MA 485-1D (Probability), Dr. Chernov 5 problems, each is worth 20 points. Show your work. Midterm test #2Fri, Oct 31, 2008

1. A continuous random variable X has distribution function

$$F_X(x) = \frac{x^4 - 1}{80}$$
 for $1 \le x \le 3$

(a) Find the density function $f_X(x)$.

Answer: $f_X(x) = F'_X(x) = x^3/20$, for $1 \le x \le 3$.

- (b) Find $\mathbb{E}(X)$. Answer: $\frac{121}{50} = 2.42$.
- (c) Find $\mathbb{E}(X^2)$. Answer: $\frac{91}{15} \approx 6.07$.
- (d) Find Var(X). Answer: ≈ 0.2106 .
- (e) Find σ_X . Answer: ≈ 0.459 .
- (f) Find a formula for the kth moment of X for all $k \ge 1$. Answer:

$$\mathbb{E}(X^k) = \frac{3^{k+4} - 1}{20(k+4)}.$$

- 2. Let $X = \mathcal{N}(-2, 4)$ be a normal random variable.
- (a) Find $\mathbb{P}(-3.3 < X < 5.2)$. Answer: 0.742.
- (b) Find $\mathbb{P}(X^2 > 49)$. Answer: 0.0062.
- (c) What is the type (and parameters) of the random variable Y = 3(2 X) 15?

Answer: Y is normal $\mathcal{N}(-3, 36)$.

(d) Suppose x_1, \ldots, x_5 are five random values of X observed independently. Let $V = \max\{x_1, \ldots, x_5\}$ and $W = \min\{x_1, \ldots, x_5\}$. Find $\mathbb{P}(-3.3 < W < V < 5.2)$.

Answer: 0.742^5 .

3. Let X = U(-1, 1). Find the distribution function and the density function for the random variable $Y = 2 - \frac{4}{3-X}$.

Answers: the range is 0 < Y < 1. The distribution function is

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}\left(X > 3 - \frac{4}{2-y}\right) = \frac{2}{2-y} - 1$$

for 0 < y < 1. The density function is

$$f_Y(y) = \frac{2}{(2-y)^2}$$

for 0 < y < 1.

4. Two random variables X and Y have a constant joint density function f(x, y) = c in the domain $\{x < 4, y > 0, x > y\}$ (and zero elsewhere).

- (a) Find c. Answer: $c = \frac{1}{8}$.
- (b) Find $\mathbb{P}(X Y < 2)$. Answer: $=\frac{3}{4}$.
- (c) Find $\mathbb{P}(X Y = 2)$. Answer: 0.
- (d) Find $\mathbb{P}(X^2 + Y^2 < 1)$. Answer: $= \frac{\pi}{64}$.
- (Bonus) Are X and Y independent? Explain.

Answer: No. The domain where they take values is not rectangular.

- 5. Let X be an exponential random variable with half-life $t_{1/2} = 2$.
- (a) Find its parameter λ (give an exact formula and an approximate numerical value). Answer: $\lambda = \frac{\ln 2}{2} \approx 0.347$.
- (b) Find the median m and the mean $\mathbb{E}(X)$. Which one is larger?

Answers: median is $m = t_{1/2} = 2$, mean is $\mathbb{E}(X) = \frac{1}{\lambda} \approx 2.89$.

- (c) Compute $\mathbb{P}(X > \mathbb{E}(X) + 2\sigma_X)$. (You can use the formula $\sigma_X = \frac{1}{\lambda}$). Answer: $e^{-3} \approx 0.05$.
- (d) Find the conditional probability

$$P(X > 4\sigma_X/X > \mathbb{E}(X))$$

Compare to the answer in (c). Explain.

Answer: $e^{-3} \approx 0.05$. Same as in (c) due to the memoryless property.

For an extra credit, find the quartiles $q_1 = \pi_{1/4}$ and $q_3 = \pi_{3/4}$ of X.

Answers:

$$\pi_{1/4} = \frac{\ln(4/3)}{\lambda} \approx 0.83$$

 $\pi_{3/4} = \frac{\ln 4}{\lambda} = 4.$