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Abstract

A new approach to statistical properties of hyperbolic dynamical
systems emerged recently; it was introduced by L.-S. Young and mod-
ified by D. Dolgopyat. It is based on coupling method borrowed from
probability theory. We apply it here to one of the most physically
interesting models – Sinai billiards. It allows us to derive a series of
new results, as well as make significant improvements in the existing
results. First we establish sharp bounds on correlations (including
multiple correlations). Then we use our correlation bounds to obtain
the central limit theorem (CLT), the almost sure invariance principle
(ASIP), the law of iterated logarithms, and integral tests.

Keywords: Sinai billiards, decay of correlations, central limit theorem, in-
variance principle, law of iterated logarithms.

1 Introduction

A billiard is a mechanical system in which a point particle moves freely
(by inertia) in a compact container D and bounces off its boundary ∂D.
The dynamical properties of a billiard are determined by the shape of ∂D,
and they may vary greatly from completely regular (integrable) to strongly
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chaotic. The first class of chaotic billiards was introduced by Ya. Sinai in
1970, see [Si2], who considered containers defined by

(1.1) D = Tor2 \ ∪p
i=1Bi,

where Tor2 denotes the unit 2-torus and Bi ⊂ Tor2 disjoint strictly convex
domains (scatterers) with C3 smooth boundary whose curvature nowhere
vanishes. Sinai proved [Si2] that the billiard flows and maps in such domains
are hyperbolic, ergodic, and K-mixing. He called these systems dispersing
billiards, now they are known as Sinai billiards.

More advanced ergodic properties where established for Sinai billiards as
well: Bernoulliness was proved in [GO], Markov partitions were constructed
in [BS2, BSC1], estimates on periodic points were obtained in [St, BSC1].
Statistical properties were established fairly recently; these include exponen-
tial decay of correlations [Y1, C2], Central Limit Theorem (CLT) and Weak
Invariance Principle (WIP), see [BS3, BSC2]. All these facts demonstrate
that dispersing billiards are strongly chaotic systems and can be placed in
the same category as Anosov and Axiom A diffeomorphisms.

Traditional methods for proving statistical properties are based on Markov
partitions and symbolic dynamics [Bo, Ru1, Ru2, Si1, Si3]. If a system admits
a finite Markov partition (this is the case for Anosov and Axiom A maps),
then its symbolic system is a subshift of finite type. Then one usually shows
that the corresponding Perron-Frobenius operator (acting on Hölder contin-
uous densities) has a spectral gap, and then derives all the above statistical
properties (and more) combining methods of functional analysis and proba-
bility theory1.

In the case of billiards, however, Markov partitions are never finite, which
rendered the symbolic representation inefficient and the Perron-Frobenius
operator unhandy. First attempts to investigate statistical properties of dis-
persing billiards used Markov approximations [BS3, BSC2] and were techni-
cally overcomplicated. They did produce the CLT and WIP but gave only
sub-optimal (sub-exponential) estimates on correlations.

Later Young developed [Y1] a more efficient approach to general hy-
perbolic maps with singularities, based on tower construction (which is a
tractable version of countable Markov partitions), and found a way to reem-
ploy the Perron-Frobenius operator. This produced an exponential bound on

1This is a very efficient approach, but it relies upon highly abstract elements of func-
tional analysis (spectral properties of pseudo-compact operators), which in a sense obscure
the dynamical content of the problem.
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correlations for dispersing billiards [Y1, C2]. Still, the tower construction is
fairly complicated, and the use of the Perron-Frobenius operator is not quite
convenient when a parametric family of models is studied, see [CDo].

Then Young rederived [Y2] exponential bound on correlations for hyper-
bolic maps by a different method (borrowed from probability theory) based
on coupling of smooth measures, thus bypassing symbolic formalism and the
Perron-Frobenius operator altogether. The underlying idea of this new ap-
proach is that the images of different smooth measures on the phase space
of billiard map are getting closer together, and thus converge to a common
limit, the degree of ‘closeness’ and the speed of convergence are controlled
by coupling. Her entire argument was intrinsically dynamical and highly
flexible, unlike earlier operator-based proofs.

The elegance of Young’s new method was recently demonstrated in [BL]
where it was adapted to Anosov maps. Dolgopyat further simplified [CDo,
Appendix A] the coupling method by replacing smooth measures on phase
space with one-dimensional measures on unstable curves, which made the
argument even more transparent and almost elementary. Here we employ
Dolgopyat’s version of the coupling method.

The paper is organized as follows. Section 2 contains the necessary back-
ground on Sinai billiards. Section 3 describes the coupling method and states
its key tool – Coupling Lemma (whose proof is given in Appendix). In Sec-
tion 4 we establish sharp bounds on correlations for (dynamically) Hölder
continuous functions. These include bounds on multiple correlations, which
follow from our arguments almost automatically, but otherwise are rather
hard to establish [CDe].

In Section 5 we combine our estimates on correlations with a general result
by Philipp and Stout [PhS] to prove various limit theorems: Central limit
theorem (CLT), Weak Invariance Principle (WIP), Almost Sure Invariance
Principle (ASIP), Law of Iterated Logarithms, and Integral Tests. The last
three results are actually new, in the billiard context.

It is interesting to note that all these probabilistic limit theorems fol-
low from sharp bounds on multiple correlations. The earlier proofs of limit
theorems (in particular, that of CLT, see [BS3, BSC2, C1, Den, Y1]) used
bounds on correlations also, but mainly relied upon some other (stronger)
mixing properties of the dynamics. One always wondered if the CLT could be
derived solely from correlation bounds. We demonstrate that this is indeed
possible: in fact, all our limit theorems formally follow from our bounds on
correlations, so that no other mixing properties of the dynamics are neces-
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2 Preliminaries

Here we recall basic facts about dispersing billiards. All of them are well
known, see [Si2, BSC1, BSC2, Y1, C2, C3].

Let D ⊂ Tor2 be a domain defined by (1.1) and ∂D = ∪i∂Bi its boundary.
The billiard particle moves inside D with constant (unit) speed and bounces
off ∂D according to the classical law “the angle of incidence is equal to the
angle of reflection”.

The phase space of the billiard system is Ω = D × S1, and the billiards
dynamics generates a flow Φt : Ω → Ω. It is a Hamiltonian (contact) flow,
and it preserves Liouville (uniform) measure on Ω.

At every reflection the velocity vector changes by the rule v+ = v− −
2 〈v, n〉n, where v+ and v− refer to the postcollisional and precollisional
velocities, respectively, and n denotes the inward unit normal vector to ∂D
at the reflection point q ∈ ∂D. The family of postcollisional velocity vectors
with footpoints on ∂D makes a 2D manifold called the collision space

M = {x = (q, v) ∈ Ω: q ∈ ∂D 〈v, n〉 ≥ 0},

where 〈·〉 denotes the scalar product. The billiard flow induces a billiard map
(also called collision map) F : M → M.

Standard coordinates on M are the arc length parameter r on the bound-
ary ∂D and the angle ϕ ∈ [−π/2, π/2] between the vectors v and n; the ori-
entation of r and ϕ is shown on Fig. 1. Note that 〈v, n〉 = cos ϕ. The space
M is the union of p cylinders on which r is a cyclic (‘horizontal’) coordinate
and ϕ is a linear (‘vertical’) coordinate. The map F : M → M preserves
smooth measure dµ = cµ cos ϕ dr dϕ, where cµ is the normalizing factor.

For x ∈ M denote by τ(x) the distance of the free path between the
collision points we at x and F(x). The flow Φt can be represented as a
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Figure 1: Orientation of r and ϕ and the collision space.

suspension flow over the map F : M → M under the ceiling function τ(x).
Clearly τ(x) ≥ τmin > 0, where τmin is the minimal distance between the
domains Bi ⊂ Tor2. If τ(x) is bounded above (τ(x) ≤ τmax < ∞), then the
billiard is said to have finite horizon. We not not assume finite horizon here.

The billiard map F is hyperbolic. There is a family of DF -invariant
unstable cones Cu

x ⊂ TxM and a family of DF−1-invariant stable cones Cs
x ⊂

TxM. They can be defined so that c1 ≤ dϕ/dr ≤ c2 for all (dr, dϕ) ∈ Cu
x

and −c2 ≤ dϕ/dr ≤ −c1 for all (dr, dϕ) ∈ Cs
x, where 0 < c1 < c2 < ∞ are

constants.
A smooth curve W ⊂ M is said to be unstable (or stable) if at every point

x ∈ W the tangent space TxW belongs to the unstable (stable) cone. Note
that unstable curves are increasing and stable curves are decreasing in the
rϕ coordinates, and their slopes are bounded away from zero and infinity.
Unstable curves are stretched by F , while stable curves are stretched by
F−1. Unstable curves correspond to dispersing wave fronts, and stable curves
correspond to convergent wave fronts [BSC1, BSC2].

A curve W ⊂ M is an unstable manifold (or stable manifold) if Fn(W )
is an unstable (stable) curve for all n ≤ 0 (respectively, n ≥ 0). There exists
a (locally unique) unstable (stable) manifold through a.e. point x ∈ M.

Remark (on cones). As usual in the studies of hyperbolic maps, the
construction of invariant cones is rather loose. For example, given a family
of unstable cones Cu

x we can replace it with more narrow cones Cu,n
x : =

DFn(Cu
F−nx). This reduces the class of unstable curves. Ultimately, we can

set n = ∞, then the cones become lines tangent to unstable manifolds, and
unstable curves reduce to unstable manifolds.

For any point x ∈ W on an unstable (or stable) curve W ⊂ M we denote
by JWFn(x) = ‖DxFn(dx)‖/‖dx‖, dx ∈ TxW , the Jacobian of the restriction
of the map Fn to W , at the point x. Then the hyperbolicity means that there
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are constants Λ = Λ(D) > 1 and C = C(D) > 0 such that for any unstable
curve W u and any stable curve W s and all n ≥ 1 we have JW uFn(x) ≥ CΛn

and JW sF−n(x) ≥ CΛn. Note that Λ and C do not depend on W u or W s.
In general, the stretching is very nonuniform, as the stretching factor

grows to infinity near ∂M = {cos ϕ = 0}. To control distortions of stable
and unstable curves under the action of F , it was proposed by Sinai [BSC2]
to partition them by countably many lines that are parallel to ∂M and
accumulate near ∂M. Let k0 ≥ 1 be a large constant. For each k ≥ k0 we
define two homogeneity strips H±k ⊂ M by

Hk = {(r, ϕ) : π/2 − k−2 < ϕ < π/2 − (k + 1)−2}
and

H−k = {(r, ϕ) : − π/2 + (k + 1)−2 < ϕ < −π/2 + k−2}.
We also put H0 = {(r, ϕ) : −π/2+k−2

0 < ϕ < π/2−k−2
0 }. Now M is divided

into homogeneity strips Hk. Denote by Sk = {(r, ϕ) : |ϕ| = π/2 − k−2} for
|k| ≥ k0 the boundaries of the homogeneity strips and put S = ∪|k|≥k0

Sk.
A stable or unstable curve W ⊂ M is said to be weakly homogeneous if W
belongs to one strip Hk.

Now distortions can be characterized as follows. Let W be an unstable
curve such that Wn = F−n(W ) is a weakly homogeneous unstable curve for
all 0 ≤ n ≤ N − 1. Then we have the following distortion bounds, see [C3]:

(2.1) C1 ≤ e−C|W |1/3 ≤ JWF−n(y)

JWF−n(z)
≤ eC|W |1/3 ≤ C1,

for every y, z ∈ W and every 1 ≤ n ≤ N ; here C, C1 > 0 are constants. Due
to time reversibility, similar bounds hold for stable curves.

Next we describe the singularities of F . We denote by S0 = ∂M =
{cos ϕ = 0} the boundary of the collision space (it consists of all ‘grazing’
collisions). The map F lacks smoothness on the set S1 = S0 ∪ F−1(S0) (we
call it the singularity set for F). In fact, F is discontinuous on S1 \S0. More
generally, the singularity sets for the maps Fn and F−n are Sn = ∪n

i=0F−i(S0)
and S−n = ∪n

i=0F i(S0). For each n ≥ 1, the set S−n\S0 is a finite or countable
union of smooth unstable curves (in fact, it is finite for billiards with finite
horizon and countable otherwise). Similarly, the set Sn \ S0 is a finite or
countable union of smooth stable curves.

In billiards without horizon, the smooth components of the singularity
sets S1 and S−1 accumulate near finitely many points on S0 and divide their
neighborhoods into ‘cells’ described in [BSC1, BSC2].
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Since, following Sinai, we partition stable and unstable curves by the
lines Sk, |k| ≥ k0, it is convenient to divide the entire collision space M into
homogeneity strips Hk, |k| ≥ k0, and H0. So we get a new collision space
MH constructed as a disjoint union of the closures of the Hk’s; note that
µ(MH) = 1 and ∂MH = S.

The map F : M → M naturally acts on the new collision space MH.
The map F : MH → MH lacks smoothness on the ‘extended’ singularity set
S1 ∪ S ∪ F−1(S). Similarly, the map Fn : MH → MH is not smooth on the
‘extended’ singularity set

SH

n : = Sn ∪
(

∪n
m=0F−m(S)

)

.

The inverse map F−n : MH → MH is not smooth on the ‘extended’ singu-
larity set

SH

−n : = S−n ∪
(

∪n
m=0Fm(S)

)

.

For each n ≥ 1, the set SH

−n \ SH

0 is a countable union of smooth unstable
curves. Similarly, the set SH

n \SH

0 is a countable union of smooth stable curves.
The set SH

0 consists of parallel lines that are neither stable nor unstable.
For each n′, n′′ ≥ 0 the set M \ (SH

−n′ ∪ SH

n′′) is a countable union of
open domains with piecewise smooth boundaries (‘curvilinear polygons’),
see [BSC1, BSC2]. Moreover, the interior angles made by their boundary
components do not exceed π (i.e. those polygons are ‘convex’, as far as the
interior angles are concerned), see [BSC1, BSC2]; some interior angles may
be equal to zero.

An unstable curve W ⊂ M is said to be a homogeneous unstable man-
ifold (or, briefly, unstable H-manifold) if F−n(W ) is a weakly homogeneous
unstable curve for every n ≥ 0. Similarly, a stable H-manifold is a curve
W ⊂ M such that Fn(W ) is a weakly homogeneous stable curve for every
n ≥ 0. For any unstable (stable) H-manifold W we have |FnW | ≤ CΛ−|n|

for all n ≤ 0 (resp., n ≥ 0); here |W | denotes the length of W .
Let ξu

n denote the measurable partition of M into the connected compo-
nents of the set M\ SH

−n. Then ξu = ∨n≥1ξ
u
n is the measurable partition of

M into the (maximal) unstable H-manifolds (see a proof in [C3]). Similarly,
if ξs

n denotes the measurable partition of M into the connected components
of the set M \ SH

n , then ξs = ∨n≥1ξ
s
n is the measurable partition of M

into the (maximal) stable H-manifolds. We denote by W u(x) and W s(x)
the (maximal) stable and unstable H-manifolds passing through the point
x ∈ M.
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The conditional measures on unstable H-manifolds W ⊂ M are abso-
lutely continuous and their densities ρW u satisfy

(2.2)
ρW (y)

ρW (z)
= lim

n→∞

JWF−n(y)

JWF−n(z)

for y, z ∈ W (this is a standard formula in the studies of hyperbolic maps
that first appeared in [Si1], see also [PS, Theorem 3]). For any unstable H-
manifold W ⊂ M, the unique probability density ρW satisfying (2.2) is called
the u-SRB density, and the corresponding probability measure νW on W is
called the u-SRB measure. The distortion bounds (2.1) imply the following
bounds on the u-SRB density, see [C3]:

(2.3)
∣

∣

∣

d

dx
ln ρW (x)

∣

∣

∣
≤ C

|W |2/3
,

where C = C(D) > 0 is a constant. It immediately follows that

(2.4) e−C|W (x,y)|1/3 ≤ ρW (x)

ρW (y)
≤ eC|W (x,y)|1/3

,

for all x, y ∈ W ; here W (x, y) denotes the segment of the curve W between
the points x and y.

For µ-almost every point x ∈ M there exist nonvanishing stable and
unstable H-manifolds W s(x) and W u(x) through x. The point x divides the
H-manifold W s(x) (and W u(x)) into two segments, we denote by rs(x) (resp.,
ru(x)) the length of the shorter one. Then have the following estimate (see,
e.g., [C3]):

(2.5) µ{x : min{ru(x), rs(x)} < ε} ≤ Cε

for some constant C = C(D) > 0 and all ε > 0. Moreover, for any stable (or
unstable) curve W ⊂ M we have

(2.6) mW{x ∈ W : rp(x) < ε} ≤ Cε

where p = u if W is stable and p = s if W is unstable, and mW denotes the
Lebesgue measure on W . Note that (2.6) is, in a sense, a local version of
(2.5).

The following is known as Sinai’s Fundamental Theorem (it is actually a
strengthened version of [Si2, Teorem 6.1]):
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Theorem 2.1. Let x ∈ M \ ∪n≥0SH

n . Then for any q > 0 and A > 0 there
exists an open neighborhood Uu

x ⊂ M of x such that for any unstable curve
W ⊂ Uu

x

mW

(

y ∈ W : rs(y) > A|W |
)

≥ (1 − q) mW (W ).

Similarly, let x ∈ M \ ∪n≥0SH

−n. Then for any q > 0 and A > 0 there exists
an open neighborhood U s

x ⊂ M of x such that for any stable curve W ⊂ U s
x

mW

(

y ∈ W : ru(y) > A|W |
)

≥ (1 − q) mW (W ).

Next, billiard maps have the following absolute continuity property. Let
W 1, W 2 ⊂ M be two unstable curves. Denote W i

∗ = {x ∈ W i : W s(x) ∩
W 3−i 6= ∅} for i = 1, 2. The map h : W 1

∗ → W 2
∗ taking every point x ∈ W 1

∗

to x̄ = W s(x) ∩ W 2 (‘sliding’ it along the stable H-manifold) is called the
holonomy map. It is absolutely continuous, and its Jacobian (with respect
to the Lebesgue measures on W 1 and W 2) is given by

(2.7) Jh(x) = lim
n→∞

JW 1Fn(x)

JW 2Fn
(

h(x)
) .

It is uniformly bounded, Jh(x) ≤ C, where C = C(D) > 1 is a constant.
Moreover, if we put δ = dist(x,h(x)) and denote by γ the angle between
the tangent vectors to the curves W 1 and W 2 at the points x and h(x),

respectively, then Jh(x) ≤ Aγ+δ1/3

for some constant A = A(D) > 1, see
[C3].

The Jacobian Jh(x) is a continuous function on W 1
∗ , but it is not smooth.

Even for Anosov and Axiom A systems, the Jacobian of the holonomy map
is only Hölder continuous. For billiards, the Hölder continuity may fail, but
a similar property holds, it is sometimes called ‘dynamically defined Hölder
continuity’ [Y1, p. 597]. To describe it, for any x, y ∈ M we denote by

(2.8) s+(x, y) = min{n ≥ 0: y /∈ ξs
n(x)}

the ‘separation time’ (the first time when the images Fn(x) and Fn(y) lie in
different connected components of the new collision space MH). Note that
s+(x, y) = ∞ iff y ∈ W s(x). Observe that if x and y lie on one unstable
curve W ⊂ M, then

(2.9) |W (x, y)| ≤ CΛ−s+(x,y)
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where C = C(D) > 0 is a constant. Then the dynamical Hölder continuity
of the Jacobian of the holonomy map is expressed by

(2.10) | lnJh(x) − ln Jh(y)| ≤ Cθ
s+(x,y).

where θ = Λ−1/6 < 1 and C > 0 are constants, see [C3].
Lastly we turn to the so called ‘growth lemma’. Let W ⊂ MH be a

weakly homogeneous unstable curve and mW the Lebesgue measure on it. Its
image F(W ) ⊂ MH is a finite or countable union of homogeneous unstable
curves, which we call the H-components of F(W ). Inductively, we define the
H-components of Fn(W ) as the collection of the H-components of F(Wi),
i ≥ 1, where Wi denote all the H-components of Fn−1(W ). For every x ∈ W
the point Fn(x) divides the H-component of Fn(W ) it belongs to into two
segments. We denote by rn(x) the length of the shorter one.

Clearly, rn(x) is a function on W that characterizes the size of the H-
components of Fn(W ). Note that mW

(

r0(x) < ε
)

= min{2ε, mW (W )},
where mW (W ) = |W | is the length of W . The following statements are
proved in [C2] and [CDo, Lemma 3.10]:

Lemma 2.2 (Growth Lemma). There are constants Λ̂ ∈ (1, Λ), ϑ1 ∈ (0, 1),
and c1, c2 > 0, such that for any sufficiently short unstable curve W ⊂ M,
any n ≥ 0 and ε > 0

mW

(

rn(x) < ε
)

≤ c1(ϑ1Λ̂)n mW

(

r0(x) < ε/Λ̂n
)

+ c2ε mW (W ).

Corollary 2.3. There are constants κ > 0 and c3 > 0, such that for all
n ≥ κ

∣

∣ln |W |
∣

∣ and ε > 0 we have mW

(

rn(x) < ε
)

≤ c3ε mW (W ),

3 Coupling lemma

We start with an observation that motivates the use of one-dimensional mea-
sures on unstable curves, as proposed by Dolgopyat.

Let us partition the collision space M into small subdomains (cells)
Di ⊂ M and represent a smooth measure µ0 on M as a weighted sum
of its restrictions to those cells. Now the image of a small domain D ⊂ M
under the map Fn gets strongly expanded in the unstable direction, strongly
contracted in the stable direction, and possibly cut by singularities into many
pieces. Thus, Fn(D) will soon look like a union of one-dimensional curves,
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each of which resembles an unstable manifold of the collision map F . Hence-
forth the measure Fn(µ0) will evolve as a weighted sum of smooth measures
on unstable curves.

Accordingly, we define a class of probability measures supported on homo-
geneous unstable curves. A standard pair (W, ν) is a homogeneous unstable
curve W ⊂ M with a probability measure ν on it, whose density ρ with
respect to the Lebesgue measure on W is regular, see below.

The regularity of the density ρ(x) should be comparable to the regularity
of the map F , the latter is expressed by two key estimates – distortion
bounds and absolute continuity. While distortions are fairly smooth, the
Jacobian of the holonomy map is only ‘dynamically Hölder continuous’ (2.10).
Accordingly, we say that a density ρ(x) on a homogeneous unstable curve
W ⊂ M is regular if

(3.1) | ln ρ(x) − ln ρ(y)| ≤ Cr θ
s+(x,y).

Here Cr > 0 is a sufficiently large constant. Observe that ρ is uniformly
bounded:

(3.2) max
x∈W

ρ(x)/ min
x∈W

ρ(x) ≤ const = eCr.

The condition (3.1) will not be altered if we multiply the density ρ(x) by a
constant. Therefore, given a standard pair (W, ν), any subcurve W ′ ⊂ W
with the conditional measure induced by ν on it will make a standard pair.
It is easy to see that any unstable H-manifold W u with the u-SRB measure
νW u on it makes a standard pair.

The class of standard pairs is invariant under F in the following sense:

Proposition 3.1. Let (W, ν) be a standard pair. For each n ≥ 0, denote by
Wi,n the H-components of Fn(W ). Then Fn(ν) =

∑

i ci,nνi,n where
∑

i ci,n =
1 and each (Wi,n, νi,n) is a standard pair.

Proof. By induction, it is enough to prove this for n = 1. Let Wi,1 be an H-
component of F(W ) and x, y ∈ Wi,1. Denote x1 = F−1(x) and y1 = F−1(y).
Observe that s+(x, y) = s+(x1, y1)− 1. Now using (2.1) and (2.9), as well as
the relation θ = Λ−1/6, gives

| ln ρ(x) − ln ρ(y)| ≤ | ln ρi,1(x1) − ln ρi,1(y1)|
+ | lnJWF−1(x) − lnJWF−1(y)|

≤ Crθ
s+(x1,y1) + C|Wi,1|1/3

≤ Crθ θ
s+(x,y) + C ′

θ
s+(x,y)
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for some constant C ′ = C ′(D) > 0; here ρi,1 is the density of νi,1. Thus it is
enough to assume that Cr is so large that Crθ + C ′ ≤ Cr.

We see that Fn transforms the measure ν from a standard pair into
a weighted sum of measures on finitely or countably many standard pairs.
Motivated by this observation, we introduce even more general families of
standard pairs:

A standard family is an arbitrary (countable or uncountable) family G =
{(Wα, να)}, α ∈ A, of standard pairs with a probability factor measure λG

on the index set A. Such a family induces a probability measure µG on the
union ∪αWα (and thus on M) defined by

µG(B) =

∫

να(B ∩ Wα) dλG(α) ∀B ⊂ M.

Proposition 3.1 now simply says that Fn transforms a standard pair into a
countable standard family (whose factor measure is defined by the sequence of
the coefficients {ci,n}). Similarly, any standard family G is mapped by Fn into
another standard family Gn = Fn(G). It is easy to see that µGn = Fn(µG).

It will be important to control the size of curves Wα in a standard family
G = {(Wα, να)}. For every α ∈ A and x ∈ Wα, the point x divides the curve
Wα into two parts, and we denote by rG(x) the length of the shorter one (in
the Euclidean metric). This defines a function rG on2 ∪αWα. Now we denote

ZG = sup
ε>0

µG(rG < ε)

ε
= sup

ε>0

∫

να

(

x ∈ Wα : rG(x) < ε
)

dλG(α)

ε
.

If G consists of a single standard pair (W, ν) and ν is is the normalized
Lebesgue measure on W , then ZG = 2/|W |. If ν is an arbitrary regular
density, then ZG ∼ 1/|W |, in the sense that C1 < ZG|W | < C2, where
C1 = C1(D) > 0 and C2 = C2(D) > 0 are constants.

Now for an arbitrary standard family G = {(Wα, να)} we have

(3.3) ZG ∼
∫

dλG(α)

|Wα|
(in this formula, either both quantities are finite or both are infinite). We
will only consider standard families G with ZG < ∞. Next we investigate
how the quantity ZGn , where Gn = Fn(G), changes with n.

2In all our subsequent proofs, the curves Wα of every standard family will be disjoint;
however in this general definition we need not assume this: the function rG is simply
defined on every curve Wα separately.
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Let G be a standard family consisting of a single standard pair (W, ν).
Let Gn = Fn(G). The growth lemma 2.2 and (3.2) imply that for all n ≥ 0
and ε > 0

ν
(

rGn(Fnx) < ε
)

≤ const
[

(ϑ1Λ̂)n ν
(

rG(x) < ε/Λ̂n
)

+ ε
]

≤ const
[

ϑn
1ε/|W |+ ε

]

(3.4)

where the constants depend on the table D only.

Proposition 3.2. Let G = {(Wα, να)}, α ∈ A, be a standard family and
Gn = Fn(G). Then for all n ≥ 0 and ε > 0 we have ZGn ≤ c1ϑ

n
1ZG + c2 for

some constants ci = ci(D) > 0, i = 1, 2.

Proof. It is enough to integrate (3.4) with respect to the factor measure λG

and use (3.3).

We see that if ZG is very large, the sequence ZGn will decrease exponen-
tially fast until it goes under a certain threshold, say c1 + c2.

Corollary 3.3. For all n ≥ κ lnZG we have ZGn ≤ c3 for some constants
κ, c3 > 0.

The reader should notice similarities between Propositions and Corollar-
ies 3.2–3.3 and 2.2–2.3.

Motivated by these facts, we introduce the notion of a proper family. Let
Cp > 0 be a sufficiently large constant (the subscript p in Cp stands for
‘proper’). A standard family G is said to be proper if ZG ≤ Cp. A family
consisting of a single standard pair (W, ν) is proper iff |W | ≥ c0 = const > 0,
i.e. iff the curve W is not too short (c0 can be made arbitrarily small by
choosing Cp sufficiently large). We call such (W, ν) proper standard pairs.

The partition ξu of M into maximal unstable H-manifolds with u-SRB
measures on them and the factor measure induced by µ makes a (special)
standard family E . For this family µE = µ, of course. Note also that E is
mapped by F into itself. It follows from (2.6) that the family E is proper.

More generally, let {W} be a smooth foliation of M into unstable curves
that stretch from ϕ = −π/2 to ϕ = π/2. Dividing them by the homogeneity
lines Sk, |k| ≥ k0, gives a smooth foliation of M into homogeneous unstable
curves {Wα}. The measure µ induces smooth conditional measures {να} on
{Wα} and a factor measure on the index set. It is easy to check that the so
defined standard family G is proper and µG = µ.

13



Next we turn to the coupling construction. Let (W1, ν1) and (W2, ν2) be
two standard pairs. For a large n, their images FnW1 and FnW2 consist of
many H-components scattered all over M. Some H-components W ′ ⊂ FnW1

of the image of the first one may lie close to some H-components W ′′ ⊂ FnW2

of the other image. Then certain points x′ ∈ W ′ can be joined by stable
manifolds with points x′′ ∈ W ′′, so that their further iterations will get
closer together exponentially fast. In this way we can ‘link’ the measures
they carry and eventually show that the asymptotic behavior of the two
measures Fn(ν1) and Fn(ν2) becomes identical.

This argument may run into an obvious problem, though: the H-components
W ′ and W ′′ may carry different amount (mass) of the corresponding mea-
sures. To resolve this problem we may, so to say, couple a heavy piece with
several light ones. This can be done by splitting a heavy piece into several
‘thinner’ curves, each coupled to a different partner.

To implement this idea, it is convenient to split each original curve W1

and W2 into uncountably many ‘fibers’. To this end, given a standard pair
(W, ν), we consider Ŵ : = W×[0, 1] and equip Ŵ with a probability measure
ν̂ defined by

(3.5) dν̂(x, t) = dν(x) dt = ρ(x) dx dt

where ρ(x) is the density of ν and 0 ≤ t ≤ 1. We call Ŵ a rectangle with
base W . The map Fn can be naturally defined on Ŵ by Fn(x, t) = (Fnx, t)
and any function f initially defined on W can be also extended to Ŵ by
f(x, t) = f(x).

Next, recall that Fn(W1) and Fn(W2) are, generally, countable standard
families. Thus, in the above construction we may start with two standard
families, rather than two standard pairs, and couple the images of measures
initially defined on the two families. In that case we need to split every
unstable curve W in each original family into uncountable many ‘fibers’ by
constructing a rectangle over W .

Given a standard family G = (Wα, να), α ∈ A, with a factor measure λG,
we denote by Ĝ = (Ŵα, ν̂α) the family of the corresponding rectangles, with
Ŵα being the rectangle with base Wα, equip Ĝ with the same factor measure
λG, and denote by µ̂G the induced measure on the union ∪αŴα.

The following lemma is the key instrument of the coupling method:

Lemma 3.4 (Coupling Lemma). Let G = (Wα, να), α ∈ A, and E =

14



(Wβ, νβ), β ∈ B, be two proper standard families3. Then there exist a bi-

jection (a coupling map) Θ: ∪α Ŵα → ∪βŴβ that preserves measure, i.e.

Θ(µ̂G) = µ̂E , and a (coupling time) function Υ : ∪αŴα → N such that
A. Let (x, t) ∈ Ŵα, α ∈ A, and Θ(x, t) = (y, s) ∈ Ŵβ, β ∈ B. Denote

m = Υ(x, t) ∈ N. Then the points Fm(x) and Fm(y) lie on the same stable
H-manifold W s ⊂ M.

B. There is a uniform exponential tail bound on the function Υ: we have
µ̂G1

(

Υ > n
)

≤ CΥϑn
Υ for some constants CΥ = CΥ(D) > 0 and ϑΥ =

ϑΥ(D) < 1.

The proof of Coupling Lemma will be given in Appendix. Next we in-
troduce a class of appropriate functions on M (observables). They will be
characterized by dynamically defined Hölder continuity.

Similar to the (future) separation time s+(x, y) defined by (2.8), we in-
troduce the past separation time:

(3.6) s−(x, y) = min{n ≥ 0: y /∈ ξu
n(x)}

(the first time in the past when the preimages F−n(x) and F−n(y) lie in
different connected components of the ‘new’ collision space MH). If x and y
lie on one stable curve W ⊂ M, then

(3.7) dist(x, y) ≤ CΛ−s−(x,y)

for some constant C = C(D) > 0. We say that a function f : M → R is
dynamically Hölder continuous if there are ϑf ∈ (0, 1) and Kf > 0 such that
for any x and y lying on one unstable curve

(3.8) |f(x) − f(y)| ≤ Kfϑ
s+(x,y)
f

and for any x and y lying on one stable curve

(3.9) |f(x) − f(y)| ≤ Kfϑ
s−(x,y)
f

We denote the space of such functions by H. The class of dynamically Hölder
continuous functions contains the class of (ordinary) Hölder continuous func-
tions; the latter are characterized by

(3.10) |f(x) − f(y)| ≤ Cf [dist(x, y)]αf ∀x, y ∈ M,

3Here E may be the proper standard family defined above. However, it is easy to see
that we can just as well use two arbitrary proper standard families.
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here αf ∈ (0, 1] is the Hölder exponent and the minimal Cf > 0 satisfying
(3.10) is the Hölder norm of f . Indeed, any Hölder continuous function
f : M → R is dynamically Hölder continuous with ϑf = Λ−αf .

Furthermore, suppose that f is piecewise Hölder continuous, i.e. there are
n1, n2 ≥ 0 such that f is Hölder continuous on every connected component of
the set M\(SH

n1
∪SH

−n2
), i.e. (3.10) holds, with the same Cf and αf , whenever

x and y belong in the same component. Then again f is dynamically Hölder
continuous.

It is easy to verify by direct inspection that in billiards with finite hori-
zon the return time function τ(x) is Hölder continuous on the connected
components of the set M\ S1, hence it is dynamically Hölder continuous.

Remark. Occasionally we will deal with functions satisfying only one of the
conditions (3.8) and (3.9). We denote the space of functions satisfying (3.8)
by H+, and those satisfying (3.9) by H−.

4 Equidistribution and decay of correlations

First we use Coupling Lemma to show that, given a proper standard family G,
the images Fn(µG) of its measure µG weakly converge, as n → ∞, to the F -
invariant measure µ; furthermore, in a certain sense the speed of convergence
is exponential. We call this property equidistribution.

Theorem 4.1 (Equidistribution). Let G be a proper standard family. For
any dynamically Hölder continuous function f ∈ H and n ≥ 0

(4.1)

∣

∣

∣

∣

∫

M

f ◦ Fn dµG −
∫

M

f dµ

∣

∣

∣

∣

≤ Bfθ
n
f

where Bf = 2CΥ

(

Kf + ‖f‖∞
)

and

(4.2) θf =
[

max{ϑΥ, ϑf}
]1/2

< 1.

Proof. Recall that there is a proper F -invariant family E such that µ = µE .
The coupling lemma 3.4 gives us a coupling map Θ between the families G
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and E and the corresponding coupling time function Υ. Then

∆: =

∫

M

f ◦ Fn dµG −
∫

M

f ◦ Fn dµE

=

∫

Ĝ

f(Fn(x, t)) dµ̂G −
∫

Ê

f(Fn(y, s)) dµ̂E

=

∫

Ĝ

[

f(Fn(x, t)) − f(Fn(Θ(x, t)))
]

dµ̂G.(4.3)

Note that if Θ(x, t) = (y, s) and m : = Υ(x, t) ≤ n, then s−(Fnx,Fny) >
n − m, hence by the clause A of Lemma 3.4

(4.4)
∣

∣f(Fn(x, t) − f(Fn(Θ(x, t)))
∣

∣ ≤ Kfϑ
n−m
f .

Now the last integral in (4.3) can be decomposed as

(4.5)

∫

Ĝ

[. . . ] =

∫

Υ≤n/2

[. . . ] +

∫

Υ>n/2

[. . . ] = I + II.

Observe that (4.4) implies |I| ≤ Kfϑ
n/2
f . Also, the clause B implies that

|II| ≤ 2 ‖f‖∞CΥϑ
n/2
Υ .

Theorem 4.1 can be extended to ‘multiple’ observables, i.e. observations
made at multiple moments of time. Let f0, f1, . . . , fk ∈ H be dynamically
Hölder continuous functions with the same ϑf = ϑfi

, the same Kf = Kfi
, and

the same ‖f‖∞ = ‖fi‖∞, 0 ≤ i ≤ k. (For example, we can take f0 = f1 =
· · · = fk = f .) Consider the product f̃ = f0 · (f1 ◦ F) · (f2 ◦F2) · · · (fk ◦Fk).

Theorem 4.2. Let G be a proper standard family. Then for n ≥ 0

(4.6)

∣

∣

∣

∣

∫

M

f̃ ◦ Fn dµG −
∫

M

f̃ dµ

∣

∣

∣

∣

≤ Bf̃ θn
f

where θf < 1 is as in (4.2) and Bf̃ = 2CΥ‖f‖k
∞(1 − ϑf)

−1
(

Kf + ‖f‖∞
)

.

Proof. The argument is almost identical to the proof of Theorem 4.1, except
(4.4) must be replaced by

∣

∣f̃(Fn(x, t)) − f̃(Fn(Θ(x, t)))
∣

∣ ≤ Kf‖f‖k
∞

(

ϑn−m
f + · · · + ϑn−m+k

f

)

≤ Kf‖f‖k
∞(1 − ϑf )

−1ϑn−m
f .

17



Remark. We used consecutive time moments 0, 1, . . . , k for simplicity. The
statement (and the proof) will not change if we consider any increasing se-
quence of time moments 0 < t1 < t2 < · · · < tk.

Remark. In Theorems 4.1 and 4.2 we assumed that the initial standard
family G was proper. If it is not, then we will have to wait until its image
FmG becomes proper for some m ≥ 1 and then apply these theorems with
n replaced by n − m. If ZG < ∞, then the waiting time is m = κ lnZG

iterations of F , according to Corollary 3.3. If G consists of a single standard
pair (W, ν), the waiting time is m = κ

∣

∣ln |W |
∣

∣.

Remark. In Theorems 4.1 and 4.2 it is enough to assume that f ∈ H−

(respectively, f0, . . . , fk ∈ H−), cf. Remark in the end of the previous section.
Next we derive an exponential bound on correlations for dynamically

Hölder continuous observables. Similar bounds were obtained earlier [Y1,
C2], but ours is sharper; its advantage will be apparent in the next section.
For brevity, we use notation 〈f〉 =

∫

M
f dµ.

Theorem 4.3 (Exponential decay of correlations). For every pair of dynam-
ically Hölder continuous functions f, g ∈ H and n ≥ 0

(4.7)
∣

∣〈f · (g ◦ Fn)〉 − 〈f〉〈g〉
∣

∣ ≤ Bf,g θn
f,g

where

(4.8) θf,g =
[

max
{

ϑΥ, ϑf , ϑg, e
−1/κ

}]1/4
< 1,

where κ > 0 is the constant of Theorem 2.3,

(4.9) Bf,g = C0

(

Kf‖g‖∞ + Kg‖f‖∞ + ‖f‖∞‖g‖∞
)

,

and C0 = C0(D) > 0 is a constant.

Proof. We again use the proper standard family E = {Wα, να}, α ∈ A, such
that that µE = µ. We can write

〈f · (g ◦ Fn)〉 =

∫

(

f ◦ F−n/4
) (

g ◦ F3n/4
)

dµE .

Let f̄ denote the conditional expectation of f ◦ F−n/4 on the unstable H-
manifolds Wα with respect to the u-SRB measure να, i.e.

f̄(x) =

∫

Wα

f ◦ F−n/4 dνα ∀x ∈ Wα ∀α ∈ A.
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Clearly the function f ◦ F−n/4 is almost constant on each H-manifold Wα.
Precisely, due to the dynamical Hölder continuity of f

(4.10) sup
Wα

f ◦ F−n/4 − inf
Wα

f ◦ F−n/4 ≤ Kfϑ
n/4
f ,

hence supx∈M |f̄(x)−f ◦F−n/4(x)| ≤ Kfϑ
n/4
f . Note also that 〈f〉 = 〈f̄〉, thus

∆: = 〈f · (g ◦ Fn)〉 − 〈f〉〈g〉
= 〈f̄ · (g ◦ F3n/4)〉 − 〈f̄〉〈g〉 + δ1,

where |δ1| ≤ Kf‖g‖∞ϑ
n/4
f . Since the function f̄ is constant on every H-

manifold Wα, we denote its value by f̄α and use Theorem 4.1 and the second
remark after Theorem 4.2 to obtain

(4.11)

∫

Wα

f̄ · (g ◦ F3n/4) dνα = f̄α〈g〉 + δα

where

|δα| ≤ 2 min
{

‖f‖∞‖g‖∞,

‖f‖∞CΥ

(

Kg + ‖g‖∞
)

θ3n/4−κ| ln |Wα||
g

}

and θg =
[

max{ϑΥ, ϑg}
]1/2

. Integrating (4.11) with respect to the factor
measure λE of the family E gives

〈f̄ · (g ◦ F3n/4)〉 = 〈f̄〉〈g〉 +

∫

A

δα dλE(α).

It remains to estimate the last term here. Since E is a proper family, we have
µ
(

∪Wα : |Wα| < e−
n
4κ

)

≤ Cpe
− n

4κ . For H-manifolds Wα satisfying |Wα| ≥
e−

n
4κ we have 3n/4 − κ

∣

∣ln |Wα|
∣

∣ ≥ n/2. Therefore

∣

∣

∣

∣

∫

δα dλE(α)

∣

∣

∣

∣

≤ 2Cp‖f‖∞‖g‖∞e−
n
4κ

+ 2‖f‖∞CΥ

(

Kg + ‖g‖∞
)

θn/2
g .

Theorem 4.3 is now proved.

19



In this theorem, it is enough to assume that f ∈ H+ and g ∈ H−, cf. our
earlier remarks. This observation leads to an important corollary. Suppose
f is constant on every unstable H-manifold W u and g is constant on every
stable H-manifold W s. We can also redefine unstable and stable cones so that
they will degenerate to lines tangent to the unstable and stable manifolds,
respectively, see Remark on cones in Section 2. Then we can assume that
Kf = Kg = 0 and θf = θg = 0, and therefore

(4.12)
∣

∣〈f · (g ◦ Fn)〉 − 〈f〉〈g〉
∣

∣ ≤ C0‖f‖∞‖g‖∞θn
0

for all n ≥ 0, where θ0 =
[

max
{

ϑΥ, e−1/κ
}]1/4

< 1. This follows from
(4.7)–(4.9).

Corollary 4.4. Let A, B ⊂ M be two measurable sets such that A = ∪W u

is the union of some unstable H-manifolds and B = ∪W s be the union of
some stable H-manifolds (here we mean maximal H-manifolds, cf. Section 2).
Then

(4.13)
∣

∣µ
(

A ∩ F−n(B)
)

− µ(A)µ(B)
∣

∣ ≤ C0θ
n
0 .

Theorem 4.3 can be extended to ‘multiple’ correlations, i.e. correlations
between observations made at multiple moments of time. This sharply im-
prove earlier results [CDe, D]. Let f0, f1, . . . , fr ∈ H and g0, g1, . . . , gk ∈ H
be two sets of dynamically Hölder continuous functions. We suppose f ’s
have identical parameters ϑf = ϑfi

, Kf = Kfi
, and ‖f‖∞ = ‖fi‖∞ for

all 0 ≤ i ≤ r. Similarly, let g’s have identical parameters ϑg = ϑgi
,

Kg = Kgi
, and ‖g‖∞ = ‖gi‖∞ for all 0 ≤ i ≤ k. Consider two products f̃ =

f0 ·(f1◦F−1)·(f2◦F−2) · · · (fr◦F−r) and g̃ = g0 ·(g1◦F)·(g2◦F2) · · · (gk◦Fk).

Theorem 4.5 (Exponential decay of multiple correlations). For all n > 0

(4.14)
∣

∣〈f̃ · (g̃ ◦ Fn)〉 − 〈f̃〉〈g̃〉
∣

∣ ≤ Bf̃ ,g̃ θ
|n|
f,g

where θf,g is as in (4.8) and

(4.15) Bf̃ ,g̃ = C0‖f‖r
∞‖g‖k

∞

[

Kf‖g‖∞
1 − ϑf

+
Kg‖f‖∞
1 − ϑg

+ ‖f‖∞‖g‖∞
]

and C0 = C0(D) > 0 is a constant.
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Proof. The argument is almost identical to the proof of Theorem 4.3, with
a few modifications. First, we note obvious bounds: ‖f̃‖∞ ≤ ‖f‖r+1

∞ and
‖g̃‖∞ ≤ ‖g‖k+1

∞ . Second, (4.10) is replaced with

sup
Wα

f̃ ◦ F−n/4 − inf
Wα

f̃ ◦ F−n/4 ≤ Kf‖f‖r
∞

(

ϑ
n/4
f + · · ·+ ϑ

n/4+r
f

)

≤ Kf‖f‖r
∞(1 − ϑf )

−1ϑ
n/4
f .

Lastly, Theorem 4.2 must be used instead of 4.1.

Remark. We used consecutive time moments −r, . . . ,−1, 0 and n, n +
1, . . . , n + k for simplicity. The statement (and the proof) will be the same
for any two increasing sequences of time moments t−r < · · · < t−1 < 0 and
n < t1 < · · · < tk separated by a ‘time gap’ of length n.

5 Limit theorems

First we recall relevant definitions. Given a measure preserving map F : M →
M and a function f : M → R, we denote its partial sums by Sn =

∑n−1
i=0 f◦F i.

Assume that 〈f〉 = 0. We say that f satisfies the Central Limit Theorem
(CLT) if

(5.1) lim
n→∞

µ

{

Sn√
n
≤ z

}

=
1√
2πσ

∫ z

−∞

e−
s2

2σ2 ds

for all −∞ < z < ∞. Here σ = σf ≥ 0 is related to correlations by

(5.2) σ2
f =

∞
∑

n=−∞

〈f · (f ◦ F n)〉 = 〈f 2〉 + 2
∞

∑

n=1

〈f · (f ◦ F n)〉.

In addition, the degenerate case σ2
f = 0 occurs if and only if the function f

is cohomologous to zero, i.e. f = g − g ◦ F for some g ∈ L2(M). This is a
rather general fact, see [Leo] and [IL, Theorem 18.2.2]

Next, let f satisfy the central limit theorem and σf > 0. For N ≥ 1 and
x ∈ M consider continuous function WN(s; x) of s ∈ [0, 1] defined by

WN

( n

N
; x

)

=
Sn(x)

σf

√
N
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at rational points s = n/N and by linear interpolation in between. The
invariant measure µ and the family {WN (s; x), x ∈ M} induce a probability
measure on the space of continuous functions on [0, 1].

We say that f satisfies Weak Invariance Principle (WIP) if the above
measure weakly converges, as N → ∞, to the Wiener measure. We say
that f satisfies Almost Sure Invariance Principle (ASIP) if there is a stan-
dard Wiener process (a Brownian motion) B(s; x) on M with respect to the
measure µ so that for some λ > 0

|WN(s; x) − B(s; x)| = O(N−λ)

for µ-almost all x ∈ M . The invariance principle thus asserts that Sn, after
a proper rescaling of space and time, converges to the Wiener process.

In this section we prove that every dynamically Hölder continuous ob-
servable f ∈ H satisfies the CLT, WIP, and ASIP, along with a few other
limit laws. We use a general theorem established by Philipp and Stout [PhS],
which we present here in a form adapted to our needs.

Let ξ0 be a finite or countable partition of M . Denote ξn = F n(ξ0)
and ξn

m = ξm ∨ · · · ∨ ξn for all m < n (we allow m = −∞ and n = ∞).
Each partition ξn

m has its σ-algebra Fn
m consisting of measurable ξn

m-sets. We
assume that ξ∞−∞ is the maximal partition, i.e. F∞

−∞ is the full σ-algebra of
all measurable sets in M .

Let f : M → R be a measurable function. For m ≥ 1, denote by f̄m =
E

(

f |Fm
−m

)

the conditional expectation of f on the σ-algebra Fm
−m, i.e.

f̄m(x) =
1

µ(B)

∫

B

f dµ, ∀x ∈ B ∀B ∈ ξm
−m.

The following theorem is proved in [PhS], see Theorem 7.1 and Remark on
p. 81 in that book.

Theorem 5.1 ([PhS]). Suppose that there exist constants 0 < δ < 2 and
C > 0 such that

(5.3) 〈|f(x)|2+δ〉 < ∞

and for all m ≥ 1

(5.4) 〈|f(x) − f̄m|2+δ〉 ≤ Cm−(2+7/δ).
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Moreover, suppose that σ2
f > 0 and

(5.5) VarSn = nσ2
f + O

(

n1−δ/30
)

as n → ∞. Finally, suppose that for all n ≥ 1

(5.6) |µ(A ∩ B) − µ(A)µ(B)| ≤ Cn−168(1+2/δ)

for all A ∈ F0
−∞ and B ∈ F∞

n . Then the sequence Xn = f ◦ F n satisfies the
CLT, WIP, and ASIP.

The ASIP is the strongest claim here - it actually implies the WIP, which
in turn implies the CLT. The ASIP also implies many other limit laws, we
only mention some and refer the reader to [PhS, Section 1] for more.

Corollary 5.2 (Integral Tests). Let φ(t) be a positive nondecreasing real-
valued function. Then

µ
(Sn − n〈f〉√

n
> φ(n) infinitely often

)

= 0 or 1

according as the integral
∫ ∞

1
φ(t)

t
e−φ2(t)/2 dt converges or diverges. Further-

more, put Mn = max1≤i≤n |Si − i〈f〉|. Then

µ
(

Mn/
√

n < φ−1(n) infinitely often
)

= 0 or 1

according as the integral
∫ ∞

1
φ2(t)

t
e−8π−2φ2(t) dt converges or diverges.

Corollary 5.3 (Law of Iterated Logarithm). For µ-almost every point x ∈ M

lim sup
n→∞

Sn − n〈f〉
√

2nσ2
f log log n

= 1.

We now return to the collision map F : M → M of a Sinai billiard. To
apply the above theorem It remains to prove the following:

Lemma 5.4. The collision map F : M → M for dispersing billiards and
dynamically Hölder continuous observables f ∈ H such that σ2

f > 0 satisfy
all the conditions of Theorem 5.1.
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Proof. Observe that (5.3) holds for any δ ∈ (0, 2) because ‖f‖∞ < ∞. Next,
the exponential decay of correlations easily implies an even stronger property
than (5.5): Var Sn = nσ2

f + O(1), see [C1, Section 3]. To prove (5.4) and
(5.6) we need to construct the partition ξ0.

Let ξ0 be the partition of M into the connected components of the set
M\SH. That is, the elements of ξ0 are domains on which the map F : MH →
MH is smooth. Recall that every element of ξ0 is a curvilinear polygon,
bounded by stable curves (and horizontal lines belonging to ∂M), and the
interior angles of these polygons do not exceed π.

Then ξ1 = F(ξ0) is the partition of M into the connected components of
the set M\SH

−1, so its elements are similar curvilinear polygons bounded by
unstable curves (and horizontal lines belonging to ∂M). It is easy to see that
for any A ∈ ξ0 and B ∈ ξ1 the intersection A ∩ B is a curvilinear polygon,
i.e. the elements of ξ1

0 = ξ0 ∨ ξ1 are the connected components of the set
M\ (SH ∪ SH

−1).
By induction, one can verify directly that for any p, q > 0 the elements of

the partition ξq
−p are the connected components of the set M\ (SH

p+1 ∪ SH

−q).
Therefore, the elements of the partition ξm

−m are the connected components
of the set M\ (SH

m+1 ∪ SH

−m). Also, they are curvilinear polygons bounded
by stable and unstable curves, and their interior angles do not exceed π.

Let A ∈ ξm
−m. Obviously, for any two points x, y ∈ A there is a point

z ∈ A such that x and z belong to one unstable curve and y and z belong
to one stable curve. Furthermore, s+(x, z) > m and s−(y, z) > m, thus

|f(x) − f(y)| ≤ 2Kfϑ
m
f . It follows that 〈|f(x) − f̄m|2+δ〉 ≤ const ϑ

(2+δ)m
f .

This implies (5.4).
Lastly we prove the main hypothesis (5.6). Observe that ξ∞

1 coincides
with the partition ξu of M into (maximal) unstable H-manifolds introduced
in Section 2. Similarly, ξ0

−∞ coincides with the partition ξs of M into (max-
imal) stable H-manifolds. Hence any set A ∈ F0

−∞ is a union of some stable
H-manifolds. Similarly, for any set B ∈ F∞

n its preimage F−n+1(B) ∈ F∞
1 will

be a union of some unstable H-manifolds. Now Corollary 4.4 easily implies
that |µ(A ∩ B) − µ(A)µ(B)| ≤ C0θ

n−1
0 . This proves (5.6).

We remark that the CLT and WIP can also be proved more directly, see
[BSC2, C1].
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Appendix

Here we prove the coupling lemma 3.4. Our argument is quite lengthy but
fairly transparent and completely dynamical.

Any closed region Q ⊂ M bounded by two unstable H-manifolds and
two stable H-manifolds will be called a solid rectangle. Its boundary consists
of four smooth curves, which we naturally call the u-sides and s-sides. If an
unstable H-manifold W u ⊂ M crosses both s-sides of Q, we say that it fully
crosses the solid rectangle Q. Similar notions apply to stable H-manifolds.

Given a solid rectangle Q ⊂ M, denote by R = R(Q) the set of points
x ∈ Q such that both H-manifolds W u(x) and W s(x) fully cross Q. The
set R is a closed nowhere dense Cantor-like subset of Q that has a natural
direct-product structure. More generally, a closed subset R ⊂ M is called
a Cantor rectangle (or just rectangle) if for any x, y ∈ R the intersection
W u(x) ∩ W s(y) consists of one point that belongs to R.

Let R be a rectangle and z ∈ R. The set W u(z) ∩ R is closed and lies
on an increasing curve, thus it has two extreme points, call them x1 and x2.
Similarly, let y1 and y2 denote the two extreme points of the set W s(z) ∩ R.
Then the two stable H-manifolds W s(xi), i = 1, 2, and two unstable H-
manifolds W u(yi), i = 1, 2 enclose a solid rectangle Q containing R. We
denote it by Q(R) and call it the hull of the rectangle R.

Let R be a rectangle. A subset R1 ⊂ R is called a u-subrectangle if
W u(x) ∩R = W u(x) ∩R1 for any point x ∈ R1. Similarly, R2 ⊂ R is called
an s-subrectangle if W s(x) ∩ R = W s(x) ∩ R1 for any point x ∈ R2.

The image Fn(R) of a rectangle R for any n ∈ Z is a finite or count-
able union of rectangles {Ri}. For n > 0, their preimages F−n(Ri) are
s-subrectangles in R. For n < 0, they are u-subrectangles in R.

Due to absolute continuity, µ(R) > 0 if and only if for any (and hence,
for every) point z ∈ R we have4 |W u(z) ∩ R| > 0 and |W s(z) ∩ R| > 0. We
will only deal with rectangles of positive measure. We call

ρu(R) = inf
x∈R

|W u(x) ∩ R|
|W u(x) ∩ Q(R)|

the (minimal) u-density of R. Similarly the (minimal) s-density ρs(R) is
defined and we call ρ(R) = min{ρu(R), ρs(R)} the (minimal) density of the

4We denote by |W | the length of a curve W , thus for any subset B ⊂ W the expression
|B| means the one-dimensional Lebesgue measure of B.
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rectangle R. Due to the compactness of R and the continuity of the above
ratio (in x), we have µ(R) > 0 if and only if ρ(R) > 0.

Proposition A.1. For any point x ∈ M that has non-vanishing H-manifolds
W u(x) and W s(x), there is a closed rectangle R 3 x of positive measure.
Moreover, for any δ > 0, we can find a rectangle R 3 x with density ρ(R) >
1−δ and such that the point x divides the curves W u(x)∩Q(R) and W s(x)∩
Q(R) in the ratio between 0.5 − δ and 0.5 + δ, i.e. x is almost a geometric
center of Q(R).

Proof. Since W u(x) and W s(x) exist, we have x ∈ M \
(

∪∞
n=−∞SH

n

)

. Now
the claim easily follows from Sinai’s Fundamental Theorem 2.1.

Next we construct a special rectangle R∗ whose stable manifolds will be
used to ‘connect’ (or ‘couple’) points of Fn(∪αWα) with those of Fn(∪βWβ).
The rectangle R∗, like a magnet, will ‘attract’ the H-components of the
images of our proper standard families.

Let W u ⊂ M be an unstable H-manifold. Recall that rn(x) denotes the
distance from the point Fn(x) to the nearest endpoint of the H-component
of Fn(W u) that contains the point Fn(x). Also, recall that rs(x) denotes
the distance, measured along the (maximal) stable H-manifold W s(x), from
x to the nearest endpoint of W s(x). It is a rather standard fact of hyperbolic
dynamics that

(A.1) rs(x) ≥ min
n≥0

C̃−1Λn rn(x),

where Λ > 1 is the minimal expansion factor and C̃ = C̃(D) > 0 is a constant.
Now let W̃ ⊂ W u be subcurve (to be chosen later). Given κ > 0, we now

put

(A.2) W̃κ : = W̃ \ ∪n≥0{x ∈ W̃ : rn(x) < C̃Λ−nκ}.

Note that the subset W̃κ ⊂ W̃ is closed. Due to (A.1), we have rs(x) ≥ κ
for every x ∈ W̃κ. We denote by Sκ(W̃ ) = {W s(x) : x ∈ W̃κ} the set of the
corresponding stable H-manifolds (all of them extend the distance ≥ κ from
W̃ on both sides).

Since W̃κ is a closed set, it has two extreme points, x1 and x2, on the
curve W̃ , which correspond to two extreme H-manifolds W s(x1) and W s(x2)
in the family Sκ(W̃ ). We say that an unstable curve W fully crosses our
family Sκ(W̃ ), if it crosses all the H-manifolds W s ∈ Sκ(W̃ ).
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Denote by Gu
κ(W̃ ) the family of all unstable H-manifolds W u ⊂ M that

fully cross the family Sκ(W̃ ). Lastly let

Rκ(W̃ ) = ∪W s∈Sκ(W̃ ) ∪W u∈Gu
κ (W̃ ) W s ∩ W u

denote the rectangle made by our two families of stable and unstable H-
manifolds.

Proposition A.2. For any δ > 0 there are a subcurve W̃ ⊂ W u and a κ > 0
such that the rectangle R∗ = Rκ(W̃ ) has density ρ(R∗) > 1 − δ.

Proof. First let W̃ = W s. It follows from (2.6) that
∣

∣W̃ \ ∪κ>0W̃κ

∣

∣ = 0.

Choose κ > 0 such that |W̃κ| > 0 and pick a Lebesgue density point z ∈ W̃κ

on the curve W̃ . Now reduce W̃ so that it becomes a small neighborhood of
z. The rest of the proof is the same as in Proposition A.1.

From now on we choose a small δ > 0 and fix the corresponding W̃ ⊂
W u and κ > 0 and the special rectangle R∗ = Rκ(W̃ ) constructed in the
above proposition. We denote S = Sκ(W̃ ), for brevity, and slightly abusing
notation we also denote by S the union of all the H-manifolds W s ∈ S. Note
that W̃κ = W̃ ∩ S. For any unstable curve W that fully crosses S we set
Wκ : = W ∩ S.

Next, for any standard pair (W, ν) and any n ≥ 0 denote by Wn,i all the
H-components of Fn(W ) that fully cross S and put

(A.3) Wn,∗ = ∪iF−n(Wn,i ∩ S).

The following is proved in [BSC2, Theorem 3.13] :

Proposition A.3. There are constants n1 ≥ 1 and d1 > 0 such that for any
proper standard pair and any n ≥ n1 we have ν(Wn,∗) ≥ d1.

This easily extends to proper standard families, with obvious notation:

Corollary A.4. There are constants n0 ≥ 1 and d0 > 0 such that for any
proper standard family G = {(Wα, να)} and any n ≥ n0 we have µG

(

∪αWα,n,∗

)

≥
d0.

Remark. In Proposition A.3 we assumed that the standard pair (W, ν) was
proper. If it is not, then we have to wait until its image Fm(W ) becomes a
proper standard family for some m ≥ 1 and then apply Corollary A.4, with
n0 replaced by n0 + m. Recall that the waiting time here is m = κ

∣

∣ln |W |
∣

∣.
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Let P = (W, ν) be a standard pair such that W fully crosses the family
S (the magnet) constructed above. Then Wκ = W ∩ S is a closed nowhere
dense set on the curve W , and its complement W \ Wκ consists of infinitely
many intervals; we call them gaps in Wκ. These gaps naturally correspond to
the connected components of the set W̃ \ W̃κ (gaps in W̃κ) which are created
by the points x ∈ W̃ satisfying rn(x) < C̃Λ−nκ, in accordance with (A.2).

Let Ṽ ⊂ W̃ \ W̃κ be an interval. We call

n = min{i ≥ 1: ri(x) < C̃Λ−iκ for some x ∈ Ṽ }

the rank of Ṽ . Clearly every gap in W̃k has a rank. If rank Ṽ = n, then
Fn−1(Ṽ ) is a curve of length ≥ CΛ−n for some constant C = C(D) > 0.
Indeed, consider the H-component of Fn−1(W̃ ) containing Fn−1(Ṽ ); it inter-
sects the (CΛ−n)-neighborhood of the singularity set SH for some constant
C > 0; then it has to cross this neighborhood completely (for if it terminates
somewhere inside that neighborhood, then it must have been torn by the
singularities some time earlier).

Now every gap V ⊂ W \ Wκ corresponds to a gap Ṽ ⊂ W̃ \ W̃κ that
has some rank n ≥ 1; in this case we also say that V itself has rank n. The
endpoints of V are linked to those of Ṽ by stable H-manifolds W s

H
∈ S, hence

their images Fn−1(V ) and Fn−1(Ṽ ) must be exponentially close to each other
(the distance between them is � Λ−n). Therefore

∣

∣Fn−1(V )
∣

∣ ≥ 1
2
CΛ−n.

It follows that the set Fn(2+κ ln Λ)(V ) will be a proper standard family, in
accordance with Remark after Corollary A.4.

Accordingly, we define recovery time function rP(x) on W \Wκ by setting
rP(x) = [n(2+κ ln Λ)], where n is the rank of the gap V ⊂ W \Wκ containing
the point x (note that the function rP(x) is now constant on every gap).

Corollary 2.3 implies that for all n ≥ 1

(A.4) ν
(

x ∈ W \ Wκ : rP(x) > n
)

≤ const Λ−n ν(W \ Wκ).

Next, let sP(x) be another function on W \Wκ (with values in N) such that

(A.5) sP(x) ≡ const on every gap V ⊂ W \ Wκ

and

(A.6) sP(x) ≥ rP(x) + n0.

Since both functions rP and sP are constant on each gap V , we will occa-
sionally denote their values by rP(V ) and sP(V ), respectively.
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Now applying Corollary A.4 to every gap V ⊂ W \ Wκ (more precisely,
to its image F rP(V )(V ), cf. Remark after Corollary A.4.) gives

(A.7) ν
(

V
sP(V ),∗

)

≥ d0 ν(V ),

in the notation of (A.3). In other words at time n = sP(V ) the d0-fraction of
the image Fn(V ) will be ‘on the magnet’. At this time the image Fn(V ) may
be ‘stopped’ and part of it (which intersects the magnet S) may be coupled
with the corresponding image of another proper standard family (this will
be done below). We call sP the stopping time function.

Observe that the stopping time sP is not yet completely specified by (A.5)
and (A.6); that is the purpose of the next proposition.

Proposition A.5. We can define the stopping time function sP(x) on W\Wκ

(see the remark below) so that for all n ∈ N

(A.8)
ν
(

x ∈ W \ Wκ : sP(x) = n
)

ν(W \ Wκ)
= qn,

where {qn} is a sequence satisfying

(A.9)
∑

qn = 1 and qn < const θn

for some θ ∈ (Λ−1, 1). Furthermore, the sequence {qn} is independent of P,
i.e. it is the same for all standard pairs P = (W, ν) such that W fully crosses
the family S.

Proof. Due to (A.4), it is easy to define sP so that for all n > 0

ν
(

x ∈ W \ Wκ : sP(x) = n
)

ν(W \ Wκ)
≤ const θn.

We still have a considerable flexibility in defining the function sP , and we
want to adjust it so that it will satisfy (A.8) with a sequence {qn} being inde-
pendent of P. To this end we split every gap V into an uncountable family of
‘thinner’ curves with the help of rectangles described in Section 3. Precisely,
we replace each gap V with a rectangle V × [0, 1]. Then we can divide the
latter into subrectangles V × Ij, where Ij ⊂ [0, 1] are some subintervals, and
define sP so that it takes a different value on each subrectangle Ij. The sizes
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of the subintervals Ij ⊂ [0, 1] must be selected to ensure (A.8), as well as
(A.9).

Since our sP is now constant on every subrectangle V × Ij, the latter can
be then collapsed to a curve Vj, which geometrically coincides with the gap
V , but carries a measure different from ν; precisely, it carries the measure ν
multiplied by |Ij|. In the end we will have a countable family of curves {Vj}
and the function sP will be constant on each of them, as desired.

Remark. Observe that in the proof of Proposition A.5 we had to split some
of the components of W ⊂ Wκ into finitely or countably many (geometrically
identical) curves, each having a different weight, and define the stopping time
function sP separately of each curves. This small correction is needed to make
the proposition precise.

We now turn to the construction of the coupling map Θ: ∪α Ŵα → ∪βŴβ

for Lemma 3.4. This will be done recursively, in an algorithm-like manner.
The first two steps of our construction will be described in detail, and then
it will be clear how it proceeds.

Recall that we are given two proper standard families G = (Wα, να),
α ∈ A, and E = (Wβ, νβ), β ∈ B, with the corresponding measures µG and

µE . We denote by Ĝ = (Ŵα, ν̂α) and Ê = (Ŵβ, ν̂β) the respective families of
rectangles, and we have two probability measures µ̂G and µ̂E on the unions
∪αŴα and ∪βŴβ, respectively.

We define the first stopping time function s0 on the unions ∪αŴα and
∪βŴβ to be constant s0(x, t) ≡ n0. At time s0 = n0 some of the H-
components of the images F s0

(

∪αWα

)

and F s0

(

∪βWβ

)

will fully cross
the magnet S; and the total measure of the respective intersections with S

will be ≥ d0 due to Corollary A.4.
For every H-component Wα,s0,i of F s0(Wα) that fully crosses S we con-

sider the corresponding rectangle Ŵα,s0,i = Wα,s0,i × [0, 1]. We now split off
a subrectangle Wα,s0,i × [0, τα,i] with some 0 < τ α,i ≤ 0.5 so that

(A.10) µ̂G

(

∪αW̃α,1

)

= d : = d0/2,

where

W̃α,1 =
{

(x, t) ∈ Ŵα : F s0(x) ∈ Wα,s0,i ∩ S

& t ∈ [0, τα,i] for some i
}
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This can be done easily due to Corollary A.4: if µG

(

∪αWα,s0,∗

)

= d0 in
Corollary A.4, we simply set τ α,i = 0.5 for all α and i; if the inequality in
Corollary A.4 is strict, we have “too much of a good thing”, then we lower
some of τ α,i’s to make (A.10) exact.

We will put tildas over W ’s that denote subsets of ∪αŴα on which we are
currently defining the coupling map Θ. At the first step of our construction,
Θ must take points (x, t) ∈ ∪αW̃α,1 to points (y, s) ∈ ∪βŴβ such that F s0(x)
and F s0(y) lie on the same stable H-manifold W s ∈ S. It also must preserve
measure (i.e., take µ̂G to µ̂E). To correctly define Θ on the set ∪αW̃α,1 we
will first describe its image, which we will denote by ∪βW̃β,1 (here the index
1 refers, of course, to the first step of our construction).

One may be tempted to define W̃β,1’s in the same way as we defined
W̃α,1’s above. In that case the sets ∪βW̃β,1 and ∪αW̃α,1 would have the same
overall measure (= d), and their F s0-images would lie on the same stable H-
manifolds W s ∈ S, but this may not suffice, as such a map may not preserve
measure. Indeed, for some W s ∈ S the intersections W s ∩ F s0(∪αW̃α,1)
and W s ∩ F s0(∪βW̃β,1) may carry different ‘amount’ of measures µ̂G and
µ̂E , respectively. There are two possible reasons for this ‘mismatch’: (i) the
densities of our measures may vary along our H-components and (ii) the
Jacobian of the holonomy map may also vary and differ from one

To deal with the possible ’mismatch’, we first assume, without loss of
generality, that the diameter of the ‘special rectangle’ R∗ is very small; so
that the corresponding oscillations of the densities are at least very small
(say, the ratio of the densities at different points on the same H-component
is between 0.99 and 1.01), and the Jacobian of the holonomy map takes values
in a narrow interval around one, say, in [0.99, 1.01].

We now define the set ∪βW̃β,1 as follows. For every H-component Wβ,s0,j ⊂
F s0(Wβ) that fully crosses the magnet S we will construct a function τ β,j(y)
on Wβ,s0,j ∩ S, with values in the interval [0, 0.6] (this function will later be
extended to the entire curve Wβ,s0,j), and then put

W̃β,1 =
{

(y, t) ∈ Ŵβ : F s0(y) ∈ Wβ,s0,j ∩ S

& t ∈ [0, τ β,j(F s0y)] for some j
}

.

The functions τ β,j can be constructed so that for every stable H-manifold
W s ∈ S the intersections W s ∩ F s0(∪αW̃α,1) and W s ∩ F s0(∪βW̃β,1) carry
the same ‘amount’ of measures µ̂G and µ̂E , respectively. This is the reason
why we need to give some room to the functions τ β,j so that their values
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can be adjusted accordingly, this is why we allow them to go up to 0.6 (as
compared to τ α,i that took values ≤ 0.5).

Also, since the densities of measures for standard pairs are dynamically
Hölder continuous (3.1), and so is the Jacobian of the holonomy map, it
follows that the functions τ β,j(y) will be dynamically Hölder continuous as
well, i.e. they will satisfy

(A.11) | ln τ β,j(y) − ln τ β,j(z)| ≤ C0θ
s+(y,z)

for some constant C0 > 0.
We now naturally define the coupling map Θ: ∪α W̃α,1 → ∪βW̃β,1 that

preserves measure and couples points whose F s0-images lie on the same stable
manifold of the S family. We note that

(A.12) µ̂G

(

∪αW̃α,1

)

= µ̂E

(

∪βW̃β,1

)

= d,

where the constant d = d0/2 was introduced in (A.10). Lastly we set the
coupling time function Υ(x, t) = s0 on ∪αW̃α,1. This concludes the first step
of our construction of the coupling map Θ.

Before we move on to the second step, we need to ‘inventory’ the remain-
ing (uncoupled) parts of the families G and E and represent their images at
time s0 by unions of some rectangles. To this end we first define a constant
function τα,i(x) on every H-component Wα,s0,i of F s0(Wα) that fully crosses
S so that τα,i(x) ≡ τα,i, where τα,i is the constant chosen earlier (before
equation (A.10)).

On the contrary, the function τ β,j(y) defined earlier on the Cantor-like
subset Wβ,s0,j ∩ S ⊂ Wβ,s0,j is not constant. We now extend it to the entire
curve Wβ,s0,j by linear interpolation (we make it linear on every gap V ⊂
Wβ,s0,j \ S and overall continuous). The graph of τ β,j divides the rectangle
Wβ,s0,j × [0, 1] into two parts (‘subrectangles’, each has one irregular side, see
Fig. 2). It is easy to verify that the function τ β,j(y), after its extension to
Wβ,s0,j, is still dynamically Hölder continuous in the sense of (A.11).

Now the ‘uncoupled’ sets ∪αF s0

(

Ŵα\W̃α,1

)

and ∪βF s0

(

Ŵβ\W̃β,1

)

consist
of connected components of three types.

First, there are rectangles corresponding to the H-components of F s0(Wα)
and F s0(Wβ) that do not fully cross the magnet S, we did not modify them
in any way.

Second, the ‘upper subrectangles’

(A.13) {(x, t) : x ∈ Wα,s0,i & t ∈ [τα,i(x), 1]}
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Figure 2: The partition of a rectangle over an H-component Wβ,s0,j: the
irregular line in the middle is the graph of the function τ β,j(y); it separates
the ‘upper subrectangle’ (of the second type) from lower trapezoids (of the
third type).

and similar regions

(A.14) {(y, t) : y ∈ Wβ,s0,j & t ∈ [τ β,j(x), 1]}

(the latter are not genuine subrectangles, they have one ‘jagged’ side as
shown on Fig. 2). All of the regions (A.13)–(A.14) have sufficiently long bases
(longer than the size of the special rectangle R∗ in its unstable direction).

Third, the ‘lower subrectangles’

{(x, t) : x ∈ V & t ∈ [0, τ α,i(x)]}

constructed over gaps V ⊂ Wα,s0,i \ S and similar regions

{(y, t) : y ∈ V ′ & t ∈ [0, τ β,j(y)]}

constructed over gaps V ′ ⊂ Wβ,s0,j \ S (the latter are trapezoids as shown
on Fig. 2).

Next we ‘rectify’ the irregular sides of the rectangles of the second and
third type by a simple algorithm: it consists of stretching of each vertical
(i.e. parallel to the t axis) fiber inside every rectangle accordingly. More
precisely, given a ‘rectangle’ Ŵ1 = {(x, t) : x ∈ W & t ∈ [0, τ (x)]}, where W
is an unstable curve and τ (x) : W → [0, 1] is a continuous function, equipped
with a probability measure dν̂(x, t) = ρ(x) dx dt, we transform the interval
[0, τ (x)] onto the unit interval [0, 1] linearly at every point x ∈ W , and thus
obtain a full-height rectangle Ŵ = W × [0, 1] with measure

(A.15) dν̂1(x, t) = ρ1(x) dx dt, ρ1(x) = τ (x) ρ(x).
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Recall that the ‘ceiling function’ τ (x) is dynamically Hölder continuous for
the rectangles of the second and third type, and so is every regular density
ρ(x) according to (3.1). Hence the new density ρ1(x) defined by (A.15) will
be also dynamically Hölder continuous, precisely

(A.16) | ln ρ1(x) − ln ρ1(y)| ≤ (C0 + Cr) θ
s+(x,y).

Of course the constant C = C0 + Cr is larger than Cr in (3.1), so the density
ρ1(x) is not necessarily regular (yet). But its images will smooth out (a sim-
ilar phenomenon was exploited in the proof of Proposition 3.1) and become
regular in m0 ≥ 1 iterations of F , where m0 ≥ 1 is a constant (this follows
from distortion bounds). Moreover, by making Cr larger, if necessary, we can
even ensure that m0 = 1, i.e. the densities regularize right away.

Thus the remaining (uncoupled) sets

(A.17) ∪αF s0
(

Ŵα \ W̃α,1

)

and ∪β F s0
(

Ŵβ \ W̃β,1

)

are unions of rectangles of the full (unit) height. We denote the families of
those rectangles by Ĝ1 = {Ŵα,1} and Ê1 = {Ŵβ,1}, respectively. (Note that

the F s0-image of an ‘old rectangle’ Ŵα may contain countably many ‘new’
rectangles Ŵα,1, thus we have to reindex our families, so the new indices α
and β may not correspond to the old ones used for the original families G
and E , but this will cause no harm.)

So we get two new families Ĝ1 and Ê1, each carries a measure induced by
the F s0-image of the original measure (µ̂G or µ̂E). Conditioning the induced
measures on the new families Ĝ1 and Ê1 gives two probability measures on
them, we call them µ̂Ĝ1

and µ̂Ê1
, respectively. The densities of the new

measures µ̂Ĝ1
and µ̂Ê1

may not be regular, but their images become regular
in just ≤ m0 iterations on F (or even in just one step, see above), so we
disregard this slight inconvenience.

The main complication is that the new families Ĝ1 and Ê1 may not be
proper, because they contain myriad of arbitrarily small rectangles of the
third type created in the gaps of the magnet S. Of course, if we condition
the measures µ̂Ĝ1

and µ̂Ê1
onto the union of rectangles of the first and second

type, then the so reduced families (albeit not necessarily proper either) will
obviously recover and become proper standard families in just a few itera-
tions of F , we leave the verification of this simple fact to the reader; so we
may assume that the rectangles of the first and second type make a proper
standard family already.

34



However, on the rectangles of the third type, the recovery time may vary
greatly. We define the stopping time function s1(x, t) on the rectangles of
the third type as described in Proposition A.5. In particular, the function s1

takes values in N, is constant on every rectangle, and it corresponds to the
time when the image of the rectangle becomes a proper standard family plus
an extra n0 iterations of F .

We need also to define the stopping time function s1 on the rectangles
of the first and the second types, so that it takes values in N, is constant
on every rectangle, and its overall distribution on all rectangles matches the
one described in Proposition A.5, i.e.

(A.18) µ̂Ĝ1

(

∪αŴα,1 : s1 = n
)

= qn ∀n ∈ N

and

(A.19) µ̂Ê1

(

∪βŴβ,1 : s1 = n
)

= qn ∀n ∈ N.

with the same sequence {qn} as in (A.8)–(A.9).
In order to define such a function s1 and ensure (A.18) and (A.19) we

may need to split some rectangles Ŵα,1 and Ŵβ,1 of the first and second type
into ‘thinner’ subrectangles, as we did in the proof of Proposition A.5, and
define s1 separately on every subrectangle. Since the family of rectangles of
the first and second type is proper already, this task is much simpler than
the proof of Proposition A.5, so we leave details to the reader.

Now we are in a position very similar to the one we were earlier. For every
rectangle Ŵα,1, the set F s1(Ŵα,1) with the induced measure will be a proper
family, it will contain H-components fully crossing the magnet S, and their
intersections with S will have a relative measure ≥ d0 due to Corollary A.4:

(A.20)
µ̂Ĝ1

(Ŵα,1,s1,∗)

µ̂Ĝ1
(Ŵα,1)

≥ d0 and
µ̂Ê1

(Ŵβ,1,s1,∗)

µ̂Ê1
(Ŵβ,1)

≥ d0

for every α and β, in the notation of (A.3) and Proposition A.3. We note
that s1 is constant on every rectangle Ŵα,1 and Ŵβ,1, so these notations make
sense.

Of course, the value of s1 in (A.20) depends on α (or β). In what follows,
we will group rectangles Ŵα,1 and Ŵβ,1 on which the function s1 takes the
same value. In particular, we have

(A.21) µ̂Ĝ1

(

∪αŴα,1,s1,∗ : s1 = n
)

≥ d0 µ̂Ĝ1

(

∪αŴα,1 : s1 = n
)

= d0qn
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and, similarly,

(A.22) µ̂Ê1

(

∪βŴβ,1,s1,∗ : s1 = n
)

≥ d0 µ̂Ê1

(

∪βŴβ,1 : s1 = n
)

= d0qn

due to (A.18)–(A.20).
Next, for every n ≥ 1 we again consider all the rectangles {Ŵα,1} and

{Ŵβ,1} on which the function s1 takes value n. Their images at time n
will contain H-components that fully cross the magnet S, and the relative
measure of their intersections with S will be ≥ d0 due to (A.21)–(A.22). At
that time we apply our coupling procedure described in the first step and
then link (‘couple’) their subsets of relative measure d = d0/2, according to
(A.12), so that

(A.23) µ̂Ĝ1

(

Ĝ(n)
2

)

= µ̂Ê1

(

Ê (n)
2

)

= dqn,

where

Ĝ(n)
2 : =

{

(x, t) ∈ ∪αŴα,1,s1,∗ : s1 = n & Fn(x, t) is coupled
}

and

Ê (n)
2 : =

{

(y, t) ∈ ∪βŴβ,1,s1,∗ : s1 = n & Fn(y, t) is coupled
}

.

Doing this for all n ≥ 1 constitutes the second step of our construction. We
denote by Ĝ2 = ∪nF−s0

(

Ĝ(n)
2

)

and Ê2 = ∪nF−s0

(

Ê (n)
2

)

the preimages of all
the subsets ‘coupled’ during the second step of the construction. Note that
Ĝ2 ⊂ Ĝ and Ê2 ⊂ Ê . The coupling map Θ is thus extended to Θ: Ĝ2 → Ê2.
We also define the coupling time function Υ on the set Ĝ2 by

Υ(x, t) = s0(x, t) + s1

(

F s0(x, t)
)

.

It should be clear now how the construction of the coupling map proceeds as
the above steps are repeated recursively.

Finally, we prove the clause B of Coupling Lemma 3.4 (this will also
imply that the coupling map Θ is defined almost everywhere on the standard
family Ĝ). First we summarize the results of the previous constructions. For
each k ≥ 1, at the kth step we define the stopping time function sk−1 on
the sets ∪αŴα,k−1 and ∪βŴβ,k−1 of yet uncoupled points. Then we ‘couple’

some points of their images ∪αF sk−1

(

Ŵα,k−1

)

and ∪βF sk−1

(

Ŵβ,k−1

)

. Then we

denote by Ĝk and Êk the preimages of just ‘coupled’ subsets, on the original
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families G and E . Lastly we extend the coupling time function Υ to the set
Êk by

Υ(z) = s0(z) + s1(F s0z) + · · ·+ sk−1(F s0+···+sk−2z),

where z = (x, t) ∈ Ĝk. Observe that the point FΥ(z)(z) and its partner
FΥ(z)

(

Θ(z)
)

lie on the same stable H-manifold, which proves the claim A of
Lemma 3.4 (assuming that Θ is indeed defined almost everywhere).

Next we rewrite the ‘measure’ relations (A.18)–(A.19) and (A.23) for
the kth step. For brevity, we identify the set Ĝk and Êk with their images,
i.e. we consider all our stopping time functions as defined on the original
families Ĝ and Ê. Then (A.18)–(A.19) generalize to the following ‘conditional
probability’ formula

(A.24) µ̂Y(sk = n/sk−1 = nk−1, . . . , s1 = n1, s0 = n0) = qn

where Y = G or E ; and (A.23) generalize to another ‘conditional probability’
formula

(A.25) µ̂Y

(

Ŷk/sk = nk, . . . , s1 = n1, s0 = n0

)

= d,

where again Y = G or E .
The following argument is standard in the studies of random walks (but

we do not assume here that the reader is familiar with it). Let

(A.26) p̄n : = µ̂G

(

(x, t) ∈ ∪αŴα : Υ(x, t) = n
)

denote the fraction of points coupled exactly at time n (i.e., at the nth
iteration of F , rather than at the nth step of our construction). For example,
p̄i = 0 for i < n0 and p̄n0

= d. Then, due to (A.25), pn : = p̄n/d will be the
fraction of points stopped at time n, i.e.

pn = µ̂G

(

(x, t) ∈ ∪αŴα : s0 + s1 + · · ·+ sk = n for some k
)

;

observe that pn is not a probability distribution; in particular pn0
= 1. Due

to (A.24) and (A.25) we have the following ‘convolution law’:

(A.27) pn+n0
= (1 − d)

(

qn + (1 − d)

n−1
∑

i=1

qn−i pn0+i

)

∀n ≥ 1.

Its verification is rather straightforward, and we leave it to the reader as an
enjoyable exercise.
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Now consider two complex analytic functions

P (z) =

∞
∑

n=1

pn0+nzn and Q(z) =

∞
∑

n=1

qnzn.

Since |pn| ≤ 1 and |qn| ≤ 1, these functions are defined at least on the open
unit disk {z : |z| < 1} in the complex plane C. Moreover, (A.9) easily implies
that |Q(z)| ≤ 1 for all |z| ≤ 1 and that Q(z) is analytic in a slightly larger
complex disk {z : |z| < θ−1}, here θ−1 > 1.

Equation (A.27) implies P (z) = (1 − d) Q(z) + (1− d)2 P (z) Q(z), hence

P (z) =
(1 − d) Q(z)

1 − (1 − d)2 Q(z)
.

We see that P (z) is analytic in some complex disk of radius greater than one,
i.e. in {z : |z| < 1 + δ} for some δ > 0, hence |pn| ≤ const(1 + δ′)−n for any
δ′ < δ. A similar exponential bound then follows for p̄n = d pn introduced in
(A.26). Coupling Lemma 3.4 is proved.
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