
Computer projects for Mathematical Statistics, MA 486.

Some practical hints for doing computer projects with MATLAB:

You can save your project to a text file (on a floppy disk or CD or on
your web page), so you can come back to the computer lab and resume an
unfinished project at a later date/time.

Some simple commands can be just typed and executed. For example,
X=randn(10,1) produces a vector of 10 random normal numbers, and then
m=mean(X) computes the sample mean. However, you’ll need to do a
larger project, so you’ll need to type all your commands in an m-file. It
should be a text file containing MATLAB commands and (preferably) com-
ments that will help the instructor read it. If you have an m-file (for example,
myfile.m), then you simply open the MATLAB window on the desktop and
type the file name (i.e., myfile), then your project will appear on the screen
and will be executed.

A sample MATLAB file means.m is posted on the instructor’s web page,
you can download it and try it out. The file contains detailed comments
explaining what it does. Your project will have to be larger and more com-
plicated than that file, but you can use that file to start your project.
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Note: projects that are already taken are marked here by ⊗⊗⊗

1. ⊗⊗⊗ Simulate n values of a normal random variable X = N(µ, σ2) (choose
µ and σ > 0 as you like), and compute the sample mean x̄, sample me-
dian m, sample standard deviation s. Plot these quantities as functions
of n on three separate plots (see a general remark in the end). Check
that x̄ and m converge to µ, as n → ∞, and s converges to σ. Which
one converges to µ faster, the sample mean or the sample median? To
be sure, estimate the variance of both x̄ and m for a particular value of
n, such as n = 100 (by generating, say, 10000 different random samples
of size n and computing the sample variance of the resulting estimates
x̄ and m. The estimate with the smaller variance is better).

2. ⊗⊗⊗ Simulate n values of an exponential random variable X with param-
eter λ > 0 (of your choice), and compute the sample mean x̄, sample
median m, sample standard deviation s. Plot these quantities as func-
tions of n on three separate plots (see a general remark in the end). Do
x̄, m, and s converge to any limit values, as n → ∞? What are those
values and how are they related? (To describe the relation, you need
to recall the properties of exponential random variables.) Estimate the
variance of both x̄ and m for a particular value of n, such as n = 100
(by generating, say, 10000 different random samples of size n and com-
puting the sample variance of the resulting estimates x̄ and m). The
estimate with the smaller variance is better.

3. Simulate n = 10000 values of a variable X with a triangular density
function is

f(x) =

{
2x for 0 < x < 1

0 elsewhere

Use the rejection method. For the ‘auxiliary’ random variable Y use
the uniform U(0, 1). Plot the histogram of the resulting values. Does
it look like a triangle? Compute the theoretical mean and variance
of the above distribution and compare them to the sample mean and
variance.

Also count the number of times m you had to call the random number
generator (it is of course greater than n = 10000) and compute the
ratio n/m. It is consistent with its theoretical value of 1/c given in
Section 2.9 of classnotes?
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4. Simulate n values of the Cauchy random variable X, whose distribution
function is

F (x) =
1

2
+

1

π
tan−1 x

Use the inversion method. Note that X has no mean value or variance,
but its median is zero. Then compute the sample mean x̄, sample
median m, sample standard deviation s, and the interquartile range
IQR. Plot these quantities as functions of n on four separate plots
(see a general remark in the end). Determine if x̄ and m converge
to anything, as n → ∞. Explain. Do s and IQR seem to converges
to anything? Explain. Estimate the variance of both x̄ and m for
a particular value of n, such as n = 100 (by generating, say, 10000
random samples of size n and computing the sample variance of the
resulting estimates x̄ and m).

5. “Simulate the number π”. Simulate n uniformly distributed random
points in the square

K = {−1 < x < 1, −1 < y < 1}

Determine the number of points, m, that fall into the unit disk x2+y2 <
1. Note that the probability for a random point to be in the unit disk
is π/4. By the law of large numbers we expect m/n converges to π/4 as
n→∞. Then use 4m/n as an estimate of π. Plot 4m/n as a function
of n and check that it converges to π as n→∞. How big n should be
(give a “ball park” figure) in order for 4m/n to get within ε = 0.001
from π? (Use the central limit theorem.)

6. Simulate n values of a normal random variable X = N(µ, σ2) (choose
µ and σ > 0 as you like), and compute the sample mean x̄ and sample
standard deviation s. The theory claims that these estimates are inde-
pendent. Check this claim experimentally. Repeat this experiment M
times and compute the sample correlation coefficient between x̄ and σ.
Plot this correlation coefficient as functions of M (see a general remark
in the end). Check that it converges to zero, as M →∞ (going up to
M = 10000 would be enough). The value of n should be small, such as
n = 10 or n = 20.

7. Simulate a sample of n = 100 random numbers in which 80 are drawn
from a normal distribution N(5, 1) and the other 20 are drawn from
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a uniform distribution U(−100, 100) (the latter represent “contamina-
tion”, or “background noise”). For this sample calculate (a) the sample
mean, (b) the trimmed sample means discarding 10%, 20%, and 30%
of the data, (c) the sample median. Which estimate appears to be the
most accurate? Repeat this experiment 10000 times and compute the
standard deviation for each of these five estimates. The estimate with
the smallest variance is best.

8. Simulate a sample of n = 100 random numbers in which 50 are drawn
from a normal distribution N(5, 1) and the other 50 are drawn from
a uniform distribution U(−100, 100) (the latter represent a “contam-
ination”, or a “background noise”). For this sample calculate (a) the
sample mean, (b) the trimmed sample means discarding 10%, 30%, and
60% of the data, (c) the sample median. Which estimate appears to be
the most accurate? Repeat this experiment 10000 times and compute
the standard deviation for each of these five estimates. The estimate
with the smallest variance is best.

9. Simulate a sample of n = 100 random numbers drawn from the Cauchy
distribution, whose distribution function is

F (x) =
1

2
+

1

π
tan−1 x

Use the inversion method. Note that X has no mean value or variance,
but its median is zero. Then calculate (a) the sample mean, (b) the
trimmed sample means discarding 10%, 30%, and 60% of the data,
(c) the sample median. Plot these estimates as functions of n (see a
general remark in the end). Which estimate appears to be closest to
zero? Repeat this experiment with a particular value of n (say n = 100)
10000 times and compute the standard deviation for each of these five
estimates. The estimate with the smallest standard deviation is best.

10. ⊗⊗⊗ “Simulate the t-distribution”. Simulate n = 8 values of a normal
random variable N(µ, σ2) (choose µ and σ > 0 as you wish). Then
compute

T =
x̄− µ
s/
√
n

Repeat the experiment 10000 times and plot the histogram of the re-
sulting T-values. Compare it to the density function of the t-random
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variable with n − 1 = 7 degrees of freedom. Superimpose the two
plots to demonstrate their similarity (ideally, they should coincide).
Compute the sample mean and variance and compare them to the the-
oretical mean and variance of the t random variable (see Exercise 5.5-4
in the book).

11. (a) The theory says that if X is a t random variable with one degree
of freedom, then so is 1/X. Verify this claim experimentally: simulate
10000 values of a t random variable with one degree of freedom, plot the
histogram of the sample and the histogram of their reciprocal values.
Compare. (b) The theory also says that if X and Y are two indepen-
dent N(0, 1) random variables, then X/Y is a t random variable with
one degree of freedom. Verify this claim experimentally: simulate two
samples from the N(0, 1) distribution, with 10000 values each. Plot
the histogram of the corresponding ratios xi/yi, 1 ≤ i ≤ 10000, and
compare it with the histograms obtained in step (a).

12. (a) The theory says that if Z is a standard normal random variable
and U is a χ2 random variable with r degrees of freedom, and Z and
U are independent, then T = Z√

U/r
is a t random variable with r

degrees of freedom. Verify this claim experimentally: set r = 10, sim-
ulate 10000 values of pairs (Z,U), compute 10000 values of T and plot
the histogram of the T-values. Superimpose it with the density of the
t random variable with r degrees of freedom provided by MATLAB
to demonstrate their similarity (ideally, they should coincide). Also
compute the sample mean and sample variance. Do they match the
theoretical values of the mean value and variance of t(r)? (see Exercise
5.5-4 in the book). (b) The theory also says that if X is a t random
variable with r degrees of freedom, then X2 is an F random variable
with 1 and r degrees of freedom, i.e. X2 = F (1, r). Verify this claim
experimentally: set r = 10, simulate 10000 values of t(r), compute
their squares, and plot the histograms of the resulting 10000 values.
Superimpose it with the density of the t random variable with r de-
grees of freedom provided by MATLAB to demonstrate their similarity
(ideally, they should coincide). Also compute the sample mean and
sample variance. Do they match the theoretical values of the mean
value and variance of F (1, r)?
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13. ⊗⊗⊗ “Simulate the χ2-distribution”. Simulate n = 8 values of a normal
random variable N(µ, σ2) (choose µ and σ > 0 as you wish). Then
compute

K =
(n− 1)s2

σ2

Repeat the experiment 10000 times and draw a histogram of the result-
ing K-values. Compare it with the density function of the χ2 random
variable with n− 1 = 7 degrees of freedom provided by MATLAB. Su-
perimpose the two plots to demonstrate their similarity (ideally, they
should coincide). Compute the sample mean and sample variance and
compare them to the theoretical mean and variance of the χ2 random
variable.

14. ⊗⊗⊗ “Simulate the χ2-distribution”. Simulate 50 values of a discrete ran-
dom variable that takes values 1, . . . , k with probabilities p1, . . . , pk (set
k = 5 and choose arbitrary positive probabilities). Then compute the
Q statistics. Repeat the experiment 10000 times and draw a histogram
of the resulting Q-values. Compare it to the density function of the
χ2 random variable with k − 1 = 4 degrees of freedom. Superimpose
the two plots to demonstrate their similarity (ideally, they should co-
incide). Compute the sample mean and sample variance and compare
them to the theoretical mean and variance of the χ2 random variable.

15. ⊗⊗⊗ “Simulate the F-distribution”. Simulate x1, . . . , x15 values of a nor-
mal random variable N(µx, σ

2
x) and y1, . . . , y8 values of another normal

random variable N(µy, σ
2
y) (choose the parameters as you wish). Then

compute

F =
s2x/σ

2
x

s2y/σ
2
y

Repeat the experiment 10000 times and draw a histogram of the re-
sulting F-values. Compare it to the density function of the F ran-
dom variable with the corresponding degrees of freedom, provided by
MATLAB. Superimpose the two plots to demonstrate their similarity
(ideally, they should coincide). Compute the sample mean and sample
variance and compare them to the theoretical mean and variance of the
F random variable.

16. ⊗⊗⊗ Simulate n values of a Poisson random variable X = poisson(λ)
(choose λ > 0 as you like), and compute the sample mean x̄, sample
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median m, sample standard deviation s. Plot these quantities as func-
tions of n on three separate plots (see a general remark in the end).
Do these statistics converge to any limit values, as n→∞? What are
those limits? Do your conclusions agree with the theory? Estimate the
variance of x̄ and m for a particular value of n, such as n = 100 (by
generating 10000 random samples of size n and computing the sam-
ple variance of the resulting estimates x̄ and m). Which of these two
estimates is better?

17. Explore the accuracy of the linear least squares fit. Position n = 10
points x1, . . . , xn on the interval [−10, 10] arbitrarily (however, make
sure that

∑
xi = 0), then generate y-values by the formula

yi = α + βxi + εi

(choose α and β 6= 0 as you wish), where εi are normal random vari-
ables N(0, σ2) with σ = 0.2. Then fit a line y = α̂ + β̂x to the data.
Determine the accuracy of the estimates α̂ and β̂ as follows. Repeat
the experiment 1000 times and estimate the mean square error of α̂
and β̂. Then try to rearrange the points x1, . . . , xn to increase the ac-
curacy of the estimates (i.e. minimize the mean square errors). What
arrangement yields the maximum accuracy?

18. Explore the accuracy of the quadratic least squares fit. Position n = 10
points x1, . . . , xn on the interval [−10, 10] arbitrarily (however, make
sure that

∑
xi = 0), then generate y-values by the formula

yi = α + βxi + γx2i + εi

(choose α, β 6= 0, and γ 6= 0 as you wish), where εi are normal random
variables N(0, σ2) with σ = 0.1. Then fit a parabola y = α̂+ β̂x+ γ̂x2

to the data. Determine the accuracy of the estimates α̂, β̂, and γ̂
as follows. Repeat the experiment 1000 times and estimate the mean
square error of α̂, β̂ and γ̂. Then try to rearrange the points x1, . . . , xn
to increase the accuracy of the estimates (i.e. minimize the mean square
errors). What arrangement yields the maximum accuracy?

19. Explore the properties of the linear least squares fit. Position n = 10
points x1, . . . , xn on the interval [−10, 10] arbitrarily, for example, put
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them equally spaced (however, make sure that
∑
xi = 0), then generate

y-values by the formula

yi = α + βxi + εi

(choose α and β 6= 0 as you wish), where εi are normal random variables
N(0, σ2) with σ = 0.2. Then fit a line y = α̂ + β̂x to the data. The
theory says that the estimates α̂ and β̂ are independent. Verify this
claim experimentally. Repeat this experiment N times and estimate
the covariance between α̂ and β̂. Plot this average as functions of N
(see a general remark in the end). Check that it converges to zero, as
N →∞ (going up to N = 10000).

20. This project is larger than others and can be done for some extra credit.
Explore the polynomial fit with various degrees. First, position n = 7
points x1, . . . , xn on the interval [−9, 9] equally spaced, then generate
y-values by the formula

yi = α + βxi + γx2i + εi

(choose α, β, and γ as you wish, but not close to zero), where εi are
normal random variables N(0, σ2) with σ = 0.1. Plot the data, along
with the original parabola y = α + βx + γx2 used in the simulation.
Then fit the polynomial of degree k = 1, 2, 3, 4, 5, 6 to the data. Plot
the polynomials and see how well they approximate the data points and
the original parabola. Compute the RSS (residual sum of squares) and
see how it decreases as the degree k grows. But do the higher degree
polynomials fit the original parabola better or not? Next, use the
“leave-one-out” scheme for cross-validation and recompute the average
RSS for each degree k = 1, 2, 3, 4, 5, 6. Does this one also decrease as k
grows? What degree k yields the smallest the average RSS now? (some
MATLAB code for cross-validation scheme may be obtained from the
instructor.)

21. Let X be a Poisson random variable with parameter λ. Theory claims
that the variable Y =

√
X has an almost constant variance as λ →

∞. Verify this claim experimentally and determine the value of that
constant as follows. Pick a large λ, simulate n = 10000 values of X,
transform them to the values of Y , and compute the sample variance of
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the latter. Repeat this experiment for a few large values of λ to make
sure that the results does not change much. Plot the obtained values,
as a function of λ.

22. Let X be a normal random variable N(λ, λ). Theory claims that the
variable Y =

√
X has an almost constant variance as λ → ∞. Verify

this claim experimentally and determine the value of that constant.
Pick a large λ, simulate n = 10000 values of X, transform them to the
values of Y , and compute the sample variance of the latter. Repeat
this experiment for a few large values of λ to make sure that the results
does not change much. Plot the obtained values, as a function of λ.

23. ⊗⊗⊗ Verify that the random number generator rand produces indepen-
dent values of a uniform random variable. Simulate n values, divide
them into two groups – odd-numbered values and even-numbered val-
ues. Compute the sample correlation coefficient between these two
groups. Plot its value as a function of n, starting at n = 100 and up
to n = 10000 (see a general remark in the end). Does it converge to
zero? Repeat this experiment by dividing the n generated values into
two groups differently: putting numbers with indices 1, 2, 5, 6, 9, 10, . . .
into one group and numbers with indices 3, 4, 7, 8, 11, 12, . . . into the
second group. Do you still observe convergence to zero?

24. ⊗⊗⊗ Verify that the random number generator randn produces indepen-
dent values of a normal random variable. Simulate n values, divide
them into two groups – odd-numbered values and even-numbered val-
ues. Compute the sample correlation coefficient between these two
groups. Plot its value as a function of n, starting at n = 100 and up
to n = 10000 (see a general remark in the end). Does it converge to
zero? Repeat this experiment by dividing the n generated values into
two groups differently: putting numbers with indices 1, 2, 3, 7, 8, 9, . . .
into one group and numbers with indices 4, 5, 6, 10, 11, 12, . . . into the
second group. Do you still observe convergence to zero?

25. Let U and V be independent uniform U(0, 1) random variables. Theory
claims that X =

√
−2 lnU cos(2πV ) and Y =

√
−2 lnU sin(2πV ) are

independent normal random variables. Verify this claim experimen-
tally. Generate n pairs of values of uniform random variables, convert
them to n pairs of X and Y . Put together X values in a vector of
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length n, and put together Y values in a vector of length n. Compute
the sample correlation coefficient between the X vector and the Y vec-
tor. Plot its value as a function of n, starting at n = 100 and up to
n = 10000 (see a general remark in the end). Does it converge to zero?
Redo this experiment by changing the formulas to X = (lnU) cos(2πV )
and Y = (lnU) sin(2πV ). Do you observe independence now?

26. Verify that the random number generator rand produces values of a
uniform random variable U(0, 1). Simulate n values and plot the em-
pirical distribution function. Superimpose it on the actual distribution
function. Do they look similar? Apply Kolmogorov-Smirnov test to
check their similarity. Plot the value dn

√
n as a function of n, starting

at n = 100 and up to n = 10000 (see a general remark in the end).
Does it seem to (a) increase, or (b) decrease, or (c) fluctuate?

27. Verify that the random number generator randn produces values of a
normal random variable N(0, 1). Simulate n values and plot the em-
pirical distribution function. Superimpose it on the actual distribution
function. Do they look similar? Apply Kolmogorov-Smirnov test to
check their similarity. Plot the value dn

√
n as a function of n, starting

at n = 100 and up to n = 10000 (see a general remark in the end).
Does it seem to (a) increase, or (b) decrease, or (c) fluctuates?

28. Verify that the random number generator poissrnd produces values
of a Poisson random variable. Choose a value for the parameter (1
or 2 will do). Simulate n values and plot the empirical distribution
function. Superimpose it on the actual distribution function. Do they
look similar? Apply Kolmogorov-Smirnov test to check their similarity.
Plot the value dn

√
n as a function of n, starting at n = 100 and up

to n = 10000 (see a general remark in the end). Does it seem to (a)
increase, or (b) decrease, or (c) fluctuate?

29. Let U and V be independent uniform U(0, 1) random variables. Theory
claims that X =

√
−2 lnU cos(2πV ) and Y =

√
−2 lnU sin(2πV ) are

standard normal random variables. Verify this claim experimentally.
Generate n pairs of values of uniform random variables, convert them
to n pairs of X and Y , then combine the X and Y vectors into one
vector Z of length 2n. Do that for n = 5000 and draw a histogram
of the resulting 10000 Z-values. Compare it to the density function of
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the standard normal random variable N(0, 1), provided by MATLAB.
Superimpose the two plots to demonstrate their similarity (ideally, they
should coincide). Compute the sample mean and sample variance of Z
and compare them to the theoretical mean and variance of the normal
random variable.

30. ⊗⊗⊗ “Integrate by Monte-Carlo”. Suppose you need to compute a definite
integral I =

∫ b

a
f(x) dx. This can be done by the Monte-Carlo method

that involves random numbers. Generate n (independent) values of a
uniform random variable U(a, b), call them x1, . . . , xn, and compute
Sn = f(x1) + · · ·+ f(xn). Then b−a

n
Sn will approximate I (the higher

n the better). You need to try this method on two integrals:
∫ 3

1
1
x
dx

and
∫ 1

0
1√
x
dx. In both cases, do the computation and plot b−a

n
Sn as a

function of n, starting at n = 100 and up to n = 10000 (see a general
remark in the end). Does your estimate converge to the value of the
integral?

General remark. In many projects, you are supposed to generate a
sample of n values of a certain random variable, compute some statistics and
then plot their values as functions of n. Do this for certain values of n such
as n = 100, 200, 300,. . .,10000. This gives you 100 different values of each
statistic, well enough for a plot. Important: when increasing n from 100 to
200, then from 200 to 300, etc., do not generate a new sample for every new
value of n. Instead, add 100 new values to the old sample (that would make
your plots much smoother and nicer). How to do that in MATLAB? Keep
the vector of the old sample, generate a new vector of 100 random values,
and append it to the old vector. The MATLAB file means.m available from
the instructor’s web page shows how to do this.
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