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Abstract
The billiard in a polygon is not always ergodic and never K-mixing or Bernoulli.

Here we consider billiard tables by attaching disks to each vertex of an arbitrary
simply connected, convex polygon. We show that the billiard on such a table is
ergodic, K-mixing and Bernoulli.

1 Introduction

Consider the billiard problem in a polygon. Let P be a polygon in which a particle
moves freely and bounces elastically off the boundary ∂P . Assuming the speed of the
particle be unit, the phase space will be TP = P ×S1. The flow φt : TP → TP is called
the billiard flow. It preserves the Liouville measure dµ = dq × dv, where dq and dv are
uniform measures on P and S1, respectively.

All the Lyapunov exponents of the billiard flow in any polygon are zero, its topological
entropy [18] and Kolmogorov-Sinai entropy [1, 24] are zero as well. The ergodic properties
of the billiard flow depend on the shape of the polygon P . On the one hand, billiards
in the so called rational polygons, where each angle is a rational multiple of π, are
never ergodic, their phase space TP foliates by compact invariant surfaces [30]. On the
other hand, there is a ‘topologically large’, dense Gδ, subset in the space of all polygons
consisting of those where the billiard flow is ergodic [19]. There are no known techniques
to determine whether the billiard in a given polygon is ergodic, however. First explicit
examples of polygons with ergodic billiard flows were found very recently [27]. It is widely
believed that billiards in polygons are never strongly mixing, but they may be weakly
mixing [17, 16]. It is known that they cannot be K-mixing or Bernoulli.

In order to ensure hyperbolicity (nonzero Lyapunov exponents) and better ergodic
and mixing properties, one has to perturb the polygonal shape of the table by putting
in bumps or pockets. Here we study one class of such perturbations.
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Let P be a convex simply connected polygon. Assume that at every vertex of P a
small pocket is attached to the table. The pockets are bounded by circular arcs that
terminate on the sides adjacent to the vertex, see Fig. 1. More precisely, at each vertex v
place a disk Dε (ε small) in such a way that Dε intersects both edges leaving v (note that
v is not necessarily inside Dε). The boundary of the table is then obtained by replacing
the pieces of the egdes emanating from v up to their intersection with the disk by the
focusing part of the boundary of the disk.

We call the new billiard table by Pε, thinking of ε as the radius of the pockets,
even though the pockets do not have to be of the same radius. We still denote by
φt : TPε → TPε the billiard flow.

Let Q = ∂Pε and TQ = {x = (q, v) ∈ TPε : q ∈ Q and v points inside Pε}. The
flow φt induces the first return map f : TQ → TQ that is called the billiard ball map.
It preserves a smooth measure, m, on TQ. The ergodicity of the flow (TPε, φt, µ) is
equivalent to that of the map (TQ, f, m).

The main result of the paper is the following.

Theorem 1.1 Both the flow (TPε, φt, µ) and the map (TQ, f, m) are hyperbolic and
ergodic.

The following is then standard [2, 3, 8, 23]:

Corollary 1.2 Both the flow (TPε, φt, µ) and the map (TQ, f, m) are K-mixing and
Bernoulli.

Remark. We consider circular pockets because this model is the most pictorial. Our
results remain valid for small convex pockets of more general shape described in [29, 22,
10, 4], as well as concave bumps, see Fig. 1. It is important that pockets and/or bumps
are attached to every vertex of the polygon P .

We now describe the main difficulty in the proof of Theorem 1.1.
Let N ⊂ TQ be the set of points whose trajectories {φtx : −∞ < t < ∞} never

get into pockets, i.e. which hit only straight sides of the table Pε. We call them neutral
trajectories. Obviously, the set N is f -invariant. The very first task on our way is to
make sure that m(N) = 0, which was shown some time ago in Ref. [1].

Next, we have to show that the set N is ‘slim’ enough, so that it cannot separate two
ergodic components of f . The slimness of N is based on very recent results described in
the next section. After that we employ the standard machinery for proving ergodicity
for hyperbolic systems with singularities.

2 Neutral trajectories

Let π : TP → P be the natural projection. In [12] the following theorem was proven.
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Theorem 2.1 For an arbitrary convex simply connected polygon P and for any x ∈ TP
either the orbit is periodic or the closure of the set π{φtx : t ≥ 0} contains at least one
vertex of the polygon.

Remark. Convexity was not assumed in [12], but is needed for corollary 2.2.
We review some notation from [12], see also [13],[14] and [26]. We call a set S ⊂ TP

a strip if it consists of a parallel family of trajectories, i.e. S = {φts : s ∈ Ŝ, t > 0},
where Ŝ ⊂ TQ, and for each n ≥ 0 the set fnŜ consists of parallel vectors whose base
points form an interval. If we code billiard orbits to the sequence of sides they hit, then
a strip codes to a single sequence. We call a strip periodic if each x ∈ S is periodic. A
periodic strip consists of a union of periodic orbits of the same period and length (here
we must traverse twice any periodic orbit which makes an odd number of reflections).
Periodic orbits in polygons always come in strips. A maximal width strip is bounded
by one or more generalized diagonals, i.e. orbits segments which connect a vertex to a
vertex. The number of generalized diagonal is countable, thus the number of (maximal
width) periodic strips is also countable. Since P is convex, having a vertex in the closure
of the set π{φtx : t ≥ 0} implies that the orbit of x must hit a circular pocket in the
boundary of Pε (note: this is the only place that we use convexity of P ). Thus, as a
corollary to theorem 2.1 we have:

Corollary 2.2 The set of points x ∈ Q whose future semitrajectories never hit any
pocket in the boundary of Pε is an at most countable union of periodic strips.

Recently several specialists in polygonal billiards noticed that this corollary can be
strengthened [9],[15].

Theorem 2.3 The set of points x ∈ Q whose future semitrajectories never hit any pocket
in the boundary of Pε is a finite union of periodic strips

Remark. If the polygon P has a periodic orbit then this set is nonempty for sufficiently
small ε. It is unknown if there is a polygon without periodic orbits.

For completeness we sketch a proof here.
Proof: Suppose, by way of contradiction, that the above mentioned union is countable,
i.e. there is a countable number of strips of periodic orbits that never hit a pocket.
Label the maximal width strips Si, and an (arbitrary) point on the central orbit of Si

by xi. Since the orbit of xi never hits a pocket, the (perpendicular) width of each of the
strips Si is at least 2ε (figure 2). Consider the set Z of limit points of the xi. This set is
ε-separated from the vertices, thus by a strengthened version of the Birkhoff recurrence
theorem [11] the dynamical system (Z, f) has a uniformly recurrent point x, i.e. for each
neighborhood U of x there exists a constant C > 0 such that the return time sequence mi

defined by fmix ∈ U satisfies mi+1−mi < C. Fix a δ > 0 and consider the maximal width
strip S containing x together with its δ-neighborhood Sδ, see Fig. 2. By maximality, the
trajectory of S’s boundary points come arbitrarily close to some vertices of the polygon,
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thus some vertices fall into Sδ. Since x is uniformly recurrent, the left most and right
most boundary points of S are also uniformly recurrent, thus vertices fall with uniformly
bounded gaps into each of the two components of Sδ − S. By going to a subsequence
we can assume that xi → x. As i → ∞ we consider the intersection of the strips Si

with Sδ − S. Because the gaps between the vertices that fall into Sδ − S are uniformly
bounded, a vertex will eventually appear in the interior of the strip Si, see Fig. 3. This
is a contradiction.2

3 Hyperbolicity

Billiard tables whose boundary consists of straight segments and convex circular arcs
were introduced by Bunimovich [2, 3]. He discovered the defocusing mechanism, see
below, and studied the hyperbolic and ergodic properties of such billiards. His results
have been extended to wide classes of billiards with other convex (focusing) components
of the boundary [29, 22, 10, 4]. We only recall here necessary definitions and properties.
We next define Bunimovich-type billiard tables, a class larger than convex polygons with
pockets.

Definition. Let B ⊂ IR2 be a connected billiard table, not a perfect disk, and the
boundary ∂B consist of a finite number of straight segments and convex circular arcs,
the latter denoted by Γ1, . . . , Γr. Every Γi is an arc of a circle, Ci, that bounds a disk,
Di. Assume that Di ⊂ B for all 1 ≤ i ≤ r. Such tables are called Bunimovich-type
billiards with pockets.

It is easily seen that convex polygons with small pockest are Bunimovich-type tables.
Let F = ∂B and f : TF → TF be the billiard ball map in B, see Introduction.

The map f is piecewise C∞. Denote by S− the singularity set for f , it consists of
points mapped into the corners of the billiard table B (their further iterations are not
defined). Let S+ be the singularity set for f−1. For n ≥ 1 denote by S+,n = S+ ∪
f(S+) ∪ · · · ∪ fn−1(S+) the singularity set for f−n, and S+∞ = ∪S+,n. Likewise, put
S−,n = S− ∪ f−n(S−) ∪ · · · ∪ f−n+1(S−) and S−∞ = ∪S−,n. Let SS = S+∞ ∩ S−∞ be the
set of points whose trajectories terminate (hit corners) both in the future and the past.
It is known that S+,n and S−,n are finite unions of smooth curves [2, 3, 5, 6].

The main defocusing property of billiards with pockets is the following. Let q0 ∈ ∂B
and let v0 be a unit inward velocity vector attached to q0. Let Σ0 be an infinitesimal
bundle of rays leaving ∂B in the vicinity of q0, containing v0 on one of the rays and going
into B. Let γ be the orthogonal cross section of the bundle Σ0 passing through q0, see
Fig. 4, and χ0 be the signed curvature of γ at the point q0. The sign of χ0 is set to be
positive if the bundle Σ0 is diverging and negative if Σ0 is converging (focusing), as in
Fig. 4.

At the time the bundle Σ0 reaches ∂B again it reflects in ∂B and a new bundle of
rays, Σ1, goes back into B. Let τ0 be the travel time, q1 = q0 +τ0v0 the point of reflection
and v1 the reflected velocity vector at q1. The new bundle Σ1 has a certain curvature at
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q1, call it χ1. It is an easy consequence of the mirror equation [29] that

χ1 = − 2κ1

cos ϕ1

+
1

τ0 + 1
χ0

(3.1)

where ϕ1 is the angle between the vector v1 and the inward normal vector to ∂B at q1,
and κ1 ≥ 0 is the curvature of ∂B at the point q1.

The bundle Σ0 is said to be unstable (at q0) if either
(i) the point q0 lies on a straight segment in ∂B and χ0 ≥ 0, or
(ii) the point q0 lies on a circular arc Γi of radius Ri, and χ0 ≤ −(Ri cos ϕ0)

−1, where ϕ0

is the angle between v0 and the inward normal vector to Γi at q0.

Theorem 3.1 ([2, 3]) If Σ0 is unstable, then so is Σ1.

Proof: it is a direct calculation based on (3.1).

In the language of the theory of dynamical systems [28], unstable bundles specify an
invariant family of unstable cones, Cu

x , x ∈ TF , for the billiard ball map f : TF → TF .
In the important case (ii) above, the unstable bundle Σ0 focuses before it reaches the

midpoint between the collisions. After that it defocuses and becomes divergent. When
it hits ∂B again, at q1, it already gets wider than it was near the point q0. Obviously, in
the case (i), Σ1 is also wider than Σ0. The expansion of the bundle between the collisions
(with respect to the width measured in the direction perpendicular to the rays) is the
main property of unstable bundles. The factor of expansion is L = 1 + τ0χ0 in the case
(i) and L = −1− τ0χ0 in the case (ii), in both cases L ≥ 1.

The width of unstable bundles specifies a metric, ρ, in the unstable cones. It does
not correspond to any metric on TF , so we will call ρ a pseudometric. Note that it is
monotone under the action of f , i.e. Df expands every unstable vector.

The unstable subspace Eu
x for every x ∈ TF is defined, as usual, by Eu

x = ∩n≥0DfnCu
f−nx.

This subspace corresponds to the unstable bundle with the curvature

χu
0 =

1

τ−1 + 1
2κ0

cos φ0
+ 1

τ−2+ 1
2κ−1

cos φ−1
+ 1

τ−3+···

(3.2)

Here the quantities τ−n, κ−n, and φ−n correspond to the point x−n = f−nx, n ≥ 1.
This continuous fraction converges whenever

∑
n≥1 τ−n = ∞, i.e. whenever the past

semitrajectory of the point x is defined, i.e. for all x /∈ S+∞. Hence, Eu
x exists for all

x ∈ TF \ S+∞. It also depends continuously on x.
Denote by Lu

x = |1 + τ0χ
u
0 | the factor of expansion of the unstable subspace Eu

x under
Df . For n ≥ 1, denote by Lu

x(n) = Lu
xL

u
fx · · ·Lu

fn−1x the factor of expansion of Eu
x under

Dfn. It is known [5, 6] that Lu
x > 1, but it may be arbitrary close to one in the course
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of long series of consecutive reflections at straight sides of B or at one arc Γi. During
such series the cumulative factor Lu

n(x) grows at most linearly in n, which is not strong
enough, cf. [5, 6]. The factor Lu

x(n) is bounded away from unity when the trajectory
leaves an arc, Γi, at time 0 and either lands on another arc Γj, j 6= i, at time n (possibly,
with some reflections at straight sides in between), or comes back to Γi at time n after
experiencing one or more reflections at straight sides. Every time this happens we say
that the trajectory experiences an essential transition.

By reversing the time, one can similarly define stable bundles of rays, stable cones Cs
x

with a pseudometric ρ, stable subspaces Es
x, and the expansion factors Ls

x(n) ≥ 1 of Es
x

under Df−n, n ≥ 1, for all x ∈ TF \ S−∞. Stable and unstable cones Cu
x and Cs

x never
overlap but may have common boundaries.

Definition. A point x ∈ TF is said to be sufficient if there exists A > 1 and two
integers n < m, such that fnx and fmx are defined, and a neighborhood V of the point
x such that Lu

fny(m− n) > A and Ls
fmy(m− n) > A for all y ∈ V .

Definition. A point x ∈ TF is said to be u-essential if for any A > 1 there is an
n ≥ 1, such that fnx is defined, and a neighborhood V of the point x such that Lu

y(n) > A
for all y ∈ V . Similarly, s-essential points are defined (by replacing Lu

y(n) with Ls
y(n)

and fnx with f−nx).

The following immediately follows from the previous observations.

Proposition 3.2 A point x is sufficient if its trajectory (whenever defined) experiences
at least one essential transition. A point x is u-essential (or s-essential) if its future (resp.
past) semitrajectory is entirely defined and experiences an infinite number of essential
transitions. Furthermore, if the subspaces Eu

x and Es
x are characteristic subspaces with a

positive and, respectively, negative Lyapunov exponent, then essential transitions in the
entire trajectory of x occur with a positive frequency.

For the class of billiard tables Pε we can completely characterize the sets of points
x ∈ TQ that fail to be sufficient or essential. The future semitrajectory {fnx : n ≥ 0} of
a point x /∈ S−∞ experiences at least one essential transition unless (i) x ∈ N , or (ii) the
trajectory of x is periodic with all its reflection points lying on one arc, Γi. Denote by
G ⊂ TQ the set of points of type (ii). Obviously, it consists of a finite number of disjoint
segments in TQ such that the angle of reflection is constant on every of those segments.
Put NG = N ∪G. We then obtain the following.

Proposition 3.3 Every point x ∈ TQ \ (SS ∪ NG) is sufficient. Every point x ∈
TQ \ (S−∞ ∪NG) is u-essential. Every point x ∈ TQ \ (S+∞ ∪NG) is s-essential.

The last known fact we need is this [5]: the tangent line to any smooth singularity
curve in S+,n lies strictly inside an unstable cone, and the tangent line to any curve in
S−,n lies strictly inside a stable cone.
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4 Ergodicity

Theorem 4.1 Let x ∈ TQ \ (SS ∪NG). Then there is a neighborhood U(x) ⊂ TQ that
belongs (mod 0) in one ergodic component of f .

Proof. This theorem is a version of the local ergodic theorem (or ‘fundamental the-
orem’) in the theory of hyperbolic billiards. It was first developed in ref. [25] for gases
of hard balls, then generalized in ref. [20] to semi-dispersing billiards (in any dimension)
and in ref. [21] to Hamiltonian systems with invariant cone families under certain con-
ditions. The most general and convenient for our purposes version of that theorem was
proved in ref. [7]. It requires the verification of the following five properties:

Property 1 (double singularities). For any n ≥ 1 the set S+,n ∩ S−,n consists of a
finite number of isolated points.

Property 2 (thickness of neighborhoods of singularities). For any δ > 0 let Uδ(S+ ∪
S−) be the δ-neighborhood1 of the set S+ ∪ S−. Then m(Uδ(S+ ∪ S−)) ≤ const · δ.

Property 3 (continuity). The families of stable and unstable subspaces Es
x and Eu

x

are continuous on their domains. Furthermore, the limit spaces limy→x Eu
y and limy→x Es

y

are always transversal at every sufficient point x, even if Eu
x or Es

x does not exist.
Property 4 (“ansatz”). Almost every point of S+ (with respect to the Lebesgue

length on it) is u-essential, and almost every point of S− is s-essential.
Property 5 (transversality). At almost every point x ∈ S+ the subspace Es

x is defined
and transversal to S+, and at almost every point x ∈ S− the subspace Eu

x is defined and
transversal to S−.

The property 1 follows from the last remark in the previous section. The property 2
is based on certain direct but rather delicate calculations, which are described in detail
in Refs. [5, 6].

The property 3 follows from the last remark in the previous section and the fact that
for any sufficient point x ∈ TF at least one of the spaces Eu

x , Es
x lies strictly inside the

corresponding cone.
Next, observe that the sets S+ ∩ S−∞ and S− ∩ S+∞ are countable, and (S+ ∪ S−) ∩

NG = ∅. So, all the points x ∈ S+ \S−∞ are u-essential, and all the points x ∈ S− \S+∞
are s-essential. This proves 4 and 5.

Now the theorem proved in ref. [7] ensures that every sufficient point, i.e. every
point x ∈ TQ \ (SS ∪ NG), has a neighborhood that belongs (mod 0) in one ergodic
component. 2.

We now prove our main theorem 1.1. The set SS is countable. The set NG consists of
a finite number of disjoint parallel segments in TQ. Therefore, the set TQ \ (SS ∪NG)
of points satisfying the assumptions of Theorem 4.1 is a two-dimensional cylindrical
surface, in which a finite number of disjoint segments and a countable number of points

1This must be measured in a monotone (pseudo)metric, in which the expansion of unstable vectors
and the contraction of stable vectors is monotone. Our pseudometric ρ is exactly such.
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are removed. Hence, this is obviously an arcwise connected set of full measure. This
proves Theorem 1.1.

Remark. If we use Corollary 2.2 instead of Theorem 2.3 then we can prove a slightly
weaker proposition which is still enough to conclude the ergodicity of f , namely that the
set TQ \ (SS ∪NG) has an arcwise connected subset of full measure.
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Figure captions

1. A triangle with two pockets and one ‘bump’.

2. The strip S together with it’s δ-neighborhood Sδ.

3. The intersection of Si with Sδ \ S is shaded.

4. An unstable focusing bundle Σ0 gets wider at the next reflection near the point q1.
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