1. (20 pts) The following are quiz scores in a calculus class:

 $0 \quad 18 \quad 9 \quad 17 \quad 1 \quad 20 \quad 9 \quad 7 \quad 14 \quad 9 \quad 4 \quad 12$

(a) Determine the mode, the median, the quartiles and the IQR.

Answers: mode = 9, median = 9, quartiles are 5.5 and 15.5, IQR = 10.

(b) Find the sample mean, the sample variance and the sample standard deviation.

Answers: $\bar{x} = 10$, $s^2 = 42$, s = 6.48.

2. (30 pts) A random sample of size n=30 from $N(\mu,\sigma^2)$ yielded

$$\sum_{i=1}^{30} x_i = 60 \quad \text{and} \quad \sum_{i=1}^{30} x_i^2 = 236$$

(a) Compute \bar{x} and s_x .

Answers: $\bar{x} = 2$, s = 2.

(b) Construct an 80% confidence interval for $\mu.$

Answer: $\bar{x} \pm t_{0.1}(r)s/\sqrt{n} = 2 \pm 1.311 \times 2/\sqrt{30} = 2 \pm 0.48$.

(c) Construct a 90% confidence interval for σ using χ^2 percentiles from Table IV.

Answer: [1.65,2.56].

(d) Construct the shortest 90% confidence interval for σ .

Answer: [1.6,2.49].

(Bonus) Construct a 90% confidence interval for σ using normal approximation.

Answer: [1.67, 2.65]

3. (25 pts) Let x_1, \ldots, x_{15} be a sample from a normal random variable $N(\mu_X, \sigma^2)$ and y_1, \ldots, y_{17} be a sample from a normal random variable $N(\mu_Y, \sigma^2)$. Their sample means are $\bar{x} = 6$ and $\bar{y} = 4$, and their sample variances are $s_x^2 = 16$ and $s_y^2 = 9$, respectively. Give a lower endpoint for a one-sided 95% confidence interval for the difference $\mu_X - \mu_Y$.

Answers: Note that σ 's are equal! So

$$\mu_X - \mu_Y > 6 - 4 - 1.697 \times \sqrt{\frac{14 \cdot 16 + 16 \cdot 9}{30}} \times \sqrt{\frac{1}{15} + \frac{1}{17}} = -0.1$$

4. (25 pts) Let x_1, \ldots, x_n be a random sample from the distribution with probability density function

 $f(x; \mu, \theta) = \sqrt{\theta/\pi} e^{-\theta(x-\mu)^2}$

where μ and $\theta > 0$ are unknown parameters. Find the maximum likelihood estimates for μ and θ . (Note: both parameters are unknown, thus you need to take two partial derivatives of the likelihood function, one with respect to μ , and the other with respect to θ .)

Answer: the likelihood function is

$$L(\mu, \theta) = \left(\frac{\theta}{\pi}\right)^{n/2} e^{-\theta \sum (x_i - \mu)^2}.$$

The log-likelihood function is

$$\ln L(\mu, \theta) = \frac{n}{2} \ln \frac{\theta}{\pi} - \theta \sum_{i} (x_i - \mu)^2.$$

Its partial derivatives are set to zero:

$$\frac{\partial}{\partial \mu} \ln L(\mu, \theta) = 2\theta \sum_{i} (x_i - \mu) = 0$$

$$\frac{\partial}{\partial \theta} \ln L(\mu, \theta) = \frac{n}{2\theta} - \sum (x_i - \mu)^2 = 0$$

Solving these equations gives

$$\hat{\mu} = \frac{1}{n} \sum x_i = \bar{x},$$

$$\hat{\theta} = \frac{n}{2\sum (x_i - \bar{x})^2}.$$