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Chapter 1

Combinatorics

Five Cards

Five cards are labeled 1, 2, 3, 4, 5. They are shuffled and lined up in an
arbitrary order. How many ways can this be done? What is the chance that
they line up in the proper order, i.e., as 1, 2, 3, 4, 5?

2 1 5 4 3 or 3 5 4 2 1 or 1 2 3 4 5 or ...

Solution: If we line the cards one by one, we will have to choose one card out of five for
the first place, then one out of (the remaining) four for the second place, etc. So the total
number of line-ups will be

5 · 4 · 3 · 2 · 1 = 120

The proper line-up is unique, so the chance of it happening is 1:120. If one one lines up
the cards 120 times, then its is fair to expect the proper line-up would to occur just once.

Extra question: Suppose one plays a game betting $1, lining up the cards and winning x
dollars should the proper lineup occur. What should x be so that the game would be fair?

Answer: Obviously, x = 120. Indeed, in 120 rounds the player will bet $120 and should

expect to win x dollars once. If x = 120, then the losses and gains would cancel out.

First Rule for Permutations

The number of ways to line up n objects is

Pn = n · (n− 1) · · ·2 · 1 = n! (“n factorial”)

It is called the number of permutations of n objects.
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Committee Choosing a Chair and a Secretary

A committee of 10 members decides to choose a chair and a secretary arbi-
trarily (at random). What is the chance that the tallest member becomes
the chair and shortest – the secretary?

Chair Sec

Solution: We can choose a chair from all the 10 members and then a secretary from the
remaining 9 members. So the total number of choices will be 10 · 9 = 90. The chance that
the tallest member is the chair and the shortest member the secretary is now 1:90.

Second Rule for Permutations
The number of ways to select and order (line up) m objects from a pool
of n objects is

Pn,m = n · (n− 1) · · · (n−m+ 1)
︸ ︷︷ ︸

m

=
n!

(n−m)!

It is called the number of permutations of n objects taken m at a time
(or the number of m-element permutations of n objects).

Deck of Cards with Two Aces

A deck of 10 cards contains two aces. We pick two cards arbitrarily (at
random). What is the chance that both are aces?

Solution: The number of ways to choose an ordered pair of cards is 10 · 9 = 90. The
number of ways to choose an unordered pair of cards is 90/2 = 45. Here we divide by two
because each pair can be ordered in two ways.

Rule for Combinations
The number of ways to select m objects (without ordering) from a pool
of n objects is

Cn,m =

(
n

m

)

=
n · (n− 1) · · · (n−m+ 1)

m!
=

n!

(n−m)! m!

It is called the number of combinations of n objects taken m at a time
(or the number of m-element combinations of n objects).
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Note that
(
n

0

)

= 1

(
n

1

)

= n

(
n

2

)

=
n(n− 1)

2
. . .

(
n

n− 1

)

= n

(
n

n

)

= 1

(A standard convention is 0! = 1). The above row is symmetric, i.e.,

(
n

m

)

=

(
n

n−m

)

Partitions

In how many ways one can divide (partition) a pool of n objects into two
groups: one of m objects and the other of n−m objects?

Solution: One just needs to choose m objects for the first group and leave the rest in the

second group. So the number of choices is
(
n
m

)
.

In how many ways one can partition a pool of n objects into two groups of
arbitrary sizes?

First solution: Since the size of the first group may take values m = 0, 1, . . . , n, and for
each m the number of partitions is

(
n
m

)
then the total is

(
n

0

)

+

(
n

1

)

+ · · ·+
(

n

n− 1

)

+

(
n

n

)

Second solution: Each object in the pool can be put into the first or the second group, i.e.
there are two choices for each object. Hence, there are

2 · 2 · · · 2
︸ ︷︷ ︸

n

= 2n

ways to create a partition.

Comparing the above solutions, we arrive at a useful formula:

(
n

0

)

+

(
n

1

)

+ · · ·+
(

n

n− 1

)

+

(
n

n

)

= 2n (1)
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Newton’s formula
The numbers

(
n
m

)
are called binomial coefficients. They are involved in

the famous Binomial expansion theorem, also called Newton’s formula:

(a+ b)n =
n∑

m=0

(
n

m

)

an−mbm. (2)

Note that (1) on p. 3 is a particular case of Newton’s formula, obtained by the substitution
a = b = 1. Another substitution, a = 1 and b = −1, gives one more remarkable formula:

(
n

0

)

−
(
n

1

)

+

(
n

2

)

− · · · ±
(
n

n

)

= 0

(here the signs alternate). It can be written as

(
n

0

)

+

(
n

2

)

+ · · · =
(
n

1

)

+

(
n

3

)

+ · · ·

(all even values of m on the left, all odd values of m on the right). This is useful for one
of homework exercises.

Pascal’s triangle

The binomial coefficients Cn,m =
(
n
m

)
can be nicely arranged in the form of

a triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
. . . . . . . . . . . . . . .

Here the n-th row contains the numbers
(
n
m

)
for 0 ≤ m ≤ n. A ‘magic’

property of this triangle is that each number is the sum of the two closest
numbers on the row directly above it.
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100 Coin Tossings

A coin is tossed 100 times. What is the chance one observes exactly 50 Heads
and 50 Tails?

Solution: The result of 100 tosses can be recorded by a string of H’s and T’s, for example

HTTHHTHHH · · ·HTH

of length 100. How many such strings do we have? It is

2 · 2 · · · 2
︸ ︷︷ ︸

100

= 2100

since each letter is either H or T (two possibilities). Now, how many strings contain
exactly 50 H’s and 50 T’s? It is same as the number of ways to pick 50 positions out of
100 available (say, we pick 50 positions for H’s, filling the rest with T’s). This number is
(
100

50

)
. Hence, the chance to observe 50 Heads is

1

2100

(
100

50

)

.

More generally:

Coin Tossing Formula
If one tosses a coin n times, the chance to observe exactly m Heads is

1

2n

(
n

m

)

(3)

The numbers like above are very hard to compute for large m and n. One
of the goals of probability theory is to find efficient ways to compute such
numbers approximately.

Question: Guess what the number 1

2100

(
100

50

)
is, approximately.

Possible answers : One näıve idea goes as follows. A fair coin must land on Heads and
Tails the same number of times, so the chance to observe equal number of Heads and Tails
must be high, close to 100%.

Another naive idea: the number of Heads in 100 tosses may be 0,1,2,. . .,100. Since 50 is
one of them, the chance is 1:101, i.e. about 1%. Both naive guesses are way off mark.

A better idea: there are some very likely values for the number of Heads, such as 50 and
those close to 50, and very unlikely values, those far from 50, which can be ignored. If the
number of very likely values is, say, 10, then the chance is 1:10, or 10%. A good guess!

(The exact answer is 7.96%, we will arrive at it in Chapter 15.)
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Team from a Group of Employees

A small company employs 10 men and 10 women. It forms a team of three
employees for a special project by picking three employees at random. What
is the chance that all the members of the team are women?

Solution: A quick idea is that each member of the team is a women with probability
1/2. Then all the three members would be women with probability (1/2)3 = 1/8. Right?
Wrong!

There are exactly C20,3 ways to select three employees out of 20, and C10,3 ways to select
three women out of 10 available. So, the chance to pick three women is

C10,3

C20,3
=

2

19
.

This is close to 1/8, but somewhat smaller. To see why it must be smaller, let us select
team members one by one. After one woman is selected for the team, the balance is
broken, and there are fewer women available (only 9) than men (still all the 10).

The Sum of Two Dice

Two dice are rolled. What is the chance that the sum of the numbers shown
equals 9?

Solution: Each die has six faces and shows a number from 1 to 6, see below. Two dice
show a pair of numbers from 1 to 6. There are 6 × 6 = 36 such pairs. One can make a
chart of all pairs and locate the pairs that sum to 9:

1 2 3 4 5 6
1
2
3 ×
4 ×
5 ×
6 ×

There are 4 pairs that sum to 9, so the chance is 4/36=1/9.

Die unfolded

Sides of a die are marked by numbers:

        1, 2, 3, 4, 5, 6

When you roll a die, one of these 
numbers comes up.
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Urn Problem

An urn contains 10 white balls and 20 black balls. Four balls are taken from
the urn at random. What is the probability that two white and two black
balls are taken?

Solution: There are C30,4 ways to choose four balls out of 30 available. Now, there are
C10,2 ways to pick two white balls and C20,2 ways to pick two black balls, so there are
C10,2 · C20,2 ways to pick two white and two black balls from the urn. The probability is
then

C10,2 C20,2

C30,4
=

190

609
≈ 0.312.

Committee and Chairman

A group of n people is going to form a committee of k persons with a chair-
man. How may ways can this be done?

Solution: There is Cn,k ways to form a committee and then k ways to select a chairman
from within the committee. So, the total number is k Cn,k.

Committee of Variable Size (optional material)

Assume now that the size of the committee, k, is not fixed, i.e. it can take
any value from 1 to n. Then the total number of ways to select a committee
(of arbitrary size) with a chairman is

n∑

k=1

k Cn,k.

Alternatively, one can form a committee with a chairman as follows. Pick a
chairman first from the entire group of n people, and then allow the chair-
man to select members for his/her committee. The chairman will select a
committee from the remaining n − 1 people, thus partitioning them into
two groups – the committee per se and the rest of the group. We already
know that there are 2n−1 ways to partition a group of n− 1 people into two
parts. Thus, the total number of ways to select a chairman and a commit-
tee is n 2n−1. Comparing this to the formula above, we arrive at another
remarkable formula:

n∑

k=1

k Cn,k = n 2n−1. (4)
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Chapter 2

Probability Space

Probability theory studies experiments (procedures, games, etc.) whose re-
sults cannot be completely calculated (predicted), so that they may end up
with more than one possible outcome.

Three Coin Tossings

Toss a coin three times. What are possible outcomes? What is the chance
to observe exactly two Heads?

Solution: We know from Chapter 1 that the result of three tosses can be recorded by a
string of H’s and T’s of length three. There are 8 such strings:

HHT HTT
HHH HTH THT TTT

THH TTH

Three strings (in the second column) contain exactly two Heads, so the chance to observe
two Heads is 3/8.

Stubborn Coin Flipper

A stubborn person tosses a coin until it lands heads-up. What are possible
outcomes? What is the chance that three or more tosses will be necessary?

Solution: Clearly, possible outcomes are:

H, TH, TTH, TTTH, TTTTH, . . .

The corresponding probabilities are

1/2, 1/4, 1/8, 1/16, 1/32, . . .

One knows from calculus that the sum of these numbers equals one, i.e.

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · · = 1.

The probability that three or more tosses are necessary is found by summation

1

8
+

1

16
+ · · ·+ 1

2n
+ · · · = 1

4
. (5)
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Note differences between the above two examples. In the first, we could list all
the outcomes, and their probabilities were equal. In the second, the number
of possible outcomes is infinite, and they all have different probabilities.

Archery

One shoots at a target, which is a round disk of radius 30 inches. Assuming
that the arrow lands anywhere in the target arbitrarily, what is the chance
that the bull’s-eye, the inner disk of radius 10 inches, will be hit?

Solution: An outcome of this experiment is the spot (point) on the target surface where
the arrow lands. All the points on the surface are possible outcomes. It is important to
note: one cannot assign positive probabilities to individual points (outcomes). Instead,
one associates the probability to hit any region on the target surface with the area of
that region. So, the probability to hit the bull’s-eye is proportional to its area, or more
precisely it is the relative area of the bull’s-eye within the target:

π 102

π 302
=

1

9
.

(Recall: the area of a disk of radius r equals πr2.)

The last example is similar to the previous one, as there are again infinitely
many possible outcomes. However, there is a big difference: the probability
of each outcome is now zero. So the summation rule used in (5) would not
work here: you cannot add zeros and get something other than zero. Posi-
tive probabilities are now assigned to whole regions within the target, not to
individual outcomes.

We now review common features of the above three examples and generalize
them. A random experiment always has more than one possible outcome.
The collection (set) of all possible outcomes can be described and represented
by a list, chart or a geometric figure. In probability theory, one is interested in
probabilities of certain parts of that collection of outcomes, or subcollections
(subsets) of outcomes. The probability is a number between 0 and 1.
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Probability space

The set of all possible outcomes of a random experiment is called probability
space. We denote it by Ω (“capital omega”). Its elements, or points, are
called outcomes, they are denoted by ω (“little omega”). The result of the
random experiment is always one point ω of Ω, i.e., ω ∈ Ω.

Example: if we choose a letter from the word ABBA randomly, then possible choices are A
and B, so our probability space will consist of two (not four!) elements: A and B. We write
Ω = {A,B}.

An event is a part of Ω (called a subset of Ω). It is often characterized
by a certain condition (such as “two Heads are observed in three tosses” or
“the bull’s-eye is hit”). Events are denoted by A,B,C, etc.

We say that an event A occurs if the random experiment results in an
outcome ω that belongs in A, i.e., ω ∈ A. If ω happens to be outside of A,
i.e., ω /∈ A, the event A does not occur.

To visualize these concepts, we usually draw a rectangle that represents
the probability space. Its points represent outcomes. Various regions within
the rectangle (usually, shown as disks) represent events.

Probability
space, Ω

Event, A

Actual outcome

Event A does not occur

Probability
space, Ω

Event, A

Outcome, ω

Event A does occur

Probability
space, Ω

Event, A

Actual outcome

Each event has probability, which is a number between 0 and 1; it repre-
sents the likelihood of A. The probability of A is denoted by P(A).

0 10.5

LikelyUnlikely 50/50 CertainImpossible
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Rules for events and probabilities

(a) The entire Ω is called certain event. It always occurs because it contains
every possible outcome ω. Its probability is one: P(Ω) = 1.

(b) There is a special symbol, ∅, used for events that never occur. They
contain no outcomes (they are empty sets). Their probability is zero,
P(∅) = 0. An event with no outcomes is said to be impossible.

(c) If A is an event, then the rest of Ω is called the complement of A
and denoted by Ac. If A occurs, Ac does not, and vice versa. The
probability of Ac is related to that of A by the rule P(Ac) = 1− P(A).

(d) If A is a part of B, we write A ⊂ B (inclusion). This means that A
implies B (i.e., if A occurs, then B also occurs). Their probabilities
satisfy the rule P(A) ≤ P(B).

(e) The common part of two events, A and B, is called their intersection,
denoted by A∩B, or just AB. It occurs whenever both A and B occur.

(f) The event consisting of all the outcomes that are either in A or in B is
called the union of A and B, denoted by A∪B. It occurs whenever A
or B occurs.

(g) If two events A and B have no common part (no common outcomes;
note that in this case A∩B = ∅), then A and B are said to be disjoint,
or mutually exclusive. They cannot occur simultaneously. In this case
we have P(A ∪ B) = P(A) + P(B).

In the Stubborn Coin Flipper example, it is possible (at least theoretically) that the coin
always lands on Tails and the flipping will never stop. So, there is one outcome that we
have overlooked: TTT. . . (infinitely many T’s). This outcome has probability zero.

Events that have probability zero, even if they do contain some outcomes, are often
called impossible, too. If we want to distinguish them from impossible events that contain
no outcomes (as described in (b) above), we can say that an event is physically impossible
if it contains no outcomes. Example: if you roll two dice, then it is physically impossible
to have their sum equal 14.

An event is physically possible but probabilistically impossible if it contains some out-
comes, but its probability is zero. Example: infinitely many T’s in the Stubborn Coin
Flipper case. Another example: arrow landing right at the center of the bull’s-eye in the
Archery example. Yet another example: arrow landing right on the border of the bull’s-eye
in the Archery example. (Note: the border is a circle, which is just an extremely thin line;
its thickness is zero, so its is area equals its length times zero, which equals zero.)
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P(Ac) = 1− P(A)
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A ⊂ B; P(A) ≤ P(B)
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A ∩ B, AB; A and B
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A B

A ∪ B; A or B

Venn’s diagrams
The above diagrams illustrate the rules of probability. The big rectangle
always represents the probability space Ω. The disks inside the rectangle
represent events A, B, etc. Such nice pictures are called Venn’s diagrams.

De Morgan’s laws

The following De Morgan’s laws may be useful:

(A ∪B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪Bc.

They are easy to verify by examining Venn’s diagrams.

Distributive laws

The following distributive laws may be useful:

A ∩ (B ∪ C) = (A∩B) ∪ (A ∩C) and A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C).

To verify these, draw three overlapping circles representing A,B,C and
shadow the related areas.
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Summation rules

For two events, A and B, we have

P(A ∪B) = P(A) + P(B)− P(A ∩ B)

For three events, A,B,C, we have

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩ B ∩ C).

Similarly, for four events A1, . . . , A4 we have

P(A1 ∪A2 ∪ A3 ∪ A4) =
∑

i

P(Ai)−
∑

i 6=j

P(Ai ∩Aj)

+
∑

i 6=j 6=k

P(Ai ∩Aj ∩Ak)− P(A1 ∩A2 ∩A3 ∩ A4).

This type of formulas are called inclusion-exclusion formulas.

Two Dice

Two dice are rolled. What is the chance that at least one six will be shown?

Solution: One can use a chart as in Example 1.15:

1 2 3 4 5 6
1 ×
2 ×
3 ×
4 ×
5 ×
6 × × × × × ×

By direct count, there are 11 outcomes where at least one die shows six. So the chance
is 11/36. A more elegant solution is obtained as follows: let A = {The first die shows 6}
and B = {The second die shows 6}. Then

P(A ∪B) = P(A) + P(B)− P(A ∩B) =
1

6
+

1

6
− 1

36
=

11

36
.

• Note: in the Stubborn Coin Flipper example, we can apply the Comple-
mentary Event Rule as follows:

P(≥ 3 tosses) = 1− P(1 toss)− P(2 tosses) = 1− 1

2
− 1

4
=

1

4
.
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Two Simple Examples

1. Let P(A) = 0.5, P(B) = 0.3 and P(A∩B) = 0.1. Find P(Ac ∩Bc) and
P(Ac ∪ Bc). Answers: 0.3 and 0.9, respectively. (Just draw a Venn’s
diagram to see this.)

2. Let P(A) = 0.8, P(B) = 0.7. Find the minimum possible value for
P(A ∩B). Answer: 0.5. See solution below.

Solution to Example 2 : Note that

P(A ∩B) = P(A) + P(B)− P(A ∪B) = 1.5− P(A ∪B).

Since P(A ∪ B) cannot exceed 1, you cannot subtract more than the unity from 1.5. So,
we obtain P(A ∩B) ≥ 1.5− 1 = 0.5. This is the minimum value.

Birthday Problem

A class has 30 students. What is the chance that some two students have
birthdays on the same day?

Solution: Intuitively, the coincidence of two birthdays seems to be very unlikely. If so, our
intuition must be misleading. Because the chance of coincidence is actually very high.

To solve the problem, notice that P(coincidence) = 1 − P(no coincidence), and the
latter probability is

P(no coincidence) =
P365,30

36530
=

365 · 364 · · ·336
365 · 365 · · ·365 ≈ 0.2937.

Hence, the chance of coincidence is 1− 0.2937 = 0.7063, i.e., over 70%.

Here is an explanation to the above formula: 36530 is the number of ways 30 students
may have birthdays, and P365,30 is the number of ways 30 students may have birthdays
on 30 distinct days. (The day of February 29 in leap years is ignored, for simplicity.)

Why was our intuition so misleading? Well, it is because we compared a small number
of students, 30, to a large number of days, 365. Instead, we should have thought of the
number of pairs of students, which is C30,2 = 435. This number is larger than the number
of days in a year.
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Chapter 3

Conditional Probability and Independence

Three Coin Tosses Again

A friend tosses a coin three times. You accidentally notice that the first time
the coin lands head-up (but you do not see how it lands two more times).
What is the chance that the friend observes 2 Heads in all the three tosses?

Solution: In Chapter 2, we found all possible outcomes. There are eight of them. Now,
with the additional information at our disposal, we can exclude those starting with a T.
That leaves us with four possible outcomes:

HHH,HHT,HTH,HTT

Two of them contain exactly two Heads. So, the chance is 2/4=1/2.

Note that we have two events around:

A = {2 Heads are observed} and B = {First toss is Heads}

We already know that P(A) = 3/8, from Chapter 2. Now, the event A is considered under
the condition that the event B has occurred. Then the conditional probability of A, given
B, is found by calculating the fraction of A within B, i.e. the fraction of A∩B within B.
See the illustration.

HHH

HHT

HTH

THH

HTT

THT

TTH

TTT

A

B

Ω

The event A covers three outcomes, out of eight total, within the entire space Ω. But
it covers only two outcomes, out of four total, within the event B.

In a sense, our additional knowledge (that the first time the coin landed heads-up)
made us reduce the probability space, so that the event B now plays the role of a new,
reduced, probability space.
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Conditional probability

The conditional probability of an event A, given an event B, is

P(A/B) =
P(A ∩B)

P(B)
. (6)

Multiplication rule

The above formula can be rewritten as

P(A ∩ B) = P(B) · P(A/B).

A symmetric formula also holds:

P(A ∩B) = P(A) · P(B/A).

Two Spades from a Deck of Cards

A deck of 52 cards has 13 spades. If two cards are drawn from the deck at
random, what is the chance that both are spades?

Solution: Let A = {First card is a spade} and B = {Second card is a spade}. Clearly,
P(A) = 13/52 = 1/4. If the first card is a spade, then the chance to draw another
spade is 12/51 (the remaining deck of 51 cards has 12 spades left). This means that
P(B/A) = 12/51. Hence,

P(A ∩B) = P(A) · P(B/A) =
1

4
· 12
51

=
12

204
=

1

17
.

Extended multiplication rule

If A1, A2, . . . , An are events, then

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1) · P(A2/A1) · P(A3/A1 ∩ A2)×
× · · · × P(An/A1 ∩ · · · ∩ An−1).
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Birthday Problem Revisited

The birthday problem of Chapter 2 now can be solved by using the extended
multiplication rule:

P(no coincidence) =
365

365
· 364
365

· 363
365

· · · 336

365
.

Here we take students one by one, and multiply the conditional probabilities
that the birthday of each student is different from the birthdays of the pre-
viously taken students.

Partition

Let B1, . . . , Bn be disjoint (i.e., mutually exclusive) events; i.e. Bi ∩ Bj = ∅
for all i 6= j. Let B1 ∪ B2 ∪ · · · ∪ Bn = Ω, i.e. these events cover (exhaust)
the entire probability space. We call {B1, . . . , Bn} a partition of Ω.

�
�
�
�
�
�
��@

@
@
@
@
@
@@

B1

B2 B3

B4 A partition of Ω
into four events:
B1, B2, B3, B4

Note that every outcome ω belongs to one and only one of B1, . . . , Bn. In
other words, exactly one of these events occurs.

Law of Total Probability

Let B1, . . . , Bn be a partition of Ω, as defined above. Let A be an event.
Then

P(A) = P(B1) · P(A/B1) + · · ·+ P(Bn) · P(A/Bn) (7)

One can think of B1, . . . , Bn as conditions under which the event A may oc-
cur. The events B1, . . . , Bn are often called hypotheses.
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Alex Goes to School

Alex goes to school by bus or train, whichever comes first. He notices that
the bus comes first with probability 30% and the train with probability 70%.
When Alex takes a train, he arrives late to school with probability 5%. When
he takes a bus, he is late to school with probability 20%. Without knowing
what mode of transportation he will take tomorrow, find the probability that
he will be late to school?

Solution: The event in question here is A = {Alex is late to school}. This may happen
under two conditions (hypotheses): B1 = {Alex takes bus} and B2 = {Alex takes train}.
Hence,

P(A) = P(B1) · P(A/B1) + P(B2) · P(A/B2)

= 0.3× 0.2 + 0.7× 0.05 = 0.095.

Two-Stage Experiment

Amanda rolls a die and then flips a coin the number of times that she sees
on the die when it lands. What is the chance she observes two Heads?

Solution: In the first stage, the die shows one of the six numbers 1, . . . , 6. These are six
events, which we denote by B1, . . . , B6. They are disjoint and exhaust all the possibilities,
so they make a partition. In the second stage, the event A = {Two Heads are observed}
may (or may not) occur, and its probability depends on the number shown on the die.
Applying the law of total probability gives

P(A) = P(B1) · P(A/B1) + · · ·+ P(B6) · P(A/B6)

=
1

6
· 0 + 1

6
· 1
4
+

1

6
· 3
8
+

1

6
· C4,2

24
+

1

6
· C5,2

25
+

1

6
· C6,2

26
=

33

128
.

Note that we used the formula (3) from page 5 to find the probability of observing 2 Heads
in n tosses for n = 2, . . . , 6.

Two Dice Again

Roll a die twice. If the first roll is a six, what is the chance the second roll
will be a six?

Solution: Let A = {The second roll is a six} and B = {The first roll is a six}. Then

P(A/B) =
P(A ∩B)

P(B)
=

1/36

1/6
=

1

6
.

Note that P(A) = 1/6, so that
P(A/B) = P(A).

In other words, the probability of A does not change when the event B occurs, the event
B does not affect the chance of A to occur.
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Independent Events

Two events, A and B, are said to be independent if

P(A/B) = P(A).

By using (6), we can rewrite this equation as

P(A ∩ B) = P(A)P(B) (8)

and also as
P(B/A) = P(B).

All these three equations mean the same – independence of A and B.

Note: The equation P(A ∩ B) = P(A)P(B) is better than the other two: it
is symmetric. It also works when P(A) = 0 or P(B) = 0, while the other two
may fail. So, it is preferred for practical purposes.

Tossing Two Coins

Suppose we flip two coins. Let

A = {First coin shows Head}, B = {Both coins show the same face}

Are A and B independent?

Solution: One easily finds that P(A) = 1/2, P(B) = 1/2 and P(A ∩ B) = 1/4. Then we
just check that 1/2× 1/2 = 1/4. So, yes, they are independent.

Note: Sometimes the independence is obvious, like in the previous example
with two dice (because there is no way the first die can affect the second).
Sometimes the independence is harder to recognize, as it is in the above ex-
ample with two coins. One can explain the independence here noting that
the second coin may or may not show the same face as the first one with
probability 1/2, no matter what face the first coin shows.

Note: If two events A,B are independent, then Ac, Bc are also independent,
i.e. P(Ac ∩ Bc) = P(Ac)P(Bc). Moreover, A and Bc are independent, i.e,
P(A ∩Bc) = P(A)P(Bc). Similarly, Ac and B are independent.
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Independence of Three Events

Three events A,B,C are said to be mutually (or jointly) independent if
(a) every pair of them are independent in the sense of (8), and
(b) the following holds:

P(A ∩B ∩ C) = P(A)P(B)P(C).

Note: neither condition (a) and (b) alone is enough for joint independence.
One needs to check both (a) and (b) to verify joint independence of A,B,C.

Tossing Two Coins Again

Suppose we flip two coins. Let

A = {First coin shows Head}, B = {Both coins show the same face}

and
C = {Second coin shows Head}

Are A,B,C jointly independent?

Solution: We have seen already that A and B are independent. Similarly, B and C are
independent. Obviously, A and C are independent. So, the requirement (a) above holds.
We can say that A,B,C are pairwise independent.

On the other hand, P(A∩B∩C) = 1/4, and 1/2×1/2×1/2 6= 1/4, so the requirement
(b) fails. Thus the events A,B,C are not jointly independent.

Tossing Three Coins

Suppose we flip three coins. Let

A = {First coin shows Head}, B = {Second coin shows Tail}

and
C = {At least two coins show Head}

Are A,B,C jointly independent?

Solution: One easily finds that P(A) = P(B) = P(C) = 1/2. Also, P(A∩B ∩C) = 1/8, so
requirement (b) above holds. But A and C are dependent, so requirement (a) fails.
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Independence of Several Events

Several events A1, . . . , An are said to be mutually (or jointly) independent
if for any subcollection Ai1 , . . . , Aik of them the following holds:

P(Ai1 ∩ · · · ∩Aik) = P(Ai1) · · ·P(Aik)

Rocket with Redundant System

A rocket has a built-in redundant system. It has three components, K1, K2, K3

that can automatically replace each other. If component K1 fails, it is by-
passed and component K2 takes over, etc. So, as long as one component
works the system is functioning. Suppose that the probabilities of failure of
these components are 10%, 20% and 5%, respectively. Find the probability
that the entire system works.

Solution: First, note: P(system works) = 1 − P(system fails). The system fails if all the
three components fail. The failures are mutually independent events, so

P(system fails) = 0.1 · 0.2 · 0.05 = 0.001

So, the entire system will function with probability 99.9%. A remarkably high reliability!

An additional note: it is more difficult to find the probability that exactly two components
fail, because they can fail in various combinations: {1, 2}, {1, 3}, and {2, 3}. In each case
the remaining component is assumed to be working. Therefore, the probability that two
components fail is

P(two components fail) = P(1st and 2nd fail)

+ P(1st and 3rd fail) + P(2nd and 3rd fail)

= 0.1 · 0.2 · 0.95 + 0.1 · 0.8 · 0.05 + 0.9 · 0.2 · 0.05
= 0.032.

A useful note: If several events A1, . . . , An are independent, one can replace
any number of them by their complements (e.g., A1 by Ac

1, etc.), and the
new collection of events will be also independent.
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Recall the law of total probability (7). Suppose we need to compute P(Bi/A)
for some i = 1, . . . , n. Our basic formulas give

P(Bi/A) =
P(Bi ∩ A)

P(A)
=

P(Bi) · P(A/Bi)

P(A)

Let us now replace the denominator P(A) by (7). Then we obtain

Bayes Formula

P(Bi/A) =
P(Bi) · P(A/Bi)

P(B1) · P(A/B1) + · · ·+ P(Bn) · P(A/Bn)

Note: the numerator is one of the terms that appear in the denominator.

Interpretation of Bayes Formula

We first recall how we interpreted the law of total probability (7). An event
A can occur under different conditions (hypotheses) B1, . . . , Bn. The prob-
ability that A occurs under each condition Bi is known. The likelihood of
each condition to take place is known, too. Then we can compute the total
(or unconditional) probability of A by (7).

Now, the situation “turns around”. Suppose we know that the event A
has occurred. But we are not aware of under what condition this happened.
So we need to estimate the probability that the condition Bi had taken place
before the event A occurred. This is what the Bayes formula does.

Who is Bayes?

Bayes formula was named after the Reverend Thomas Bayes (1701-1761) who
derived and used it first.
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Three Factories and Defective Chip

Three factories, F1, F2, and F3, produce computer chips. The factory F1

produces 50% of all the chips in the market, the factory F2 accounts for 40%
of the market, and the factory F3 for 10%. It is known that 1% of the chips
made by the factory F1 are defective. For the factories F2 and F3 the rates of
defective chips are 2% and 3%, respectively. Suppose Betty’s computer has a
defective chip. Betty wonders: which factory is most likely to have produced
it?

Solution: First, Betty assumes that it should be F1, which accounts for most of the chips
in the market. On second thought, Betty assumes that it is F3, whose chips are the least
reliable. The exact solution shows that it is F2.

Let B1, B2, B3 denote the events that Betty’s computer chip was produced by F1, F2,
and F3, respectively. Denote by A the event that the chip turns out defective. Then
P(A/B1) = 0.01, P(A/B2) = 0.02, P(A/B3) = 0.03. Now, by the Bayes formula, we have

P(B1/A) =
0.5 · 0.01

0.5 · 0.01 + 0.4 · 0.02 + 0.1 · 0.03 =
5

16

P(B2/A) =
0.4 · 0.02

0.5 · 0.01 + 0.4 · 0.02 + 0.1 · 0.03 =
8

16

P(B3/A) =
0.1 · 0.03

0.5 · 0.01 + 0.4 · 0.02 + 0.1 · 0.03 =
3

16

Well, the highest chance is shown for the factory F2. So, Betty should blame the factory
F2, it was most likely to have made her defective chip.

Smoking on Plane

Statistics show that 3% of men smoke but only 1% of women do. During a
non-smoking flight, one passenger is smoking in the restroom. There are 40
male and 60 female passengers on the plane. What is the chance that the
person smoking in the restroom is a man?

Solution: Let M,F denote the events that an arbitrarily chosen passenger is a man or a
women, respectively. On this airplane, P(M) = 0.4 and P(F ) = 0.6. Let S denote the
event that a passenger is a smoker. Then P(S/M) = 0.03 and P(S/F ) = 0.01. By the
Bayes formula we have

P(M/S) =
0.4 · 0.03

0.4 · 0.03 + 0.6 · 0.01 =
12

18
=

2

3

so it is twice more likely that the smoker is a man than a woman.
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The last two examples are optional. They are somewhat counterintuitive
and may provoke creative thinking and lively discussions. But they are not
necessary for developing basic skills.

Brothers and Sisters

Suppose for simplicity that the number of children in a family is 1, 2, or 3,
with probability 1/3 each, and boys and girls appear equally likely. Little
Bobby has no brothers. What is the probability that he is an only child?

Solution: Let B1, B2, B3 be the events that a family has one, two, or three children. Let A
be the event that a family has only one boy. We assumed that P(B1) = P(B2) = P(B3) =
1/3. Now it is simple to find P(A/B1) = 1/2, P(A/B2) = 1/2 and P(A/B3) = 3/8. Then

P(B1/A) =
1/3 · 1/2

1/3 · 1/2 + 1/3 · 1/2 + 1/3 · 3/8 =
4

11
.

Surprise?

Let us change the previous example a bit. Suppose now that little Bobby
has no sisters. What is the probability that he is an only child?

Solution: One might assume that this probability is exactly the same as in the previous
example, i.e. 4/11. Why?

Remember, boys and girls appear equally likely. In the previous example you knew
that Bobby could only have sisters, now you know that Bobby can only have brothers,
right? What difference does it make, whether Bobby has siblings of one sex or the other?

Well, apparently it does make a difference if we look at numbers. Let again B1, B2, B3

be the events that a family has one, two, or three children. Let A be the event that
a family has no girls. Then it is simple to find P(A/B1) = 1/2, P(A/B2) = 1/4 and
P(A/B3) = 1/8. Then

P(B1/A) =
1/3 · 1/2

1/3 · 1/2 + 1/3 · 1/4 + 1/3 · 1/8 =
4

7
.

Surprise? Yes, it is not so easy to understand why it is more likely that a boy with no
sisters is the only child than a boy with no brothers... Go figure...
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Chapter 4

Discrete Random Variables

Counting Heads

Suppose again a coin is tossed three times. And suppose you play a game in
which you win $1 each time the coin shows Head. Then your total win is X
dollars where X is the number of Heads in three flips. Possible values of X
are 3, 2, 1, 0, with respective probabilities 1/8, 3/8, 3/8, 1/8.

Note that X may take 4 distinct values, as opposed to 8 distinct outcomes
in this game. The number of values is lower than the number of outcomes.
This is so because we do not care in which order Heads and Tails come, all
we care about is the total number of Heads. Hence, for example, three out-
comes HHT, HTH, THH are not distinguishable, they are “combined” into
one value of X (which is 2).

Success/Failure Trials

Let us generalize the above example. Suppose that you perform three trials,
in each of which you may succeed or fail. For example, you take three tests on
the pass/fail basis. Or you throw a basketball. Or roll a die in a game where
you win $2 if the die shows 5 or 6 and lose $1 otherwise. Each trial has two
possible outcomes: success (S) and failure (F). The experiment consisting of
3 trials has 8 outcomes. We arrange them in the same format as Heads and
Tails of a coin:

SSF SFF
SSS SFS FSF FFF

FSS FFS

In many cases, we only care about the total number of successes, let us call
it X . Then X takes values 3, 2, 1, 0.
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The essential difference of this situation from the coin tosses is that the
probability of success is not necessarily equal to 1/2. Assume that the prob-
ability of success in every trial is the same, call it p. Then the probability
of failure is 1 − p, we denote it by q. So, p and q take values between 0 and
1 and are related by p + q = 1. Suppose also that successes and failures
in individual trials are independent. Then the probabilities of outcomes in
our experiment can be found by a simple multiplication rule, for example
P(HHT) = ppq = p2q, P(THT) = qpq = pq2, etc. This way we can find the
probabilities that X takes values 0, 1, 2, 3. We summarize them in the table
below:

values of X 0 1 2 3

probabilities q3 3pq2 3p2q p3

Note that X = 1 combines three outcomes, all with the same probability pq2.
Similarly, X = 2 combines three outcomes, all with the same probability p2q.
Finally, note that by Newton’s formula (2) of Chapter 1

q3 + 3pq2 + 3p2q + p3 = (q + p)3 = 13 = 1

so the probabilities sum up to one, as they should.

Bernoulli Trials

Any simple trial with only two possible outcomes is called Bernoulli1 trial.
It is customary to label the outcomes by “success” and “failure” (S and F).
Suppose we perform n simple trials where in each trial success has probabil-
ity p (the same from trial to trial) and the outcomes of trials are mutually
independent. This experiment is called a sequence of Bernoulli trials.

An outcome of a sequence of n Bernoulli trials can be represented by a
string of S’s and F’s of length n. The probability of an outcome given by a
sequence of S’s and F’s can be found simply by multiplying the correspond-
ing p’s and q’s (here and everywhere q = 1− p is the probability of Failure).
Hence, if the string has k Successes (S’s) and n− k Failures (F’s), its proba-
bility is pkqn−k.

1Named after Swiss scientist Jacob Bernoulli (1655–1705).
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Binomial Random Variable

Suppose n Bernoulli trials are performed. The total number of successes is
often what one needs to know. Call it X . Possible values of X are 0, 1, . . . , n.
The value of X depends on the outcome of the experiment. This way we can
consider X as a function on Ω, with numerical values. For example, if we
perform n = 3 trials, then X(SSS) = 3, X(FSF) = 1, X(FFF) = 0, etc. We
will continue this discussion after a brief digression.

Random Variables

A random variable is a function on the probability space Ω, whose values are
numbers. We denote random variables by X, Y, Z, U, V , etc. Hence, if X is a
random variable then for every outcome ω its value X(ω) is a number that
can be computed.

Note that a random variable X can take the same value on several (or
many) distinct outcomes, i.e. X(ω) = X(ω′) for some ω 6= ω′. So, knowing
the value of X it may not be possible to identify the outcome ω. Thus, a
random variable provides an incomplete information about the outcome of
the experiment. This is not bad. In many cases a random variable simply
suppresses unnecessary details (such as the order in which Heads and Tails
come, if we only care about the number of Heads).

Binomial Random Variable (continued)

We call X described above a binomial random variable, resulted from n
Bernoulli trials. Next we find the probability that X = k for each 0 ≤ k ≤ n.

Solution: We note that X = k when the outcome of the experiment is a string that
contains k S’s and n− k F’s. Each such string has probability pkqn−k. There are Cn,k of
such strings, as we know from Chapter 1. Hence,

P(X = k) =

(
n

k

)

pkqn−k, 0 ≤ k ≤ n. (9)

This formula is good for all k = 0, 1, . . . , n. Note that the sum of these probabilities is

n∑

k=0

(
n

k

)

qn−kpk = (q + p)n = 1

by the Binomial theorem (page 4). This is why X is called the binomial random variable.

Note that the probability P(X = k) above depends on two quantities, n and p (because
q is merely a shorthand for 1−p). We call n and p the parameters of the binomial random
variable X and say that X is binomial(n, p) or shortly b(n, p).

27



Geometric Random Variable

Generalizing the Stubborn Coin Flipper example of Chapter 2, consider in-
dependent Bernoulli trials that are performed until a success occurs. The
outcomes in this experiment are

S, FS, FFS, FFFS, . . . ,FFFFS, . . .

Let X be the number of trials performed. We call X a geometric random
variable. It takes values 1, 2, . . . , n, . . .. Each value X = n is taken on exactly
one outcome, F . . .F

︸ ︷︷ ︸

n−1

S. The probability of this outcome is q · · · q
︸ ︷︷ ︸

n−1

p = pqn−1.

Hence,
P(X = n) = pqn−1 for all n ≥ 1. (10)

Note that the sum of these probabilities is

∞∑

n=1

pqn−1 = p (1 + q + q2 + · · · ) = p · 1

1− q
=

p

p
= 1 (11)

so the probabilities sum to one, as they should. The probability P(X = n)
above involves the only parameter p. We denote X by geometric(p).

Note: in Calculus, the infinite sum 1 + q + q2 + · · · = 1
1−q

is called geo-
metric series. This explains the name of our random variable.

Exercise with Geometric Random Variable

For a geometric random variable X , compute P(X > k).

Solution: We have

P(X > k) =
∞∑

n=k+1

P(X = n) =
∞∑

n=k+1

pqn−1

= pqk(1 + q + q2 + · · · ) = pqk

1− q
=

pqk

p
= qk.
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Discrete Random Variables

Generalizing the above examples, we say that a random variable X may take
some values x1, x2, . . . with corresponding probabilities p1, p2, . . .. The list of
values may be finite as for Binomial R.V. or infinite as for Geometric R.V.
It is sometimes convenient to put them all in a table:

X x1 x2 x3 · · ·
P p1 p2 p3 · · ·

Random variables that allow such representation are said to be discrete. We
will see a different type of random variables in Chapter 5.

Total Probability Rule
The probabilities must always sum to one:

p1 + p2 + p3 + · · · = 1

Probability Mass Function

The function that assigns the probability pk to the value xk is called prob-
ability mass function (p.m.f.) or sometimes just probability function. For
example, the formulas (9) on page 27 and (10) on page 28 give probability
mass functions for binomial and geometric random variables, respectively.

-

6

0 x

y

1 2 3 4 5

Probability mass function of a binomial r.v. b(5, 1/2):

Uniform Discrete Random Variable

Let n ≥ 1. A very simple random variable takes values 1, 2, . . . , n with equal
probabilities, 1/n. Its probability mass function is

P(X = k) = 1/n for all 1 ≤ k ≤ n.

We call X a uniform discrete random variable.
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Example: Die

An example of a uniform discrete random variable is the number shown when
a die is rolled: there we had n = 6 and P(X = k) = 1/6 for k = 1, . . . , 6.

-

6

0 x

y

1 2 3 4 5 6

Probability mass function of a uniform r.v. with n = 6:

Notational Remark

It is important to show the range of the variable in the formula for the prob-
ability mass function, such as 0 ≤ k ≤ n in (9) on page 27 and n ≥ 1 in (10)
on page 28. It is assumed that the probability is zero for all other values of
k. For example, if X is b(n, p), then P(X = −1) = 0, P(X = n + 5) = 0,
P(X = 1.4) = 0, etc.

Special binomials: n Large, p Small

In some practical situations we have a binomial random variable with very
large n and very small p. Here are a few examples:

(a) The number of calls taken by an operator. Here the number of people
(customers) who may call is usually very large, but the probability
that an individual customer calls at a particular moment is usually
very small.

(b) The number of customers arriving at a convenience store or a car shop
on a given day. Again, we have a large number of potential customers
and a small probability that any particular customer will visit that
store (shop) on that day.

(c) The number of lottery tickets that win if you buy a huge number of
them (each ticket wins with a very low probability).

(d) The number of defective items found by a quality control in a produc-
tion line. Usually, the fraction of defective items is small (say 1% or
lower), and a few dozens or hundreds of items are being taken for a
test.
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Poisson Approximation to Binomial

Let X be a binomial random variable, b(n, p), with small p and large n, as
described above. The exact formula (9) on page 27 for P(X = k) is practically
useless because it involves huge numbers such as n! and tiny numbers such
as pk that may cause trouble even if you use a good computer. Our goal
is to approximate P(X = k) by a formula that only involves “reasonable”
numbers. We assume that n is huge, p is tiny, and k is reasonably small:
k = 0, 1, 2 . . ..

First, we note that

P(X = k) =
n(n− 1) · · · (n− k + 1)

k!
pk(1− p)n−k.

Since n is huge, we have n− k ≈ n, and so

P(X = k) ≈ nk

k!
pk(1− p)n =

(np)k

k!

[
(1− p)1/p

]np
.

There is a useful formula in calculus:

lim
x→0

(1− x)1/x = e−1

based on which we approximate (1−p)1/p by e−1. We also denote the product
np by λ. Hence,

P(X = k) ≈ λk

k!
e−λ.

Note that λ = np is the product of a huge number n and a tiny number p,
so usually λ is a “reasonable” number.

Conclusion: if X is a binomial random variable b(n, p) with large n and
small p, one can compute the probability P(X = k) for small k by

P(X = k) ≈ λk

k!
e−λ with λ = np. (12)

This formula is called Poisson2 approximation to binomials.

Note: the value λ = np has the (intuitively understandable) meaning of
the average number of successes in n trials.

2Named after French mathematician Siméon Denis Poisson (1781-1840).
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Poisson Random Variable

Motivated by (12) on the previous page, we introduce Poisson random vari-
able X that takes values 0, 1, 2, . . . with probabilities

P(X = k) =
λk

k!
e−λ for all k ≥ 0.

Here λ > 0 is a parameter. We denote it by X =poisson(λ) or shortly
X = p(λ). One can check that the probabilities sum up to one:

∞∑

k=0

λk

k!
e−λ = e−λ

∞∑

k=0

λk

k!
= e−λeλ = e0 = 1.

Here we used the Taylor expansion for ex known from calculus:

ex =

∞∑

k=0

xk

k!
.

The Poisson approximation (12) works very well in practical applications.

Defective Items

In a production line, 0.4% of items are defective. If n = 500 items are taken
randomly for quality control, what is the probability that 0 (or 1, or 2) of
them are found defective?

Solution: Clearly, the numberX of defective items in the group of 500 is binomial(500,0.004).
The Poisson approximation gives

P(X = k) ≈ λk

k!
e−λ

with
λ = 500 · 0.004 = 2.

Hence,

P(X = 0) ≈ e−2, P(X = 1) ≈ 2e−2,

P(X = 2) ≈ 2e−2, P(X = 3) ≈ 4

3
e−2, . . .

All these numbers are easily computable with any simple calculator.
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Role of λ

Poisson approximation (12) only requires the average number of successes
λ = np, the values of n and p separately are not involved. They need not
even be known!

Coffee Break

An operator knows that she receives about 5 calls per hour, on the average.
She decides to take a 10 minute coffee break. What is the chance that some-
body calls during her coffee break?

Solution: Here the average number of calls is 5 per hour, so it is 5/6 per 10 minute period.
Hence, λ = 5/6. Then

P(X ≥ 1) = 1− P(X = 0) = 1− e−λ = 1− e−5/6 = 0.5654.

So, it is more likely than not that her coffee break will be interrupted by a call.

Note: the original average of 5 call was given per our. We had to adjust it as our
time slot was only 10 minutes. Beware that the average may have to be adjusted in other
examples, too.

33



Chapter 5

Continuous Random Variables

Here we study random variables that can take any value in the real line or
any value in a given interval.

Archery Again

Continuing the Archery example of Chapter 2, let X be the distance from
the hit point to the center of the target. Then X takes any value between 0
and 30 (inches). By using a formula, 0 ≤ X ≤ 30.

Lifetime

Let X be the lifetime of a brand new TV (or a rand new car). Since it is
totally unpredictable when the TV (or the car) dies, we have to assume that
X may take any positive value, i.e., X ≥ 0.

Range of Values

In the above examples, we have random variables that take values in a certain
(finite or infinite) interval. Clearly, we cannot list all possible values in any
table or chart, in the way we did for discrete random variables in Chapter 4.
This is a new type of random variables, that we will call continuous.

A B

A X B

x1 x2 x3 x4Discrete:

Continuous:

     Mass is concentrated
at specific points (values of X)

   Mass is spread over 
an interval (of values of X)
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Probabilities of Values

Another novelty in the above examples: for any possible value x, the proba-
bility P(X = x) is zero (in the Archery example, the value X = x is taken on
a circle of radius x, which is just a curve on the target surface, and the area of
any curve is zero.) Since we have P(X = x) = 0 for every individual value x,
we have to think of how to describe the random variable X in a meaningful
way. Instead of individual values of X we will care about intervals of values
of X , i.e. we will consider probabilities P(a < X < b) for various a < b. Such
probabilities are usually positive, and they describe the random variable X
in a meaningful and complete way.

Probabilities of Intervals

For a given random variable X , the probability P(a < X < b) depends on
both a and b, so it is a function of two variables. Fortunately, it can be
reduced to a function of one variable by the following trick:

P(a < X < b) = P(X < b)− P(X ≤ a)

where P(X < b) and P(X ≤ a) depend on one variable each.

Distribution Function

Given a random variable X , its distribution function FX(x) is defined by

FX(x) = P(X ≤ x).

Note that X denotes the random variable, and x is the argument of the
function FX , i.e. a real variable −∞ < x < ∞.
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Archery (continued)

Let us compute the distribution function for the random variable X in the
Archery example.

Solution: The random variable X takes values 0 ≤ X ≤ 30. Hence, if x < 0, then X ≤ x
is an impossible event and P(X ≤ x) = 0. If x > 30, then X ≤ x is always true (it is a
certain event), hence P(X ≤ x) = 1. If 0 ≤ x ≤ 30, then the event {X ≤ x} occurs if the
hit point lies in the inner disk of radius x. Now, as we described in Chapter 2, we have

P(X ≤ x) =
πx2

π 302
=

x2

900
.

Finally, we have

FX(x) =







0 if x < 0
x2/900 if 0 ≤ x ≤ 30

1 if x > 30
(13)

Properties of Distribution Function

It is clear that FX(x) always has the following properties:

• 0 ≤ FX(x) ≤ 1 (since it equals the probability of an event).

• FX(x) is monotonically increasing, i.e. FX(x1) ≤ FX(x2) whenever
x1 ≤ x2 [this is because of the inclusion {X ≤ x1} ⊂ {X ≤ x2}, which
implies P(X ≤ x1) ≤ P(X ≤ x2)].

• If X has a maximum value, Xmax, i.e. X ≤ Xmax, then FX(x) = 1 for
all x ≥ Xmax. Also, if X has a minimum value, Xmin, i.e. X ≥ Xmin,
then FX(x) = 0 for all x < Xmin.

• Generalizing the previous observation, we have

lim
x→∞

FX(x) = 1 and lim
x→−∞

FX(x) = 0.

It is interesting that any function y = F (x) that satisfies the first, second,
and fourth of the above properties and, in addition, is continuous from the
right at every point x, is a distribution function for some random variable
X . We will not need that fact, though.
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Computation of Probabilities

For any interval (a, b) we have

P(a < X ≤ b) = F (b)− F (a).

Also,
P(X ≤ b) = F (b) and P(X > a) = 1− F (a).

Archery (continued)

By the above formulas, we can compute

P(1 < X < 3) = F (3)− F (1) = 32

900
− 12

900
= 8

900
,

P(X > 20) = 1− F (20) = 1− 202

900
= 1− 4

9
= 5

9
,

P(10 < X < 40) = F (40)− F (10) = 1− 102

900
= 1− 1

9
= 8

9
.

Note that F (40) = 1, not 402

900
; see rule (13) on page 36.

Continuous Random Variables

Here is official definition: A random variable X is said to be continuous if
for any real number x we have P(X = x) = 0. In this case the distribution
function FX(x) is a continuous function (it has no jumps or interruptions).

Casual Treatment of Endpoints

Note: if X is continuous, then in all the formulas for Computation of Prob-
abilities above we have P(X = a) = P(X = b) = 0. Thus, it does not matter
whether one uses exclusive inequality (<) or inclusive one (≤) in those for-
mulas. In particular, we have

P(a < X < b) = P(a ≤ X ≤ b) = F (b)− F (a).

We will only use distribution function for continuous random variables, so
we will be rather casual in some formulas like P(a < X < b) or P(a ≤ X ≤ b)
including or excluding the endpoints a and b at will. This will not make
any difference. When working with continuous random variables it does not
matter if one includes endpoints of intervals or not.
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Probability Density Function

The expression F (b)− F (a) in the previous formulas reminds us of the fun-
damental theorem of calculus:

F (b)− F (a) =

∫ b

a

f(x) dx where f(x) = F ′(x).

The function f(x) = F ′(x) is called the probability density function. Now we
can compute probabilities in terms of f(x):

P(a < X < b) =

∫ b

a

f(x) dx.

Also,

P(X < b) =

∫ b

−∞
f(x) dx and P(X > a) =

∫ ∞

a

f(x) dx.

Note also that F (x) can be computed itself in terms of f(x):

F (x) =

∫ x

−∞
f(u) du (14)

That is, F is an antiderivative of f .

Properties of Density Function

• f(x) ≥ 0.

• If X ≤ Xmax, then f(x) = 0 for all x ≥ Xmax.

• If X ≥ Xmin, then f(x) = 0 for all x ≤ Xmin.

Normalization Rule

The total integral of f(x) equals one:

∫ ∞

−∞
f(x) dx = 1
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Min/Max Rules

If X has a maximum value, Xmax, then F (x) = 1 and f(x) = 0 for all
x ≥ Xmax. If X has a minimum value, Xmin, then F (x) = 0 and f(x) = 0 for
all x < Xmin. So, both functions F (x) and f(x) take trivial values outside
the interval [Xmin, Xmax], on which the random variable takes all its values.
It is therefore customary to only specify F (x) and/or f(x) on the ‘essential’
interval [Xmin, Xmax] and omit their description beyond that interval.

Archery (continued)

In the archery example, we can just say F (x) = x2/900 for 0 < x < 30.
It is implicitly assumed that F (x) is trivial elsewhere, i.e. F (x) = 0 for
x < 0 and F (x) = 1 for x > 30. The corresponding density function is
f(x) = F ′(x) = x/450 for 0 < x < 30. Again, it is understood that f(x) = 0
beyond the interval 0 < x < 30. Note that it is necessary to specify the
interval on which the formulas for F (x) and f(x) hold!

30 x

y

1

0 30 x

y

0

Area = 1

Archery example

Distribution function F(x): Density function f(x):

Quiz Questions

Which of the following functions are distribution functions? For those that
are, find the density function.

(1) F (x) = x for −1 < x < 1. [No, since F (x) is negative for −1 < x < 0.]

(2) F (x) = x2 for −1 < x < 1. [No, since F (x) decreases for −1 < x < 0.]

(3) F (x) = 1 − x1−ρ for x > 1 (here ρ > 1 is a constant). Yes. [The density
is f(x) = (ρ − 1)x−ρ. Random variables with this density are said to have
power law.]
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Use of Normalization Rule

Suppose X has probability density function f(x) = cx for 1 < x < 4 and 0
elsewhere. Find the value of c.

Solution: To find c, we use the normalization rule on page 38:

1 =

∫ ∞

−∞
f(x) dx =

∫ 4

1

cx dx = cx2/2
∣
∣
∣

4

1
= 15c/2.

From this equation we get c = 2/15. Hence, f(x) = 2x/15.

More Exercises

In the previous example, compute P(X > 2), P(2 < X < 3), P(X > 0),
P(X ≥ 4), P(X = 2) and P(X > 2/X < 3).

Solution: First, we find the distribution function:

F (x) =

∫ x

−∞
f(u) du =

∫ x

1

2

15
u du =

1

15
u2

∣
∣
∣

x

1
=

1

15
(x2 − 1)

for all 1 ≤ x ≤ 4. Note that we actually integrate from 1 (the minimum of the random
variable X) to x. It should be also understood that F (x) = 0 for x < 1 and F (x) = 1 for
x > 4, but this need not be shown explicitly.

Now,
P(X > 2) = 1− F (2) = 1− 3/15 = 4/5,

P(2 < X < 3) = F (3)− F (2) = 8/15− 3/15 = 1/3,

P(X > 0) = 1− F (0) = 1− 0 = 1,

P(X ≥ 4) = 1− F (4) = 1− 15/15 = 0.

Next, P(X = 2) = 0 since X is a continuous random variable. Lastly, P(X > 2/X < 3) is
a conditional probability, so

P(X > 2/X < 3) =
P(2 < X < 3)

P(X < 3)
=

F (3)− F (2)

F (3)

=
(32 − 1)− (22 − 1)

32 − 1
=

5

8
.
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Probability Density Function and Area

The probability

P(a < X < b) =

∫ b

a

f(x) dx

equals the area under the graph of the density function. Since the total
(combined) probability of all possible values for any random variable equals
one, the area under the entire graph of the density function y = f(x) equals
one (this is exactly the normalization rule given on page 38).

a b

P(a<X<b) = Area under f(x) between a and b

x

y density y=f(x)

Another Interpretation of Density

Let (c, c + d) be a small interval near a point c. Assume that the interval
is so small that the density f(x) is almost constant on it, i.e. f(x) ≈ f(c).
Hence

P(c < X < c+ d) =

∫ c+d

c

f(x) dx ≈ f(c) · d

So,
f(c) ≈ P(c < X < c+ d)/d

for small d. Hence, the density is the ratio of the probability that X takes
value in a small interval and the length of that interval. In other words, the
density is the “probability per unit length”.

Note: the higher f(x), the more likely the value x and nearby values are
taken by the random variable. In the archery example, the density f(x) =
x/450 increases as x goes from 0 to 30. So, the least likely values are those
near 0, and the most likely values are those near 30. This makes perfect
sense, because to get X ≈ 0 we need to hit a small area around the center
of the target. The values X ≈ 30 correspond to hitting a much larger area
all around the outer edge of the target.
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Uniform Random Variable

The simplest type of a continuous random variable is a variable that takes
values in an interval (a, b) where all values are “equally likely”. That is, the
density f(x) is constant on (a, b), i.e. f(x) = c, where c is some constant.

To find c, we can use the normalization rule
∫ b

a
f(x) dx = 1, i.e.,

∫ b

a

c dx = c

∫ b

a

dx = c(b− a) = 1

Solving this equation for c gives c = 1/(b− a). Hence,

f(x) =
1

b− a
and F (x) =

x− a

b− a
(15)

for a < x < b; and these functions take their trivial values outside the interval
(a, b). We denote this random variable by X = U(a, b). Note that the graph
of the density function f(x) is a rectangle over the interval (a, b), this is why
uniform distribution is sometimes referred to as rectangular.

a b a b

Distribution function F(x) Density function f(x)

Uniform random variable U(a,b)

One can think of the value of a uniform random variable U(a, b) as a
(completely) randomly selected point from the interval (a, b).

According to the same principle as in the archery example, the probability
to hit any smaller interval (u, v) inside (a, b) is proportional to its length, i.e.

P(u < X < v) =
v − u

b− a

This entirely agrees with the above formulas for f(x) and F (x).
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Special Uniform, U(0,1)

One uniform random variable, X = U(0, 1), plays an exclusive role in proba-
bility theory. This will be made clear below and in subsequent chapters. We
only note here that its density and distribution functions are given by very
simple formulas:

f(x) = 1 and F (x) = x for 0 < x < 1. (16)

Random Number Generators (RNG)

The uniform random variable U(0, 1) plays an important role in computer
programming. Many computer software packages (such as MATLAB, Maple,
Mathematica) have built-in random number generators that, upon request,
produce numbers between 0 and 1 which are supposed to be completely ran-
dom. Each time an RNG is called it returns a new random number between
0 and 1. This way a computer RNG simulates the uniform random variable
U(0, 1). In MATLAB, for example, you can call the RNG by typing x=rand,
then x will be a random number between 0 and 1.
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Chapter 6

Exponential Random Variables

Waiting Time

As in the Coffee Break example on page 33, suppose an operator receives
λ > 0 calls per hour, on the average. Let T denote the waiting time until
she gets her next call. Find its distribution function FT .

Solution: Obviously, T takes positive values, T > 0. Now we have

FT (x) = P(T ≤ x) = 1− P(T > x)

The event T > x means that no calls arrive during the time interval (0, x). By the
logic used on page 33, the average number of calls during this interval is λx, so we have
P(T > x) = P(k = 0) = e−λx. Thus

FT (x) = 1− P(T > x) = 1− e−λx (for all x > 0)

Exponential Random Variable

An exponential random variable X takes positive values, X > 0, and its
distribution function is

FX(x) = 1− e−λx for all x > 0.

By differentiating, we obtain the density function

f(x) = λe−λx for all x > 0.

The constant λ > 0 is the parameter of the exponential random variable. We
denote this variable by exponential(λ).

Density f(x) of an exponential random variable
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Poisson Process

We see that the waiting time for the next call is an exponential random
variable with parameter λ > 0 that represents the average number of calls
per unit time. A similar example: the waiting time until the next customer
arrives in a convenience store or a car shop (as was mentioned on page 30).

This is a common feature of any process that involves events occurring
randomly, at random times, in which the average number of events per unit
time remains unchanged (stable). Such events can be marked by points on a
line (time axis), their locations correspond to times when the events occur.
The locations of points are random, and the number of points in any given
interval is random, too.

There are other examples of that sort where the line is not a time axis.
Consider failures in a long cable/phone line. Or accidents on a long highway.
Or state trooper patrol cars deployed on a long highway. In all these examples
the locations of failures/accidents/patrol cars are random, and even their
number in any given interval of the line is random.

Any sequence of random points on a line of the above type is known as
Poisson process. The average number of those points per unit length is de-
noted by λ > 0 and called the density or rate; it is a numerical parameter of
the whole process. The interval/distance from any given point on the line to
the next point of the process is an exponential random variable with param-
eter λ.

Time to Failure

Suppose a company is using a machine or device (an airplane, a ship,
a truck, a boat, etc.) which occasionally fails and needs repair or requires
service. Then the time to (the next) failure is again an exponential random
variable with parameter λ > 0 that represents the average number of failures
per unit time.

This is a common interpretation of exponential random variable X , so we
will stick to it. We will interpret X as the time to failure, and the parameter
λ > 0 as the failure rate (the mean number of failures per unit time).
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Memoryless Property (No Aging)

Let X be an exponential random variable. Consider two events

A = {X > a} and B = {X > a+ x}

for some a > 0 and x > 0. Note: A means that the time to failure exceeds
a, i.e. the machine functions properly at least a units of time; B means that
the machine functions properly at least a+ x units of time. Let us compute
the conditional probability P(B/A). To state the question differently: given
that the machine has worked without failures a units of time, what is the
probability that it will work another x units of time without failure?

Recall that
P(B/A) = P(B ∩A)/P(A).

Note that the event B = {X > a + x} implies A = {X > a}, i.e. B ⊂ A, so
B ∩ A = B. Hence,

P(B/A) =
P(B)

P(A)
=

P(X > a+ x)

P(X > a)
=

e−λ(a+x)

e−λa
= e−λx.

Compare this to the probability

P(X > x) = 1− F (x) = e−λx

They are the same!

Conclusion: The chances that the machine will work without failures an-
other x units of time are independent of how long the machine has already
worked since the last failure. The chances are the same as for a brand new
machine. This property is usually called no aging (the machine is not getting
any older, the chances of its failure are always the same), or lack of memory
(the machine does not “remember” when it failed last time, so its chances to
fail again are independent of the past history of failures).

The “no aging/memoryless” property is characteristic for exponential ran-
dom variables – actually, no other continuous random variable has this prop-
erty. We will not need that last fact, though.
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Radioactive Decay

Machines (airplanes, cars, boats) in real life certainly deteriorate in time (get
older and have “memory” of past failures and repairs), so the exponential
random variable can only describe the time to failure approximately. There
is, however, a natural phenomenon that is characterized by an ideal memo-
ryless/no aging attribute. It is radioactive decay.

Radioactive atoms can explode (disintegrate) accidentally at any time.
Since nothing is happening to the atom during its life, it certainly does not
“remember” how long it has lived, and it cannot be getting any “older”. The
decay time (or the lifetime) of an atom is an exponential random variable.

The process of decay can be illustrated as follows. Suppose a piece of
radioactive material contains N atoms (usually, N is huge, of order 1030

or so). We will look at it at regular intervals of t units of time. During
the first interval of t units of time, each atom can explode with probability
P(X < t) = 1 − e−λt, so it will survive with probability p = 1 − P(X <
t) = e−λt. Hence, approximately (1 − p)N atoms disintegrate during the
first interval, and pN atoms survive. During the next interval of time, each
surviving atom has the same chance to disintegrate, that is again 1− p. So,
approximately (1−p)pN atoms will disintegrate and p2N atoms will survive.
After k intervals of time, pkN atoms will survive.

Another way to look at it is to wait until half of the atoms disintegrate,
i.e. assume that p = e−λt = 1/2 at time t. Then, if we wait the same period of
time again (t units of time), what happens? Will the other half of the atoms
disintegrate? No! Actually, half of the remaining atoms will disintegrate, so
only 25% of the original atoms will survive. When another t units of time
elapse, only 12.5% of the original atoms will remain, etc.

Half-life

The period of time t it takes for half of the radioactive atoms to disintegrate
is called half-life. It is denoted by t1/2. It is characterized by the formula
e−λt1/2 = 1/2, from which

λt1/2 = ln 2 ≈ 0.693

This is the relation between λ and t1/2. The value of t1/2 is a standard
technical characteristic of radioactive atoms, it can be found in reference
books. Given t1/2, one can compute λ by λ = ln 2

t1/2
. Note that

P(X > t1/2) = 1/2, P(X > 2t1/2) = 1/4, P(X > 3t1/2) = 1/8, etc.
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Example

Let X be an exponential random variable with half-life t1/2 = 4. Find λ and
compute P(X > 8) and the conditional probability P(X > 143/X > 135).

Solution: We have λ = ln 2

4
≈ 0.173. Now, 8 = 2t1/2, so P(X > 8) = (1/2)2 = 1/4. Next,

by the lack of memory, P(X > 135 + 8/X > 135) = P(X > 8) = 1/4.

Median

LetX be an arbitrary random variable. The value of x such that FX(x) = 1/2
is called the median of the random variable X . It is denoted by m, so that
FX(m) = 1/2. Note that P(X ≤ m) = P(X > m) = 1/2. In this sense, m
exactly divides the probability distribution of X in half.

The half-life t1/2 is the median for the exponential random variable.

Median (half-life) of an exponential random variable

t1/2

Area = 1/2
Area = 1/2

Example

New York Times reported in 1999 that the median of the prices of houses in
the South of the United States was $135,000. What does this mean?

This means that half of the houses are sold below $135,000 and half of
the houses are sold for more than $135,000.

Percentiles (optional material)

One can characterize a probability distribution by other dividing points,
which are called percentiles. The (100p)th percentile, 0 < p < 1, is a point
πp such that

P(X ≤ πp) = p and P(X > πp) = 1− p

So, πp is the solution of the equation F (πp) = p.
The most important percentiles are the median, m = π1/2, and the quar-

tiles, q1 = π1/4 and q3 = π3/4 (called the first and third quartiles, respec-
tively).
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Chapter 7

Functions of Random Variables

Warning: Experience shows that many students have difficulties with this
section. A careful reading of all examples is advised.

Function of a Random Variable

Let X be a random variable, and y = g(x) a function. Then Y = g(X) is
another random variable. We will see how to find the distribution function
and density function of Y , if those of X are given.

Example

Let X be uniform U(0, 1) and Y = 12X − 6. Find FY and fY .

Solution: We have

FY (y) = P(Y ≤ y) = P(12X − 6 ≤ y) = P

(

X ≤ y + 6

12

)

= FX

(y + 6

12

)

.

Since X is U(0, 1), its distribution function is FX(x) = x according to (16). Thus we have
FY (y) = (y + 6)/12. Differentiating gives fY (y) = 1/12.

Of course, one needs to specify were these formulas for FY and fY are valid. One
simply needs to find the values that the variable Y takes. Since 0 < X < 1, we have
0 < 12X < 12 and −6 < Y < 6. So the final answer must look like this:

FY (y) =
y + 6

12
and fY (y) =

1

12
for − 6 < y < 6

Note that we found FY and fY first and then determined the range of values of the new
variable Y . This is, generally, not a good idea.

It is advisable to find the range (all possible values) of the random variable Y first,
before computing FY and fy; this may simplify calculations. See examples below.
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Method

Given X and Y = g(X), the following method should be used to compute
the distribution function FY and density function fY of Y :

(1) Find the range (interval of possible values) for the variable Y .

(2) Start with FY (y) = P(Y ≤ y) = P
(
g(X) ≤ y

)
, then solve the inequality

g(X) ≤ y for X (this is the most tricky and confusing part!).

(3) Express the resulting probability in terms of the distribution function
FX .

(4) Use the given (known) formula for FX to obtain a formula for FY .

(5) Differentiate FY to get fY .

(6) Record the final answer: give formulas for FY and fY and specify the
range of values where they are valid.

Example

Let X be uniform U(−1, 1) and Y = 1/(X + 1). Find FY and fY .

Solution: Since −1 < X < 1, we have 0 < X+1 < 2 and so 1

2
< 1

X+1
< ∞. Now compute

FY (y) for
1

2
< y < ∞:

FY (y) = P(Y ≤ y) = P

( 1

X + 1
≤ y

)

= P

(

X + 1 ≥ 1

y

)

.

Note: the inequality 1

X+1
≤ y can be transformed into X +1 ≥ 1

y only because both sides

are positive, i.e., 1

X+1
> 0 and y > 0 (otherwise the inequality might have been reversed

– dividing or multiplying both sides by a negative number reverses the inequality sign).
But how do we know that both sides are positive? It is because we have determined the
range of values! We have actually established that 1

X+1
> 1

2
and y > 1

2
.

Now recall that F (x) = x+1

2
by (15) and complete the calculation:

FY (y) = P

(

X ≥ 1

y
− 1
)

= 1− F
(1

y
− 1
)

= 1− 1

2

(1

y
− 1 + 1

)

= 1− 1

2y
.

for 1

2
< y < ∞. By differentiating, fY (y) =

1

2y2 . So the final answer is:

FY (y) = 1− 1

2y
and fY (y) =

1

2y2
for

1

2
< y < ∞
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Example

Let X be uniform U(0, 1) and Y = − 1
λ
ln(1 − X) for some constant λ > 0.

Find FY and fY .

Solution: Since 0 < X < 1, we have 0 < 1 −X < 1, then −∞ < ln(1 −X) < 0, and so
0 < Y < ∞. Now, for all 0 < y < ∞ we have

FY (y) = P(Y ≤ y) = P

(

− 1

λ
ln(1−X) ≤ y

)

= P
(
ln(1−X) ≥ −λy

)

= P
(
1−X ≥ e−λy

)
= P

(
X ≤ 1− e−λy

)
= FX

(
1− e−λy

)
= 1− e−λy.

Amazingly, this is the distribution function from Chapter 6. So, Y is an exponential
random variable. Now, by differentiating, fY (y) = λe−λy.

Generating Exponential Random Variables

The last example shows how to generate an exponential random variable by a
computer. Simply call a standard random number generator (RNG) that re-
turns a value of X in the interval (0, 1), then compute Y = − 1

λ
ln(1−X). In

fact, one can generate any random variable by using the RNG; see also below.

Example

Let X be exponential(λ) and Y =
√
X. Find FY and fY .

Solution: Since 0 < X < ∞, we have 0 <
√
X < ∞, then 0 < Y < ∞. Now, for all

0 < y < ∞ we have

FY (y) = P(Y ≤ y) = P
(√

X ≤ y
)
= P(X ≤ y2) = FX(y2) = 1− e−λy2

.

Lastly, by differentiating, fY (y) = 2λye−λy2

.

Example

Let X be uniform U(−1, 1) and Y = X2. Find FY and fY .

Solution: This is somewhat tricky! First, −1 < X < 1, then 0 < X2 < 1, hence 0 < Y < 1.
So, for all 0 < y < 1 we have

FY (y) = P(Y ≤ y) = P
(
X2 ≤ y

)

Now, solving X2 ≤ y for X we need to remember that 0 < y < 1 and −1 < X < −1,
hence the solution is −√

y ≤ X ≤ √
y (inspect this carefully!). Therefore,

FY (y) = P
(
−√

y ≤ X ≤ √
y
)
= FX

(√
y
)
− FX

(
−√

y
)

=
1 +

√
y

2
− 1−√

y

2
=

√
y

and fY (y) = F ′
Y (y) =

1

2
√
y .
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Linear Transformation

Let X be any random variable with distribution function FX and density fX .
Let Y = a+ bX , where a and b > 0 are constants. Find FY and fY .

Solution: We have

FY (y) = P(Y ≤ y) = P(a+ bX ≤ y) = P

(

X ≤ y − a

b

)

= FX

(y − a

b

)

. (17)

Note: we have used the fact that b > 0 when solving the inequality forX . By differentiating
and using the chain rule,

fY (y) =
1

b
fX

(y − a

b

)

. (18)

Fahrenheit vs Celsius

The variable Y = aX + b is called a linear transformation of X . It is sim-
ply the rescaling and shifting of the values of X . Such transformations are
common in practice. For example, if X is the temperature in Celsius, then
Y = 1.8X + 32 is the temperature in Fahrenheit.

Special Example (optional material)

Let X be an arbitrary continuous random variable with distribution function
FX . Find the distribution function of Y = FX(X).

Solution: First, recall that 0 ≤ FX(X) ≤ 1 for any distribution function. Now we have
for 0 ≤ y ≤ 1

FY (y) = P(Y ≤ y) = P
(
FX(X) ≤ y

)
.

Solving FX(X) ≤ y gives X ≤ F−1

X (y), where F−1

X denotes the inverse function. Then

FY (y) = P
(
X ≤ F−1

X (y)
)
= FX

(
F−1

X (y)
)
= y

for 0 < y < 1. Hence, Y is a uniform random variable on the interval (0, 1), i.e. U(0, 1).
Note: one more special appearance of U(0, 1)!

Generating continuous random variables by computer. Let X be an
arbitrary continuous random variable. According to the above, the variable
Y = FX(X) is U(0, 1). In other words, if Y is U(0, 1), then X = F−1

X (Y ) has
the distribution function FX . This is the basis for generating (by computer)
any continuous random variable: call an RNG to get a number Y between
0 and 1, then compute X = F−1

X (Y ). Practically, this amounts to solving
the equation Y = FX(X) for X . If the formula for FX is simple, the exact
solution can be found by algebra. If FX is complicated, one can find an
approximate solution by using numerical algorithms.
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Chapter 8

Normal Random Variables

Normal random variables (also called Gaussian random variables) are the
most important random variables in probability theory. We first introduce
one of them – the standard normal random variable.

Standard Normal Random Variable

This random variable is usually denoted by Z. Its density function is

fZ(x) =
1√
2π

e−
x2

2 for all −∞ < x < ∞

Note that fZ(x) is positive for all −∞ < x < ∞, hence Z takes on all real
values, it does not have a minimum or a maximum, its range is the entire
real line. Also note that fZ(x) is an even function, i.e. fZ(x) = fZ(−x).

The graph of fZ(x) is a bell-shaped curve (see the next page), symmetric
about the y-axis. This curve is called gaussian curve. Its maximum is at-
tained at x = 0, then it decreases on both sides of its top point. Actually, it
decreases very fast. One can easily check that

fZ(0) ≈ 0.399,

fZ(1) ≈ 0.242,

fZ(2) ≈ 0.054,

fZ(3) ≈ 0.0044,

fZ(4) ≈ 0.00013,

fZ(5) ≈ 0.000001,

fZ(6) ≈ 0.000000006 . . .

For larger x, the function fZ(x) keeps decreasing at a dramatic rate. For all
practical purposes, one can think that fZ(x) vanishes for all |x| > 6.
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Gaussian random variables are named after
      Carl Friedrich Gauss (1777-1855)
who is regarded by many as the greatest 
mathematician of all times

The Φ Function

The distribution function of Z is denoted by Φ(x). According to general
formula (14) on page 38

Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du

Unfortunately, there is no simpler formula for Φ(x) (the above integral cannot
be expressed in terms of elementary functions). The above integral formula
is the best one can write for Φ(x).

-

6

-
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Density function fZ(x) Distribution function Φ(x)

Since there is no convenient formula for Φ(x), the values of this function
cannot be easily computed. We will use a table on a separate page to find
the values of the function Φ(x).

Table of Φ(x)

Let us learn how to use the table. For 0 ≤ x ≤ 3.99 this is obvious. For
negative x, specifically for −3.99 ≤ x ≤ 0, we can use the symmetry rule:

Φ(−x) = 1− Φ(x) for all x > 0.

This rule follows from the symmetry of the density function fZ(x) about
zero: Φ(−x) = P(Z < −x) = P(Z > x) = 1− Φ(x).

Finally, for all x > 3.99 we will simply set Φ(x) = 1 and for all x < −3.09
we will set Φ(x) = 0. It is clear from the end of Table for Φ(x) that this is
accurate, up to four digits after the decimal point.
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x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Examples

Compute Φ(1), Φ(2.36), Φ(−1.25), Φ(4.7).

Answers:
Φ(1) = 0.8413 (from the table)

Φ(2.36) = 0.9909 (from the table)

Φ(−1.25) = 1− Φ(1.25) = 1− 0.8943 = 0.1057

(by using the symmetry)

Φ(4.7) = 1 (because 4.77 exceeds 3.99)

Examples

Compute P(Z < 2.87), P(Z > 0.76), P(Z < −0.76), P(Z > −2), P(−0.6 <
Z < 1.3), P(|Z| < 2), P(|Z| < 3), P(|Z| > 4).

Solution. We have

P(Z < 2.87) = Φ(2.87) = 0.9979

P(Z > 0.76) = 1− Φ(0.76) = 1− 0.7764 = 0.2236

P(Z < −0.76) = Φ(−0.76) = 1− Φ(0.76) = 0.2236

P(Z > −2) = 1− Φ(−2) = Φ(2) = 0.9772

P(−0.6 < Z < 1.3) = Φ(1.3)− Φ(−0.6) = Φ(1.3)− 1 + Φ(0.6)

= 0.9032− 1 + 0.7257 = 0.6289

P(|Z| < 2) = Φ(2)− Φ(−2) = 2Φ(2)− 1 = 2× 0.9772− 1 = 0.9544

P(|Z| < 3) = Φ(3)− Φ(−3) = 2Φ(3)− 1 = 2× 0.9986− 1 = 0.9972

P(|Z| > 4) = 1− P(|Z| < 4) = 1− (2Φ(4)− 1) = 0
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Normal Random Variables

Now we are ready to introduce a (general) normal random variable. It has
two parameters: µ and σ > 0. It can be defined in terms of the standard
normal random variable Z by

Y = µ+ σZ.

In other words, Y is obtained by rescaling and shifting (multiplying by σ and
adding µ) of the standard normal random variable Z. The normal random
variable Y is denoted by N (µ, σ2), i.e. we say that Y is N (µ, σ2). Note also
that Z is N (0, 1), is this notation.

Density and Distribution Function of N (µ, σ2)

By (18) on page 52, the density of Y = N (µ, σ2) is

fY (x) =
1

σ
fZ

(x− µ

σ

)

=
1√
2πσ2

e−
(x−µ)2

2σ2

and by (17) on page 52, the distribution function is

FY (x) = Φ

(
x− µ

σ

)

.

for all −∞ < x < ∞.

Note: the density function fY (x) is positive for all x, has a peak at x = µ and
goes down on both sides of its peak. It is a bell-shaped curve, just like fZ(x),
but it is shifted so that its center is at the point µ. The other parameter, σ
affects the shape of the curve: for smaller σ, the peak is taller and thinner,
for larger σ the peak is shorter (lower) and thicker (wider). See illustration
on the next page.

Remember that, in any case, the total area under the graph of fY (x) is
the same, it is equal to one by the normalization rule on page 38.
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Density function fY (x) of a normal r.v. Y = N (µ, σ2)

Example

Let Y be N (5, 4). Compute P(Y < 7) and P(3 < Y < 6).

Solution: We have µ = 5 and σ2 = 4, hence σ = 2. Now

P(Y < 7) = FY (7) = Φ

(
7− 5

2

)

= Φ(1) = 0.8413

and

P(3 < Y < 6) = FY (6)− FY (3)

= Φ

(
6− 5

2

)

− Φ

(
3− 5

2

)

= Φ(0.5)− Φ(−1)

= 0.6915− 1 + 0.8413 = 0.5328.

Manipulations with a Normal Random Variable

Let Y = N (µ, σ2) be a normal random variable. What can we say about
W = a + bY , if a and b are some constants? It turns out that W is also a
normal random variable

W = N (a+ bµ, b2σ2)

Indeed, Y = µ+ σZ where Z is a standard normal random variable, so

W = a+ b(µ + σZ) = a+ bµ
︸ ︷︷ ︸

new µ

+ bσ
︸︷︷︸

new σ

Z.

Note: If Y is N (µ, σ2), then the variable W = −Y is normal N (−µ, σ2) (this
follows from the above rule with a = 0 and b = −1).

58



Rule of Three Sigmas

We have seen that P(|Z| < 3) = 99.72%. Now, for any normal random
variable Y = N (µ, σ2) we have

P(µ− 3σ < Y < µ+ 3σ) = P(−3 < Z < 3) = 99.72%.

Hence, it is almost certain that Y takes values in the interval (µ−3σ, µ+3σ).
In many practical applications one takes it for granted that the normal ran-
dom variable must be within the distance 3σ from µ. This is known as the
“rule of 3σ”, or the “three-sigma rule”.

Rule of Two Sigmas

In statistics, on the other hand, a “rule of two sigmas” is popular: values
of a normal random variable N (µ, σ2) in the interval between µ − 2σ and
µ+2σ are called ‘typical’ or ‘usual’. Values beyond this interval are regarded
as ‘unusual’. We have seen that P(|Z| < 3) = 95%. Hence 95% of values are
‘usual’ and 5% are ‘unusual’.

Standard Normal Variable Squared

Find the distribution and density function of W = Z2.

Solution. This is similar to an example on page 51. Obviously, W > 0.
Now we have, for all x > 0,

FW (x) = P(W ≤ x) = P(Z2 ≤ x) = P(−√
x < Z <

√
x) = Φ(

√
x)−Φ(−√

x).

By differentiating and using the chain rule we get

fW (x) =
1

2
√
x
fZ(

√
x) +

1

2
√
x
fZ(−

√
x) =

1√
x
fZ(

√
x) =

1√
2πx

e−
x
2

for x > 0. The random variable W = Z2 is called a χ2 variable with one
degree of freedom (it is used in statistics).
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Role of Normal Random Variables

The importance of normal random variables will be demonstrated later, in
Chapter 15. Right now we can just say that many random variables in
practical applications are normal or approximately normal.

For instance, let X be the height (or weight) of a randomly selected adult
male in a large population (city, state, nation). Naturally, most of the heights
(weights) of adult men are grouped near the statistical average, but there are
some that are farther away from the average – and the farther away the fewer
of them can be found. Plotting the density function will give something close
to a bell-shaped curve, which represents a normal distribution.

Error Function (optional material)

In some older textbooks and physical and engineering applications, another
function is used instead of Φ(x). It is called the error function and given by

erf(x) =
2√
π

∫ x

0

e−y2 dy

To find the relation between erf(x) and Φ(x), one can change variable u =√
2y in the expression for Φ(x) and arrive at

Φ(x) =
1

2
+

1

2
erf

(
x√
2

)

.

This is a useful conversion formula.

Approximations to Φ(x)

In some very precise calculations, one needs accurate values of Φ(x) for x > 4.
The following formula gives a very good approximation:

Φ(x) ≈ 1− 1

x
√
2π

e−x2/2.

For example, Φ(5) ≈ 1− 7.45× 10−7 = 0.999999255.
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Normal Random Variables in Physics (optional)

A gas (the air in the room, for example) consists of billions and billions of
molecules (something like 1025 or 1030 molecules). They move all the time, at
various speed and in various directions. If we pick one molecule at random,
then its velocity vector v = (vx, vy, vz) will be a random vector, its compo-
nents vx, vy, vz will be random variables. They have the same distribution,
since there is apparently no difference between the x- y- and z-direction in a
homogeneous gas. Moreover, if one rotates the coordinate frame (i.e. redirects
the coordinate axes), then the new components vx, vy, vz, even though mea-
sured differently, will have the same distribution. Another law of physics says
that vx, vy, vz must be independent – this seems intuitively quite reasonable.
So let us fix these features: the components vx, vy, vz must be independent
from each other and their distribution must be the same in any coordinate
system. It turns out, quite surprisingly, that the only distribution with these
two features is normal! This is called the Maxwell law in physics.

Summary

The following chart represents all basic types of continuous random variables:

density distribution range
f(x) F (x)

uniform U(0, 1) 1 x 0 < x < 1

uniform U(a, b) 1
b−a

x−a
b−a

a < x < b

exponential(λ) λe−λx 1− e−λx x > 0

st.normal N (0, 1) 1√
2π

e−
x2

2 Φ(x) −∞ < x < ∞

normal N (µ, σ2) 1
σ
√
2π

e
− (x−µ)2

2σ2 Φ
(
x−µ
σ

)
−∞ < x < ∞
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Chapter 9

Joint Distributions

Here we deal with situations that involve two (or more) random variables.

Example

Let X be a discrete random variable that takes values 0, 1, 2 with the fol-
lowing probabilities:

values of X 0 1 2

probabilities 0.2 0.5 0.3

Let Y be another discrete random variable that takes values −1, 0, 2 with
the following probabilities:

values of Y −1 0 2

probabilities 0.1 0.4 0.5

Assume that X and Y are independent.
Which pairs of values (X, Y ) are possible? What are their probabilities?

Find P(X = Y ). Find P(X < Y ).

Solution. Possible pairs of values are (0,−1), (0, 0), (0, 2), (1,−1), . . . , (2, 2).
The probabilities are computed by the multiplication rule

P(X = x, Y = y) = P(X = x) · P(Y = y)

which applies because of independence. The following table lists all the pairs
with the corresponding probabilities

(x, y) (0,-1) (0,0) (0,2) (1,-1) (1,0) (1,2) (2,-1) (2,0) (2,2)

prob. 0.02 0.08 0.1 0.05 0.2 0.25 0.03 0.12 0.15
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One can also mark all the pairs (x, y) as points on the xy plane and write the
probability next to each point. This completely characterizes the distribution
of the pair of random variables, which is called the joint distribution of X
and Y .

-

6

q q q
q q q

q q q

0.02 0.05 0.03

0.08 0.2 0.12

0.1 0.25 0.15

Now, the event {X = Y } contains all the points on the diagonal x = y.
In our example it contains two points: (0, 0) and (2, 2). Hence, P(X = Y ) =
0.08 + 0.15 = 0.23.

The event {X < Y } contains all the points above the diagonal x = y. In
our example it contains two points: (0, 2) and (1, 2). Hence, P(X < Y ) =
0.1 + 0.25 = 0.35.

Note: a similar table of pairs of values we had in Example 1.15 (rolling
two dice). In that example, we had 6× 6 = 36 pairs, each taken with prob-
ability 1/36.

Discrete Pair of Random Variables

A discrete pair of random variables X, Y can be characterized by the list of
all possible pairs of values, with the corresponding probabilities.
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Joint Distribution Function

Any pair of random variablesX, Y can be characterized by a joint distribution
function. This is a function of two variables, F (x, y), defined by

FX,Y (x, y) = P(X ≤ x and Y ≤ y).

Here X, Y denote the random variables, and x, y are the arguments of the
function.

Example (continued)

Here are some values of the joint distribution function in the previous exam-
ple:

• F (1.1, 0.8) = 0.35 (the quadrant to the left and below the point (1.1, 0.8)
covers four pairs of (X, Y ), with the total probability of 0.35)

• F (5,−0.4) = 0.1 (the quadrant to the left and below the point (5,−0.4)
covers three pairs of (X, Y ), with the total probability of 0.1)

• F (4, 7) = 1, F (−2, 8) = 0, etc.

We will not attempt to describe this function completely, it is not of much
use in this example.

Example

Let X = U(0, 1) and Y = U(0, 1) be two uniform random variables that are
independent. Find the joint distribution function FX,Y (x, y).

Solution: Because of independence, we can use the multiplication rule:

FX,Y (x, y) = P(X ≤ x and Y ≤ y)

= P(X ≤ x) · P(Y ≤ y) = FX(x)FY (y).

We know that FX = x for 0 < x < 1 and FY (y) = y for 0 < y < 1, by (16) on page 43.
Hence, FX,Y (x, y) = xy for all 0 < x, y < 1. For other values of x, y the function FX,Y (x, y)
is not interesting, because those values are not taken by the pair of random variables X,Y .
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Joint Density Function

The joint density function fX,Y (x, y) of a pair of random variables is

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x ∂y
.

This is the second order (mixed) partial derivative of FX,Y with respect to x
and y.

Note: the students who have not taken Calculus III, should not worry too
much. We will use elements of multivariate calculus (partial derivatives and
double integrals) only of the simplest forms.

Previous Example (continued)

Since FX,Y (x, y) = xy, we have fX,Y (x, y) = 1 for 0 < x, y < 1 (and zero
elsewhere, since other values of x, y are not taken by the pair X, Y ).

Computation of Probabilities

For any region R in the xy plane

P
{
(X, Y ) is in region R

}
=

∫∫

R

fX,Y (x, y) dx dy

This is a double integral of the function fX,Y over the region R.

Rule for Constant Density Functions

Let the joint density function be constant: fX,Y (x, y) = c over the region R
(as in the previous example, where f(x, y) = 1 over the unit square). Then
the above double integral simply equals c times the area of R. Hence,

P
{
(X, Y ) is in region R

}
= c ·Area(R)

In all our examples and test problems in MA 485 involving the computation
of probabilities, the joint density function will be constant. So, all our double
integrals can be computed by this simple rule.
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Previous Example (continued)

(a) Find the probability P(X + Y < 1).

Solution: The part of the region {x+ y < 1} that lies within the unit square 0 < x, y < 1
is the left lower triangle, i.e. half of the square. Its area is 1/2, hence P(X+Y < 1) = 1/2.

(b) Find P(X2 + Y 2 < 1).

Solution: The region {X2+Y 2 < 1} is the unit circle. Within the unit square 0 < x, y < 1,
it makes just a quarter of the circle, so its area is π/4. Hence, P(X2 + Y 2 < 1) = π/4.

(c) Find P
(
|X − Y | < 0.1

)
.

Solution: The region {|X − Y | < 0.1} is a strip around the diagonal line y = x. Within
the unit square 0 < x, y < 1, it stretches from the bottom left cornet to the top right
corner. To find its area, it is convenient to subtract the total area of the two remaining
triangles from the area of the square. Hence, the area of the strip is 1 − (0.9)2 = 0.19, so
P(|X − Y | < 0.1) = 0.19.

(b) (c)

Next
page

Using Probabilities to Compute π = 3.14159 . . .

The problem (b) above suggests a method of determining the number π to
any precision (at least theoretically). One can generate pairs of random num-
bers (x, y) by a random number generator, every time check the condition
x2+y2 < 1, and in the end the fraction of pairs satisfying this condition gives
you the number π/4. In Chapter 15 we will learn how many pairs of random
numbers one needs to generate if one wants to obtain k correct digits of the
number π/4.
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Example

Let X, Y have the joint density function f(x, y) = 2 for 0 < y < x < 1. Find
P(X − Y > 0.4). See illustration on the previous page.

Solution: Note that the density is constant (=2) over the triangle 0 < y < x < 1 (and,
by default, f(x, y) = 0 elsewhere). The region x − y > 0.4 makes a smaller triangle
within it, see illustration. The area of the smaller triangle is 1

2
(0.6)2 = 0.18. Hence,

P(X − Y > 0.4) = 2× 0.18 = 0.36.

General Advice

In examples like above it is advisable to sketch the region where f(x, y) 6= 0,
and, within it, the subregion corresponding to the given event.

Strange Example (optional material)

Let X be a uniform random variable on (0, 1), i.e. X = U(0, 1), and Y = X2.
Describe the distribution of the pair X, Y .

Solution: Since Y = X2, all possible pairs of X,Y lie on the parabola y = x2, more
precisely on the stretch of it from the point (0, 0) to the point (1, 1). This is not a discrete
pair of random variables, since for every single point (x, y) we have P(X = x and Y =
y) = 0. On the other hand, it does not have a joint density function. This is a very
unusual example, and we will not study it in detail.

Multiplication Rule for Independent Random Variables

Let X and Y be two independent random variables. Then we have simple
multiplication rule

FX,Y (x, y) = FX(x)FY (y)

for distribution functions and

fX,Y (x, y) = fX(x) fY (y)

for density functions (if those exist).

The first rule is already explained in one of the previous examples, the second
follows by differentiation.
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Three and More Random Variables

Let X1, . . . , Xn be n random variables. One can also call (X1, . . . , Xn) a
random vector with n components. In the same way as above, we can define
the joint distribution function and the joint density function for the variables
X1, . . . , Xn. The previous multiplication rule works for any number of inde-
pendent random variables.

Min/max of Two Random Variables

Let X and Y be two independent random variables, and FX and FY their
distribution functions. Let V = max{X, Y } and W = min{X, Y }. Find the
distribution functions of V and W .

Solution: Note that V ≤ x whenever both X ≤ x and Y ≤ x. Hence,

FV (x) = P(V ≤ x) = P(X ≤ x, Y ≤ x) = P(X ≤ x) · P(Y ≤ x) = FX(x)FY (x)

Similarly, note that W > x whenever both X > x and Y > x. Hence,

FW (x) = 1− P(W > x) = 1− P(X > x)P(Y > x) = 1− (1− FX(x))(1 − FY (x))

Special case: If X and Y have the same distribution function F , then

FV (x) = F 2(x) and FW (x) = 1− (1− F (x))2.

Independent Identically Distributed (i.i.d.) Random Variables

LetX1, . . . , Xn be independent random variables that have the same distribu-
tion function F . In this case we call them independent identically distributed
(i.i.d.) random variables. Examples: tossing a coin n times or rolling a die
n times produces a sequence of n results (numbers). These results are in-
dependent and have the same probability distribution. Whenever the same
experiment is repeated n times independently, and each time one records a
numerical output, one gets a sequence of i.i.d. random variables. This sort
of situation is the most basic and most common in probability theory.
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Min/max of n i.i.d. Random Variables

Let X1, . . . , Xn be i.i.d. random variables. Let V = max{X1, . . . , Xn} and
W = min{X1, . . . , Xn}. Find the distribution functions of V and W .

Solution: Very much like in the case of two variables, we obtain

FV (x) = Fn(x) and FW (x) = 1− (1− F (x))n

where F is the common distribution function of the variables X1, . . . , Xn. If the density
f(x) = F ′(x) exists, then V and W also have density functions. They can be found by
differentiation and the chain rule:

fV (x) = F ′
V (x) = nFn−1(x)F ′(x) = nFn−1(x)f(x)

and similarly
fW (x) = n(1− F (x))n−1f(x).

Example

Let X1, . . . , Xn be i.i.d. random variables, each of them being uniform on
(0, 1), i.e., U(0, 1). Find the distribution and density functions of V =
max{X1, . . . , Xn} and W = min{X1, . . . , Xn}.

Solution: The common distribution function of X1, . . . , Xn is F (x) = x (for 0 < x < 1),
and the common density function is f(x) = 1. Hence,

FV (x) = xn and fV (x) = nxn−1

for 0 < x < 1. Also,

FW (x) = 1− (1− x)n and fW (x) = n(1− x)n−1

for 0 < x < 1.

If we graph the density functions fV (x) and fW (x), we will see that fV (x) has a tall
peak at x = 1 and is very low near x = 0. On the contrary, fW (x) has a tall peak at x = 0
and is very low near x = 1.

This is due to the fact that V , the maximum of X1, . . . , Xn, most likely takes values
close to 1. On the contrary, W , the minimum of X1, . . . , Xn, most likely takes values close
to 0.
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Time to Failure of a Multicomponent System

A system consists of n identical components which may fail independently
of each other. Denote by Xi, 1 ≤ i ≤ n, the lifetime (time to failure) of the
ith component. Then X1 . . . , Xn are independent random variables with a
common distribution function F (x). Let T be the lifetime (time to failure)
of the entire system and FT (x) its distribution function.

Here we consider two types of systems. One uses connection of com-
ponents “in series”. This type of system is fragile, it works only if all the
components work, so that Tfragile = min{X1, . . . , Xn}. The other uses con-
nection “in parallel”. That type of system is robust, it works if at least one
component is functioning, so that Trobust = max{X1, . . . , Xn}.

According formulas on the previous page, we have

FTfragile
(x) = 1− (1− F (x))n and FTrobust

(x) = F n(x).

Example

Let the lifetime of each component be an exponential random variable with
parameter λ. Find the distribution of the lifetime of the fragile and robust
systems of n components.

Solution: Since F (x) = 1− e−λx, we have

FTfragile
(x) = 1− e−nλx and FTrobust

(x) = (1− e−λx)n.

Note that the lifetime of the fragile system is itself an exponential random variable with
parameter nλ.
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More on Multicomponent Systems (optional material)

Some systems are between fragile and robust: they require at least k com-
ponents working, where 1 < k < n. Let T be the lifetime of such a sys-
tem. Its distribution function is FT (x) = P(T < x). Note that the event
T < x occurs whenever, by the time x, less than k components survive (i.e.,
more than n − k die). For each component, the probability of survival is
p = P(Xi > x) = 1 − F (x), and the probability of failure (or dying) by
the time x is q = 1 − p = F (x). Now, we have n independent components,
each can survive with probability p or die with probability q. The number of
survivors, call it Y , is then a binomial random variable, Y = b(n, p). Recall
that the event T < x occurs whenever Y ≤ k − 1, hence

FT (x) = P(T < x) = P
(
b(n, p) ≤ k − 1

)
=

k−1∑

i=0

Cn,ip
iqn−i.

Remembering that p = 1− F (x) and q = F (x) we can write

FT (x) =

k−1∑

i=0

Cn,i

[
1− F (x)

]i[
F (x)

]n−i
.

This formula is convenient if k is small, k < n/2. If k > n/2, it is easier use
the “complement” formula

FT (x) = 1−
n∑

i=k

Cn,i

[
1− F (x)

]i[
F (x)

]n−i
.

Example (optional)

Let a system consist of 6 components whose lifetime is a uniform random
variable on the interval (0, 20). Suppose the system requires 3 working com-
ponents to be operational. Find the distribution of its lifetime.

Solution: We have F (x) = x/20 for 0 < x < 20. Then

FT (x) = C6,0(x/20)
6 + C6,1(1− x/20)(x/20)5 + C6,2(1− x/20)2(x/20)4

= (x/20)6 + 6(1− x/20)(x/20)5 + 15(1− x/20)2(x/20)4.

By differentiating, we find the density function

fT (x) = F ′
T (x) = 3(1− x/20)2(x/20)3.
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Remark on Density Function (optional)

Differentiating in the above example shows that all the terms but the last
one remarkably cancel out. This is not coincidental. It is a general rule:
differentiating the function FT (x) leads to the cancelation of all the terms
but the last one and gives

fT (x) = nCn−1,k−1

[
1− F (x)

]k−1[
F (x)

]n−k
f(x),

where f(x) = F ′(x) is the density of F (x).

Order Statistics (optional)

Let X1, . . . , Xn be i.i.d. random variables. Their values, sorted in an increas-
ing order, are called order statistics and denoted by

X(1) ≤ X(2) ≤ · · · ≤ X(n).

Note that X(1) is always the smallest of Xi’s, X(2) is the second smallest, etc.
Similarly, X(n) is the largest of Xi’s, etc.

If X1, . . . , Xn are the lifetimes of the n components in a system that re-
quires k working components, then the lifetime of the system is T = X(n−k+1).
For the fragile system, k = n, and Tfragile = X(1), for the robust system, k = 1,
and Trobust = X(n).
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Chapter 10

Mean Value

Spinning Roulette

A roulette wheel has 18 black spots, 18 red spots and 2 green spots. You can
bet $1 on black or red and win $1 if that color comes up or lose $1 if not (a
green spot is always a casino win, so all the gamblers lose). Whether you bet
on black or on red, your chance of winning is 18/38. If you play 100 times,
how much do you expect to win (or lose)?

Solution: It is fair to expect that you win 18 times in 38 plays. So, in 100 plays you
expect to win 100×18/38 ≈ 47.37 times and to lose 100−47.37 = 52.63 times. Then your
net expected gain is 47.37− 52.63 = −5.26, i.e. you expect to lose $5.26 in 100 plays (of
course, you should expect to lose in a casino, not to win!). Your expected loss per play is
5.26/100=0.0526, a little more than 5 cents.

Rolling Die

You roll a die 100 times and add up the numbers it shows. How much do
you expect to get, in the end?

Solution: The die shows the numbers 1,2,3,4,5,6 with the same probability, 1/6. The
average of these numbers is (1 + · · · + 6)/6 = 3.5. In 100 rolls, you then expect to
accumulate 100 × 3.5 = 350 total. Note that now you expect to get, approximately, 3.5
points per roll.

Concept of Mean Value

In the above examples, we computed the expected values of some random
variables, trying to be as fair as possible. Of course, the actual values of
those random variables may be different: in the roulette example, you can
win as much as $100 or lose as much as $100, and in any case you gain or loss
is a whole number of dollars, it can never be $5.26. So, what is $5.26? It is
the most fair estimate of your loss, it is what you lose “on the average”. This
is what we call the mean value, or the expected value of the random variable.
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Old Textbook Version of Mean Value

Another way to look at the mean value is this: if you observe values of a
random variable X over and over, for a long time, and compute their average,
then you should get the mean (expected) value.

More precisely, let x1, . . . , xn be the values of X observed (or obtained)
empirically. Then their average (x1 + · · · + xn)/n should be approximately
the mean value of X . Even more precisely, the (empirical) average (x1+ · · ·+
xn)/n approaches the (theoretical) mean value in the limit, as n increases,
i.e., as n → ∞.

While this rule does not work when n is small, it is quite precise for
large n’s (of order of thousands or millions). Then the empirical average is
practically indistinguishable from the theoretical mean value.

The above description of the mean value was actually adopted in old text-
books (prior to 1930s) as an official definition of the mean value of a random
variable. Now we have more elegant formulas, see below.

Mean Value for Discrete Random Variables

If X is a discrete random variable that takes values x1, x2, . . . with cor-
responding probabilities p1, p2, . . ., then its mean value is

E(X) = x1p1 + x2p2 + · · ·

Mean value is also called expectation of a random variable. This explains the
symbol E in the formula.

Note: in the Rolling Die example on the previous page we had

1 + · · ·+ 6

6
= 1 · 1

6
+ · · ·+ 6 · 1

6

so our calculations were consistent with the above rule.
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Mean Value for Uniform Discrete Random Variables

Recall that a uniform discrete random variable X takes values 1, . . . , n, each
with the same probability 1/n (page 29). Thus

E(X) =
1 + · · ·+ n

n
=

n(n + 1)

2
· 1
n
=

n+ 1

2

Note: it is the average of the very first and the very last values (1 and n).

Mean Value for Geometric Random Variables

A geometric random variable X takes values n = 1, 2, . . . with probabilities
P(X = n) = pqn−1 (page 28). Its mean value is

E(X) = 1 · p+ 2 · pq + 3 · pq2 + 4 · pq3 + · · ·

We use the following trick to compute it:

E(X) = p+ pq + pq2 + pq3 + · · ·
+pq + pq2 + pq3 + · · ·

+pq2 + pq3 + · · ·
+ pq3 + · · ·

The first row consists on probabilities that sum to one. In other rows we
need to factor out q, q2, etc., to get the same sum as in the first row. Hence,
we obtain

E(X) = 1 + q + q2 + q3 + · · · = 1

1− q
=

1

p

Here we used the Calculus rule for geometric series, as we did in our formula
(11) back on page 28.
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Mean Value for Binomial Random Variables

Binomial random variable X = b(n, p) takes values k = 0, 1, . . . , n with
probabilities P(X = k) = Cn,kp

kqn−k (page 27). Then

E(X) =
n∑

k=0

k
n!

k!(n− k)!
pkqn−k = np

n∑

k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1qn−k

The last sum equals one, because it contains the probabilities of the ran-
dom variable b(n− 1, p) (this can be seen more easily if we change variables
n′ = n− 1 and k′ = k − 1). Hence, E(X) = np.

Mean Value for Poisson Random Variables

Poisson random variableX=poisson(λ) takes values k = 0, 1, 2, . . .with prob-

abilities P(X = k) = λk

k!
e−λ (page 32). Then

E(X) =

∞∑

k=0

k · P(X = k) =

∞∑

k=0

k · λ
k

k!
e−λ

=

∞∑

k=1

λk

(k − 1)!
e−λ = λ

∞∑

k=1

λk−1

(k − 1)!
e−λ

The last sum equals one, because it contains the probabilities of the same
random variable X (this can be seen more easily if we change variables
k′ = k − 1). Hence, E(X) = λ.

Matching Averages

On page 31, we already remarked that λ = np had an intuitively clear mean-
ing of being the average number of successes. Now we see that np, is, indeed,
the average (mean value) of b(n, p) and λ is, indeed, the average (mean value)
of poisson(λ). Thus we can say that our approximation of a binomial random
variable by a Poisson random variable in Chapter 4 is based on “matching”
their mean values: λ = np. A very natural principle!
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Mean Value for Continuous Random Variables

If X is a continuous random variable with density function f(x), then its
mean value is

E(X) =

∫ ∞

−∞
xf(x) dx.

If there is a minimum and/or a maximum value of X , then −∞ can be re-
placed with the minimum and ∞ with the maximum, thus simplifying the
integration. (This is another instance of our Min/Max rule on page 39.)

Mean Value for Uniform Random Variables

If X is uniform U(a, b), then f(x) = 1/(b− a) for a < x < b (page 42). Then

E(X) =

∫ b

a

x

b− a
dx =

x2

2(b− a)

∣
∣
∣
∣

b

a

=
b2 − a2

2(b− a)
=

a+ b

2
.

Note that E(X) is exactly the midpoint of the interval (a, b), which makes a
perfect sense: all the points of the interval are “equally likely”, so the mid-
point is the most fair expected value.

Mean Value for Exponential Random Variables

Let X be exponential(λ), then its density is f(x) = λe−λx for 0 < x < ∞
(page 44). Then integration by parts gives

E(X) =

∫ ∞

0

xλe−λx dx = −xe−λx
∣
∣
∣

∞

0
+

∫ ∞

0

e−λx dx

The first term is zero, because e−∞ = 0. The last integral can be written as
∫ ∞

0

e−λx dx = λ−1

∫ ∞

0

λe−λx dx

Now the new integral above equals one, because it is the integral of the
density function f(x) = λe−λx (by the normalization rule on page 38 the
integral of any density function must be equal to one). Hence,

E(X) = 1/λ
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Example from page 70 (continued)

We have seen in an example on page 70 that the lifetime of a fragile system
is exponential(nλ) provided each of its n components has exponential(λ) life-
time. Now we see that the mean lifetime of each component is E(Tcomponent) =
1
λ
and the mean lifetime of the system is E(Tfragile) =

1
nλ
. Thus, the lifespan

of the system is, on average, n times shorter than that of each component!
No wonder we call it fragile.

Mean Value for Standard Normal Random Variable

Let Z = N (0, 1) be a standard normal random variable. Then

E(Z) =

∫ ∞

−∞
xfZ(x) dx =

1√
2π

∫ ∞

−∞
xe−

x2

2 dx.

The density function here is even, fZ(x) = fZ(−x), so the product xfZ(x)
is odd. By the obvious symmetry, the integral must be zero, which it is. So,
E(Z) = 0.

Mean Value for Cauchy Random Variable

Cauchy random variable X has density function

fX(x) =
1

π(1 + x2)

for all −∞ < x < ∞ and the distribution function

FX(x) =
1

π
tan−1 x+

1

2
.

Graduate students have seen it in one of the homework problems in Chapter 7
(a drunk with a flashlight). Cauchy r.v. is very special. Its density fX(x) is
also even, just like fZ(x) above, but its mean value

E(X) =

∫ ∞

−∞

x

π(1 + x2)
dx

is ... not zero! This integral diverges, so it cannot be computed. It has no
numerical value!
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Non-existence of Mean Value

What does it mean that the mean value does not exist, in practical terms?
Recall: the mean value E(X) is the limit of empirical averages of observed
values x1, . . . , xn of the random variable X , as n → ∞ (page 74).

In particular, if we have a sequence z1, . . . , zn of observed values of the
standard normal random variable N (0, 1), then their average (z1+· · ·+zn)/n
will, indeed, nicely converge to zero (which is E(Z)), as n → ∞.

On the contrary, if we have a sequence x1, . . . , xn of observed values of
Cauchy random variable, then their average (x1 + · · ·+ xn)/n will not con-
verge to anything. That average will oscillate wildly, as n grows, going up
and down “like crazy” and reaching arbitrary large values (both positive and
negative). One has to do a computer experiment to observe this spectacular
process!..

Rules for Mean Value

Since the mean value E(X) is given by an integral, it has properties similar
to those of integrals.

Rule 1. If Y = aX , where a is a constant, then E(Y ) = aE(X). That is,
a constant can be ‘factored out’. For example, E(2X) = 2E(X), E(−X) =
−E(X), etc.

Rule 2. If Y = X + b, where b is a constant, then E(Y ) = E(X) + b. For
example, E(X − 2) = E(X)− 2.

Rule 3. If Y = X1+X2, then E(Y ) = E(X1)+E(X2). Also, if Y = X1−X2,
then E(Y ) = E(X1)− E(X2).

Rule 4. Suppose X is a constant, i.e. takes just one value, c, with proba-
bility one, i.e., P(X = c) = 1. Then E(X) = c.

Here is an example of how these rules can be used:

E(2X − 4Y + 7) = 2E(X)− 4E(Y ) + 7.
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Mean Value for Normal Random Variables

Recall that an arbitrary normal random variable Y = N (µ, σ2) is related to
a standard normal by Y = µ+ σZ (page 57). Then by Rules 1-4 we have

E(Y ) = µ+ σ E(Z) = µ+ 0 · σ = µ

So the first parameter µ of any normal N (µ, σ2) represents its mean value.

Bernoulli Random Variable

Recall that a Bernoulli trial is a simple experiment with two possible out-
comes: a success (labeled S) and a failure (labeled F); see page 26. Success
occurs with probability p and failure with probability q = 1− p.

Let us mark success by 1 and failure by 0. Then we get a random variable
X that takes two values: 1 (with probability p) and 0 (with probability
q = 1− p). This is called Bernoulli random variable. Its mean value is

E(X) = 1 · p+ 0 · q = p

Mean Value for Binomial Random Variables (alternatively)

Recall that a binomial random variable is the number of successes in n inde-
pendent Bernoulli trials (page 27). With each trial we associate a Bernoulli
random variable (as above), so now we have n independent Bernoulli random
variables X1, . . . , Xn. For example, if n = 3 and the outcomes of the trials
are SFS, then X1 = 1, X2 = 0, X3 = 1.

A crucial observation: adding X1 + · · ·+Xn gives exactly the number of
successes in n Bernoulli trials! Therefore,

X = X1 + · · ·+Xn

where X is the binomial random variable, b(n, p), and Xi are independent
Bernoulli random variables. Now, the summation Rule 3 on page 79 yields

E(X) = E(X1) + · · ·+ E(Xn) = p+ · · ·+ p
︸ ︷︷ ︸

n

= np
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Mean Value of Function of Random Variables

Let X be a random variable, and y = g(x) a function. Then Y = g(X) is
another random variable, as in Chapter 7. Here we provide rules to compute
the mean value E(Y ).

If X is discrete and takes values x1, x2, . . . with probabilities p1, p2, . . .,
then the corresponding values of Y are g(x1), g(x2), . . .. Hence

E(Y ) = g(x1)p1 + g(x2)p2 + · · ·

If X is continuous with density function fX(x), then

E(Y ) =

∫ ∞

−∞
g(x)fX(x) dx.

Moments of Random Variables

In particular, if g(x) = xk, then Y = Xk. The mean value E(Y ) = E(Xk)
is called the k-th moment of the random variable X . The term moment has
its origin in the study of mechanics.

Example

Compute the k-th moment of the Bernoulli random variable X .

Solution: Since X only takes values 0 and 1, we always have Xk = X , for any k. Therefore
E(Xk) = E(X) = p for any k ≥ 1.

Example

Compute the k-th moment of the uniform random variable X = U(0, 1).

Solution: Recall that f(x) = 1 for 0 < x < 1 (page 43). Then

E(Xk) =

∫ 1

0

xkf(x) dx =

∫ 1

0

xk dx =
1

k + 1
(19)

Special Rule for Independent Random Variables
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If X and Y are independent random variables, then

E(XY ) = E(X) · E(Y )

This rule works for independent random variables only, it usually fails for
dependent random variables.
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Chapter 11

Variance

Motivation

We have seen that the mean value E(X) of a random variable X gives the
most fair expectation of X . Is this enough to describe X or predict it in
practice?

Suppose you are going to stay in Seattle, WA next March and won-
der what the temperature there might be. The climatological data (from
weather.com) show that the average temperature in Montana in March is
47◦ F. This is exactly like knowing the mean value of a random variable. Is
this enough for you? You realize that the actual temperature might fluctuate
around 47◦. If typical fluctuations are small, then 47◦ can be a pretty accu-
rate prediction. Or, on the contrary, a typical weather pattern may be such
that intervals of hot weather (60◦ to 70◦ F) follow intervals of cold weather
(10◦ to 20◦ F), just giving 47◦ F on the average. In the latter case the average
value of 42 tells you practically nothing of what you should really expect.

It is then necessary to supply the mean value of 47◦ with the range of typ-
ical fluctuations (“spread”). For example, 47±3 would say that the weather
is stable and the temperature between 44 and 50 degrees can be expected.
Or, on the contrary, 47 ± 25 would tell you that the weather is very unsta-
ble and you should expect anything from 22◦ F (very cold) to 72◦ F (very
warm). The conclusion is that the range of typical fluctuations around the
mean value is practically just as important as the mean value itself.

Measuring Spread

The difference between the actual value of X and its mean value is X−E(X).
Should we just find the average of this difference? Let us try this:

E[X − E(X)] = (by the rules on page 79) = E(X)− E(X) = 0

It gives us nothing! The reason is clear: positive differences (X −E(X) > 0)
and negative differences (X − E(X) < 0) cancel out in the end.
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Variance

The variance of a random variable X is defined to be

Var(X) = E
[
X − E(X)

]2

Alternatively, one can use a “shortcut formula”

Var(X) = E
(
X2
)
−
[
E(X)

]2

To see that these two formulas are equivalent, let us expand the square in
the first one and use the rules on page 79:

E
[
X − E(X)

]2
= E

(
X2 − 2X · E(X)− [E(X)]2

)

= E
(
X2
)
− 2
[
E(X)

]2
+
[
E(X)

]2
(20)

and so we get the second formula for the variance. The second formula is
often more convenient in practical calculations.

Examples

(a) Let X take values 0 and 1 with probability 1/2 each. Note that X2 = X .
Then Var(X) = E(X)− [E(X)]2 = 1/2− 1/4 = 1/4.

(b) Let X = U(0, 1). Then, according to formula (19) on page 81

Var(X) = E
(
X2
)
−
[
E(X)

]2
= 1/3− 1/4 = 1/12

(c) Let X be the number shown by a die. Then, some tedious calculations
(we omit them) show that Var(X) ≈ 2.92.

Note: In these examples one can easily find all possible deviations of X from
its mean value E(X), and then find the average one. In the example (a), it
is 1/2, in (b) it is 1/4, in (c) it is 1.5. Why are these numbers different from
the values of Var(X) found above? The main reason is that Var(X) measures
squared deviations, rather than deviations. So, we need to take the square
root of Var(X), to describe average deviations of X .
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Standard Deviation

The standard deviation of a random variable X is defined to be

σX =
√

Var(X).

Examples (continued)

The standard deviations in the previous examples are:

(a) σX =
√

1/4 = 1/2

(b) σX =
√

1/12 ≈ 0.29

(c) σX =
√
2.92 ≈ 1.71

Note: Still, only in (a) the standard deviation matches the average deviation
computed directly. In (b) and (c) the standard deviation is slightly higher
than the average deviation. Yes, this is true: squaring the actual deviations
to compute the variance and then taking square root of the variance gives
slightly distorted (overestimated) value of typical deviations. But, on the
other hand, there are many advantages of working with the standard devia-
tion as defined above, rather than with precisely computed average deviation.
In any case, it is traditional in probability theory to work with the standard
deviation, so we have little choice..:-)
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Rules for Variance and Standard Deviation

Rule 1. SupposeX is a constant, i.e. takes just one value, c, with probability
one, i.e., P(X = c) = 1. Then Var(X) = 0 and σX = 0.

Rule 2. If Y = aX , where a is a constant, then Var(Y ) = a2 Var(X). (That
is, a constant must be squared before it can be factored out). For example,

Var(2X) = 4Var(X), Var(−5X) = 25Var(X), Var(−X) = Var(X).

In this case, also, σY = |a|σX .

Rule 3. If Y = X + b, where b is a constant, then Var(Y ) = Var (X) and
σY = σX . For example, Var(X − 2) = Var(X).

Rule 4. If Y = X1 + X2, and X1 and X2 are independent, then Var(Y ) =

Var(X1) + Var(X2). Also, σY =
√

σ2
X1

+ σ2
X2
.

Comments

In Rule 1, a constant value cannot possibly vary, this is why Var(X) = 0.

In Rule 3, adding a constant means translating (moving) all the values of
X by a fixed distance on the real line. In this case the mean value E(X) is
moved by the same distance, so all the deviations of X from its mean value
will not change, this is why Var(X) and σX remain unchanged.

In Rule 4, does it remind you the Pythagorean theorem? There is, indeed, a
deep connection with it, but we will not explore it.

Rule 4 can be derived by the following calculation:

Var(X1 +X2) = E[(X1 +X2)
2]− [E(X1 +X2)]

2

= E(X2
1 ) + 2E(X1X2) + E(X2

2 )

−[E(X1)]
2 − 2E(X1) · E(X2)− [E(X2)]

2 (21)

Now, by the special rule on page 81, we have E(X1X2) = E(X1) · E(X2), so
the terms 2E(X1X2) and 2E(X1) · E(X2) cancel out. The remaining terms
can be easily grouped to make Var(X1) + Var(X2).

86



Tricky Question

Let X and Y be independent random variables. Is it true that

Var(X − Y ) = Var(X)− Var(Y )?

Answer. No. This is an incorrect “application” of Rule 4. A correct appli-
cation would be

Var[X + (−Y )] = Var(X) + Var(−Y ) = Var(X) + Var(Y ),

where the last equation is due to Rule 2.

We note also that Var(X) ≥ 0 and σX ≥ 0. Moreover, Var(X) = 0 and
σX = 0 only if X is a constant, as in Rule 1.

Example

Can there be a random variable with

E(X) = 4 and E(X2) = 13 ?

Solution: No, because such a random variable would have Var(X) = 13− 42 = −3, which
is impossible because we know that Var(X) ≥ 0.

Example

Let X and Y be independent, E(X) = 5 and E(Y ) = −3, as well as
σX = 2 and σY = 3. Compute the mean value and the standard devia-
tion of Z = 3X − 2Y − 2.

Solution: Using the rules on page 79 gives

E(Z) = 3 · E(X)− 2 · E(Y )− 2 = 15 + 6− 2 = 19.

Using the rules on page 86 gives

Var(Z) = 32 Var(X) + 22 Var(Y ) = 9 · 4 + 4 · 9 = 72,

hence σZ =
√
72 = 6

√
2.

87



Variance of Bernoulli Random Variable

Recall that Bernoulli random variable X takes values 1 and 0 with prob-
abilities p and q, respectively (page 80). Also note that X2 = X . Then
E(X2) = E(X) = p, so

Var(X) = E
(
X2
)
−
[
E(X)

]2
= p− p2 = p(1− p) = pq

Variance of Binomial Random Variable

Recall that a binomial random variable X = b(n, p) is the sum X = X1 +
· · ·+Xn of n independent Bernoulli random variables (page 80). Hence, by
Rule 4 on page 86

Var(X) = Var(X1) + · · ·+ Var(Xn) = pq + · · ·+ pq
︸ ︷︷ ︸

n

= npq.

Meaning of σX

The standard deviation σX is the most typical (average) deviation of the
random variable X from its mean value E(X). Hence, one can expect X
typically take values E(X) ± σX , in a way mentioned on page 83. We will
express this by a “formula”

X ≈ E(X)± σX . (22)

Of course, σX is the average deviation, while actual deviations may be smaller
or larger. Deviations up to 2σX should be considered as still quite likely, while
those over 3σX are already quite unlikely (see page 59).

One can also have a visual image in mind: typical values of a random
variable X make a cluster (a dense cloud) of points on the real line. Now
E(X) is the center of that cluster and σX is, approximately, one quarter of
its size.
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Binomial Random Variable for Large n

Let X be a binomial random variable b(n, p). We know already that E(X) =
np and σX =

√
npq. Hence, by the previous pattern, we can represent X by

X ≈ np±√
npq

These are typical, most expected values of X = b(n, p).

For an illustration, let p = q = 1/2 (think of tossing of a coin, and X
being the number of Heads in n tosses), then

(a) for n = 100, we have X ≈ 50± 5;
(b) for n = 1000, we have X ≈ 500± 16;
(c) for n = 10, 000, we have X ≈ 5, 000± 50;

This shows that the expected values of a binomial random variable X =
b(n, 1/2) are all quite close to n/2. Even though the typical deviations do
grow with n (as 5, 16, and 50 above), but they grow much more slowly than
n and E(X) = n/2 do. So, relative to E(X), the deviations become less and
less visible.

Relative Frequency

The contrast between the changes of E(X) and σX , as n grows, becomes
even more pronounced if we consider X̄n = X/n, the relative frequency of
successes. By the rules for mean values and variances, E(X̄n) = E(X)/n = p
and Var(X̄n) = Var(X)/n2 = pq/n. Hence,

X̄n ≈ p±√
pq/

√
n.

For an illustration, again let p = q = 1/2. Then

X̄n ≈ 1

2
± 1

2
√
n
.

We see that as n increases, the typical deviations decrease and converge
to zero. Hence, X̄n is concentrating (grouping, clustering) more and more
tightly near its mean value 1/2. So, as n → ∞, we expect the values of X̄n

to be closer and closer to 1/2, that is to converge to 1/2. This is, indeed, the
case, and we will get back to this issue in Chapter 14.
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The rest of Chapter 11 is optional. We just mention two more, quite special
numerical characteristics of random variables.

Skewness (optional material)

The skewness of a random variable X is

β1 =
E
[
X − E(X)

]3

σ3
X

.

It characterizes the degree of asymmetry of the density function of X about
the mean value E(X).

For example, β1 = 0 for any normal random variable N (µ, σ2), because
its density is perfectly symmetric about its mean value µ. The same is true
for any uniform random variable U(a, b). But this is not true for exponential
random variable, as its density is quite skewed.

Kurtosis (optional material)

The kurtosis of a random variable X is

β2 =
E
[
X − E(X)

]4

σ4
X

.

This one characterizes the heaviness of the tails of the density f(x) of X , i.e.
its behavior of f(x) far away from the mean value E(X). More precisely, if
f(x) has heavy (thick) tails far from the mean value E(X), then the kurtosis
is large. We note that β2 ≥ 1 for all random variables.

Any uniform random variable U(a, b) have practically no tails (its density
drops to zero beyond the interval (a, b)), and it has β2 = 1.8.

Normal random variables have tails, but those are thin, they decrease to
zero and practically vanish very rapidly away from E(X). For all normal
random variables, β2 = 3.
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Chapter 12

Moment Generating Function

General (Abstract) Formula

Let X be a random variable, and consider the function g(x) = etx of x (here t
is an additional variable, its role will be clarified shortly). Then Y = g(X) =
etX is another random variable. Its mean value of E(Y ) = E(etX) will depend
on t, so it will be a function of t. It is called the moment generating function
(m.g.f., for short) of the random variable X :

MX(t) = E(etX).

The variable t becomes the argument of this function.

Practical Formulas

According to rules on page 81, if X is a discrete random variable and takes
values x1, x2, . . . with probabilities p1, p2, . . ., then

MX(t) = E(etX) = etx1p1 + etx2p2 + · · ·

If X is a continuous random variable with density function fX(x), then

MX(t) = E(etX) =

∫ ∞

−∞
etxf(x) dx.
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Examples

(a) Is e−t/3 + 2e5t/3 a moment generating function?

(b) What about et/2 + e−2t/3?

Solution: (a) Yes, this formula fits the pattern of the first practical formula on the previous
page, with x1 = −1, x2 = 5 and p1 = 1/3, p2 = 2/3.

(b) No, because the sum of the coefficients, 1/2 + 1/3, is not equal to one (and the
probabilities must sum to one!).

Generating Moments

What is the use of the m.g.f. MX(t)? Let us differentiate it and substitute
t = 0. It is easier done with discrete random variables:

M
′
X(t) = etx1x1p1 + etx2x2p2 + · · ·

and the substitution t = 0 eliminates all the exponential factors, leaving us
with only x1p1 + x2p2 + · · · , which is E(X). So we arrive at

M
′
X(0) = E(X)

Differentiating once more gives

M
′′
X(t) = etx1x2

1p1 + etx2x2
2p2 + · · ·

and the substitution t = 0 gives x2
1p1 + x2

2p2 + · · · , which is E(X2), so

M
′′
X(0) = E(X2)

which is the second moment of X . In the same way we get

M
(k)(0) = E(Xk).

for any k ≥ 1. Hence, to compute the kth moment of X we can differentiate
the function MX(t) k times and then substitute t = 0. This is its main use
of MX(t) – to generate the moments of X .

We will use the moment generating functions to compute the variance for
the exponential, normal and Poisson random variables.
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M.g.f. for Exponential Random Variable

Let X be exponential(λ). Its density is f(x) = λe−λx for x > 0, so

MX(t) =

∫ ∞

0

etxλe−λx dx =

∫ ∞

0

λe−(λ−t)x dx =
λ

λ− t
.

Taking derivative and substituting t = 0 gives

E(X) = M
′
X(0) =

λ

(λ− t)2

∣
∣
∣
t=0

=
1

λ

(which we know already from page 77), and

E(X2) = M
′′
X(0) =

2λ

(λ− t)3

∣
∣
∣
t=0

=
2

λ2

Therefore

Var(X) =
2

λ2
−
(1

λ

)2

=
1

λ2
and σX =

1

λ

Unpredictability for Exponential Random Variable

In the spirit of our general formula (22) on page 88, we can represent expo-
nential random variable as

X ≈ E(X)± σX =
1

λ
± 1

λ

Note a striking fact: typical deviations are about the same as the mean
value! This tells us that the exponential random variable is completely un-
predictable, in the sense described below.

We mentioned on page 45 that the distances between randomly deployed
patrol cars on a long highway are exponential random variables. Suppose
the average distance between them is 20 miles. Then the standard deviation
is also 20 miles, so the typical range is 20± 20, i.e., from 0 to 40...

A näıve driver may pass a trooper and think: “Ok, it will be about 20
miles to the next one, so I can go over the speed limit unnoticed and get
away with it”. Such a driver would very wrong – the next trooper may very
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well be quite close, as even zero distance between the troopers is within the
typical range of 20± 20.

M.g.f. for Standard Normal Random Variable

If Z is a standard normal random variable, then

MZ(t) =
1√
2π

∫ ∞

−∞
etxe−x2/2 dx =

1√
2π

∫ ∞

−∞
e−(x−t)2/2et

2/2 dx.

The term et
2/2 can be factored out (it does not contain x, the variable of

integration). The remaining integral would contain the density function of a
normal random variable N (t, 1); see page 57. Hence, the remaining integral
will be equal to one, by the normalization rule on page 38. Hence

MZ(t) = et
2/2.

Variance of Normal Random Variable

and using the chain rule gives

M
′
Z(t) = t et

2/2

and so E(Z) = M
′
Z(0) = 0, which we know already (page 78).

Differentiating MZ(t) once again gives

M
′′
X(t) = (1 + t2) et

2/2

and so E(Z2) = M
′′
Z(0) = 1. Therefore,

Var(Z) = E(Z2)− [E(Z)]2 = 1− 02 = 1

If X is an arbitrary normal N (µ, σ2), then X = µ + σZ (page 57) and by
rules on page 86

Var(X) = σ2
Var(Z) = σ2

and then σX =
√

Var(X) =
√
σ2 = σ.

Notational remark. Now we see that the second parameter of a normal
random variable X = N (µ, σ2) is its variance σ2 = σ2

X . It is now clear why
it is denoted by σ2, it so conveniently matches the more general notation σ2

X .
Moreover, in many textbooks even the mean value of any random variable X
is denoted by µX , again to match the first parameter µ of the normal random
variable N (µ, σ2).
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M.g.f. for Normal Random Variable

If X is a normal random variable N (µ, σ2), then X = µ+ σZ. Now

MX(t) = E(etX) = E(eµt+σtZ ) = E(eµteσtZ)

The term eµt does not contain X , so it can be factored out by Rule 1 on
page 79. Thus

MX(t) = eµt E(e(σt)Z) = eµt MZ(σt) = eµte(σt)
2/2 = eµt+σ2t2/2. (23)

M.g.f. for Geometric Random Variable

A geometric random variable X takes values n = 1, 2, . . . with probabilities
P(X = n) = pqn−1; see page 28. Then

MX(t) =
∞∑

n=1

pqn−1etn = pet
∞∑

n=1

(qet)n−1.

This is a geometric series, so by a general Calculus formula on page 28

MX(t) =
pet

1− qet
.

Variance of Geometric Random Variable

By differentiating the above function (we omit tedious details) we get

Var(X) =
q

p2
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M.g.f. for Poisson Random Variable

A Poisson random variable X takes values k = 0, 1, 2, . . . with probabilities
P(X = k) = λk

k!
e−λ; see page 32. Then

MX(t) =

∞∑

k=0

etk · P(X = k) =

∞∑

k=0

etk
λk

k!
e−λ

=

∞∑

k=0

(λet)k

k!
e−λ =

∞∑

k=0

(λet)k

k!
e−λeteλe

t−λ

The term eλe
t−λ can be factored out (it does not contain the variable k).

Then the remaining sum simply equals one, because it adds the probabilities
of the poisson(λet) random variable. Hence,

MX(t) = eλe
t−λ = eλ(e

t−1),

a “double exponential” function.

Variance of Poisson Random Variable

Differentiating the above MX(t) gives

M
′
X(t) = λ et eλ(e

t−1)

and so E(X) = M
′
X(0) = λ, which we know already (page 76).

With a little extra work, we can differentiate it once again:

M
′′
X(t) = (λ2 + λ) et eλ(e

t−1)

and so E(X2) = M
′′
X(0) = λ2 + λ. Therefore

Var(X) = E(X2)− [E(X)]2 = λ2 + λ− λ2 = λ

and then σX =
√
λ.
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Variance of Uniform Random Variable

Let X be uniform U(a, b). Its density is f(x) = 1
b−a

; see page 42. Its mean

value is E(X) = a+b
2
; see 77. Now the variance of X can be found by direct

integration:

Var(X) = E(X2)− [E(X)]2 =

∫ b

a

x2

b− a
dx− (a+ b)2

4

=
b3 − a3

3(b− a)
− (a+ b)2

4
=

b2 + a2 − 2ab

12
=

(b− a)2

12

Summary

The above results are summarized in a chart below:

E(X) Var(X) σX MX(t)

binomial(n, p) np npq
√
npq (pet + q)n

geometric(p) 1/p q/p2
√
q/p pet

1−qet

poisson(λ) λ λ
√
λ eλ(e

t−1)

uniform U(a, b) a+b
2

(b−a)2

12
b−a√
12

exponential(λ) 1/λ 1/λ2 1/λ λ
λ−t

st.normal N (0, 1) 0 1 1 et
2/2

normal N (µ, σ2) µ σ2 σ eµt+σ2t2/2

Special rule for Moment Generating Functions

If X and Y are independent random variables, then

MX+Y (t) = MX(t)MY (t)

Indeed, we have

MX+Y (t) = E
(
et(X+Y )

)
= E

(
etXetY

)
= E(etX) · E(etY ) = MX(t)MY (t).

In the middle of the above line, we used another special rule for independent
random variables; see page 81.
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Stable Distributions

The special rule on the previous page can be used to find the distribution
of X + Y , if X and Y are independent random variables. For example, if
X = N (µ1, σ

2
1) and Y = N (µ2, σ

2
2) are two independent normal random

variables, then X + Y has m.g.f.

MX+Y (t) = eµ1t+σ2
1t

2/2 · eµ1t+σ2
1t

2/2 = e(µ1+µ2)t+(σ2
1+σ2

2)t
2/2.

By general formula (23) on page 95, this is the m.g.f. of a normal random
variable, N (µ1 + µ2, σ

2
1 + σ2

2). Hence, the sum of two independent normal
random variables is also normal, and we get a rule:

N (µ1, σ
2
1) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2).

Similarly, if X is poisson(λ1) and Y is poisson(λ2), then

MX+Y (t) = eλ1(et−1)eλ2(et−1) = e(λ1+λ2)(et−1)

hence the sum of two independent Poisson random variables is also Poisson:

poisson(λ1) + poisson(λ2) = poisson(λ1 + λ2).

Lastly, for binomial random variables: if X is b(n1, p) and Y is b(n2, p), then

MX+Y (t) = (pet + q)n1(pet + q)n2 = (pet + q)n1+n2

hence the sum of two independent binomials (with the same p) is also bino-
mial:

b(n1, p) + b(n2, p) = b(n1 + n2, p).

The last conclusion is intuitively obvious, though, because b(n1, p) + b(n2, p)
is the total number of successes in two series of trials, one of lengths n1

and the other of length n2. So we have n1 + n2 trials total, with the same
probability of success p in each. Now it is clear that total number of successes
is b(n1 + n2, p).

If the sum of two independent random variables of the same type is a
random variable that same type, we call that type stable. Hence, binomial,
Poisson, and normal types of random variables are stable. The others (uni-
form, geometric, exponential) are not.
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Manipulations with Normal Random Variables

Combining the rule for normal random variables given on page 58 and the
rule for two independent normals from the previous page gives the following:

Let X = N (µ1, σ
2
1) and Y = N (µ2, σ

2
2) be two independent normal ran-

dom variables and a, b two constants. Then aX + bY is a normal random
variable:

aX + bY = N (aµ1 + bµ2, a
2σ2

1 + b2σ2
2)

Examples

Suppose X = N (−1, 3) and Y = N (2, 1) are independent normals. Compute
the probabilities of the following events:

(a) P(X + 2Y > 2);

(b) P(X > Y );

(c) P(2X < Y − 2).

Solution:

(a) X + 2Y is N (−1 + 2 · 2, 3 + 22 · 1) = N (3, 7), hence

P(X + 2Y > 2) = 1− Φ

(
2− 3√

7

)

= 0.6480.

(b) X − Y is N (−1− 2, 3 + 1) = N (−3, 4), hence

P(X > Y ) = P(X − Y > 0) = 1− Φ

(
0− (−3)√

4

)

= 0.0668.

(c) 2X − Y is N
(
2(−1)− 2, 22 · 3 + 1

)
= N (−4, 13), hence

P(2X < Y − 2) = P(2X − Y < −2) = Φ

(
(−2)− (−4)√

13

)

= 0.7088.
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Chapter 13

Covariance and Correlation

Covariance

On page 86 we derived a formula for the variance Var(X + Y ) and obtained

Var(X + Y ) = Var(X) + Var(Y ) + 2E(XY )− 2E(X) · E(Y ).

If X and Y are independent, then by the special rule on page 81 we have
E(XY ) = E(X) ·E(Y ), and then the last two terms cancel out. Here we are
going to deal with dependent random variables. Then the quantity

Cov(X, Y ) = E(XY )− E(X) · E(Y ) (24)

may not be zero. It is called the covariance between X and Y . Alternatively,
one can put

Cov(X, Y ) = E
[
(X − E(X))(Y − E(Y ))

]
. (25)

To convert (24) to (25), one can do calculations similar to (20) on page 84.

Variance of X + Y

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ).

This rule is valid for any random variables X and Y , independent or not.

A curious note: the above equation resembles a simple algebraic formula
(a+ b)2 = a2 + b2 + 2ab. This may help to remember it.
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Covariance and Dependence

For independent random variables X and Y we have Cov(X, Y ) = 0. The
covariance is often regarded as the measure of dependence between random
variables. The larger the covariance, the stronger the dependence between
the random variables.

Note, however, that sometimes dependent random variables have zero co-
variance (such an “odd” example is given below).

Rules for Covariance

(a) For any random variable X

Cov(X,X) = Var(X).

(b) The covariance is symmetric:

Cov(X, Y ) = Cov(Y,X).

(c) The covariance is linear in both arguments:

Cov(a1X1 + a2X2, Y ) = a1 Cov(X1, Y ) + a2 Cov(X2, Y )

Cov(X, b1Y1 + b2Y2) = b1 Cov(X, Y1) + b2 Cov(X, Y2).

(d) If X and Y are independent, then Cov(X, Y ) = 0 (but not vice versa!).

(e) If X is a constant, i.e., it takes just one value, with probability one, then
Cov(X, Y ) = 0 for any random variable Y .

One can verify these rules easily by using the rules for means (page 79).
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Example

Let X be uniform U(0, 1). Find Cov(X,X2).

Solution: Here we use (24) from the previous page and formula (19) from page 81:

Cov(X,X2) = E(X3)− E(X) · E(X2) =
1

4
− 1

3
· 1
2
=

1

12
.

Example

Let X and Y be two independent random variables, both uniform U(0, 1).
Find Cov(X + 2Y,X2 − Y ).

Solution: Here we use the rules for covariance from page 101:

Cov(X + 2Y,X2 − Y ) = Cov(X,X2) + 2Cov(Y,X2)− Cov(X,Y )− 2Cov(Y, Y )

=
1

12
+ 0 + 0− 2× 1

12
= − 1

12
.

Here the first 1/12 comes from the previous example, and the second 1/12 comes from
Cov(Y, Y ) = Var(Y ) = 1/12; see page 97.

Odd Example

A random variable X takes three values −2, 0 and 2, with probability 1/3
each. Let Y = X2. Compute Cov(X, Y ).

Solution: It is easy to see that E(XY ) = E(X3) = 0, and also E(X) = 0 and E(Y ) = 8/3
(the value of E(Y ) is not important, though). Then Cov(X,Y ) = 0.

Note: in the above example X and Y are obviously dependent (knowing X
one can compute Y precisely). But, for some reason, X and Y happen to
have zero covariance. This “mystery” is cleared on the next page.

102



The Sign of Covariance

Suppose Cov(X, Y ) > 0. Then the formula (25) on page 100 tells us that
the product (X − E(X))(Y − E(Y )) tends to be positive, i.e., the terms
(X − E(X)) and (Y − E(Y )) tend to be of the same sign (both positive or
both negative). This means that if X happens to be above its mean value
(fluctuates upward), then Y is also likely to be above its mean value. If X is
below its mean value, then the same probably happens to Y . In other words,
X and Y tend to fluctuate in accord (in unison).

On the contrary, if Cov(X, Y ) < 0, then the terms (X − E(X)) and
(Y −E(Y )) tend to have opposite signs (one positive and the other negative).
In other words, X and Y tend to fluctuate in the opposite directions: when
X goes up Y goes down, and vice versa; thus X and Y tend to fluctuate “in
discord”.

X − E(X) Y − E(Y )

Cov(X, Y ) > 0
+ +
− −

Cov(X, Y ) < 0
+ −
− +

Odd Example (continued)

In the Odd Example on the previous page, we have Cov(X, Y ) = 0. Look
closely at this example and you see that whether X happens to be above
its mean value 0 (i.e., X = 2) or below it (i.e., X = −2), we have Y = 4.
So, changing X either way (up or down) from its mean value sends Y in
one direction – upward. Hence fluctuations of X and Y are equally likely to
occur in the same direction and in the opposite directions. This is exactly
the reason why the covariance between X and Y turns zero.

0 2-2

4
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If Cov(X, Y ) 6= 0, this tells us that X and Y are dependent. But how strong
is the dependence? The numerical value of the covariance Cov(X, Y ) does
not tell us much – it depends on the units in which X and Y are measured.

The following modification of covariance is better – it does not depend
on the units (it is dimensionless). It estimates the strength of dependence
quite accurately.

Correlation

ρ(X, Y ) =
Cov(X, Y )

σX · σY

This is the correlation, or correlation coefficient, between X and Y . It
always takes values between −1 and 1:

−1 ≤ ρ(X, Y ) ≤ 1

Interpretation of Correlation

• If ρ(X, Y ) = 0, then X and Y are practically independent (one often
says that X and Y are uncorrelated).

• If ρ(X, Y ) ≈ 0, then X and Y are weakly dependent, i.e. knowing X
very little can be said of Y (and vice versa).

• If ρ(X, Y ) ≈ ±1, then X and Y are strongly dependent, i.e. knowing
X the value of Y can be determined quite accurately, if not precisely
(and vice versa).

-1 10

weak moderatemoderate strongstrong

d e p e n d e n c e

range of values of ρ(X,Y)
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Example

Let X be uniform U(0, 1). Compute ρ(X,X2).

Solution: In the first example on page 102 we found that Cov(X,Y ) = 1/12. We also
know that Var(X) = 1/12; see page 97. And by the general formula (19) on page 81

Var(X2) = E(X4)− [E(X2)]2 = 1/5− (1/3)2 = 4/45

Therefore

ρ(X,X2) =
Cov(X,X2)

σX · σX2

=
1/12

√

1/12 ·
√

4/45
≈ 0.968.

This is close to 1.0, so it shows a very strong dependence between X and X2. Indeed,
they are obviously dependent: knowing X one can compute X2 = X ·X , and knowing X2

one can compute X =
√
X2.

Extreme cases: ρ(X, Y ) = ±1

One may wonder why the correlation between X and X2 in the last example
falls short of its maximum value, 1. As it turns out, ρ(X, Y ) = ±1 only if X
and Y are related by a linear formula, i.e., Y = aX + b with some constants
a and b. More precisely, ρ(X, Y ) = 1 if a > 0 and ρ(X, Y ) = −1 if a < 0.

For instance, ifX is the forecast for tomorrow’s temperature in Fahrenheit
and Y is the same in Celcius, then X = 1.8 ·Y +32, which is a linear relation.
Therefore ρ(X, Y ) = 1 (because the coefficient 1.8 is positive).
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Chapter 14

Law of Large Numbers

Motivation: Relative Frequency

We resume our discussion started on page 89. Recall that we dealt with a
binomial random variable X = b(n, p), and then considered X̄n = X/n, the
relative frequency of successes in n trials. Its mean value was E(X̄n) = p,
and its variance was Var(X̄n) = pq/n. We concluded that X̄n tended to con-
centrat tightly near its mean value p, as n grows. Here we investigate this
phenomenon further. It is one of the central facts in probability theory.

We need to estimate precisely by how much a random variable can deviate
from its mean value.

Markov Inequality

Let X ≥ 0 be a random variable that only takes non-negative values, and
t > 0 a real number. Then

P(X ≥ t) ≤ E(X)

t
.

This inequality estimates the probability that X takes large values.

Brief explanation: Let Y be a new random variable defined by

Y =

{

t if X ≥ t
0 if 0 ≤ X < t

Note that Y takes two values (t and 0), so it is a discrete random variable, and

E(Y ) = t · P(Y = t) + 0 · P(Y = 0) = t · P(X ≥ t)

Note that X ≥ Y in all cases, so

E(X) ≥ E(Y ) = tP(X ≥ t)

It remains to divide the last formula by t.
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Example

LetX be nonnegative and E(X) = µ. What can we cay about the probability
P(X ≥ 10µ)?

Solution: By Markov inequality,

P(X ≥ 10µ) ≤ µ

10µ
=

1

10
.

Hence, there is not much chance (at most 10%) that a random variable is as large as ten
times its mean value.

Chebyshev’s Inequality

Let X be a random variable, and y > 0 a real number. Then

P
(
|X − E(X)| ≥ y

)
≤ Var(X)

y2
.

This inequality estimates the probability that X deviates by more than
y from its mean value E(X).

Brief explanation: Let Y be a new random variable defined by

Y =

{

y2 if |X − E(X)| ≥ y
0 otherwise

Note that Y takes two values (y2 and 0), so it is a discrete random variable, and

E(Y ) = y2 · P(Y = y2) + 0 · P(Y = 0) = y2 · P(|X − E(X)| ≥ y)

Note that |X − E(X)|2 ≥ Y in all cases, so

Var(X) = E(|X − E(X)|2) ≥ E(Y ) = y2 · P(|X − E(X)| ≥ y)

It remains to divide the last formula by y2.
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Example

Let X = N (µ, σ2). We can estimate the probability P
(
|X − µ| ≥ 3σ

)
by

Chebyshev’s inequality:

P
(
|X − µ| ≥ 3σ

)
≤ σ2

(3σ)2
=

1

9

On the other hand, the exact probability is

P
(
|X − µ| ≥ 3σ

)
= 2(1− Φ(3)) = 0.0028

from the table for the function Φ. Since 0.0028 < 1/9, the estimate is correct.

“Overkill”

In the above example, the estimate 1/9 = 0.1111 is rather crude, it is much
higher than the actual value 0.0028. It is like an ad of an auto insurance
company promising that your monthly premium would never exceed $10,000.
Such a statement may be, technically, correct but practically useless, if not
ridiculous, as normally monthly premiums are nowhere near $10,000.

Back to Chebyshev’s inequality, indeed, for most random variables it is
an “overkill” - it grossly overestimates P

(
|X − E(X)| ≥ y

)
. On the other

hand, Chebyshev’s inequality is universal, it applies to any random variable.
And, it cannot be improved without sacrificing universality, because for every
y > 0 one can find a random variable X (although quite “ugly”) for which
P
(
|X − E(X)| ≥ y

)
= Var(X)/y2, i.e. Chebyshev’s inequality turns into an

equality. We will see that below.

Turning Chebyshev’s Inequality into Equality

The logic of the explanation on page 107 suggests an idea how to construct
an “ugly” random variable X for which P

(
|X − E(X)| ≥ y

)
= Var(X)/y2.

Such a random variable must satisfy the condition Y = |X − E(X)|2. In
other words, X can only take three values: E(X) and E(X)± y.

Let a = E(X) and y > 0 be given. Then X must be a discrete random
variable taking three values: a, a − y, and a + y. One needs to assign
probabilities to those values properly so that E(X) = a and P

(
|X − a| ≥

y
)
= Var(X)/y2. Further details are left as an exercise.
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Example

Suppose that a random variable X has mean value E(X) = 10 and vari-
ance Var(X) = 9. By using Chebyshev’s inequality, estimate the probability
P(X ≥ 25).

Solution: The event {X ≥ 25} can be represented as {X ≥ 10 + 15), or {X − 10 ≥ 15}.
Hence it is a part of the larger event {|X − 10| ≥ 15}. Then by Chebyshev’s inequality

P(X ≥ 25) ≤ P
(
|X − 10| ≥ 15

)
≤ 9

152
=

1

25
.

Back to Relative Frequency

Again, as on page 89, let X = b(n, p) be the number of successes in n
Bernoulli trials, and X̄n = X/n the relative frequency of successes. We have
E(X̄n) = p and Var(X̄n) = pq/n. Let y > 0 be any number. By Chebyshev’s
inequality

P
(
|X̄n − p| ≥ y

)
≤ pq

y2n
.

As n grows, the right hand side decreases to zero. Hence, the probability
that X̄n deviates from p by more than y is getting smaller and vanishes as
n → ∞. This is true for all y > 0. Hence, all deviations of X̄n from p vanish
as n → ∞. The random variable X̄n indeed converges to p as n → ∞, as we
guessed earlier, on page 89.

We observed on page 80 that a binomial random variable b(n, p) is the
sum of n independent Bernoulli random variables: X = X1+ · · ·+Xn. Then
the relative frequency of successes X̄n can be written as

X̄n =
X1 + · · ·+Xn

n

i.e., X̄n is the average of n Bernoulli random variables X1, . . . , Xn. The
above fact then says that the average of X1, . . . , Xn converges to the mean
value E(Xi) = p as n → ∞. In other words, the empirical average of n
(experimentally) observed values of the Bernoulli random variable converges
to its (theoretical) mean. Hence the experiment must agree with the theory.
In this form, the fact can be extended to more general random variables; see
next.
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Law of Large Numbers

Let X1, X2, . . . be independent identically distributed (i.i.d) random vari-
ables. Let µ = E(Xi) be the common mean value of all Xi’s, and σ2 =
Var(Xi) the common variance of all Xi’s. For each n let

X̄n =
X1 + · · ·+Xn

n
(26)

denote the average of the first n values. Then the random variable X̄n con-
verges to µ as n → ∞. Precisely, for every real number y > 0 we have

P
(
|X̄n − µ| ≥ y

)
≤ σ2

y2n
→ 0

as n → ∞, i.e., all the deviations from µ vanish.
Indeed, the above inequality is simply Chebyshev’s inequality, because

Var(X̄n) = [Var(X1) + · · ·+ Var(Xn)]/n
2 = σ2/n.
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The convergence of X̄n to µ

Time average. One gets a sequence of i.i.d. random variables every time a
random experiment is repeated under the same conditions and experimental
values X1, . . . , Xn are observed. Here n plays the role of time, and the
empirical average (26) is called the time average. Then the Law of Large
Numbers says that the time average approaches, as time goes on, the mean
value µ = E(Xi).
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Monte-Carlo Integration (optional)

The law of large numbers can be used to compute integrals of functions. For
example, suppose we want to compute a double integral

∫∫

R

f(x, y) dx dy (27)

over a region R (for simplicity, let R be a part of the unit square 0 ≤ x, y ≤
1). Such integrals are often hard to compute, because either the function
f or the region R, or both, are quite complicated. Standard methods for
numerical integration may be hard to implement or become inefficient. There
is, however, a straightforward computer algorithm based on the Law of Large
Numbers.

The computer program generates pairs of uniformly distributed random
variables (x1, y1), (x2, y2), . . .. Each pair (xi, yi) is generated by calling an
RNG (page 43) twice (once for xi and once more for yi). Pairs (xi, yi) that
are not in the region R, are ignored. For each pair (xi, yi) that is in R, one
computes the value fi = f(xi, yi). Then the average value

f1 + f2 + · · ·+ fn
n

(28)

(where n is the total number of generated pairs (xi, yi), including those which
are not in the region R) approximates the integral (27). The larger n the
better approximation. Easy, isn’t in?

Since this algorithm is based on random numbers, i.e., resembles playing a
roulette, it is called Monte-Carlo integration (Monte-Carlo is a world famous
gambling center in Monaco, southern France).

Note that our example of computation of the number π with the help of
random numbers on page 66 is exactly a case of Monte-Carlo integration. In
that example, the region R was a quarter of the unit circle, and the function
f(x, y) = 1 (so that the integral (27) actually coincided with the area of R).

A drawback of the Monte-Carlo integration is a slow convergence of the
average (28) to the integral (27). One really needs to compute a lot of fi’s
in (28) to obtain an accurate value of (27). We will see that in the next
Chapter.
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Chapter 15

Central Limit Theorem

Binomial Random Variable for Large n

Let X be a binomial random variable b(n, p) with large n. Its probability
function is

P(X = k) = Cn,kp
k(1− p)n−k for k = 0, 1, . . . , n,

(see page 27). This formula for P(X = k) is precise but very impractical for
large n. We found in Chapter 4 a simple approximative formula (Poisson
law) that works for large n and small p. But what if p is not small?

Remarkably, the binomial random variable X = b(n, p) can be well ap-
proximated by a normal random variable, Y = N (µ, σ2). The calculations
that lead to this approximation are quite complicated, and we skip them.
Instead, we focus on the proper choice of µ and σ2, the parameters of Y .
Recall that µ = E(Y ) and σ2 = Var(Y ). Now if we want the normal random
variable Y = N (µ, σ2) to match the binomial random variable X , then we
want their mean values to be equal, E(X) = E(Y ), and their variances to be
equal, too: Var(X) = Var(Y ). This gives

µ = E(Y ) = E(X) = np and σ2 = Var(Y ) = Var(X) = npq.

De Moivre-Laplace3 Theorem

For large n, the binomial random variable X = b(n, p) is approximated
by a normal Y = N (µ, σ2) with µ = np and σ2 = npq.

How large n should be for the normal approximation to be used? A
common practical rule of thumb is to apply normal approximation when
n ≥ 30. It may be good even for smaller n, like n ∼ 20 or n ∼ 15...

3Named after two French mathematicians: Abraham de Moivre (1667–1754) and Pierre-
Simon Laplace (1749-1827).
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Example

Toss a coin 100 times and let X be the number of Heads. Find the proba-
bility P(X ≤ 50).

Solution: First, we follow a näıve approach that leads to a wrong answer, then we will
fix it. By normal approximation, X ≈ Y = N (50, 25), because µ = 100 · 0.5 = 50 and
σ2 = 100 · 0.5 · 0.5 = 25. Now we proceed as

P(X ≤ 50) ≈ P(Y ≤ 50) = Φ

(
50− 50√

25

)

= Φ(0) = 0.5.

Wait a minute. Is this right? Not quite. Indeed, if this was right, then P(X ≥ 51) =
1− P(X ≤ 50) = 0.5. On the other hand, by normal approximation again

P(X ≥ 51) ≈ P(Y ≥ 51) = 1− Φ

(
51− 50√

25

)

= 1− Φ(0.2) = 0.4207.

Of course, 0.5 6= 0.4207, there is an almost 8% difference! Something is wrong.

One can see now what is wrong. The random variable X = b(n, p) is discrete, all
its values are integers (whole numbers). So, the events X ≤ 50 and X ≥ 51 are com-
plementary to each other. The open interval in between, 50 < X < 51, is irrelevant, its
probability is zero. On the contrary, Y = N (µ, σ2) is a continuous random variable, and
the probability P(50 < Y < 51) is positive, and not small. It is exactly this probability
that we overlooked.

Note that the interval (50, 51) is a “border” interval, a gap between the event X ≤ 50
and its complement X ≥ 51. To take a proper care of this border interval, we divide it in
half and include one half into the event X ≤ 50 and the other half into the complement
X ≥ 51. In other words, the event and its complement “split up” the border interval.

Now we present the correct solution. The proper range for Y is Y ≤ 50.5, hence

P(X ≤ 50) ≈ P(Y ≤ 50.5) = Φ

(
50.5− 50√

25

)

= Φ(0.1) = 0.5398.

Note: the exact probability P(X ≤ 50), by the binomial formula, is 0.539795. So the
normal approximation gives all 4 digits correct.

u u u e e eBinomial:

Normal:

48 49 50 51 52 53

50.5

︸ ︷︷ ︸

I n c l u d e d

︸ ︷︷ ︸

E x c l u d e d

︸ ︷︷ ︸

I n c l u d e d

︸ ︷︷ ︸

E x c l u d e d
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Correction for Continuity (or “Histogram Correction”)

When applying De Moivre-Laplace theorem, divide the border interval(s)
in half and include one half into the region for Y .

Example

Toss a coin 100 times and let X be the number of Heads. Find the proba-
bility P(40 ≤ X ≤ 55).

Solution: As in the previous example, X is b(100, 0.5) and its normal approximation is
X ≈ Y = N (50, 25). Now we apply correction for continuity. The event in question is
40 ≤ X ≤ 55. The complement is X ≤ 39 and X ≥ 56. There are two border intervals:
(39, 40) and (55, 56). Then the proper range for Y is 39.5 ≤ Y ≤ 55.5, and

P(40 ≤ X ≤ 55) ≈ P(39.5 ≤ Y ≤ 55.5)

= Φ

(
55.5− 50√

25

)

− Φ

(
39.5− 50√

25

)

= Φ(1.1)− Φ(−2.1) = 0.8643− 0.0179 = 0.8464.

(The exact probability, by the binomial formula, is 0.846772.)

Note: binomial probabilities can be computed by some advanced calculators.
Or you can use the on-line calculator on the instructor’s web page.

Example

Toss a coin 100 times and let X be the number of Heads. Find the proba-
bility P(X = 50).

Solution: As before, X is b(100, 0.5) and X ≈ Y = N (50, 25). Now we apply correction
for continuity. The event in question is X = 50, or in terms of inequalities, 50 ≤ X ≤ 50.
The complement is the union of two intervals: X ≤ 49 and X ≥ 51. There are two border
intervals: (49, 50) and (50, 51). So the proper range for Y is 49.5 ≤ Y ≤ 50.5, and

P(50 ≤ X ≤ 50) ≈ P(49.5 ≤ Y ≤ 50.5)

= Φ

(
50.5− 50√

25

)

− Φ

(
49.5− 50√

25

)

= Φ(0.1)− Φ(−0.1) = 0.5398− 0.4602 = 0.0796.

This finally answers the question posed on page 5!
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Example

A student knows answers to 75% of questions in a course. A test is made up
of some 12 questions. What is the probability that the student answers at
least 10 correctly?

Solution: Let X be the number of test questions the student answers correctly. Then X
is b(12, 0.75). Its normal approximation is X ≈ Y = N (9, 9/4). Now we apply correction
for continuity. The event in question is X ≥ 10. The complement is X ≤ 9. The border
interval is (9, 10), so the proper range for Y is Y ≥ 9.5, and

P(X ≥ 10) ≈ P(Y ≥ 9.5) = 1− Φ
(9.5− 9
√

9/4

)

= 1− Φ(0.33) = 1− 0.6293 = 0.3707.

Extra note: The exact probability, by the binomial formula, is 0.3907. We
used normal approximation, even though n was quite small (n = 12). Our
approximate answer 0.3707 is still pretty good.

Example (with a twist)

A student knows answers to 75% of questions in a course. The professor
asks the student questions until 20 correct answers are given. What is the
probability that at least 25 questions will be necessary?

Solution: Note that the number of trials (questions) is not specified here. So, we need to
describe our event differently. We begin with a logical observation: if at least 25 questions
are necessary, then 24 are not enough. This means that after the 24th question, the
student still has not given 20 correct answers.

Now our event can be described in more familiar terms. Let X be the number of
correct answers given to the first 24 questions. Our event is X < 20, i.e. X ≤ 19. Now
we are ready to solve the problem. First, X is b(24, 0.75). Its normal approximation is
X ≈ Y = N (18, 9/2). Now we apply correction for continuity. The event in question is
X ≤ 19. The complement is X ≥ 20, so the range for Y is Y ≤ 19.5, and

P(X ≤ 19) ≈ P(Y ≤ 19.5) = Φ

(

19.5− 18
√

9/2

)

= Φ(0.71) = 0.7611.

(The exact probability, by the binomial formula, is 0.75335.)
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Generalizing De Moivre-Laplace

We observed on page 80 that a binomial random variable b(n, p) is the sum
of n independent Bernoulli random variables: X = X1 + · · · + Xn. There-
fore, E(X) = nE(X1) and Var(X) = nVar(X1). Now De Moivre-Laplace
theorem can be stated as follows: X = X1 + · · · + Xn is approximately a
normal Y = N (µ, σ2) with µ = nE(X1) and σ2 = nVar(X1). In this form
the theorem can be extended to more general random variables:

LetX1, X2, . . . , Xn be independent identically distributed (i.i.d) random vari-
ables. Let µX = E(Xi) be the common mean value of all Xi’s, and σ2

X =
Var(Xi) the common variance of all Xi’s. For each n let Sn = X1+ · · ·+Xn.

Central Limit Theorem (for Sn)

For large n, the sum Sn is approximately normal:

Sn ≈ N (µ, σ2)

with
µ = E(Sn) = nµX , and σ2 = Var(Sn) = nσ2

X

Now let X̄n = Sn/n = (X1 + · · ·+Xn)/n be the average of Xi’s.

Central Limit Theorem (for X̄n)

For large n, the variable X̄n is approximately normal:

X̄n ≈ N (µ, σ2)

with
µ = E(X̄n) = µX , and σ2 = Var(X̄n) = σ2

X/n

The term central in the name of the theorem is due solely to its central
role and ultimate importance in probability theory.
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Example

Suppose we roll a die 50 times. What is the probability that the sum of the
numbers obtained lies between 150 and 190 (inclusive)?

Solution: The sum of the numbers is S50 = X1+· · ·+X50 where E(Xi) = 3.5 (page 73) and
Var(Xi) = 2.92 (page 84). By Central Limit Theorem we have S50 ≈ Y = N (175, 146).
Since the random variable Sn is discrete, we need to apply correction for continuity, thus
we get the range for Y as 149.5 < Y < 190.5. Hence

P(150 ≤ X ≤ 190) ≈ P(149.5 ≤ Y ≤ 190.5)

= Φ

(
190.5− 175√

146

)

− Φ

(
149.5− 175√

146

)

= Φ(1.28)− Φ(−2.11) = 0.8997− 0.0174 = 0.8823.

Example

Suppose the weight of a certain brand of bolt has a mean of 1 gram and a
standard deviation of 0.13 grams. Estimate the probability that 100 of these
bolts will weigh more than 102 grams.

Solution: By Central Limit Theorem the total weight W is approximately normal Y =
N (100, 100× 0.132) = N (100, 1.69). Since W is (obviously) continuous, we do not apply
correction for continuity. Hence

P(W > 102) ≈ P(Y > 102) = 1− Φ

(
102− 100√

1.69

)

= 1− Φ(1.54) = 1− 0.9382 = 0.0618.

Note that we do not know the distribution of the weights of individual bolts, that distri-
bution is irrelevant! All we need to know is the mean weight and its standard deviation.

Universality of Central Limit Theorem

The classical CLT deals with sums of i.i.d. random variables, but its modern
versions also handle sums of variables that have different distributions and
are weakly dependent. Basically, any random variable that is the sum of many
(almost) independent small components is approximately normal. Or, put it
differently, any experimental measurement that is affected by a combination
of many small random factors should be approximately normal.

This explains why it is customary to assume that practical data have
normal distribution, like the height of an adult person, the weight of a fish in
a pond, etc. It is not too much of an exaggeration to say: everything random

in nature has normal distribution, unless some specific constraints affect it

and make it non-normal.
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Example

A basketball player makes 80% of his free throws on the average. During the
season he makes 1000 free throws in official games. Let X̄ be the frequency
of his successes. Estimate P(|X̄ − 0.8| < 0.01).

Solution: The total number of successes in 1000 throws is X = b(1000, 0.8), and X̄ =
X/1000. Hence, E(X̄) = 0.8 and Var(X̄) = 0.16/1000 = 0.00016. By Section 15.12,
X ≈ Y = N (0.8, 0.00016). Then

P(|X − 0.8| < 0.01) ≈ P(|Y − 0.8| < 0.01)

= Φ

(
0.81− 0.8√
0.00016

)

− Φ

(
0.79− 0.8√
0.00016

)

= Φ(0.79)− Φ(−0.79) ≈ 0.7852− 0.2148 = 0.5704.

Example

Suppose the lifetime of a light bulb is an exponential random variable with
mean 5 hours. A housekeeper wants to buy a set of light bulbs with total
lifetime at least 100 hours. What is the probability that 22 bulbs will not be
enough?

Solution: The total lifetime of 22 bulbs is S22 = X1 + · · · + X22, where each Xi is
exponential(1/5) (because λ = 1/E(Xi) = 1/5). Now we have Var(Xi) = 1/λ2 = 25
(page 93). By using normal approximation

S22 ≈ Y = N (22 · 5, 22 · 25) = N (110, 550)

Note that S22 is (obviously) continuous, so we do not use correction for continuity. Hence,

P(S22 ≤ 100) ≈ P(Y ≤ 100) = Φ

(
100− 110√

550

)

= Φ(−0.43) = 0.3336.

Extra remark: The average lifetime of 20 bulbs is 100 hours already, and
the housekeeper has two extra bulbs (with total average lifetime 10 hours!),
just in case. Still, these 22 bulbs may not be enough with a rather large
probability of 33%... How come?

The reason why this strange fact takes place is the unpredictability of ex-
ponential random variables we noted on page 93. Indeed, some of those light
bulbs can burn down very quickly, and this is not at all unusual (page 93).
Devices with exponential lifetime are very unpredictable and unreliable!
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Normal Approximation to Poisson

Let X be poisson(λ) with a large λ. Since Poisson random variable is stable
(page 98), we can think that X is the sum of n independent Poisson random
variables, each with a smaller parameter λ/n. More precisely, X = X1 +
· · · + Xn where Xi =poisson(λ/n). Hence, by Central Limit Theorem we
have X ≈ N (µ, σ2) with µ = E(X) = λ and σ2 = Var(X) = λ, i.e.,

poisson(λ) ≈ N (λ, λ)

for large λ. When you use this rule, do not forget to apply correction for
continuity – Poisson random variable is discrete!

Example

Suppose accidents on a 500 miles stretch of a highway occur at a rate of one
per 20 miles. What is the chance that there is at most 26 accidents on that
stretch?

Solution: The total number of accidents X is a Poisson random variable (as we noted
on page 45) with average 500/20 = 25. By Central Limit Theorem X ≈ Y = N (25, 25).
Applying correction for continuity gives

P(X ≤ 26) ≈ P(Y < 26.5) = Φ

(
26.5− 25√

25

)

= 1− Φ(0.3) = 0.6179.

(The exact probability, by Poisson formula, is 0.629386, so our approximation is quite
good, despite λ = 25 being no so very large.)

Example

Let Sn be the sum of n independent uniform U(0, 1) random variables. Ap-
proximate Sn by a normal.

Solution: Recall that E(X) = 1/2 and Var(X) = 1/12 (page 97). Hence, E(Sn) = n/2 and
Var(Sn) = n/12. We thus get

Sn ≈ N (n/2, n/12).

When you use this rule, do not apply correction for continuity (uniform random variable
is continuous).
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Generating Normal Random Variable by Computer

The above example suggests a simple and popular method of generating a
standard normal random variable Z = N (0, 1) by computer. It is convenient
to pick n = 12, then S12 ≈ N (6, 1), so that S12 − 6 ≈ N (0, 1). A simple
computer code calls a standard random number generator 12 times, adds the
resulting 12 numbers, subtracts six from the sum, and that’s it!

If you need to generate any normal variable Y = N (µ, σ2), then generate
Z as above and compute Y = µ+ σZ.

Below is a short computer code (in two popular languages, FORTRAN and
C) that does the job. RAND is the call of a random number generator
producing a uniform random value on (0, 1).

FORTRAN: Z=-6.0 C: Z=-6.0;

DO 1 I=1,12 for (i=0;i<12;i++)

1 Z=Z+RAND Z=Z+RAND;

Y=MU+SIGMA*Z Y=mu+sigma*Z;

Extra note: the above method for generating normal random variables is
simple but not precise. There is a more sophisticated method that produces
precise normal distributions, but it is beyond the scope of this course.

Last Example

One plays a game repeatedly, each time either winning $1 with probability
p or losing $1 with probability q = 1 − p. Let Sn be the total gain (or loss)
after playing n rounds. Approximate Sn by a normal random variable.

Solution: We can represent Sn = X1 + · · · + Xn, where Xi = ±1 are gains/losses in
individual rounds. Note that each Xi is a random variable that takes two values: +1 with
probability p and −1 with probability q = 1− p. Then we have

E(Xi) = 1 · p+ (−1) · q = p− q = 2p− 1

and
Var(Xi) = E(X2

i )− [E(Xi)]
2 = 1− (2p− 1)2 = 4p− 4p2 = 4pq.

Hence, E(Sn) = (p− q)n and Var(Sn) = 4pqn. Thus our normal approximation is

Sn ≈ N
(
(p− q)n, 4pqn

)
.

This example serves as a bridge to the next chapter of the course.
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Chapter 16

Random Walks (Gambler’s Ruin)

Gambler’s Capital

A gambler plays repeatedly, each time winning $1 with probability p or losing
$1 with probability q = 1 − p. He starts with x dollars, and after n games
possesses Sn dollars. Approximate Sn by a normal random variable.

Solution: The only difference here from Last Example of Chapter 15 is the given initial
capital of x dollars. Hence, after n games the gambler has

Sn = x+X1 + · · ·+Xn (29)

dollars. Therefore

E(Sn) = x+ (p− q)n and Var(Sn) = 4pqn

and
Sn ≈ N

(
x+ (p− q)n, 4pqn

)
. (30)

Capital

Rounds of game

x

1 2 3 4 . . .

wins

losses

x+1

x-1

n

Sn
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Fair Game (Symmetric Case p = q)

It is interesting to see how Sn evolves in the distant future, i.e. asymptotically,
as n → ∞. We first examine the “fair game” situation, where p = q = 1/2.
It is a symmetric process, where Sn is equally likely to go either way, up or
down. The expression (30) on page 121 takes form

Sn ≈ N (x, n). (31)

Hence, Sn is approximately normal with a constant mean value (= x) and a
growing standard deviation σ =

√
n. This means that:

(a) on the average, Sn remains unchanged (the gambler does not win or lose)

(b) the typical values of Sn are x±√
n, i.e. total gains or losses grow as

√
n.

The typical values of Sn are getting farther and farther away from x
(equally likely in both directions) as n grows. Loosely speaking, Sn “drifts
away” from x, then comes back and drifts in the opposite direction, comes
back again, etc., each time its journeys away from x are going farther and
getting longer in time. This type of process is called “diffusion” in physics.
The evolution of Sn resembles the diffusion of a molecule in a dense gas.

Capital

Rounds of game n

x

x+  n

x-  n
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Unfair Game (Asymmetric Case p 6= q)

We now examine the “unfair game” situation, when p 6= q. The evolution of
Sn is described by (30) on page 121. The cases p > q and p < q are very
similar to each other, we will only look at the case p > q, i.e. where the
gambler is more likely to win than lose. (Not realistic, eh? Well, think of
the casino owner then – in each game played by the customers, the casino is
more likely to win than lose.)

Put µ = p− q (mean gain per game) and σ =
√
4pq. Then (30) reads

Sn ≈ N (x+ µn, σ2n).

Now Sn is approximately normal with a growing mean value x + µn and a
growing standard deviation σ

√
n. That is,

Sn ≈ x+ µn± σ
√
n

Thus Sn grows on the average, and its typical deviations from the average
keep growing, too. Typically, Sn goes up, but not monotonically or steadily,
it fluctuates up and down, as it grows. As time goes on, its average value
grows, but the fluctuations, too, are getting larger and more violent. Pretty
much like the stock market...

Capital

Rounds of game n

x

x+µn+σ  n

x+µn-σ  n

x+µn
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From the point of view of the casino owners, these are two competing
processes: one (growth on the average) is good, it makes them richer and
their business stronger. The other (growing fluctuations) is bad, it brings
risk: a random downturn may erase their earnings or even ruin them. A
vital question is then: Which process is stronger:

(i) the steady growth of the average or (ii) growing random fluctuations?

The ultimate answer is: the steady growth is always stronger. The mean
value grows as x+µn, i.e. linearly in n. The fluctuations (typical deviations)
grow as σ

√
n, i.e. as n1/2, which is much slower than n, because n1/2 ≪ n

for large n.

Employing the language of physics, Sn behaves as a molecule in a dense
gas that is slowly blown by a light wind in a certain direction with a constant
speed µ > 0. Then the molecule slowly drifts with the gas and at the same
time wonders about randomly between other molecules. Thus the drift is
combined with diffusion.

Random Walks

In probability theory, another pictorial description of the above process is
more customary. A drunk person walks on a street, making each step ran-
domly, either forward with probability p or backward with probability q. If
he starts at a point x, then his position after n (random) steps will be Sn.

This is a random walk on a line. One can make a random walk on a
2D surface (xy plane), where a drunk makes a step forward or backward or
sideways (either left or right) with, say, the same probability 1/4. A more
advanced (but difficult to realize in practice) model is a random walk in 3D
space: a drunk person (or let us just say, a moving particle) makes steps
forward or backward, left or right, up or down, with the same probability
1/6. This model describes, quite accurately, the motion of a molecule in a
real 3D gas.
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Restricted Random Walks

In practice, random walks are often restricted. A gambler cannot afford to
have his capital Sn drop below zero - when he loses his initial capital (i.e.
when Sn = 0), then his gambling is over for him. Most gamblers (at least the
wiser ones) set an upper limit, too, – they decide in advance to quit when
they reach a certain level Sn = b (the “goal of the day”).

Hence, some random walks have to stop as they reach certain limits: a
lower bound = a, or an upper bound = b, or both. (In practice often the
lower bound a is zero, but we do not require that.) Such random walks are
said to be restricted. If just one bound is set (lower or upper), then we have
a one-sided restricted random walk.

Parameters of Restricted Random Walks

For a restricted random walk, the normal approximation (30) does not fully
apply. In fact, if the random walk has two restrictions, a ≤ Sn ≤ b, then
the normal approximation tells us that sooner or later Sn will hit one of
the bounds, it cannot stay in the interval (a, b) forever. Hence, a two-sided
restricted random walk necessarily stops. It stops at some (random) time
T ≥ 1 and its value ST is final, it will never change again. Such a walk can
be then characterized by three parameters: the probabilities Pa = P(ST = a)
and Pb = P(ST = b) of stopping at a and b, respectively, and the mean
lifetime E(T ). We note that since the random walk stops either at a or at b,
we have the relation

Pa + Pb = 1.

If the random walk has just one restriction, say, Sn ≥ a, then it may either
stop at a at a random time T with probability Pa, or evolve indefinitely
(without coming down to a). Again, the mean lifetime E(T ) is a relevant
parameter.

Wald’s Identity

According to formula (29) on page 121, at the stopping time n = T we
have

ST = x+X1 + · · ·+XT .

Recall also that E(X) = p−q = µ. The following equation then looks natural
(but we omit the argument):

E(ST ) = x+ µ · E(T ). (32)
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It is known as Wald’s identity. In the case of two restrictions, ST only takes
values a and b, hence E(ST ) = aPa + bPb, so Wald’s identity reads

aPa + bPb = x+ µ · E(T ). (33)

This is a very helpful relation.

Two Sided Restrictions: Symmetric Case

In the case p = q = 1/2 we have µ = 0, so the Wald’s identity (33) reads

aPa + bPb = x.

We also have Pa+Pb = 1, so solving these two equations for Pa and Pb gives

Pa =
b− x

b− a
and Pb =

x− a

b− a
.

The mean lifetime E(T ) can be found from another Wald’s identity:

Var(ST ) = σ2
E(T ).

From this, it is easy to find (we omit details) that

E(T ) = (x− a)(b− x).

Example

You play with a friend by flipping a coin. If it comes up Heads, you win $1,
otherwise you lose $1. You start with $10 and plan to stop when your capital
is $50. What is the probability that you will reach your goal? What is the
mean number of times you will play?

Solution: We assume the coin is fair, so that p = q = 1/2. We have x = 10, a = 0
(obviously) and b = 50. Then the probability of winning is

P50 =
10− 0

50− 0
= 0.2.

So, your chances to hit $50 are not so high, just 20%. The mean number of games is
E(T ) = (10− 0)(50− 10) = 400. Quite a long affair, too!

Suppose you want to increase your chances to win and decide to bet $5
instead of $1 each time. Does it help? Now it is convenient to treat $5 as a
unit (one step). Then, in these new units, x = 2, a = 0 and b = 10. So we
have Pwin = (2−0)/(10−0) = 0.2. The same as before! You can easily check
that even if you bet $10 each time, nothing will change, still Pwin = 0.2.
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Two Sided Restrictions: Asymmetric Case

In the case p 6= q we have µ 6= 0, so the Wald’s identity (33) gives

E(T ) =
aPa + bPb − x

p− q
. (34)

It remains to find Pa and Pb, for which special formulas exist:

Pa =
(q/p)x−a − (q/p)b−a

1− (q/p)b−a
and Pb =

1− (q/p)x−a

1− (q/p)b−a
.

(in practice, it is easier to compute Pb as above and then Pa = 1− Pb.)

Example

You play roulette in a casino. A roulette wheel has 18 red spots and 18 black
spots and 2 green spots. You can bet $1 on red or black. If it comes up
green, the casino wins either way. So, your chances to win are 18/38=9/19.
You start with $10 and plan to stop when your capital is $50. What is the
probability that you win? What is the mean number of times you will play?

Solution: We have p = 9/19 and q = 1− p = 10/19. The game is asymmetric, i.e. unfair,
but it seems to be unfair just slightly... Well, let us compute the chances. As before, we
have x = 10, a = 0 and b = 50. Then the probability of winning is

P50 =
1− (10/9)10

1− (10/9)50
= 0.0097

and the mean number of games is

E(T ) =
0 · (1 − 0.0097) + 50 · 0.0097− 10

−1/19
= 180.8.

Now compare these results to those in the previous example. The chances to win drop
from 20% to below 1%! Though the game seems to be just slightly unfair, in the end it
turned out to be an almost certain ruin of the gambler... The good news is that it will be
over much sooner, after just 180 rounds instead of 400...

Suppose you want, as in the previous example, to increase your chances to
win and decide to bet $5 instead of $1 each time. Does it help now? Again,
we treat $5 as a unit (one step). Then, in these new units, x = 2, a = 0 and
b = 10. So we have

Pwin =
1− (10/9)2

1− (10/9)10
= 0.1256.
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Notice a dramatic improvement to over 12% from under 1%. Better yet, you
can bet $10 each time and get

Pwin =
1− (10/9)

1− (10/9)5
= 0.1602.

Wow! This is 16%, almost as high as 20% in the fair game of the previous
example. The moral of this story is this: if you have to risk in an unfavor-
able situation, when the odds are against you, risk “big”. The longer you
play (trying to achieve your goal in small steps), the more odds against you
accumulate, and you will almost certainly lose.

One Sided Restrictions: Symmetric Case

We now consider a one-sided restriction Sn ≥ a (a lower bound is set, but no
upper bound). The other case, when only an upper bound is set, is symmetric
and left as an exercise.

In the case p = q = 1/2 (a symmetric walk) we use the formulas for Pa

and E(T ) on page 126 and take the limit as b → ∞ (the logic is: moving the
upper bound b to infinity will effectively eliminate it and give us a walk with
one-sided restriction). We obtain

Pa = 1 and E(T ) = ∞

This means that in a fair game with one restriction, the random walk hits
the lower bound a and stops, sooner or later. This is consistent, by the way,
with the diffusive character of the random walk observed on page 122: the
deviations from the mean value x become longer and longer and go both
ways, up and down. Hence, no matter where the bound is set, it will be hit
eventually terminating the walk.

A surprise comes with the formula E(T ) = ∞. This means that in prac-
tice, it takes arbitrary long (one can say, “indefinitely long”) to stop a sym-
metric random walk with one restriction. If you are lucky, the walk will drift
to the bound and hit it. But it may well drift in the opposite direction and
stay there very, very long time.
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One Sided Restrictions: Asymmetric Case

Here we examine a one-sided restriction Sn ≥ a, but p 6= q (an asymmetric
walk). We use the formulas for Pa and E(T ) on page 127 and take the limit
as b → ∞. There are two distinct cases here.

Assuming p < q we obtain

Pa = 1 and E(T ) =
x− a

q − p

The first result comes at no surprise: if the chances to lose (step down) are
higher than the chances to win (step up), then sooner or later the lower
bound Sn = a will be hit (this was so even in the symmetric case p = q).
But now it will not take indefinitely long time: the average lifetime is finite.

Assuming p > q we obtain

Pa = (q/p)x−a and E(T ) = ∞

Now the random walk does NOT have to hit the lower bound! With a pos-
itive probability, 1 − Pa, it may stay above it and live forever. The average
lifetime is, obviously, infinite. This is consistent with the “drift+diffusion”
model of the random walk given on page 123: the drift upward is stronger
than the diffusion, so it takes the values Sn up to infinity eventually. If the
walk escapes the deadly encounter with the bound a during the early period
(when it may drift dangerously close to a), it will live forever.

Example

A person plans to open a casino with just one roulette and allow the cus-
tomers to bet $1 each round. The prospective owner wants to minimize risk
and deposit an initial capital x, so that his chances to go broke (hit zero)
will be less that 0.01%. How much money does he need to deposit before he
opens the business?

Solution: The casino owner wins when the customer loses, i.e. with probability p = 10/19,
see 16.10. Hence, q = 1−p = 9/19. So we have P0 = (q/p)x = 0.9x. We need P0 < 0.0001.
Equating 0.9x = 0.0001 we get x = 87.4. Therefore, an initial capital of $88 will suffice.

Notice how small an initial capital is required to secure an almost guaranteed success
when the odds are in your favor! Even when the game looks “almost” fair to the other
party (their chances in each game are 9/19 = 47.4%, just slightly below 50%), the bias
in favor of the casino owner accumulates from game to game and practically denies the
customers any chance in the end.
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The rest of Chapter 16 is optional material.

Hit Probabilities in Symmetric Random Walk

Suppose a symmetric random walk (with p = q = 0.5) starts at x and has
two-sided restrictions a ≤ Sn ≤ b. We want to find the probability P (x, y)
that it hits another point y 6= x before it stops.

Suppose that y > x. Then we note that the random walk Sn only has
two options: hit a and stop before reaching y, and hit y (of course without
hitting a earlier). These are the same options as for a random walk with
restrictions at a and y (instead of b). By the equations on page 126 we have

P (x, y) =
x− a

y − a

Suppose that y < x. In a similar way, the random walk Sn only has two
options: hit b and stop before reaching y or hit y (of course without hitting
b earlier). These are the same options as for a random walk with restrictions
at b and y (instead of a). By the equations on page 126 we have

P (x, y) =
b− x

b− y

Example

You play with a friend by flipping a coin. If it comes up Heads, you win $1,
otherwise you lose $1. You start with $10 and plan to stop when your capital
is $50. What is the probability that you ever hit $40?

Solution. We have

P (10, 40) =
10− 0

40− 0
= 0.25
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Return Probabilities in Symmetric Random Walk

Suppose a symmetric random walk starts at x and has two-sided restrictions
a ≤ Sn ≤ b. We want to find the probability P (x, x) that the walk ever
returns to x (before stopping at either a or b).

After starting at x, the walk jumps either to x − 1 or to x + 1, with
the same probability 1/2. Now we can use the formulas P (x − 1, x) and
P (x+ 1, x) developed in 16.14 to find the probability to hit x again:

P (x, x) =
1

2
· P (x− 1, x) +

1

2
· P (x+ 1, x)

=
1

2
· x− a− 1

x− a
+

1

2
· b− x− 1

b− x
= 1− b− a

2(b− x)(x− a)

Example (continued)

In the previous example, what is the probability that you ever have exactly
$10 again?

Solution. We have

P (10, 10) = 1− 50− 0

2(50− 10)(10− 0)
=

15

16

Number of Returns in Symmetric Random Walk

Now we want to find the mean number G(x, x) of returns to x (before the
walk stops at either a or b).

After starting at x, the walk can return to x with probability P (x, x).
If it does return to x, it will evolve again starting from x, as if nothing
happened before. Hence, again the probability of return to x is P (x, x).
So, considering successive returns to x, we see that after each return the
walk can return again with probability P (x, x) or stop (die) with probability
1−P (x, x). It is therefore a sequence of trials till the first success – the trials
are returns and the “success” is the termination (death) of the random walk
before another return occurs. One can conclude that the number of returns
plus one is a geometric random variable. Therefore, its mean value is

G(x, x) =
1

1− P (x, x)
− 1 =

P (x, x)

1− P (x, x)
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Example (continued)

In the previous example, what is the mean number of times that you get
back to exactly $10 before the game ends either way?

Solution. We have

G(10, 10) =
15/16

1− 15/16
= 15

Note: it was not a good idea to set such a high goal ($50) in the first place:
this was a fair game where you started with just a ten. Your chances to win
the entire match were 20% (page 126). But now we see that before you lose,
you will come back to $10 as many as 15 times (on the average), so you will
have enough time to reconsider your goal...

Returns in Symmetric Random Walk Without Restrictions

Suppose a symmetric random walk starts at x with no restrictions on either
side. We want to find the probability P (x, x) of ever coming back to x and
the mean number G(x, x) of returns.

We simply take the limit as a → −∞ and b → ∞ in the expressions
obtained above. We get

P (x, x) = 1 and G(x, x) = ∞

This means that the random walk starting at x will come back with probabil-
ity one, and it will do so infinitely many times. For this reason, the random
walk is said to be recurrent.

In fact, the recurrence is consistent with the diffusive character of the
random walk observed on page 122: the deviations from x must always go
both ways, up and down. In order to go from above x to below x or vice
versa the walk has to cross the point x.
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Returns in Symmetric Random Walk in 2D and 3D

On page 124 we described random walks in plane (2D) and space (3D).
In each case the walk has the same probability to jump in each available
direction (1/4 on the plane and 1/6 in the space), so there is a complete
symmetry. The diffusive character of the walk consists of growing deviations
from x in all possible directions, as time goes on.

But now, unlike the 1D walk, the 2D and 3D walks do not have to cross
x in order to change the direction of deviation: they can come back close to
x, go around x, and then evolve in another direction... So, it is not quite
clear whether the symmetric random walk in 2D or 3D is recurrent or not.
You can make your best guess.

The answer is that the 2D walk (on the plane) is still recurrent, the walk
comes back exactly to the starting point x with probability one, and it does
so infinitely many times.

But the 3D walk (in the space) is not recurrent anymore. In 3D, the
probability to come back to the starting point x is less than one (it is about
35%) and the average number of returns is not infinite (it is actually quite
small – just 0.5 returns, on the average).

This brings up a philosophical question: why do we live in a 3D world?
Is there any substantial difference between the 3D world and the 2D world,
except the obvious lack of one dimension in the latter? The probability
theory gives one substantial but not obvious difference: the non-recurrence
of 3D random walks. Maybe this has something to do with the physics of
gases and fluids...
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Chapter 17

Poisson Process (optional)

Reminder

We introduced Poisson Process on page 45. Here we study it more deeply
and formally.

Recall that Poisson process is a sequence of random points on a line
such that the locations of those points is random and even their number in
any given interval is random. The average number of those points per unit
length is denoted by λ > 0 and is called the density or rate; it is a numerical
parameter of the whole process.

Number of Points within Intervals

Let (a, b) be a given interval (segment) on the line. The number of random
points of the process in this segment N(a,b) is a Poisson random variable with
parameter λ(b− a):

N(a,b) = poisson(λ(b− a))

Also, if (a, b) and (c, d) are two disjoint (non-overlapping) intervals, then
N(a,b) and N(c,d) are independent random variables.

Waiting Times (inter-arrival times)

Intervals between successive points in a Poisson process are called waiting
times or inter-arrival times. If 0 < P1 < P2 < · · · are the successive points,
then W1 = P1, W2 = P2 − P1, . . . are waiting times. The term is motivated
by the applications where calls or customers arrive at random times, and
between successive arrivals the business “waits”.

Each Wk is an exponential random variable with parameter λ. The pa-
rameter does not depend on k, so all waiting times have the same expo-
nential distribution, i.e. each Wk is exponential(λ). Also, the waiting times
W1,W2, . . . are independent.
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Meaning of λ

Let (a, a + T ) be a long interval in the Poisson process. The number of
points on this interval is a Poisson random variable with parameter λT . Its
mean value is λT . So, we expect, on the average, λT points on the interval
(a, a + T ). If we have N ≈ λT points on the given interval, they partition
it into ≈ λT subintervals (waiting times). Hence, the average length of a
waiting time is expected to be T/(λT ) = 1/λ. Is it correct? Yes, the wait-
ing times between successive intervals are exponential random variables with
parameter λ. The mean value of such a random variable is exactly 1/λ. So,
all our estimates are consistent.

Example

On a long stretch of a highway, accidents occur at a rate of one per 20 miles.
You drive a car on this highway and pass two accidents in a row. What are
chances that no more accidents occur within the next 40 miles?

Solution. The waiting times are independent of each other, so it does
not matter how many accidents you have passed. The probability that the
interval to the next accident (“the waiting time”) is longer than 40 miles is

P(W > 40) = 1− FW (40) = 1− (1− e−λ·40) = e−2

since λ = 1/20 (one accident per 20 miles).

Note: if you enter the highway at any point, the distance from your en-
try point to the nearest accident would be the same, an exponential random
variable with parameter λ = 1/20.

Example (continued)

What are the chances that on a given stretch of 10 miles of the highway more
than one accident occur?

Solution. The number of accidents N on that stretch of the highway is a
Poisson random variable with parameter 10/20 = 0.5. Hence,

P(N > 1) = 1− P(N = 0)− P(N = 1) = 1− e−0.5 − 0.5e−0.5 = 0.09
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Paradox

Suppose that, as in the previous example, accidents on an east-west highway
occur at a rate of one per 20 miles. Hence, the intervals between accidents
are exponential random variables and the average interval is 20 miles.

Now suppose you enter the highway at some point P . The distance from
your entry point to the next accident to the east, call it We, is a “waiting
time”, so it has an exponential distribution with the mean value 20. At the
same time, the distance from your entry point to the next accident to the
west, call it Ww, is also a “waiting time”, so it has an exponential distribution
with the mean value 20, too. Hence, their sum We +Ww has the mean value
20 + 20 = 40.

One the other hand, the sum We + Ww is exactly one interval between
two successive accidents! Hence, it is a “waiting time” itself. So, its mean
value must be 20, rather than 40. What is wrong?

Paradox Solved

Actually, We + Ww has mean value 40, rather than 20. Why? Because of
the way we select that interval. Each interval between successive accidents
has mean value 20, indeed, but some intervals are smaller and some other
intervals are larger. When you enter the highway at some point, you are
more likely to hit a larger interval between successive accidents than a smaller
interval. This is quite clear. Therefore, this is not a random interval, it is an
interval selected with some preference, the choice is “biased” toward longer
intervals.

Making a preferred selection puts additional restrictions on the probabil-
ity distribution and changes the mean value (and everything else).
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Poisson Process in Plane and Space

Above we discussed Poisson processes on a line. One can consider Poisson
processes on a plane or in space. If random points occur on a plane, with a
given average density of λ (per unit area), then we have a Poisson process on
the plane. Examples: accidents (or fires or crimes) that occur in a big city,
mushrooms that grow in a forest, etc.

If random points occur in space, with a given average density of λ (per
unit volume), then we have a Poisson process in space. Examples: molecules
in a gas or a fluid, explosions in the air during fireworks, etc.

Number of Points in Given Region

Let R be a given region on the plane (or in space) where a Poisson process
with the average density λ occurs. Denote by NR the number of random
points of the process in this region. Then NR is a Poisson random variable
with parameter λ|R|. Here |R| is the area of R on the plane (or the volume
of R in space). So we have this:

NR = poisson(λ|R|)

Also, if R1 and R2 are two disjoint (non-overlapping) regions, then NR1 and
NR2 are independent random variables.

Example

Let R1 and R2 be two overlapping regions. Then the random variables NR1

and NR2 are dependent. Find their covariance Cov(NR1 , NR2).

Solution. Denote by D0 = R1 ∩ R2 the common part of R1 and R2.
Let also D1 = R1 \ D0 and D2 = R2 \ D0. Now all the three regions D0,
D1, and D2 are disjoint. So, the random variables ND0, ND1 , and ND2 are
independent. Also, obviously, NR1 = ND0 + ND1 and NR2 = ND0 + ND2 .
Therefore,

Cov(NR1 , NR2) = Cov(ND0 +ND1 , ND0 +ND2)

= Cov(ND0 , ND0) + 0 + 0 + 0 = Var(ND0) = λ|D0|

In the last step we used the fact that the variance of a Poisson random
variable with parameter λ was equal to λ.
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Example

Suppose we have a Poisson process in space with average density λ. Pick a
point O in space (call it the origin) and let X be the distance from O to the
nearest point in the process. Find the distribution function of the random
variable X .

Solution. We have

FX(x) = P(X ≤ x) = 1− P(X > x)

The condition X > x means that the nearest point of the Poisson process is
farther than x (units of length) from the origin O. That is, the ball of radius
x, call it Bx, contains no points of the process. Hence,

FX(x) = 1− P(NBx = 0) = 1− e−λ|Bx| = 1− e−
4
3
λπx3

In the last step we used the fact from elementary geometry that the volume
of a ball of radius x was 4

3
πx3.
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Chapter 18

Additional Reading for Graduate Students

Note: this material is for MA 585 students. Read it before you attempt
graduate homework exercises.

Stirling’s Formula

Recall that if X is a binomial random variable, b(n, p), then its probabilities
are given by

P(X = m) =
n!

m! (n−m)!
pm qn−m, for m = 0, 1, . . . , n

where q = 1 − p. The factorials here are extremely hard to compute in
practice, when m and n are large. The Stirling’s formula helps a lot:

n! ≈
√
2πn

(n

e

)n

.

Extra note: A little more precise version of Stirling’s formula is

n! =
√
2πn

(n

e

)n

eεn ,

where
1

12n+ 1
< εn <

1

12n
,

but we will not use this.

Let us see how Stirling’s formula helps to compute the binomial proba-
bilities. Denote y = m/n. Then the binomial probabilities become

P(X = m) ≈ 1
√

2πy(1− y)n

(
py(1− p)1−y

yy(1− y)1−y

)n

.

Note: you cannot just use this formula for your homework, you have to derive
it from Stirling’s formula.
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Continuity of Probabilities

In theoretical analysis of probabilities, one often has to deal with an infinite
collection (or sequence) of events A1, A2, . . ., and take a limit as n → ∞.

We say that the sequence of An’s is increasing if A1 ⊂ A2 ⊂ · · · , i.e. each
event is larger than the previous one (An contains An−1). For an increasing
sequence of events, their probabilities P(An) grow with n and approach the
probability of their union, i.e.

lim
n→∞

P(An) = P
(
∪∞
n=1An

)
.

Similarly, we say that the sequence of An’s is decreasing if A1 ⊃ A2 ⊃ · · · ,
i.e. each event is smaller than the previous one (An is contained in An−1).
For an decreasing sequence of events, their probabilities P(An) get smaller
with n and approach the probability of their intersection, i.e.

lim
n→∞

P(An) = P
(
∩∞
n=1An

)
.

This two laws are called the continuity of probabilities.

As an example, let X be a uniform random variable U(0, 1). Let us find
the probability P(X is rational). This seems to be a complicated question.
(One näıve answer: since X is either rational or irrational, then the proba-
bility of each of these two events is 0.5. This answer is incorrect.)

Let A1 = {X = 1/2}. Obviously, P(A1) = 0, because X is a continuous
random variable, hence it takes each value with probability zero. Let

A2 = {X = 1/3 or 1/2 or 2/3}

You can easily show that P(A2) = 0 as well (do that!). Now let

A3 = {X = 1/4 or 1/3 or 1/2 or 2/3 or 3/4}

Again, you can easily show that P(A3) = 0. Note the pattern and guess what
A4 should be, and then An for any n ≥ 1. Argue that P(An) = 0 for every
n ≥ 1. Lastly, note that A1 ⊂ A2 ⊂ A3 · · · and their union ∪∞

n=1An is exactly
the event {X is rational}. Finally, find the limit

P(X is rational) = P
(
∪∞
n=1An

)
= lim

n→∞
P(An)
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Distribution Function for Discrete Random Variables

Here we describe distribution functions for discrete random variables. For
example, let X be the number of Heads in three tosses of a coin (page 25).

We compute its distribution function F (x) as follows. Say, F (−1) = 0,
because the event X ≤ −1 is impossible. Next, F (0) = 1/8, because the
event X ≤ 0 occurs only when X = 0. Then, F (0.6) = 1/8, as the event
X ≤ 0.6 occurs only if X = 0. Then, F (1) = 1/2 because the event X ≤ 1
occurs if X = 0 or X = 1, i.e. two values of X (X = 0 and X = 1) are
covered by this event, etc.

The resulting graph of F (x) is shown below.

-

6

bq a
q a

q aq

0

1/8

1/2

7/8

1

Distribution function of X .

The graph is a “staircase” with “steps” going up from left to right. The steps
are straight horizontal segments. Left endpoints are included (shown by solid
circles), right endpoints are excluded (shown by hollow circles). The function
has discontinuities (“jumps”) at all values that are actually taken by X , i.e.
at 0, 1, 2, 3. The height of each jump is the corresponding probability, i.e.
the jump at X = x equals P(X = x).

These are general rules for distribution functions of discrete random vari-
ables. Note that such variables have no density functions in the sense of
Chapter 5 (because F (x) cannot be differentiated at discontinuity points).

141



Transformations of Pairs of Random Variables

Suppose X and Y are two random variables with a joint density function
fX,Y (x, y). Let D denote the domain of possible values of these random
variables, i.e. the domain (in the xy-plane) where fX,Y (x, y) > 0. Next,
let u(x, y) and v(x, y) be two functions, each with two arguments, x and y.
Define two new random variables by

U = u(X, Y ) and V = v(X, Y ).

We want to find the joint density fU,V (u, v) of the pair, U and V .
Generally, this is difficult. But it is relatively easy under one condition:

the functions u, v are one-to-one in the following sense: for any pair of num-
bers U, V the system of equations

U = u(X, Y ) and V = v(X, Y )

has at most one solution in the domain D; i.e. there is at most one pair of
numbers (X, Y ) ∈ D that satisfies both equations.

Now the density fU,V (u, v) of U and V is given by

fU,V (u, v) =
fX,Y (x, y)

J(x, y)
.

Here x, y is the unique pair in D that satisfies the two equations

u = u(x, y) and v = v(x, y)

and J(x, y) is the so-called Jacobian factor. To compute J , you need to
calculate the 2× 2 matrix of partial derivatives

M =

[
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

]

,

then J would be the absolute value of its determinant:

J(x, y) =
∣
∣detM

∣
∣.

This rule can be explained as follows. The density of a pair of random vari-
ables can be thought of as the “probability per unit area”, and the Jacobian
J is the factor by which the area changes when the x, y plane is transformed
onto the u, v plane.
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How do we check that the functions u, v are one-to-one? It is enough to
check that J cannot be zero within the domain D, i.e., J(x, y) 6= 0 for all
(x, y) ∈ D.

Example

SupposeX and Y are independent uniform random variables, both U(0, 1).
Define two new random variables U = X +Y and V = X

X+Y
. Find a formula

for the joint density function fU,V (u, v).

Solution: The joint density function fX,Y (x, y) is

fX,Y (x, y) = fX(x)fY (y) = 1 · 1 = 1

for 0 < x < 1 and 0 < y < 1, i.e., in the unit square D = {0 < x, y < 1}.
Next, our functions are u = x + y and v = x

x+y
. The matrix of partial

derivatives is

M =

[
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

]

=

[
1 1
x

(x+y)2
− y

(x+y)2

]

Its determinant is

detM = − x+ y

(x+ y)2
= − 1

x+ y
= −1

u

Since x, y > 0 in D, we have detM < 0 in D, therefore

J =
∣
∣detM

∣
∣ =

1

x+ y
=

1

u

Note that J 6= 0 in D, so our functions are one-to-one, as required.

Finally, the formula for the joint density fU,V (u, v) is

fU,V (u, v) =
fX,Y (x, y)

J(x, y)
=

1

1/(x+ y)
= x+ y = u.
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Independent Random Variables

Two random variables X and Y are independent if for any a < b and c < d
we have

P(a < X ≤ b and c < Y ≤ d) = P(a < X ≤ b) · P(c < Y ≤ d),

which precisely means that X and Y take their values independently. The
above equation can be simplified if X and Y are both discrete or both con-
tinuous. If X and Y are discrete, then their independence means that for
any possible value a of X and for any possible value b of Y we have

P(X = a and Y = b) = P(X = a) · P(Y = b).

This is what we used in example on page 62. If X and Y are continuous,
then their independence means that their joint density function fX,Y (x, y)
satisfies

fX,Y (x, y) = fX(x) fY (y)

for all −∞ < x, y < ∞. This is a necessary and sufficient condition for
independence.

I.I.D. Random Variables

Let X1, . . . , Xn be independent identically distributed (i.i.d.) random
variables. Since they all have the same distribution and the same relation to
each other (mutual independence), they play equal roles in any combination
you make with them.

For example, let U = X1+X2
2 be a new random variable, it has a certain

distribution. If we interchangeX1 andX2 and define another random variable
V = X2 +X2

1 , it would have the same distribution as U . They will have the
same mean values, E(U) = E(V ), the same variance Var(U) = Var(V ), etc.

Another example: the random variables U = X1

X1+X2
and V = X2

X1+X2
have

the same distribution, the same mean value, the same variance, etc.
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