration

∫ 0
−∞ · dv. Then

V (t) = ε
〈v2pL(X, v, t)〉+ − 〈v2 pR(X, v, t)〉−

2〈v2h(v)〉+
The density of the gas after interaction with the piston is given by the formulas (2.5),

which imply:

p(X − 0,−v, t) = p(X − 0, v + 2V, t)

= p0(v + 2V ) + εpL(X, v, t)

= p0(v) + 2V p′0(v) + εpL(X, v, t)

= p0(v)− 2V h(v) + εpL(X, v, t)

Here we assume v > 0 and ignore terms of order o(ε). Hence, the “reflection rule” can
be written as

pL(X,−v, t) = pL(X, v, t)− h(v)
〈v2pL(X, v, t)〉+ − 〈v2 pR(X, v, t)〉−

〈v2h(v)〉+
This expression suggests the introduction of new functions:

qR,L(x, v, t) =
pL,R(x, v, t)

h(v)

and

ρ(v) =
v2h(v)

〈v2h(v)〉+
The above expression for pL(X,−v, t) can now be written as

qL(X,−v, t) = qL(X, v, t)− 〈qL(X, v, t) ρ(v)〉+ + 〈qR(X, v, t) ρ(v)〉− (4.2)

Similarly, on the other side of the piston,

qR(X, v, t) = qR(X,−v, t) + 〈qL(X, v, t) ρ(v)〉+ − 〈qR(X, v, t) ρ(v)〉− (4.3)

One can interpret these “reflection rules” as follows: the functions qL and qR “exchange”
their average values with respect to the “density” ρ(v).

Note that ρ(v) is normalized, so that 〈ρ(v)〉+ = 1, but it is not necessarily positive (or
even nonnegative). On the other hand when ρ(v) ≥ 0, i.e. the unperturbed density p0(|v|)
is nonincreasing, thus satisfying (3.1). In this case the stationary solution (2.11) is stable,
as we already know by Theorem 3.1. Here we recover this result by our perturbative
analysis:
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Theorem 4.1 The quantity

Q =
∫ ∫ q2(x, v, t) ρ(v)

|v| dx dv

is constant in time, i.e. dQ/dt = 0. Here q = qL for x < X and q = qR for x > X.

Proof. Clearly, Q cannot change just due to the free motion of the gas or due to collisions
with the walls, so we only need to worry about collisions with the piston. The gas particles
colliding with the piston during an infinitesimal interval (t, t+dt) lie in the two triangles
on the xv plane: X − v dt < x < X for v > 0 and X < x < X − v dt for v < 0. The
outgoing particles lie in similar symmetric triangles. Hence, during the interval (t, t+dt),
the quantity Q decreases by (up to the factor of dt)

∫ ∞

0
|v| q

2
L(X, v, t) ρ(v)

|v| dv +
∫ 0

−∞
|v| q

2
R(X, v, t) ρ(v)

|v| dv

= 〈q2
L(X, v, t) ρ(v)〉+ + 〈q2

R(X, v, t) ρ(v)〉−
and it increases by

∫ 0

−∞
|v| q

2
L(X, v, t) ρ(v)

|v| dv +
∫ ∞

0
|v| q

2
R(X, v, t) ρ(v)

|v| dv

= 〈q2
L(X, v, t) ρ(v)〉− + 〈q2

R(X, v, t) ρ(v)〉+
After substituting (4.2) and (4.3) into the above expressions for qL and qR and some
manipulations, all changes in Q cancel out and so it stays constant. 2

When p0(|v|) is strictly decreasing, hence ρ(v) > 0, then Q is a norm in the space of
functions. Thus, the above theorem implies linear stability.

When p0(|v|) is decreasing, but not strictly, then ρ(v) ≥ 0, but there may be regions
where ρ(v) = 0. They correspond to the intervals where p′0 = 0, i.e. where p0 is constant.
On such intervals, the reflection rules (4.2)–(4.3) for the perturbed density pL,R are trivial:

pL(X,−v, t) = pL(X, v, t) and pR(X, v, t) = pR(X,−v, t)

In this case pL and pR cannot grow either. Therefore, we obtain linear stability for all
nonincreasing p0(|v|).

Next we turn to unstable solutions. The stationary solution for an initial density
p0(|v|) satisfying (S3) is linearly unstable if some small perturbations grow exponentially
in time, i.e. ‖p1(x, v, t)‖ ∼ Λt for some p1(x, v, 0) and Λ > 1. This is equivalent to having
a positive Lyapunov exponent in the subspace spanned by the function p1 and its images.
To investigate the existence of such perturbations we first simplify the collision rules (4.2)
and (4.3). Consider the following “symmetric” and “antisymmetric” linear combinations
of qL and qR:

q+(x, v, t) = [qL(x, v, t) + qR(1− x,−v, t)]/2

11



and
q−(x, v, t) = [qL(x, v, t)− qR(1− x,−v, t)]/2

They are defined for x < 1/2. The collision rules (4.2)–(4.3) now take form

q+(X,−v, t) = q+(X, v, t) (4.4)

and
q−(X,−v, t) = q−(X, v, t)− 2〈q−(X, v, t) ρ(v)〉+ (4.5)

Hence q+ is simply a periodic function in t, so it cannot grow to infinity or decrease to
zero. In other words, it cannot affect the stability or instability of the hydrodynamic
equations. The latter is determined by q− alone. So we will only consider q− and omit
“−” for brevity. Our collision rule then reduces to a single equation

q(X,−v, t) = q(X, v, t)− 2〈q(X, v, t) ρ(v)〉+ (4.6)

Next we demonstrate, by example, that densities ρ0(|v|) for which the stationary so-
lution (2.11) is unstable do exist.

Example. Let p0 be a rectangular function defined by

p0(v) =

{
1 if 0.5 < |v| < 1
0 otherwise

(4.7)

This p0(v) satisfies (S3) but not (3.1). We will show that the corresponding stationary
solution is linearly unstable.

First, the function h = −p′0 is the sum of two delta functions:

h(v) = −δ0.5 + δ1

(and symmetrically for v < 0). It is easy to compute ρ directly

ρ = −1

3
δ0.5 +

4

3
δ1

Now the reflection rule (4.6) implies

q(−1) = −5

3
q(1) +

2

3
q(0.5)

q(−0.5) = −8

3
q(1) +

5

3
q(0.5)

Note that only the values p(x,±0.5, t) and p(x,±1, t) will evolve in a nontrivial way, as
specified above, since h(v) = 0 for all v /∈ {1, 0.5,−0.5,−1}.

We now construct a linear subspace of functions q = q− that stays invariant under
the above transformations and in which functions grow exponentially in time (since the

12



q+ component of the perturbation is irrelevant, we set it to zero). We can simplify the
construction further by assuming that at time t = 0

q(x,±1, 0) = u1, q(x, 0.5, 0) = u2, q(x,−0.5, 0) = u3

with some constants u1, u2, u3 (the choice of indices 1, 2, 3 is rather arbitrary). We note
that the functions pL,R(x, v, 0) are now piecewise constant and are completely described
by the values u1, u2, u3. The space of such perturbations is three-dimensional.

It is easy to see that at time t = 1 the functions pL,R will again be constant on the
same intervals, hence they will be described by some other constants u′1, u

′
2, u

′
3. Our

collision rule (4.6) implies that the vectors u′ = (u′1, u
′
2, u

′
3)

T and u = (u1, u2, u3)
T are

related by a linear transformation
u′ = Au

where A is a 3× 3 matrix:

A =
1

3



−5 2 0

0 0 3
−8 5 0




After that, the evolution will proceed periodically – the vector u will be multiplied by
the matrix A at times t = 1, 2, 3, . . .. The matrix A has three real eigenvalues:

λ1,2 =
−4±√7

3
and λ3 = 1

The largest eigenvalue λ = −(4 +
√

7)/3 ≈ −2.215 has the following (unit) eigenvector:

u = (0.4472, −0.3680, 0.8152)

This eigenvector spans a one-dimensional subspace in the space of perturbation densities,
which is invariant during time intervals of period 1 and in which the corresponding
perturbations are expanded by a factor |λ| ≈ 2.215. Roughly, the perturbations double
over one period.

To explore the above periodic growth of perturbations, we note that the piston velocity
is given by

V (t) =
ε

2

(
〈qL(X, v, t)ρ(v)〉+ − 〈qR(X, v, t)ρ(v)〉−

)

= ε〈q(X, v, t)〉+
Hence in our example, during the time interval 0 < t < 1

V =
ε

3
(4u1 − u3) = 0.9736 ε

During the next time interval 1 < t < 2 we have

V =
ε

3
(4u′1 − u′3) = −2.156 ε

13



and so on. Hence, over a unit period of time, the piston velocity grows by a factor of |λ| =
2.215 and changes sign – the piston starts its movements back and forth (oscillations)
that increase exponentially in time.

We note that the same density (4.7) was studied in [CL] where the trajectory of the
piston was computed after an initial configuration of gas molecules was selected randomly
from the distribution p0(v) given in (4.7). It was found [CL] that the piston indeed made
oscillations which increased exponentially in time. The piston’s velocity grew as const·Rt

with R ≈ 1.6. This estimate is to be compared with our calculation of the largest
eigenvalue ≈ 2.215.

Next, we modify the unstable perturbations q found above and make them smooth
(rather than piecewise constant) functions of v.

We will be looking for the function q of the form

q(x, v, t) = C(v) ez(t−x/v)

where z is a complex constant. Note that due to (2.2) the function q (with v fixed)
can only depend on t − x/v. We chose the exponential form in order to investigate the
existence of solutions of the linear equation which grow exponentially with time. Also,
for convenience, we introduce the new space coordinate y in the following way: for all
v > 0 and x < 0.5 we set y = x + 0.5, for v < 0 and x < 0.5 we set y = 0.5 − x, for
v > 0 and x > 0.5 we set y = x− 0.5, and for v < 0 and x > 0.5 we set y = 1.5− x. The
coordinate y assumes the value zero when a point (x, v) ∈ G moving under F t reflects off
the piston, then grows to 0.5 when the point travels to the wall, and grows further from
0.5 to 1 when the point travels from the wall back to the piston.

In the new coordinate y, we will be looking for the function q of the form

q(y, v, t) = C(|v|) ez(t−y/|v|)

More precisely, let
q(y,±1, t) = C(1) ez(t−y)

q(y,±0.5, t) = C(0.5) ez(t−2y)

Recall that p0(|v|) is the characteristic function of the interval [0.5, 1].
Now, the reflection rule (4.6) implies

C(1) = −5

3
C(1) e−z +

2

3
C(0.5) e−2z

C(0.5) = −8

3
C(1) e−z +

5

3
C(0.5) e−2z

We need to find z for which the above system of equations has a nontrivial solution. Put
ez = λ and introduce an auxiliary variable D(0.5) = C(0.5) e−z. Now the above system

14



can be rewritten as

λC(1) = −5

3
C(1) +

2

3
D(0.5)

λD(0.5) = C(0.5)

λC(0.5) = −8

3
C(1) +

5

3
D(0.5)

Hence, λ is an eigenvalue of the matrix of coefficients

1

3



−5 2 0

0 0 3
−8 5 0




which is the same matrix A that we encountered before. We take its leading eigenvalue
|λ| > 1 and set

z = ln |λ|+ iπ

The function q now takes form

q(y, v, t) = ±C(|v|) |λ|t−y/|v| cos π(t− y/|v|)

where C(0.5) and C(1) are the coordinates of the leading eigenvector, and we only take
the real part, for obvious reasons. Since |λ| > 1, we have an exponential growth of
perturbations and thus linear instability. This gives us smooth unstable perturbations.

We now generalize the above construction to arbitrary nonmonotonic initial densities
p0. Let p0(v) satisfy (S3) but not (3.1). We will be looking for perturbations of the form

q(y, v, t) = C(|v|) ez(t−y/|v|) (4.8)

with the same convention on y as before. The reflection rule (4.6) leads to (cancelling
ezt)

C(v) = C(v) e−z/v − 2
∫ ∞

0
C(v) e−z/vρ(v) dv

for all v > 0. Denoting

D = −2
∫

C(v) e−z/vρ(v) dv

gives immediately

C(v) =
D

1− e−z/v

Thus, we not only eliminated t but determined the function C(v) up to a constant factor.
The above solution exists if

D = −2
∫ ∞

0

D e−z/vρ(v)

1− e−z/v
dv
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or, cancelling D, ∫ ∞

0

ρ(v)

1− ez/v
dv =

1

2
(4.9)

If this equation has a solution z with Re(z) > 0, we immediately obtain an unstable
perturbation (4.8). Otherwise our construction of unstable perturbations does not work.

Unfortunately, it does not seem to be easy to solve equation (4.9) for particular
functions ρ(v) or even to determine if it has solutions with a positive real part, as we will
demonstrate in the next section.

Next we mention an important property of (4.9). Let us denote

F (z) :=
∫ ∞

0

ρ(v)

1− ez/v
dv − 1

2
(4.10)

Lemma 4.2 F (z) + F (−z) = 0 for all z ∈ C|| .

Proof.

F (z) + F (−z) =
∫ ∞

0

ρ(v)

1− ez/v
dv −

∫ ∞

0

ez/vρ(v)

1− ez/v
dv − 1

=
∫ ∞

0

(1− ez/v)ρ(v)

1− ez/v
dv − 1

= 0 2

As a result, the existence of a solution of (4.9) with Re(z) > 0 is equivalent to that of
a solution with Re(z) < 0. The alternative is when all the solutions lie on the imaginary
axis Re(z) = 0.

5 A special family of densities

Here we investigate a family of rectangular densities

p0(v) =

{
1 if r < |v| < 1
0 otherwise

(5.1)

where 0 < r < 1 is the parameter of our family. Note that our example (4.7) is a
particular case of (5.1) with r = 1/2. It is easy to compute

h(v) = −p′0(v) = δr(v)− δ1(v)

and

ρ(v) =
v2h(v)∫∞

0 v2h(v) dv
=

1

1− r2

[
δ1(v)− r2δr(v)

]
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Since h(v) = 0 for all v /∈ {1, r,−1,−r}, we only consider perturbations q(x, v, t) defined
for v = 1, r,−1,−r. The reflection rule (4.6) now gives

q(X,−1, t) = −α q(X, 1, t) + β q(X, r, t)

q(X,−r, t) = −γ q(X, 1, t) + α q(X, r, t)

where

α =
1 + r2

1− r2
, β =

2r2

1− r2
, γ =

2

1− r2
(5.2)

x

v

P

P

P

P

P

P

12

m+n

m

m+1

m-1

1

1

r

r

1/m

1/n

P3

_

_

Figure 1: The construction of points Pi. Here m = 7 and n = 12.

It is relatively easy to investigate the case of rational r = m/n with 1 ≤ m < n. Now
(5.2) takes form

α =
n2 + m2

n2 −m2
, β =

2m2

n2 −m2
, γ =

2n2

n2 −m2
(5.3)

To investigate the evolution of perturbations q(x, v, t) as t grows, we consider n + m
points Pi ∈ G, 1 ≤ i ≤ n + m, shown on Fig. 1. The points Pi are defined as follows:

Pi =





(−1, 0.5− (i− 1)/m) for 1 ≤ i < m/2 + 1
(1, (i− 1)/m− 0.5) for m/2 + 1 ≤ i ≤ m
(−r, 0.5− (i−m− 1)/n) for m < i < m + n/2 + 1
(r, (i−m− 1)/n− 0.5) for m + n/2 + 1 ≤ i ≤ m + n

It is crucial to observe that the points Pi move under the dynamics in a periodic fashion.
In a time period ∆t = 1/m, the point Pi is mapped to Pi+1 for all 1 ≤ i < m and all
m + 1 ≤ i < m + n. Also, Pm moves to the piston, gets reflected off it and lands on P1.
Likewise, Pm+n moves to the piston, gets reflected off it and lands on Pm+1. Therefore,
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the time shift ∆t permutes the points Pi, 1 ≤ i ≤ m+n, in two independent cycles. The
reason why we combine the two cycles together is that they are linked by the reflection
rule, as we will see shortly.

For each i, denote qi(t) = q(Pi, t). Then we have

qi(t + ∆t) = qi−1(t)

for all 2 ≤ i ≤ m and m + 2 ≤ i ≤ m + n. The reflection rule now implies

q1(t + ∆t) = −α qm(t) + β qm+n(t)

qm+1(t + ∆t) = −γ qm(t) + α qm+n(t)

Thus, the vector q(t) = (q1(t), . . . , qn+m(t)) is updated at time t + ∆t by the rule

q(t + ∆t) = Bq(t)

where B is an (n + m)× (n + m) matrix,

B =




0 · · · −α · · · β

1
. . .

...
. . . 0

...
...

...
1 0 · · ·

0 · · · −γ 0 · · · α
1 0

...
...

. . . . . .
...

0 · · · 0 · · · 1 0




We conclude that the existence of unstable perturbations q(t) is equivalent to the exis-
tence of an eigenvalue λ of B such that |λ| > 1. The characteristic polynomial of the
matrix B is

P (λ) = λm+n + αλn − αλm − 1 (5.4)

where α = (n2 + m2)/(n2 −m2) is defined in (5.3).

Remark. Interestingly, the equation (4.9) can be reduced to P (λ) = 0 as well. Indeed, it
is easy to see that

∫ ∞

0

ρ(v)

1− ez/v
dv =

1

1− r2

[
1

1− ez
− r2

1− ez/r

]

Now the substitution λ = ez/m and some algebraic manipulations show that Eq. (4.9) is
equivalent to P (λ) = 0.

It is easy to see that if λ is a root of P (λ), then so is 1/λ (this reciprocability also
follows from Lemma 4.2). Thus, the existence of unstable perturbations is equivalent to
the existence of eigenvalues of B that do not lie on the unit circle |λ| = 1.
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If an eigenvalue |λ| > 1 of B exists, then the perturbations in the corresponding
eigenspace grow by the factor of |λ| over the time period ∆t = 1/m. Hence, the expansion
factor per unit time would be Λ = |λ|m.

Theorem 5.1 Let r = m/n be a rational number with an even denominator n (hence,
m is odd). Then there is a unique eigenvalue of B such that λ < −1. This eigenvalue has
multiplicity one. The expansion factor per unit time Λr = |λ|m depends on r continuously,
and we have, asymptotically,

Λr = 1 + const · r3/2 +O(r2) as r → 0 (5.5)

and

Λr ∼ const

1− r
as r → 1 (5.6)

Proof. One can easily check that, under the conditions of the theorem, P (−1) > 0 and
P (−∞) < 0, hence a root λ < −1 exists. Next,

P ′(λ) = [(n + m)λn + αnλn−m − αm] λm−1

and so P ′(−1) < 0 and P ′(−∞) > 0. Now let Q(λ) = (n + m)λn + αnλn−m − αm, then

Q′(λ) = [(n + m)λm + α(n−m)] nλn−m−1

and so clearly Q′(λ) < 0 for all λ < 1. Putting these facts together proves the uniqueness
and the simplicity of the root λ < 0.

The equation P (λ) = 0 can be rewritten in terms of Λr = |λ|m as follows:

−Λ1+1/r
r +

1 + r2

1− r2
Λ1/r

r +
1 + r2

1− r2
Λr − 1 = 0 (5.7)

Now the continuity of Λr, as a function of r, is obvious. Note that our argument is only
valid when r = m/n with an even n and an odd m, because this parity condition dictates
the signs in (5.7).

To prove (5.5), one can substitute Λr = 1 + ε into (5.7) and expand all the terms in
Taylor series, the calculation is then straightforward and we omit it. The proof of (5.6)
is similar. 2

Figure 2 presents the graph of the Lyapunov exponent log Λr as a function of r.

Lemma 5.2 Let z be a solution of (4.9) such that |ez| 6= 1 and ez ∈ IR. Then dF/dz 6= 0
(in fact, dF/dz is a real negative number).
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Figure 2: log Λr as a function of r.

Proof. A direct calculation shows that

dF

dz
= −(1 + r + r2)(1 + ez)2 + r3(1− ez)2

4r2(1 + r)(1− ez)2

which proves the lemma. 2

For any r = m/n with an even n and odd m, the corresponding solution ez = −Λr

satisfies the conditions of the above lemma. Hence, this solution changes continuously
with r, and so we get the following

Corollary 5.3 For every r = m/n with an even n and an odd m there is an interval
(r − ε, r + ε) in which all parameter values have unstable perturbations.

Therefore, unstable perturbations exist for an open and dense set of parameter values
0 < r < 1. Moreover, one can show [C] that Eq. (4.9) has solutions with Re(z) 6= 0,
implying the existence of unstable perturbations, for all irrational r ∈ (0, 1). One would
naturally wonder if all r’s have unstable perturbations. The answer is, surprisingly,
negative:

Fact 5.4 For the density (5.1) with r = 1/3, there are no solutions z of (4.9) with Re(z) >
0, hence there are no solutions of the linearized equation which grow exponentially with
time.

Proof. The characteristic equation

λ4 +
5

4
λ3 − 5

4
λ− 1 = 0

has two real roots (λ = ±1) and two complex roots. The complex roots are, on the one
hand, conjugate and, on the other, satisfy the reciprocability rule: P (λ) = 0 if and only
if P (1/λ) = 0. Hence, they must belong to the unit circle |λ| = 1. 2

It is interesting to know if other rational parameter values r = m/n with odd n are
also stable. We have examined the values r = 1/n for small odd values of n = 5, 7, . . . , 31
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numerically (by using MATLAB) and always found that all the roots of P (λ) belonged to
the unit circle. Therefore, we conjecture that the values r = 1/n with odd n are stable.

On the other hand, the values r = m/n with an odd n but m > 1 appear to be
unstable. For r = 2/3, 2/5, 3/5, 3/7 we found, again numerically (by using MATLAB),
roots λ such that |λ| > 1. All those roots are complex, for example for r = 2/3 they are
λ = −0.3778± 1.7173 i. It remains to determine theoretically whether all rational values
r = m/n with m > 1 are unstable, we leave this question open.

Fact 5.4 seems to disagree with Theorem 5.1. Indeed, let p0(v) be the rectangular
density (5.1) corresponding to r = 1/3 and p(x, v, 0) = p0(v) + εp1(x, v, 0) an arbitrary
perturbation with an infinitesimally small ε. According to Fact 5.4, this perturbation
cannot grow exponentially in time. On the other hand, let us approximate 1/3 by a
rational number r = m/n with an even n. Denote by p∗0(v) the corresponding rectangular
density (5.1) for the chosen r = m/n. Then we have

p(x, v, 0) = p∗0(v) + εp2(x, v, 0) with p2 = p1 + (p0 − p∗0)/ε (5.8)

Hence, if |r − 1/3| < ε, then (p0 − p∗0)/ε is of order one (in the L1 metric), and p(x, v, 0)
becomes an ε-perturbation of the density p∗0(v). As such, it “must” grow exponentially
in time according to Theorem 5.1. This apparent disagreement requires an explanation,
which we provide next.

We recall that smooth unstable perturbations are given by the general formula (4.8).
For the rectangular density (5.1), the velocity v in this formula only takes two values,
|v| = r and |v| = 1, hence the factor C(|v|) takes two values, as well, and so plays little
role. For simplicity, we set |v| = 1 and ignore the constant factor C(|v|) = C(1). Now
the (real part of) unstable perturbations is described by

q(y, 1, t) = Re ez(t−y) = e(Re z)(t−y) cos[(Im z)(t− y)] (5.9)

A similar formula holds for |v| = r, and we omit it. Now recall that for any rational r =
m/n we have ez/m = λ, where λ < −1 is the eigenvalue of B described by Theorem 5.1.
Therefore, Re z = m log |λ| = log Λ and Im z = ±mπ.

We see that the real part of z changes continuously with r = m/n but the imaginary
part does not. In particular, when r = m/n is close to 1/3 and n is even, both m and n
have to be large, so that m →∞ and | Im z| → ∞ as r → 1/3. In terms of the perturba-
tion (5.9), the growth of | Im z|, as r approaches 1/3, implies that the function q(y, 1, t)
becomes highly oscillatory, and so does the corresponding initial unstable perturbation
p(x, v, 0) = h(v)q(x, v, 0). Thus, the linear subspace of unstable perturbations (along
which exponential growth takes place) becomes nearly orthogonal to any given function,
in particular to p2(x, v, 0) defined in (5.8).

This explains the above “disagreement”. The density p2 does grow exponentially in
time for any r = m/n with an even n, but, as r → 1/3, the projection of p2 onto the
unstable subspace corresponding to the positive Lyapunov exponent log Λr > 0 becomes
small and vanishes in the limit, hence the exponential growth is not visible during a long
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initial interval of time. In the limit r → 1/3 that “initial interval” becomes infinite and
the instability evaporates.

One can also reverse this line of argument. Indeed, when ε is not infinitesimally
small but finite, the representation (5.8) implies that any perturbation p(x, v, 0) of the
rectangular density (5.1) for any 0 < r < 1 will eventually grow exponentially fast in
time (because any r ∈ (0, 1) can be approximated by rational numbers m/n with even
n). We checked this conclusion experimentally and found that it was indeed correct.

1

10.5

1

r

r

x

v
"bump"

_

_

Figure 3: Initial rectangular density (5.1) perturbed by a “bump”.

To investigate the instability experimentally, we solved the hydrodynamic equations
(H1)–(H4) numerically starting with a perturbed rectangular density (5.1) shown on
Fig. 3. The initial density p(x, v, 0) takes the value one on the black region and zero
elsewhere. The small ‘bump” on the top left edge of the upper rectangle represents the
perturbation. The area of the bump in our experiments was less than 1% relative to the
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total area of each black rectangle.
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Figure 4: Piston’s trajectory from the solution of the HE for a perturbed rectangular
density with r = 1/3.
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Figure 5: Piston’s trajectory from the solution of the HE for a perturbed rectangular
density with r = 1/4.

Figures 4 and 5 show typical trajectories of the piston X(t) for r = 1/3 and r = 1/4,
respectively. Note that their shape during the first 4-5 units of time only reflects the
size and position of the “bump”, hence the shape is almost identical. For times τ > 5,
though, interesting differences develop. In the r = 1/4 unstable case, the oscillations
grow exponentially in a pronounced steady fashion. In the r = 1/3 linearly stable case,
the oscillations distort their shape first, then start growing slowly, and only pick up pace
at τ ∼ 12. Eventually, they also grow exponentially. These observations indicate that
the linearly stable stationary solution with r = 1/3 is nonlinearly (globally) unstable.
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6 Periodic solutions of the hydrodynamic equations

Here we discuss the long-term behavior of our system in the unstable regime.
In our previous work [CL] we reported the results of computer simulations of the

piston and particle dynamics in an ideal gas with many (up to 27 million) particles. The
initial configuration of particles was selected randomly with the average density (4.7), see
[CL] for details. A typical trajectory of the piston X(t) found in our experiments is shown
here on Fig. 6. One can see that during the initial interval of time 0 < t < 8 the piston
moves back and forth with an exponentially increasing amplitude, which is consistent
with our analysis in Section 4, where the density (4.7) was proven to be unstable.
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Figure 6: Piston’s trajectory in the mechanical model with 106 particles.

Later on, however, at times 8 < t < 15, the amplitude of the piston’s oscillations
decreases to a certain constant value (nearly a half of its maximum attained at t = 8).
Then the piston’s oscillations become very stable and continue almost unchanged for a
very long time, up to t = 50 or 100, with a very slowly decreasing amplitude.

On the other hand, we have solved the hydrodynamic equations (H1)–(H4) numeri-
cally, starting with the same initial density (4.7) perturbed by a bump shown on Fig. 3.
Figure 7 presents the resulting trajectory of the piston. One can see that it behaves al-
most identically to the simulated trajectory of the piston shown on Fig. 6. Thus, not only
the initial instability, but also the longer term behavior of the simulated piston trajectory
approximately match those of perturbed solutions of the hydrodynamic equations.
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Figure 7: Piston’s trajectory from the HE for a perturbed rectangular density with
r = 1/2.

The behavior shown on Fig. 7 persists when various perturbations of the initial density
(4.7) are applied. It seems like there is a periodic cycle or an invariant manifold of
quasi-periodic solutions of (H1)–(H4) that acts as an attractor. Of course, due to the
time-reversibility of the hydrodynamic equations there can be no attractors in the strict
sense. It is more likely that there is an invariant manifold of periodic or quasi-periodic
solutions that acts as a saddle point in the phase space: typical trajectories approach
that manifold temporarily and then slowly move away. We cannot rigorously prove the
existence of periodic or quasi-periodic solutions, but we construct such solutions by using
perturbative analysis.

We will be looking for solution of the hydrodynamic equations (H1)–(H4) such that
the piston makes harmonic oscillations

X(t) =
1

2
+ ε cos ωt, Ẋ(t) = −εω sin ωt, (6.10)

with some fixed ω > 0 and small ε > 0. We will approximate such solutions up to the
first order in ε, i.e. ignoring terms of higher order.

The construction is done in two steps. First, we assume that the piston moves as
prescribed by (6.10) and consider the motion of a fluid point bouncing against the moving
piston X(t) and the fixed wall x = 0. Second, we define the density p(x, v, t) which,
coupled with the piston’s oscillations (6.10), satisfies equations (H1)–(H4).

Let the piston move according to Eqs. (6.10). Then fluid points in the left compart-
ment 0 < x < X(t) bounce against the wall x = 0 and the piston, the latter simply acts
on them as a moving wall. It is known that the phase space of gas particles bouncing
against a periodically moving wall necessarily contains many invariant curves. Moreover,
the region corresponding to high velocities |v| > v0 is densely filled by such invariant
curves, the larger v0 the higher the density of invariant curves. This fact is a conse-
quence of KAM theory, it was first proved by R. Douady in his thesis [Do] and later
independently by S. Laederich and M. Levi [LL]. We describe these invariant curves
approximately, up to the first order in ε, by equation

v + εF (t, V ) = V +O(ε2) (6.11)

where v denotes the velocity of the particle when it kicks the piston, t the the collision
time, and V is the parameter of the curve. In fact, we will construct invariant curves for
all V > V0 with some V0 > 0. Here we only consider particles to left to the piston, the
particles to the right of the piston are completely symmetric.

Let us consider successive collisions of a gas particle with the piston. Denote by
vn > 0 the velocity of the particle before its n-th collision and by tn the time of that
collision. Then the law of elastic impact reads

vn+1 = vn − 2Ẋ(tn) = vn + 2εω sin ωtn (6.12)
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Let tn+1/2 denote the time at which the particle bounces off the wall x = 0 between its
n-th and (n + 1)-st collisions with the piston. Obviously, tn+1/2 = tn + X(tn)/vn+1 and
vn+1(tn+1 − tn+1/2) = X(tn+1). Since we are interested in knowing vn up to terms O(ε),
it is sufficient to find tn up to terms O(1). This is easy:

tn+1 = tn +
1

vn+1

+O(ε) = tn +
1

V
+O(ε) (6.13)

where we used (6.11).
Now let us look for an invariant curve of the form

v + εF (t, V ) = V +O(ε2)

We have to impose the constraint

vn+1 + εF (tn+1, V ) = vn + εF (tn, V ) +O(ε2) (6.14)

By equations (6.12), (6.13) and (6.14) we get

vn + 2εω sin ωtn + εF (tn + 1/V +O(ε), V ) = vn + εF (tn, V )

Cancelling vn and ε and removing the index n gives a general equation for an invariant
curve:

2ω sin ωt + F (t + 1/V, V )− F (t, V ) = 0 (6.15)

We construct solutions of this equation in the form

F (t, V ) = a cos ωt + b sin ωt (6.16)

where a and b depend on V . By substituting this expression into (6.15) we find that
(6.15) can only hold if

a(cos(ω/V )− 1) + b sin(ω/V ) = 0

a sin(ω/V )− b(cos(ω/V )− 1) = 2ω

The solution of the above system is

a =
ω sin(ω/V )

1− cos(ω/V )

b = ω

Remark. Notice that a (and hence the invariant curve) is not defined for V = ω
2πk

,
k = ±1,±2, . . . To avoid these singularities, we will not use invariant curves corresponding
to V ≤ ω

2π
. In particular, the density p(x, v, t) that we define below will be constant for

|v| ≤ ω
2π

.
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Thus, for any V > V0 > ω
2π

we can define an invariant curve u(x, t; V ) in the phase
space of gas particles, where V is the parameter of the curve and u(x, t; V ) is the velocity
of the particle on the curve at point x at time t. The curve is made by two branches:
the upper branch u+ and the lower branch u−. Obviously, we have

u+(X(t), t; V ) = V − εF (t, V ) +O(ε2)

u−(X(t), t; V ) = −[V − εF (t, V )− 2Ẋ(t)] +O(ε2)

u+(t, 0, V ) = −u−(t, 0, V )

Note that the last equation here is equivalent to (6.14).
Now we define a density p(x, v, t) so that its value on each invariant curve u(x, t; V ),

|V | > V0, is a constant denoted by ρ(V ). Between the curves u+(x, t; V0) and u−(x, t; V0)
we set the density to a constant equal to one. Therefore

p(x, u+(t, x, V ), t) = p(x, u−(t, x, V ), t) = ρ(V ) if V > V0

and
p(x, v, t) ≡ 1 if u−(x, t; V0) < v < u+(x, t; V0)

The function ρ(V ) and the “cutoff” value V0 > ω
2π

will be specified below.

Example. Let us set ρ(V ) ≡ 0 for V > V0, i.e.

p(x, v, t) =

{
1 for u−(x, t; V0) < u < u+(x, t; V0)
0 elsewhere

In order to compute the pressure on the piston we only need to know the density p(x, v, t)
at the point x = X(t), i.e. we need to know the function

v(t, V ) := u+(X(t), t, V ) = V + εF (t, V ) +O(ε2)

In our example the density on the piston (on the left hand side) is 1 up to v+ = V0 −
εF (V0, t). The density on the piston on the right hand side is 1 up to a similar invariant
curve, which is phase shifted by ∆t = π/ω. Therefore the density on the right hand side
is 1 down to v− = −V0 − εF (t, V0). Since F (t + π/ω) = −F (t) by (6.16), the velocity of
the piston is exactly the average of v+ and v− and therefore is −εF (t, V0).

Thus our density and the piston satisfy the hydrodynamic equations (H1)–(H4) if
Ẋ = −εF (t, V0), which gives

−εω sin ωt = −εω sin ωt− εω sin(ω/V0) cos ωt

1− cos(ω/V0)

In our example, the only possible choice is V0 = ω/π.

Now let us consider the case of a generic function ρ(V ). The pressure on the piston
on the left hand side is equal to

PL =
∫ ∞

Ẋ
pL(v) (v − Ẋ)2 dv =

∫ ∞

0
pL(v) (v2 − 2vẊ) dv +O(ε2)
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where pL(v) = p(X(t) − 0, v, t) is the density on the piston (we have used the fact that
Ẋ = O(ε)). Recall that the density is pL(v) = ρ(V ) = ρ(v + εF (t, v)) + O(ε2). ¿From
now on we neglect terms of order O(ε2). Then we get

PL =
∫ ∞

0
(v2 − 2vẊ) ρ(v + εF (t, v)) dv

The pressure on the right hand side is given, by analogy,

PR =
∫ 0

−∞
pR(v) (v2 − 2vẊ) dv =

∫ ∞

0
pR(−v) (v2 + 2vẊ) dv

Note that for v > 0 we have pR(v) = ρ(V ) = ρ(v + εF (v, t + π)) = ρ(v − εF (t, v)).
Therefore

PR =
∫ ∞

0
(v2 + 2vẊ) ρ(v − εF (t, v)) dv

We now conclude that PL = PR iff

Ẋ = ε

∫∞
0 ρ′(v)F (t, v)v2 dv∫∞

0 ρ(v) 2v dv
= −ε

∫∞
0 ρ′(v)F (t, v)v2 dv∫∞

0 ρ′(v)v2 dv

which is analogous to our early formula (4.1).
Using (6.16) and the subsequent equations we find

Ẋ = −εω sin ωt− ε

∫∞
0 ρ′(v) sin(ω/v)

1−cos(ω/v)
v2 dv

∫∞
0 ρ′(v) v2 dv

ω cos ωt

Our density, coupled with the piston oscillations (6.10), satisfies the hydrodynamic equa-
tions (H1)–(H4) if and only if Ẋ = −εω sin ωt. This implies

∫ ∞

ω/2π
dv ρ′(v) v2 sin(ω/v)

1− cos(ω/v)
= 0 (6.17)

where we have imposed ρ′ = 0 for v ≤ ω/2π.
Interestingly, (6.17) is related to our early equation (4.9). Precisely, let z in (4.9) be

a purely imaginary number, z = ωi. Also note that ρ(v) in (4.9) is just proportional to
v2ρ′(v) here. Then (6.17) becomes equivalent to Im F (z) = 0, with F (z) defined by (4.10).
In other words, (6.17) expresses the “imaginary part” of the equation (4.9). We already
observed in the previous section that Im z characterized the frequency of oscillations of
unstable perturbations, and here ω = Im z is the frequency of oscillations of the piston.
We note that for z = ωi one always has Re F (z) = 0, as it follows from (4.10), hence in
our case (6.17) is equivalent to F (z) = 0. Therefore solving (6.17) correspond to finding
pure imaginary eigenvalues of the HE linearized around a stationary solution ρ.

This analysis is only relevant when ρ(v) is stable, otherwise the motion will be dom-
inated by other exponentially increasing modes, so from now on we restrict ourselves to
the case in which ρ is a non-increasing function of |v|.
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In this case there are some quantitative restrictions on the period of oscillations of the
piston. The period T = 2π/ω can be bounded from below by a function of the average
kinetic energy 〈K〉 = K/M, where

K =
∫ ∞

0
ρ(v)

v2

2
dv and M =

∫ ∞

0
ρ(v) dv

Proposition 6.1 Let ρ′ ≤ 0 be supported on the interval [ω/2π,∞) and satisfy Eq.
(6.17). Then the period of oscillations T is bounded by

T ≥
√

2

3〈K〉
The equality holds when ρ′ = (π/ω)δ(v − ω/π), i.e. when ρ(|v|) is constant on (0, ω/π)
and 0 elsewhere.

Notice that Eq. (6.17) can be satisfied in many different ways all of them leading to
different periodic solutions of the hydrodynamic equations, but it is not clear which of
them, if any, describe the long term behavior of the system for a given initial condition.

Nevertheless it is possible to verify Proposition 6.1 numerically. For instance in the

case of our unstable density (4.7) we have K = 7/24 and T =
√

16/7 ' 1.51186. The

experimentally determined period of oscillations of the piston is T ' 1.62, see [CL]. We
also simulated the piston trajectory with other unstable densities (5.1) with r → 0 and
observed that the period of oscillations approached 2, which is exactly the value of the
lower bound given by the above proposition (because in this case K = 1/6, hence T = 2).
The fact that the period converges to 2, as r → 0, also follows from our early example
(with V0 = 1), in which ω = πV0 = π, hence T = 2π/ω = 2.

Proof of Proposition 6.1. Consider a function

G(v) := v
sin(ω/v)

1− cos(ω/v)

Then equation (6.17) reads

C :=
∫ ∞

ω/2π
−ρ′vG dv = 0

Note that in the interval [ω/2π,∞) the function G(v) is strictly increasing and that
G(ω/2π) = −∞, G(ω/π) = 0, and G(∞) = ∞.

Introducing a new function R(v) = −ρ′(v)v ≥ 0 and integrating by parts yields

M =
∫ ∞

ω/2π
R(v) dv, K =

∫ ∞

ω/2π
R(v)

v2

6
dv, C =

∫ ∞

ω/2π
R(v)G(v) dv

It is useful to replace v by a new variable u = G(v), −∞ < u < ∞. Since G is strictly
increasing, we can write

M =
∫ ∞

−∞
S(u) du, K =

∫ ∞

−∞
S(u)η(u) du, C =

∫ ∞

∞
S(u)u du
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where S(u) = R(G−1(u))/G′(G−1(u)) and η(u) = (G−1(u))2/6 (here G−1 denotes the
inverse of the function G).

We have to solve the following variational problem: minimize K/M under the con-
straint C = 0. As we shall see in the sequel the function η turns out to be convex. This
easily implies Proposition 6.1.

Also, the convexity of η implies that the solution of the variational problem S̄ is a
delta-function centered at u = 0, i.e. at v = ω/π (so that C vanished).

So it only remains to prove that η is a convex function of u. By direct computation
we get

6η′ =
d

du
(G−1(u))2 = 2G−1(u)

dG−1(u)

du
= 2v/G′(v)

Hence it is sufficient to prove that the function G′(v)/v is strictly decreasing in the
interval v > ω/2π. Without loss of generality we set ω = 1, then

G(v) =
v sin(1/v)

1− cos(1/v)

Consider a new function

H(v) :=
G′(v)

v
=

1 + v sin(1/v)

v2(1− cos(1/v))

then

H(v)′ =
−v − (−1 + v2) sin(1/v) + v cos(1/v)(1 + v sin(1/v))

v4(1− cos(1/v))2

The denominator of H ′ being positive, we only need to prove that the numerator of H ′

is negative in the interval v > 1/2π.
If we replace v by 1/x and multiply by the numerator by x2 we find the expression

h(x) = −x + (x2 − 1) sin(x) + cos(x)(x + sin x)

= (cos x− 1)(sin x + x) + x2 sin x

We need to show that h(x) < 0 in the interval x ∈ (0, 2π). First of all, h(0) = h(2π) = 0
and for any x ∈ (π, 2π) the expression is clearly negative.

It only remains to prove that h(x) is negative in (0, π]. By computing the Taylor
expansion of h about h = 0 one finds

h(x) =
+∞∑

k=3

(−1)k 22k − 4k2

(2k + 1)!
x2k+1

It is easy to prove that for any x ∈ (0, π] this is an alternating series, the absolute values
of its terms being strictly decreasing.

The first few terms of the above expansion are

h(x) = − x7

180

(
1− 2

21
x2 +

1

240
x4 − 19

166320
x6

)
+O(x15)
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Therefore

− x7

180
< h(x) < − x7

180

(
1− 2

21
x2

)

which implies that h(x) < 0 for any x ∈ (0, π]. 2

7 Conclusions and open problems

The instability of a massive piston in a box filled with an ideal gas that is initially in a
mechanical (but not thermal) equilibrium was observed in [CL]. It was found there that
sometimes this state rapidly breaks down, and then the piston and the gas tend to oscillate
in an amazingly regular fashion. Our aim here was to understand this phenomenon
by analyzing the stability of HE which govern the time evolution of the system in an
appropriate space-time scaling limit.

We have presented several results of our studies. Section 3 contains our only rigor-
ous (mathematical) theorem, which describes conditions under which the phenomenon
in question does not occur in the HE. Section 4 presents a semi-heuristic “perturbative”
analysis of the HE that gives a plausible (but not rigorous) criterion (4.9) for the in-
stability of the piston dynamics. This criterion amounts to solving the highly nonlinear
equation (4.9), which presents a difficult problem by itself. In fact, in Section 5 we try
to apply this criterion to a particularly simple family of density functions (5.1), and only
obtain partial results. We could not analyze the entire family, but our criterion did yield
densities of both sorts: those for which the piston is stable and those for which it is
unstable. The densities of both types alternate in a very intricate manner. The conclu-
sions of Section 5, though derived heuristically, are in good agreement with computer
simulations on the HE.

Lastly, a related but separate question is discussed in Section 6 – what may be the
long-term behavior of oscillations of the piston in the case where the HE are unsta-
ble? We conjecture that there are saddle-type periodic solutions in the phase space that
temporarily attract typical unstable trajectories, the latter stay close to those periodic
solutions for a long time, but eventually spin off to chaotic regions in the phase space. In
Section 6 we construct approximate periodic solutions using heuristic arguments similar
to the perturbative analysis in Section 4.

We are clearly far from a complete understanding of the phenomenon in question.
Here we only obtain some partial results and outline possible approaches to the problem
that require further studies. Indeed, the paper raises more open questions than it answers,
and we hope the work in this direction continues.

One possible extension of our studies is to describe the original mechanical system by
hydrodynamic equations with an added fluctuation term. This is a result of the granu-
larity of the particle system and should be of O(N−α) with some α > 0. Such fluctuation
terms may be derived as a high order corrections to the hydrodynamic equations, see [S].
With such a hydrodynamic fluctuation term, stable stationary solutions of the HE will
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remain close to the stationary solutions without fluctuations for a long time, but eventu-
ally they will slowly drift away to a thermal equilibrium, i.e. they will behave similarly
to the particle system.

Concerning the HE discussed in this work, we would like to know if they have pe-
riodic or asymptotically periodic solutions, and determine their period, amplitude and
structure.
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