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1 Exploratory Data Analysis

1.1 Example
In a class of 20 students, the teacher records the following test scores:

16 5 13 14 20 15 18 11 16 12
17 10 18 8 19 13 15 9 11 16

This is what we call raw data, or unprocessed measurements (facts, observa-
tions). Statistics is an art of data analysis, this is its first goal. We will see
how it does that.

1.2 Ordering
The first thing to do is order the available measurements :

5 8 9 10 11 11 12 13 13 14 15 15 16 16 16 17 18 18 19 20

Looking at this row one can see easily that the lowest (worst) score is 5, the
highest (best) score is 20, and typical scores (in the middle) are 13–16. This
is good enough for a start.

1.3 Terminology
A sequence of raw (unprocessed) observed data is called a sample and

commonly denoted by
x1, x2, x3, . . . , xn (sample)

Here n is the number of observed values, called the size of the sample.
An ordered sample is denoted by

x(1) ≤ x(2) ≤ x(3) ≤ · · · ≤ x(n)

so that x(1) is the smallest observed value, x(2) is the second smallest, etc.,
up to the largest value x(n).

In Example 1.1, x1 = 16, but x(1) = 5.
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1.4 Frequency table
There are repetitions in our ordered data (for example, 16 appears three

times). A more compact way to record the ordered data is a frequency table:

20 |
19 |
18 ||
17 ||
16 |||
· · ·
8 |
5 |

1.5 Histogram
Another way to visualize data is constructing a histogram:

4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 20.5

1 1
2

3 3

5
4

2

Here the entire range (from 5 to 20) is divided into eight intervals (bins),
and over each interval a histogram bar is drawn, of size proportional to the
number of data points that fall into that bin. The bins are sometimes called
class intervals, and the midpoint of each interval is its class mark (not shown
here).

The choice of the number of bins and their positions (locations of the
endpoints) is made by statisticians, and it takes experience to construct a
histogram that better demonstrates principal features of the sample.

A histogram usually contains less information than the original sample.
In the above example, scores 15, 15, 16, 16, 16 are combined into one (the
tallest) bar. There is no way to tell how many 15’s and 16’s are, exactly, in
the original sample, if we only see the above histogram. When constructing a
histogram one faces a trade-off: shorter bins retain more detailed information
about the original sample, but longer bins usually make the histogram more
easily readable.
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1.6 Numerical characteristics - 1
A sample can be characterized by certain numerical values (‘summaries’),

such as the smallest and largest measurements. In our sample

min = 5, max = 20, range = 15

(the range is the difference between maximum and minimum).
The sample median is the middle point in the ordered sample. If its size

is even (like n = 20, in our example), then the sample median is the average
of the two middle points. In our case it is

m̃ =
14 + 15

2
= 14.5 (median)

Let us further divide the ordered sample into four equal parts:

5 8 9 10 11
∣∣∣ 11 12 13 13 14

∣∣∣ 15 15 16 16 16
∣∣∣ 17 18 18 19 20

The average value of the data points around the first and third division bars
are called the first and third quartiles, respectively:

q̃1 =
11 + 11

2
= 11, q̃3 =

16 + 17

2
= 16.5 (quartiles)

(of course, the second quartile is the median). The interquartile range is

IQR = 16.5− 11 = 5.5 (IQR)

1.7 Box-and-whisker diagram
It is common to consider the middle 50% of the data (between the first

and third quartiles) as typical values, while the lower 25% and the higher
25% ends of it as unusual, extreme values. This is symbolized by a box-and-
whisker diagram (or, simply, a box plot), whose meaning is quite clear:

5 11 14.5 16.5 20

The two middle boxes are usually short and ‘fat’, representing the bulk
of the sample, while the arms (whiskers) are long and narrow.
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1.8 Numerical characteristics - 2
Other important numerical characteristics of random samples are

sample mean: x̄ =
1

n

n∑
i=1

xi

sample variance: s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

sample standard deviation: s =
√
s2

These are (statistical) analogues of probabilistic notions of mean value, vari-
ance and standard deviation, respectively.

The evaluation of the above quantities is quite laborious, it is best done
with a computer or an advanced calculator. For our sample of students’
scores they are

x̄ = 14, s2 =
307

19
≈ 16, s ≈ 4

One may wonder why the denominator in the formula for s2 is n− 1, and
not simply n. Occasionally we do use n there (see Section 3.20), and the
corresponding characteristic is denoted by

V =
1

n

n∑
i=1

(xi − x̄)2

There is, however, a good reason to prefer n− 1 over n (that is, s2 over V ),
as it is explained below in Section 3.21.

1.9 Mode
The value that occurs most often in the sample is called the mode. In our

sample of students’ scores, it is 16 (it occurs three times).

1.10 Outliers
Observations that lie far from the rest of the sample are called outliers.

In our sample of test scores, there are no obvious outliers, but the value 5
can be regarded as an outlier, to some extend.

Outliers may be produced by unusual (uncharacteristic) random events,
or simply result from human errors in recording data or computer glitches
in transferring data. Outliers are unwanted in common statistical practice,
and certain methods are designed to filter them away.
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2 Simulation (optional; skipped in 2014)

So, statistics deals with observed data. In practice, the data is collected
from observations of real phenomena (students’ scores, stock market index,
weather records, etc.) or measured in experiments (weights of chocolate bars
produced by a candy factory, size of fish caught in a lake, etc.).

Another way of obtaining data, suitable for teaching statistics and for
theoretical research, is computer simulation. This means that computer gen-
erates random numbers, which can be treated and processed as experimen-
tally observed data. Our course includes certain computer projects where
the students use MATLAB to generate random numbers. Given a random
variable X, MATLAB can produce n values x1, . . . , xn of that variable.

2.1 Uniform U(0, 1) random variable
Nearly every computer language and software package includes a basic

random number generator (RNG) that produces values of the uniform ran-
dom variable X = U(0, 1). In MATLAB, the following commands invoke
this basic RNG:

x=rand returns one random number

x=rand(m,n) an m× n matrix of random numbers

In the latter case x will be a matrix of m rows and n columns, consisting of
random values of X = U(0, 1).

2.2 Remark
Theoretically, X = U(0, 1) may take any value in the interval (0, 1), and

every particular value occurs with probability zero. Practically, computers
can only handle finitely many special (binary) numbers, so the RNG returns
only binary numbers between 0 and 1. Depending on the computer arith-
metic, there are about 1010 to 1015 binary numbers between 0 and 1, so each
one comes with a positive probability, and sooner or later they will start re-
peating themselves. (This fact should be kept in mind when doing computer
experiments.) By convention, the RNG is allowed to return 0, but not 1.

2.3 Pseudo-random numbers and resetting RNG
Every computer RNG generates a sequence of random numbers following

a specific algorithm. It always starts with the same number x1, followed
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by the same number x2, etc1. If you want the RNG to produce a different
sequence, you need to change the state of the RNG, or ‘reset’ it. In MATLAB,
the command s=rand(’state’) returns a 35-element vector containing the
current state. Then you can modify it and reset the generator by using one
of the following commands:

rand(’state’,s) Resets the state to s

rand(’state’,0) Resets the RNG to its initial state

rand(’state’,j) Resets the RNG to its j-th state

(here j is an integer),

rand(’state’,sum(100*clock)) Resets it to a different state each time

2.4 Inversion
This method is based on the following fact established in probability

theory: if X is a continuous random variable with distribution function F (x),
then Y = F (X) is a uniform U(0, 1) variable. Conversely, if Y = U(0, 1),
then X = F−1(Y ). Thus one can use random values of Y (produced by the
basic RNG) and compute X by the formula X = F−1(Y ).

This method requires the inverse function F−1(x), which is only available
in a few simple cases (see the next three sections). In general, the computa-
tion of F−1 is prohibitively expensive, so the method is very inefficient.

2.5 Uniform U(a, b) random variable
If X = U(a, b) with arbitrary a < b, then its distribution function F (x) =

(x − a)/(b − a) has a simple inverse F−1(y) = a + (b − a)y. Thus the value
of X can be generated by X = a+ (b− a)Y , where Y = U(0, 1).

2.6 Exponential random variable
If X is an exponential random variable, then its distribution function is

F (x) = 1 − e−x/µ (here µ = 1/λ denotes the mean value of X). It has a
simple inverse F−1(y) = −µ ln(1− y). Thus the value of X can be generated
by X = −µ ln(1− Y ), where Y = U(0, 1).

Note that 1 − Y here may take value 1, but not 0, see the last sentence
in Section 2.2, thus ensuring the safety in the computation of ln(1− Y ).

1For this reason, the numbers returned by an RNG are not purely random; they are
called pseudo-random numbers.
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With MATLAB Statistical Toolbox, you don’t need the above: exponen-
tial random variable can be generated directly by special commands

x=exprnd(u) returns one random value of X

x=exprnd(u,m,n) an m× n matrix of random numbers

where u denotes µ, the mean value of X.

2.7 Cauchy random variable
Cauchy random variableX has distribution function F (x) = 1

2
+ 1
π

tan−1 x,
hence its inverse is F−1(y) = tan(πy − π/2). Thus the Cauchy variable X
can be generated by X = tan(πY − π/2), where Y = U(0, 1).

2.8 Special purpose: normal random variable
The following algorithm is commonly used to generate values of the stan-

dard normal random variable Z = N (0, 1): one generates two values y1, y2

of the uniform variable Y = U(0, 1) and computes

z1 =
√
−2 ln y1 · sin(2πy2)

z2 =
√
−2 ln y1 · cos(2πy2)

This gives two independent values of Z. If you only need one value, you
can use either z1 or z2; but in practice we usually need a long sequence of
independent values of Z, hence it is good to have two at once.

Having generated Z, the variable X = N (µ, σ2) can be obtained by
X = µ+ σZ.

In MATLAB, you don’t need the above formulas: you can generate Z =
N (0, 1) by

x=randn returns one random value of Z

x=randn(m,n) an m× n matrix of random numbers

In addition, MATLAB Statistical Toolbox provides special commands to
generate any normal random variable X = N (µ, σ2)

x=normrnd(u,s) returns one random value of X

x=normrnd(u,s,m,n) an m× n matrix of random numbers

here u denotes µ and s denotes σ (not σ2).

7



2.9 Rejection method
This is the most popular general-purpose algorithm. Suppose we want

to generate a random variable X with density function f(x). Often we can
generate another random variable, Y , with density g(x) (for example, Y
may be uniform, or exponential, or normal), such that Cg(x) ≥ f(x) for
some constant C > 0 and all x.

Then we generate a random value y of Y and accept it if

f(y)

Cg(y)
≥ w

and reject it otherwise; here w is a (separately generated) random value of
W = U(0, 1). The accepted values of Y are taken as random values of X.

This method requires two random values (one for Y and one for W =
U(0, 1)) per value of X, and some pairs of Y and W may be rejected. For
better efficiency, the fraction of rejected values of Y should be small. It is
known that the overall fraction of accepted values of Y is 1/C. In other
words, to generate n values of X one needs, approximately, Cn values of
Y (plus Cn values of W = U(0, 1)). So one wants to make c as small as
possible. To achieve this, select Y whose density g(x) is as similar to the
density f(x) as possible.

2.10 Bernoulli and binomial random variables
Generating discrete random variables requires special approaches. For

example, a Bernoulli random variable X takes two values: 1 with probability
p and 0 with probability q = 1− p. So one can generate a random value y of
Y = U(0, 1) and set

X =

{
1 if y < p
0 otherwise

To generate a binomial random variable X = b(n, p) one can generate n
independent Bernoulli random variablesX1, . . . , Xn and setX = X1+· · ·+Xn

(this is rather inefficient, though).
More generally, if a discrete random variable X takes values x1, x2, . . .

with corresponding probabilities p1, p2, . . ., then one can generate a random
value y of Y = U(0, 1) and set X = xn where n ≥ 1 is the first (smallest)
integer such that

y < p1 + · · ·+ pn.

This method is quite efficient and only requires one call of the basic RNG.
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3 Maximum likelihood estimation (MLE)

3.1 Lottery example
Suppose a person buys 45 lottery tickets in a student fair, and 15 of them

win. What is the fraction of winning tickets in this lottery?
Let us describe this example in probabilistic terms. Denote the fraction of

winning tickets by p. Then each ticket wins with probability p. If someone
buys 45 tickets, then the number of winning tickets is a binomial random
variable X = b(45, p). From probability theory, we know that

P(X = 15) =

(
45

15

)
p15 (1− p)30

Note that the value of the random variable (that is, 15) is known, but the
parameter p is unknown.

3.2 Statistics versus probability theory
In probability theory, random variables are usually completely specified

and their parameters known; the main goal is to compute probabilities of
random values that the variables can take.

In statistics, the situation is opposite. The values of random variables are
known (observed), but their theoretical characteristics (such as types and/or
parameters) are unknown or only partially known. The goal is to determine
the unknown theoretical characteristics of random variables by observing and
analyzing their values.

In this sense, probability theory and statistics are “opposite” (better to
say, complementary) to each other (like derivatives and integrals in calculus).

3.3 Lottery example continued
Intuitively, the fraction of winning tickets appears to be 1/3. Of course,

one can never be sure: the person who bought 45 tickets may be very lucky
(the real fraction may be much smaller) or very unlucky (the real fraction may
be much larger). Nonetheless, 1/3 seems to be the best (most appropriate)
estimate of p, see explanations in Section 3.5.

3.4 Unknown parameters versus estimates
The unknown parameter p cannot be precisely determined, unless one

buys all the lottery tickets. In statistics, unknown parameters can only be
estimated. The value 1/3 presented in Section 3.3 is just our guess. To
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distinguish the unknown parameter p from its estimate, we denote the latter
by p̂, so in our example, p̂ = 1/3 (while the value of p remains unknown).

3.5 Lottery example continued
So why is our estimate p̂ = 1/3 the best? Is there any argument to

support this choice? Yes, here is the argument.
The probability

P(X = 15) =

(
45

15

)
p15 (1− p)30

gives the likelihood of the value X = 15. In this formula, p is an unknown
quantity, a variable, so we can treat it as a function of p:

L(p) =

(
45

15

)
p15 (1− p)30

which is called the likelihood function. It achieves its maximum (see below)
at the point p = 1/3. This value of p is the most likely, or most probable.
Since we select an estimate of p by maximizing the likelihood function L(p),
it is called the maximum likelihood estimate (MLE).

3.6 Computation of p̂
To find the maximum of L(p) it is convenient to take its logarithm:

lnL(p) = ln

(
45

15

)
+ 15 ln p+ 30 ln(1− p)

(this is called the log-likelihood function), and then differentiate it:

d

dp
lnL(p) =

15

p
− 30

1− p

The maximum is achieved at the point where d
dp

lnL(p) = 0, thus we get
equation

15

p
− 30

1− p
= 0

Solving it yields our estimate p̂ = 1/3.
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3.7 MLE for general binomials
More generally, let X = b(n, p) be a binomial random variable with known

n but unknown p, and x an observed value of X. Then

P(X = x) =

(
n

x

)
px (1− p)n−x

and we consider this probability as the likelihood function L(p), where x and
n are known, but p is unknown. The log-likelihood function is

lnL(p) = ln

(
n

x

)
+ x ln p+ (n− x) ln(1− p)

and its derivative is
d

dp
lnL(p) =

x

p
− n− x

1− p
This derivative equals zero at the point p = x/n, hence the MLE is

p̂ =
x

n

3.8 Mean value of the MLE
We note that x is a random value of the variable X, hence p̂ = X/n is

also a random variable. As a random variable, p̂ has a distribution and all
relevant characteristics: mean value, variance, etc. Its mean value is

E(p̂) =
E(X)

n
=
np

n
= p

It is remarkable that the mean value of our estimate p̂ coincides with the
unknown parameter p that we are estimating. Thus, on average, the estimate
p̂ is just right – it is precise, there is no systematic error (bias).

3.9 Unbiased estimates
An estimate θ̂ of an unknown parameter θ is called unbiased if its mean

value coincides with θ:
E(θ̂) = θ

If the estimate is biased, then the difference

bias(θ̂) = E(θ̂)− θ

is called the bias of θ̂.
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3.10 Variance of p̂
The variance of our estimate p̂ is

Var(p̂) =
VarX

n2
=
npq

n2
=
pq

n

where q = 1− p, and its standard deviation is

σp̂ =

√
pq
√
n

This means that typical (expected) error p̂− p is about
√
pq/
√
n, hence

p̂ ≈ p±
√
pq
√
n

In our example, expected error is

p̂− p ≈ ±
√

1/3 · 2/3√
45

= ±0.07

so the true (unknown) value of p may differ from our estimate p̂ = 1/3 by
about 0.07 (on average).

3.11 Mean Square Error (MSE)
A common measure of accuracy of an estimate θ̂ of an unknown parameter

θ is the mean squared error

MSE(θ̂) = E(θ̂ − θ)2

For an unbiased estimate, θ = E(θ̂), so then MSE(θ) = Var(θ̂). For biased
estimates, we have the following simple decomposition:

MSE(θ̂) = E[θ̂ − E(θ̂) + E(θ̂)− θ]2

= E[θ̂ − E(θ̂)]2 + [E(θ̂)− θ]2

= Var(θ̂) + [bias(θ̂)]2

thus the contributions from the variance and from the bias get separated. In
practice, the bias is usually zero or negligible, so the main source of errors is
Var(θ̂). The typical (expected) error |θ̂ − θ| is given by√

MSE(θ̂) = (for unbiased only) = σθ̂,

which is called the root-mean-squared error.
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3.12 Likelihood function for exponentials
Suppose we want to estimate the average lifetime of light bulbs produced

by a factory (a common problem in quality control). To this end, one ran-
domly picks n light bulbs, turns them on until every bulb burns down, and
records their lifetimes x1, x2, . . . , xn. Now how to estimate the average life-
time? Would the sample mean x̄ be a reasonable estimate?

In probability theory we learned that the lifetime can be fairly accu-
rately modeled by an exponential random variable, which has density func-
tion f(x) = λe−λx, and λ > 0 represents the (unknown) parameter. The
average lifetime is E(X) = 1/λ. Since we need the value of E(X), rather than
λ, we change parameter: denote µ = E(X) = 1/λ, and accordingly replace
λ with 1/µ. The formula for the density function becomes f(x) = µ−1e−x/µ.

In our experiment, we obtained n random values x1, . . . , xn of X. Since
they are obtained independently, their joint density function is

L(µ) = f(x1) · · · f(xn) = µ−ne−
x1+···+xn

µ

The joint density function gives the probability, or likelihood, of the values
x1, . . . , xn. Since the only unknown quantity here is µ, we get a function of
µ and call it the likelihood function.

3.13 MLE for exponentials
To find the MLE estimate of µ, we follow the same steps as in Section 3.7.

First, we take the logarithm of the likelihood function

lnL(µ) = −n lnµ− x1 + · · ·+ xn
µ

Then we differentiate it with respect to the unknown parameter

d

dµ
lnL(µ) = −n

µ
+
x1 + · · ·+ xn

µ2

Setting the derivative to zero we arrive at equation

n

µ
=
x1 + · · ·+ xn

µ2

Solving it gives

µ̂ =
x1 + · · ·+ xn

n
= x̄

Hence the MLE for the average lifetime µ is, indeed, the sample mean.
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3.14 Mean value and variance of µ̂
The mean value of µ̂ is

E(µ̂) =
nE(X)

n
= E(X) = µ

hence the estimate is unbiased. Its accuracy is characterized by its variance

Var(µ̂) =
nVar(X)

n2
=

1

λ2n
=
µ2

n

so the typical (expected) error |µ̂− µ| will be σµ̂ = µ/
√
n.

3.15 Remark
It is common in statistics that typical errors of estimates are proportional

to 1/
√
n, where n is the size of the sample. A common rule of thumb is that

the expected error is ∼ 1/
√
n. Hence to get the error ∼ 0.1 one needs to

collect n = 100 data; to get the error ∼ 0.01 one needs n = 10, 000 data, etc.

3.16 Estimating λ for exponentials
The MLE estimate of the parameter λ = 1/µ will be

λ̂ =
1

µ̂
=

n

x1 + · · ·+ xn
= x̄−1

This estimate (unlike µ̂) is biased, but its bias is quite hard to compute.

3.17 General scheme
Summarizing the above examples, we describe a general scheme for eval-

uating a maximum likelihood estimate (MLE) for a parameter θ.
Suppose a random variable X has density function f(x; θ) that depends

on an unknown parameter θ (if X is a discrete variable, we need to use
its probability density function f(x; θ) = P(X = x)). Let x1, . . . , xn be a
random sample of n (independently) obtained values of X.
Step 1. Write down the likelihood function

L(θ) = f(x1; θ) · · · f(xn; θ)

Step 2. Write down the log-likelihood function

lnL(θ) = ln f(x1; θ) + · · ·+ ln f(xn; θ)
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Step 3. Differentiate the log-likelihood function and set it to zero

d

dθ
lnL(θ) = 0

Step 4. Solve the above equation for θ, the solution will be θ̂.

3.18 MLE for geometric random variable
A match factory wants to determine the quality of their matches. Ideally,

a match should light up on the first strike. But in reality, it may fail and
require more than one strike. The factory needs to determine the average
number of strikes it takes to light up a match.

In an experiment, n matches are chosen randomly and a technician strikes
them until they light up and records the numbers of strikes x1, . . . , xn it takes.
Now how does he determine the average number of strikes? By taking the
sample mean?

Striking a match is a sequence of trials till the first success. This is mod-
elled by a geometric random variable X, which has one (unknown) parameter
– the probability of success p. Its mean value is E(X) = 1/p. The probability
density function is

f(x; p) = P(X = x) = pqx−1 for x = 1, 2, . . .

where q = p− 1. Now the likelihood function is

L(p) = pqx1−1 · · · pqxn−1 = pnqx1+···+xn−n

Its logarithm is

lnL(p) = n ln p+ (x1 + · · ·+ xn − n) ln(1− p)

and its derivative

d

dp
lnL(p) =

n

p
− x1 + · · ·+ xn − n

1− p

Solving the equation

n

p
− x1 + · · ·+ xn − n

1− p
= 0
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gives

p̂ =
n

x1 + · · ·+ xn
= x̄−1

Thus the MLE for the average E(X) = 1/p is, indeed, 1/p̂ = x̄.
This result makes good sense: p is the probability of success, the numera-

tor of this fraction is the total number of observed successes (strikes in which
the match lights up), and the denominator is the total number of strikes.

This estimate is biased, i.e. E(p̂) 6= p. However, in the limit n → ∞ the
fraction of successes p̂ approaches the probability of success p, according to
the Law of Large Numbers, hence p̂→ p as n→∞.

3.19 Consistent estimates
An estimate θ̂ of an unknown parameter θ is consistent if θ̂ → θ as n→∞

in the probabilistic sense. Precisely, for any small positive number y > 0 we
must have

P
(
|θ̂ − θ| > y

)
→ 0 as n→∞

that is the probability of any deviations of θ̂ from θ vanishes in the limit
n→∞.

Most of the estimates used in practice are consistent, even if they are
biased. All MLE estimates are consistent.

3.20 MLE for normals
Suppose biologists want to describe the length of a certain breed of fish

(say, salmon). The length of a fish is a random quantity affected by many
factors, which are essentially independent. The central limit theorem in
probability says that random quantities resulting from many independent
factors have approximately normal distribution. Their densities are bell-
shaped curves – peaking in the middle (at the most typical value) and de-
caying symmetrically to the left and right. This principle is almost universal
– most random quantities in nature and human society have approximately
normal distributions.

A normal random variable X = N (µ, σ2) has two parameters µ (the
mean value) and σ2 (the variance). To describe the size of fish completely,
the biologists need to determine the values of both µ and σ2. Suppose they
catch n fish randomly and measure their sizes x1, . . . , xn. How should they
estimate µ and σ2? By the sample mean x̄ and the sample variance s2?

16



The probability density function of a normal random variable is

f(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

For convenience, we replace σ2 with θ:

f(x;µ, θ) =
1√
2πθ

e−
(x−µ)2

2θ

The likelihood function is

L(µ, θ) =
n∏
i=1

f(xi;µ, θ) =
1

(2πθ)n/2
e−

∑n
i=1(xi−µ)

2

2θ

Its logarithm is

lnL(µ, θ) = −n
2

ln(2πθ)−
∑n

i=1(xi − µ)2

2θ

There are two parameters here, and thus we need to take two partial deriva-
tives (with respect to both parameters) and set them to zero:

d

dµ
lnL(µ, θ) =

1

θ

n∑
i=1

(xi − µ) = 0

and
d

dθ
lnL(µ, θ) = − n

2θ
+

1

2θ2

n∑
i=1

(xi − µ)2 = 0

From the first equation we obtain

µ̂ =
1

n

n∑
i=1

xi = x̄ (MLE-1)

Substituting this into the second equation and solving it for θ = σ2 gives

θ̂ = σ̂2 =
1

n

n∑
i=1

(xi − x̄)2 = V (MLE-2)

(the quantity V was introduced in Section 1.8).
Thus, the MLE for the average µ is, indeed, the sample mean x̄. But the

MLE for the variance σ2 is (surprisingly) not the sample variance s2. This is
one of many strange things that happen in statistics. The way statisticians
deal with it is quite instructive, we will see it next.
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3.21 Bias of MLE’s for normals
The mean value of µ̂ is

E(µ̂) =
nE(X)

n
= E(X) = µ

thus the estimate µ̂ is unbiased. Its variance is

Var(µ̂) =
nVar(X)

n2
=
σ2

n

thus the typical error in estimating µ is σ/
√
n.

Is σ̂2 = V also unbiased? To compute its mean value we first simplify∑
(xi − x̄)2 =

∑
(x2

i − 2x̄xi + x̄2)

=
∑

x2
i − 2x̄x̄n+ nx̄2

=
∑

x2
i − nx̄2

Now

E
[∑

(xi − x̄)2
]

= E
[∑

x2
i

]
− nE

(
x̄2
)

= nE(X2)− n
(
Var(x̄) + [E(x̄)]2

)
= n

(
Var(X) + [E(X)]2

)
− n

(
1
n
Var(X) + [E(X)]2

)
= (n− 1)Var(X)

We used the facts E(X2) = Var(X)+[E(X)]2 and E(x̄) = E(X) and Var(x̄) =
1
n
Var(X) established in probability theory.

So we conclude that

E(σ̂2) = E(V ) =
n− 1

n
Var(X) =

n− 1

n
σ2

Since E(σ̂2) 6= σ2, the MLE estimate σ̂2 is biased.

3.22 Unbiased version of σ̂2

While the bias of σ̂2 = V is small, E(σ̂2) − σ2 = −σ2/n, it is annoying
and many statisticians consider it unacceptable. The bias can be eliminated
by multiplying σ̂2 with n

n−1
, and one arrives at a new estimate of σ̂2:

σ̂2 =
1

n− 1

n∑
i=1

(xi − x̄)2 = s2

18



which is the sample variance introduced in Section 1.8. This estimate of σ2

is unbiased. For this reason it is commonly used in practice instead of the
MLE estimate σ̂2 = V obtained in Section 3.20.

We see that most statisticians are willing to sacrifice the theoretical prin-
ciple of maximum likelihood estimation (albeit only slightly) in order to
achieve the convenience of an unbiased estimate.

3.23 Remark
The estimates x̄ and s2, though obtained from the same sample, are

independent. This means that the value of one does not imply anything
about the value of the other. Suppose s2 happens to be very small, i.e. the
values x1, . . . , xn are close to each other. You might think that you are lucky
– errors are small, so the sample mean x̄ would be very close to the actual
mean µ... This isn’t the right assumption, there is no relation between the
value of s2 and the error of the estimate x̄.

3.24 General estimates of E(X) and Var(X)
Given a sample x1, . . . , xn of values of a random variable X (not necessar-

ily normal) it is often desirable to estimate its mean value E(X) and variance
Var(X).

One can use the sample mean x̄ to estimate E(X), and this estimate will
always be unbiased, since E(x̄) = E(X).

Next, one can use V or s2 (see 1.8) to estimate Var(X). Both estimates
are good, but there is a little difference: the estimate V is biased while s2 is
unbiased. Indeed, our calculations in Section 3.21 are valid for any random
variable X (not only for normals), thus

E(V ) =
n− 1

n
Var(X), E(s2) = Var(X)

For this reason, statisticians always prefer s2 over V .
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4 Percentiles

We learned how to estimate the value of an unknown parameter θ. We
even evaluated typical errors of an estimate θ̂. For example, in Section 3.10
we found that our estimate p̂ = 1/3 differed by about 0.07 from the true
(unknown) value of p.

However, in practice it is not enough to just say that “typical errors”
are ∼ 0.07. Suppose an investment company buys stocks that return high
dividends with probability at least 20%. They consider stocks that have
a short history of returning high dividends with probability 33%, but this
estimate is based on limited data and involves a typical error of 7%. So
should the company buy these stocks? The actual error may exceed 7% and
be as high as 13% or 14%. What is the chance that the error exceeds 13%?
Can it be guaranteed, with some level of confidence, that the error stays
below a certain value?

Such questions arise in economical applications, they are essential for
insurance and warranty purposes. In fact, no serious application of statistics
should ignore such questions. To answer them, we will need percentiles.

4.1 Percentiles in probability
Let X be a random variable with distribution function F (x) and density

function f(x). For every 0 < p < 1 the quantile (or percentile) πp is such a
number that F (πp) = p. In terms of the density function f(x)∫ πp

−∞
f(x) dx = p,

∫ ∞
πp

f(x) dx = 1− p

i.e. the real line is divided by the point πp into two parts that capture the
probabilities p (to the left of πp) and 1− p (to the right of πp).

Note that π1/2 = m (median), π1/4 = q1 (first quartile) and π3/4 = q3

(third quartile).

4.2 Percentiles for normals
Let Z = N (0, 1) be a standard normal random variable. Denote its

distribution function by Φ(x) and density function by f(x). For every 0 <
α < 1, the quantity

zα = π1−α

20



is frequently used in statistics. This means that Φ(zα) = 1− α, as well as∫ zα

−∞
f(x) dx = 1− α,

∫ ∞
zα

f(x) dx = α

in other words, zα divides the real line into two parts that capture the prob-
abilities 1− α (to the left of zα) and α (to the right of zα).

The bottom part of Table Va (on page 584) gives the values of zα for
α = 0.4, 0.3, 0.2, 0.1, 0.05, etc. For example, z0.1 = 1.282.

Due to the symmetry of the standard normal distribution, we have

P(Z < −zα) = P(Z > zα) = α, P
(
|Z| > zα/2

)
= α

The very bottom line in Table Va gives the values of zα/2 for certain α’s.
Hence, percentiles zα and zα/2 allow us to “chop-off” tails of the standard

normal distribution containing the given amount of probability:

• Right tail of probability α;

• Left tail of probability α;

• Two equal tails (one on each side) of combined probability α

Chopping off correct tails will be necessary for the error analysis in the
next section.
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5 Confidence intervals for normals: one mean

5.1 Estimating µ with known σ2

Suppose a doctor is checking a patient’s blood pressure by using a monitor
that is not very reliable, its readings are known to have typical errors of ±10
points. The doctor measures the pressure n times and gets values x1, . . . , xn.
The best estimate of the patient’s blood pressure is, apparently, the sample
mean x̄, but the doctor needs a certain range (interval) where the unknown
blood pressure is guaranteed to be with a high probability (say, 99%). Then
a statistical analysis is necessary.

The readings of the blood pressure monitor are affected by many indepen-
dent factors, so by the central limit theorem they are approximately normal,
X = N (µ, σ2). Here the average µ represents the unknown blood pressure,
and the standard deviation σ = 10 is the known typical error.

The MLE for µ is µ = x̄, but now we want to find an interval (a, b) such
that the unknown value of µ will be guaranteed to be in (a, b) with probability
≥ 1− α, where the probability is specified, for example, 1− α = 0.9 or 0.95
or 0.99, etc.

The estimate µ̂ = x̄ has normal distribution with mean E(x̄) = E(X) = µ
and variance Var(x̄) = 1

n
Var(X) = σ2/n. Therefore, the variable

Z =
x̄− µ
σ/
√
n

is standard normal (has zero mean and variance equal to one). Since

P(|Z| ≤ zα/2) = 1− α

the following inequalities will be guaranteed with probability 1− α:

−zα/2 ≤
x̄− µ
σ/
√
n
< zα/2

Solving these inequalities for µ we obtain

x̄− zα/2σ/
√
n ≤ µ ≤ x̄+ zα/2σ/

√
n

This gives an interval where µ is guaranteed to belong with probability 1−
α. It is called confidence interval, and 1 − α is called confidence level, or
confidence coefficient.
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Note that the interval is symmetric about the estimate µ̂ = x̄. For brevity,
symmetric intervals may be denoted by

CI = x̄± zα/2σ/
√
n

where one only indicates the center and half-length of the interval.

5.2 Example
Given observed values x1, . . . , x15 of a normal random variable N (µ, 9),

such that x̄ = 20, construct a confidence interval for µ with 95% confidence
level.

Solution: Note that the value σ2 = 9 is given, so σ = 3. Here α = 0.05,
hence α/2 = 0.025. The percentile z0.025 = 1.960 is taken from Table Va.
The confidence interval is

CI = 20± 1.960 · 3/
√

15 = 20± 1.5182

It can also be presented as CI= [18.4818, 21.5182].

5.3 General scheme
Here is a general scheme for constructing confidence intervals. Let θ̂ be an

estimate of an unknown parameter θ. Every estimate is a random variable,
so it has a certain distribution. That distribution surely depends on θ, on
the sample size n, and possibly on some other factors (other parameters). In
the above case, µ̂ = N (µ, σ2/n).

We need to transform the random variable µ̂ into some other random
variable whose distribution is independent of θ and other parameters, and
preferably of n as well. Denote new random variable by Y (θ̂, θ, n, . . .), where
. . . stand for some other parameters. In the above case, Y =

√
n(µ̂ − µ)/σ,

and its distribution is standard normal.
Now since the distribution of Y is independent of anything, its percentiles

yα can be pre-computed and tabulated. Then the following inequalities will
be guaranteed with probability 1− α:

−yα/2 ≤ Y (θ̂, θ, n, . . .) ≤ yα/2

All we do now is solve these inequalities for θ to obtain a confidence interval
with level 1− α.

Note: it often happens that the distribution of Y depends on the sample
size n (there may be no way to get rid of that dependence), then the corre-
sponding percentiles should be tabulated for every n. In practice, this is done
only for small n ≤ 30, while for n > 30 one resorts to various approximations.
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5.4 Estimating µ with unknown σ2

Suppose a doctor is checking a patient’s blood pressure by using an un-
reliable monitor whose readings involve totally unknown errors. Despite this
new complication, the doctor still wants to find a certain range (interval)
where the unknown blood pressure is guaranteed to be with a high proba-
bility (say, 99%). Is it even possible, without knowing typical errors of the
monitor? Yes, one simply should use the observed values x1, . . . , xn to esti-
mate the unknown reliability of the monitor. Of course, the analysis will be
more complicated than before.

First of all, the previous method would not work, because the value of σ
is not available. We can try to replace it with its estimate σ̂ = s (sample
standard deviation). For large n (precisely, for n > 30), this approximation
is considered to be accurate enough, and we obtain the confidence interval

CI = x̄± zα/2s/
√
n

For small n (that is, for n ≤ 30), we need to be more accurate. The crucial
quantity here is

T =
x̄− µ
s/
√
n

It has a distribution independent of µ and σ, but dependent on n. This distri-
bution is called t distribution (or Student’s t distribution), and the quantity
T itself is called a t random variable (this is why we denote it by T ). Its
distribution depends on n and is characterized by r = n− 1, which is called
the number of degrees of freedom.

The t random variable with r ≥ 1 degrees of freedom has density

f(x) =
const(

1 + x2/r
)(r+1)/2

which is an even function, and its graph is a bell-shaped curve (generally
looking like the density of Z = N (0, 1), but it has heavier tails and a lower
peak). Its percentiles are denoted by tα(r) (analogously to zα), where r
stands for the number of degrees of freedom. Due to the symmetry we have

P
(
T < −tα(r)

)
= P

(
T > tα(r)

)
= α, P

(
|T | > tα/2(r)

)
= α

Thus, the following inequalities will be guaranteed with probability 1− α:

−tα/2(r) ≤ x̄− µ
s/
√
n
< tα/2(r)
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Solving these inequalities for µ we obtain

CI = x̄± tα/2(r) s/
√
n

Remember that r = n− 1. The values of tα(r) for various α (and all r ≤ 30)
are given in Table VI on page 586.

Note: the t-random variable X with r degrees of freedom has mean
E(X) = 0 and variance Var(X) = r/(r − 2) for r ≥ 3.

5.5 Example
Given observed values x1, . . . , x15 of a normal random variable N (µ, σ2),

such that x̄ = 20 and s2 = 9, construct a confidence interval for µ with 95%
confidence level.

Solution: Since σ2 is not given, we assume it is unknown. Since n = 15
is small (≤ 30), we use the t percentile t0.025(14) = 2.145. The confidence
interval is

CI = 20± 2.145 · 3/
√

15 = 20± 1.6615

This is a longer interval than the one in Section 5.2, even though the same
numbers were used. Why? Here we only have an estimate of σ2, instead of
its exact value, thus we have less information than we had in Section 5.2, so
our errors are larger.

5.6 Remark
The percentiles in Table VI decrease as r = n − 1 grows. As a result,

confidence intervals get shorter as n (the sample size) increases. For n =
∞ (the bottom row), Table VI gives the same percentiles as Table Va for
normals, i.e. tα(∞) = zα for every α.

5.7 Summary
We have covered three distinct cases:

• σ is known; then CI= x̄± zα/2σ/
√
n;

• σ is unknown and n > 30; then CI= x̄± zα/2s/
√
n;

• σ is unknown and n ≤ 30; then CI= x̄± tα/2(n− 1) s/
√
n.
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5.8 One-sided confidence intervals
It is sometimes desirable in practice to give a one-sided bound on µ:

for instance, guarantee that µ > a with a certain probability. In this case,
instead of chopping off two tails, each of probability α/2, one chops off one tail
of probability α. For instance, the lower bound on µ with a given confidence
level 1− α will be

• σ is known; then µ ≥ x̄− zασ/
√
n;

• σ is unknown and n > 30; then µ ≥ x̄− zαs/
√
n;

• σ is unknown and n ≤ 30; then µ ≥ x̄− tα(n− 1) s/
√
n.

The upper bound is obtained similarly.

5.9 Example
Candy bars produced by a factory must weigh at least 50 grams. A

random sample of n = 100 candy bars yielded x̄ = 51 and s2 = 0.5. Estimate
µ from below with probability 99%.

Solution: Here α = 0.01, σ2 is unknown, and n > 30. Therefore we use
z0.01 = 2.326 and obtain

µ ≥ 51− 2.326 ·
√

0.5/
√

100 = 51− 0.164 = 50.836

Thus, the average weight of a candy bar is guaranteed to be at least 50.836
grams with probability 99%.

5.10 Generating t-random variable in MATLAB
With MATLAB Statistical Toolbox, you can generate values of a t ran-

dom variable by special commands

x=trnd(v) returns one random value of t

x=trnd(v,m,n) an m× n matrix of random numbers

where v denotes the number of degrees of freedom.
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6 Confidence intervals for normals: two means

Suppose two classes take the same test (say, in Calculus-I). They were taught
by different professors, and/or used different textbooks. The university of-
ficials want to determine how significant the difference in their scores is.
Again, a student’s score is a random quantity affected by many factors,
so it is approximately a normal random variable. For the first class, it is
X = N (µX , σ

2
X) and for the second class Y = N (µY , σ

2
Y ). The university

officials want estimate the difference between µX and µY . The actual stu-
dents’ scores x1, . . . , xn and y1, . . . , ym are random values of these two normal
variables. Note that the class sizes (n and m) may be different.

6.1 Point estimate We estimate µX by the sample mean x̄ of the x-values
and µY by the sample mean ȳ of the y-values. Thus we can estimate µX−µY
by x̄− ȳ. Next we want to construct a confidence interval for µX − µY .

6.2 Both sigmas are known
First we consider the (rather unrealistic) case where both variances σ2

X

and σ2
Y are known. Recall from probability theory that x̄ is a normal

random variable N (µX , σ
2
X/n). Similarly, ȳ is a normal random variable

N (µY , σ
2
Y /m). Therefore

x̄− ȳ = N (µX − µY , σ2
X/n+ σ2

Y /m)

(note: when subtracting two independent normal random variables, we add
their variances). Hence

µX − µY − zα/2

√
σ2
X

n
+
σ2
Y

m
< x̄− ȳ < µX − µY + zα/2

√
σ2
X

n
+
σ2
Y

m

with probability 1− α. Solving these inequalities for µX − µY gives

x̄− ȳ − zα/2

√
σ2
X

n
+
σ2
Y

m
< µX − µY < x̄− ȳ + zα/2

√
σ2
X

n
+
σ2
Y

m

Suppose we know the variances σ2
X and σ2

Y . Then the above formula gives
the two-sided confidence interval for µX − µY :

x̄− ȳ ± zα/2

√
σ2
X

n
+
σ2
Y

m
.
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6.3 Both sigmas are unknown, and the sizes are large
If the variances σ2

X and σ2
Y are unknown, then the above formula cannot

be used. We may replace the unknown variances with their best estimates,
sample variances s2

x and s2
y, respectively. This will be good enough, if both

m and n are large (greater than 30). Then the confidence interval will be

x̄− ȳ ± zα/2

√
s2
x

n
+
s2
y

m
.

6.4 Example
The scores of 200 students in the final exam in Calculus-I in class A

yielded x̄ = 81 and s2
x = 19. In the same test, the scores of 1000 students in

all the other classes yielded ȳ = 79 and s2
y = 16. Construct a 98% confidence

interval for µX − µY .
Solution: since both samples are large enough (200 and 1000 values), we

use the formula from the previous section:

2± 2.326

√
19

200
+

16

1000
= 2± 0.745.

So it is safe to say that the scores in class A are at least 1.255 points above
the average in all the other classes (and at most 2.745 points).

6.5 Both sigmas are unknown, and the sizes are small
If the variances σ2

X and σ2
Y are unknown and at least one size (m or

n) is small (30 or less), then the simple method of Section 6.3 will not be
acceptable.

In that case the construction of confidence intervals is complicated. There
are two cases. First, sometimes it is know that σ2

X = σ2
Y (but its value is

unknown). For example, x’s and y’s may be experimental measurements of
different objects made by the same tool (gauge), whose accuracy is the same
in both measurements (but we don’t know that accuracy).

In this case the confidence interval for µX − µY is

x̄− ȳ ± tα/2(r)

√
(n− 1)s2

x + (m− 1)s2
y

n+m− 2

√
1

n
+

1

m

where r = n+m− 2.
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6.6 Welch’s formula
In the most general case, where the variances σ2

X and σ2
Y are unknown

and there is no reason to assume that they are equal, we have to use Welch’s
formula:

x̄− ȳ ± tα/2(r)

√
s2
x

n
+
s2
y

m

where

r =

(
s2x
n

+
s2y
m

)2

1
n−1

(
s2x
n

)2

+ 1
m−1

(
s2y
m

)2

Of course, r is the number of degrees of freedom, so it must be an integer. If
it happens to be a fractional number (such as r = 5.68), its fractional part
must be dropped (so we should use r = 5).

6.7 Example
The math test scores in two small classes produced the following results:

nx = 22, x̄ = 75 and sx = 4.6 for the first class and ny = 26, ȳ = 72 and
sy = 5.1 for the second class. Construct a 98% confidence interval for the
difference µx − µy.

Solution. Since σX and σY are unknown and may be different, and the
sizes of the samples are small, we use Welch’s formula. First, the number of
degrees of freedom is

r =
(4.62/22 + 5.12/26)2

(4.62/22)2/21 + (5.12/26)2/25
= 45.8

So we use r = 45. Now, the CI is

CI = 75− 72± t.01(45)
√

4.62/22 + 5.12/26

= 3± 2.326 · 1.401

= 3± 3.259

Finally, −0.259 < µX − µY < 6.259. Note that the interval is large, i.e. the
accuracy of our estimate is low. This happens because our samples are quite
small (22 and 26 values). In statistics, accurate estimates usually require
large data samples. One cannot derive much inference from too small data.

29



6.8 Special case: matching measurements
Suppose n people participate in a diet program. Their weights before

the program starts are x1, . . . , xn, and after the program is completed they
are y1, . . . , yn. The program manager wants to determine the average weight
drop (for advertisement).

Again, based on the central limit theorem, we may assume that x1, . . . , xn
are values of a normal random variable N (µX , σ

2
X), and y1, . . . , yn are values

of a normal random variable N (µY , σ
2
Y ). The manager wants to estimate

µX − µY . But here xi’s are not independent from yi’s, because these are
measurements taken on the same n people.

In this case we need to use the individual differences di = xi− yi (weight
drops) and treat d1, . . . , dn as values of a normal random variable N (µD, σ

2
D),

where µD = µX−µY . Since σ2
D is unknown, we will estimate it by the sample

variance s2
d. Then the confidence interval for µD = µX − µY is constructed

as in Section 5.4
d̄± tα/2(n− 1) sd/

√
n

6.9 Example
Twelve participants in a health-fitness program recorded the following

drops in their weights during the program:

+2.0 -0.5 +1.4 -2.2 +0.3 -0.8
+3.7 -0.1 +0.6 +0.2 +0.9 -0.1

Construct a 95% confidence interval for the average weight drop.
Solution: Here the sample mean is d̄ = 0.45 and the sample variance is

s2
d = 2.207, hence the confidence interval is

d̄± t0.025(11)
√
s2
d/n = 0.45± 2.201

√
2.207/12

which is [−0.494, 1.394].
Not much for an advertisement... Again, for such a small sample (n = 12)

statistical conclusions cannot be too accurate.
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7 Confidence intervals for normals: one variance

Suppose a doctor wants to determine the accuracy of the readings of his
blood pressure monitor. He measures the blood pressure of the same person
repeatedly n times and obtains values x1, . . . , xn. As before, we assume that
these are values of a normal random variable N (µ, σ2), where µ is the actual
blood pressure of the guy and σ is a typical error. The doctor wants to
estimate σ2. Note that the mean value µ (the actual blood pressure of the
guy) is of no concern, we are testing the monitor here.

7.1 Point estimate
The unbiased estimate for σ2 is the sample variance s2, i.e. E(s2) = σ2.

The estimate s2 has a distribution depending on σ2, even its average depends
on σ2. We want to transform s2 into a random variable whose distribution
is independent of σ2 (and µ). Let us try s2/σ2. Now, at least, E(s2/σ2) = 1,
a constant.

Let us find the distribution of s2/σ2, and start with the simplest case
n = 2:

s2

σ2
=
x2

1 + x2
2 − 2

(
x1+x2

2

)2

σ2
=

1
2
x2

1 + 1
2
x2

2 − x1x2

σ2
=

(x1 − x2)2

2σ2
=

(
x1 − x2√

2σ

)2

Since x1 and x2 are independent normal, we have x1−x2 = N (0, 2σ2), hence

x1 − x2√
2σ

= N (0, 1)

So s2/σ2 is the square of a standard normal random variable. Indeed, its
distribution is independent of σ2 and µ.

The case n > 2 is more complicated and we omit the calculations. As
it happens, s2/σ2 is the average of squares of n − 1 independent standard
normal random variables:

s2

σ2
=
Z2

1 + · · ·+ Z2
n−1

n− 1

where Zi = N (0, 1) for each i, and Z1, . . . , Zn−1 are independent.
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7.2 χ2 random variable
In probability, the sum of squares of r ≥ 1 independent standard normal

random variables is called a χ2 random variable with r degrees of freedom.

χ2(r) = Z2
1 + · · ·+ Z2

r .

This type of random variables plays a particularly important role in statistics.
It is known in probability theory that E(Z2) = 1 and E(Z4) = 3, hence

Var(Z2) = E(Z4)−
[
E(Z2)

]2
= 2.

Thus,
E
(
χ2(r)

)
= r, and Var

(
χ2(r)

)
= 2r.

By the central limit theorem, when r is large (r > 30), we can approximate
χ2(r) by a normal random variable

χ2(r) ≈ N (r, 2r).

Percentiles for a χ2 random variable are denoted by χ2
α(r), that is if X =

χ2(r), then

P
(
X > χ2

α(r)
)

= α and P
(
X < χ2

1−α(r)
)

= α.

The values of percentiles are given in Table IV. Note that the χ2 distribution
is not symmetric, unlike normal and t.

7.3 Confidence interval for σ2

Since we established that

(n− 1)s2

σ2
= χ2(n− 1),

we have

χ2
1−α/2(n− 1) <

(n− 1)s2

σ2
< χ2

α/2(n− 1)

with probability 1− α. Solving the above inequality for σ2 we obtain

(n− 1)s2

χ2
α/2(n− 1)

< σ2 <
(n− 1)s2

χ2
1−α/2(n− 1)
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which is a confidence interval with confidence level 1− α. Note that (n− 1)
in the numerators is a multiplier, while in the denominators it just indicates
the number of degrees of freedom.

To obtain a confidence interval for σ, if this is desired, we simply take the
square root: √

(n− 1)s2

χ2
α/2(n− 1)

< σ <

√
(n− 1)s2

χ2
1−α/2(n− 1)

7.4 Shortest confidence interval
The above confidence interval of level 1−α was constructed by chopping

off two tails, each capturing probability α/2 (so that the probability 1 − α
is left in between). This principle produces the shortest possible interval
for symmetric distributions, such as normal and t, but not for asymmetric
distributions, such as χ2.

Table X gives numerical values that must be used, instead of percentiles
in the previous section, to obtain the shortest confidence interval for the
given level 1− α, see the following example.

7.5 Example
A sample x1 . . . , x20 from N (µ, σ2) yielded s2 = 8. Find a 95% confidence

interval for σ2.
Solution. Here 1− α = 0.95, hence α/2 = 0.025. The size n = 20, hence

the number of degrees of freedom is 19.
The symmetric (but not shortest) confidence interval is

19 · 8
32.85

< σ2 <
19 · 8
8.907

hence 4.63 < σ2 < 17.06.
The shortest confidence interval is, with values from Table X,

19 · 8
35.927

< σ2 <
19 · 8
9.663

hence 4.23 < σ2 < 15.73.
Which one should we use in practice? This is, basically, a matter of taste.

Each one is just as good as the other one.
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7.6 Remark
The intervals obtained in the previous example are very large. What kind

of estimation of σ2 this is if all we can say is that “it is somewhere between
4 and 17”? Well, again, this is typical in statistics: estimates based on small
samples (here only 20 data values) are rarely precise. Furthermore, estimates
of variances are usually far less precise than estimates of means.

7.7 Large samples
Table IV provides percentiles for the χ2(r) random up to r = 30 degrees

of freedom, and in addition includes a few higher values (r = 40, 50, 60, 80).
Table X stops at r = 30. So what do we do for r > 30, especially for r > 80?

We can use normal approximation, see Section 7.2. Accordingly, the
random variable

(n− 1)s2/σ2 − (n− 1)√
2(n− 1)

=

√
n− 1 s2/σ2 −

√
n− 1√

2

is approximately standard normal, Z = N (0, 1), hence

−zα/2 <
√
n− 1 s2/σ2 −

√
n− 1√

2
< zα/2

with probability 1−α. Solving this inequality for σ2 gives a (1−α) confidence
interval: √

n− 1 s2

√
n− 1 + zα/2

√
2
< σ2 <

√
n− 1 s2

√
n− 1− zα/2

√
2

This formula is good for large n.

7.8 Generating the χ2 random variable in MATLAB
With MATLAB Statistical Toolbox, you can generate values of a χ2 ran-

dom variable by special commands

x=chi2rnd(v) returns one random value of t

x=chi2rnd(v,m,n) an m× n matrix of random numbers

where v denotes the number of degrees of freedom.
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8 Confidence intervals for normals: two variances

Suppose a doctor gets a better blood pressure monitor and wants to deter-
mine how much more accurate it is compared to the old one. The doctor
measures the blood pressure of a patient by the new monitor n times and
records values x1, . . . , xn. His records also contain values of the blood pres-
sure (of another patient) obtained by the old monitor: y1, . . . , ym.

Again we assume that x1, . . . , xn are values of a normal random variable
X = N (µX , σ

2
X) and y1, . . . , ym are values of another normal random variable

Y = N (µY , σ
2
Y ). Here µX and µY are the actual blood pressures of these two

patients (which are of no concern here). The doctor wants to estimate the
ratio σ2

X/σ
2
Y to determine how much more accurate the new monitor is.

8.1 Point estimate
The unbiased estimates for σ2

X and σ2
Y are the sample variances s2

x and
s2
y, respectively. Hence the best point estimate for the ratio σ2

X/σ
2
Y is s2

x/s
2
y.

To construct a confidence interval, we need to know the corresponding dis-
tribution.

8.2 F distribution
It is a fact in probability theory (details are beyond the scope of this

course) that the quantity
s2
y/σ

2
Y

s2
x/σ

2
X

has a special distribution called F distribution (and the quantity itself is
called an F random variable). This distribution has two parameters, r1 =
m − 1 and r2 = n − 1, which are called (not surprisingly..) the numbers of
degrees of freedom. The F random variable is denoted by F (r1, r2). The first
number r1 is called the number of numerator degrees of freedom, and the
second number r2 is called the number of denominator degrees of freedom.
The reason is quite evident from the above fraction.

The percentiles of the F random variable are denoted by Fα(r1, r2), that
is if X = F (r1, r2), then

P
(
X > Fα(r1, r2)

)
= α and P

(
X < F1−α(r1, r2)

)
= α.

There is a little symmetry of the F distribution that will be helpful:

F1−α(r1, r2) =
1

Fα(r2, r1)
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(note that we have to switch the numbers of degrees of freedom).
The values of the percentiles of the F random variable are given in Table

VII. This is a fairly large (and confusing) table, so you need to practice with
it. Its complexity has a good reason, though: it has to cover two variable
parameters (r1 and r2) and a variable confidence parameter α. So, essentially,
it is a three dimensional table.

8.3 Confidence intervals
We conclude that the inequality

1

Fα/2(n− 1,m− 1)
<
s2
y/σ

2
Y

s2
x/σ

2
X

< Fα/2(m− 1, n− 1)

holds with probability 1 − α. Solving it for the ratio σ2
X/σ

2
Y (this ratio we

want to estimate) gives

s2
x

s2
y

· 1

Fα/2(n− 1,m− 1)
<
σ2
X

σ2
Y

<
s2
x

s2
y

· Fα/2(m− 1, n− 1),

which is a (1− α) confidence interval.

8.4 Remark
If an interval for the ratio σX/σY of the standard deviations is of interest,

we simply take the square root:

sx
sy
· 1√

Fα/2(n− 1,m− 1)
<
σX
σY

<
sx
sy
·
√
Fα/2(m− 1, n− 1).

8.5 Example
A sample x1 . . . , x16 fromN (µX , σ

2
X) yielded s2

x = 6 and a sample y1 . . . , y25

from N (µY , σ
2
Y ) yielded s2

y = 4. Find a 98% confidence interval for σ2
X/σ

2
Y .

Solution. Here α = 0.02, hence α/2 = 0.01. We use values F0.01(15, 24) =
2.89 and F0.01(24, 15) = 3.29 from Table VII and construct the interval by

6

4
· 1

2.89
<
σ2
X

σ2
Y

<
6

4
· 3.29,

or, finally, it is [0.519, 4.935].

8.6 Remark
Note again that the confidence interval is fairly large: on the one hand,

σ2
X may be twice as small as σ2

Y , and on the other hand, it may be five times
bigger!
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9 Confidence intervals for proportions

In several previous sections, we treated normal random variables. Those
are most important in statistics, since they approximate almost everything
(thanks to the central limit theorem).

There is, however, one special type of random variables that must be
treated separately – it is binomial. Recall our lottery example in Chapter 3:
we observed the value x of a binomial random variable X = b(n, p) and
estimated the probability of success (the proportion of winning tickets) by
p̂ = x/n. The unknown parameter p is often called a proportion. Here we
construct confidence intervals for p.

9.1 CI for p
When n ≥ 30, we can use a normal approximation to X (recall de Moivre-

Laplace theorem in probability theory):

X = b(n, p) ≈ N (np, npq)

(as usual, q = 1− p), then

p̂ =
x

n
≈ N

(
p,
pq

n

)
so that

p̂− p√
pq/n

≈ N (0, 1)

Using the percentiles of a standard normal random variable N (0, 1) we con-
clude that the inequality

−zα/2 <
p̂− p√
pq/n

< zα/2 (*)

hold with probability 1 − α. Solving it for p in the numerator gives the
inequality

p̂− zα/2
√
pq/n < p < p̂+ zα/2

√
pq/n

which also hold with probability 1−α. It looks like a confidence interval for
p, but it is not good – it contains the unknown p and q = 1−p on both sides.

In practice, for large n, we can safely replace p with its estimate p̂ = x/n
and, respectively, q with 1 − p̂ = 1 − x/n and obtain a confidence interval
with level 1− α

p̂− zα/2
√
p̂(1− p̂)/n < p < p̂+ zα/2

√
p̂(1− p̂)/n.
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9.2 A slightly more accurate CI for p
In the previous section we cheated slightly: we “solved” (*) for p in the

numerator only, ignoring the presence of p in the denominator. Interest-
ingly, the inequality (*) can be solved for p completely to give the following
confidence interval for p:

p̂+ z2/2n

1 + z2/n
±
z
√
p̂(1− p̂)/n+ z2/4n2

1 + z2/n

where z = zα/2. This is a messy formula, which we will never use. By using
Taylor expansion one can show that the above confidence interval is

p̂± zα/2
√
p̂(1− p̂)/n+O(1/n)

which differs from the one obtained in the previous Section by a small term
O(1/n), which is insignificant.

9.3 Example
Before an election, n = 400 people were polled on their preference be-

tween two candidates. Suppose 160 preferred candidate A and 240 preferred
candidate B. Construct a 90% confidence interval for the proportion of the
population preferring the candidate A.

Solution: the point estimate is easy: 160/400 = 0.4, but what are possi-
ble margins of error? Using the above formulas, we construct the required
confidence interval:

0.4± 1.645
√

0.4× 0.6/400 = 0.4± 0.04

(note: we used percentile z0.05 = 1.645). Thus, the unknown proportion is
expected to be within the interval (0.36, 0.44), not a bad accuracy.

9.4 Remark
It may be desirable to estimate the unknown proportion from one side

only (from above or from below). In the previous example we may want
to find an upper bound only to guarantee that p does not exceed a certain
amount. Then we construct a one-sided confidence interval

p̂+ zα
√
p̂(1− p̂)/n = 0.4 + 1.282

√
0.4× 0.6/400 = 0.43.

(note: we used percentile z0.1 = 1.282 instead of z0.05 = 1.645). The new
upper bound 0.43 is a little smaller (i.e., better) than the previous one 0.44.
In other words, we relaxed the lower estimate but tighten the upper estimate.
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10 Differences between proportions

Suppose a large hotel chain is buying a detergent for their washing machines.
There are two brands available, A and B, and the hotel technicians are trying
to determine which brand is better and by how much. In an experiment, the
technicians tried the detergent A on n1 stains and observed that it success-
fully removed x1 of them. Then they tried the detergent B on n2 stains and
observed that it successfully removed x2 of them.

It is reasonable to assume that x1 and x2 are values of binomial ran-
dom variables X1 = b(n1, p1) and X2 = b(n2, p2). Here p1 and p2 represent
the probabilities of successful removal of stains, i.e. the efficiency of each
detergent. The technicians want to estimate the difference p1 − p2.

10.1 Point estimate
The point estimates for p1 and p2 are p̂1 = x1/n1 and p̂2 = x2/n2, re-

spectively. So the point estimate for the difference p1 − p2 is p̂1 − p̂2. Its
distribution, due to normal approximation, is normal:

p̂1 − p̂2 ≈ N
(
p1 − p2,

p1(1− p1)

n1

+
p2(1− p2)

n2

)
Hence,

p̂1 − p̂2 − (p1 − p2)√
p1(1−p1)

n1
+ p2(1−p2)

n2

≈ N (0, 1),

so the above ratio is guaranteed to stay in the interval [−zα/2, zα/2] with
probability 1− α.

Now using the same arguments and tricks as in the previous chapter, we
obtain a confidence interval for p1 − p2 at level 1− α:

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

10.2 Example
A technician is testing two brands of detergents. She tried detergent A

on n1 = 200 stains and observed that it successfully removed 144 of them.
Then she tried detergent B on n2 = 100 stains and observed that it success-
fully removed 81 of them. By how much is the detergent B more reliable
than A? Construct a 90% confidence interval for the difference between their
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efficiencies (by the efficiency we mean the proportion of successfully removed
stains).

Solution. The point estimates of their efficiencies are p̂1 = 144/200 = 0.72
and p̂2 = 81/100 = 0.81.

Since α = 0.1, we will use z0.05 = 1.645. The confidence interval is

0.72− 0.81± 1.645

√
0.72× 0.28

200
+

0.81× 0.19

100
= −0.09± 0.08

That is, the difference is guaranteed to be in the interval [−0.17,−0.01].
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11 Sample size: experimental design

We have seen that some statistical estimates are pretty accurate (the confi-
dence intervals are small), but others are not (the confidence intervals are too
large, sometimes ridiculous). The accuracy of a statistical estimate depends
on many factors, in particular on the size of the sample n. Suppose we want
to increase the accuracy of an estimate, and moreover, to guarantee that the
error will not exceed some small quantity ε > 0. This means that we want
the length of the confidence interval of level 1− α be at most 2ε.

While many factors (such as the values of unknown parameters) cannot be
adjusted to improve the accuracy, the sample size usually can be increased
by collecting more observations (more data). Moreover, given the desired
accuracy ε we can compute the minimal size n for which this accuracy will
be achieved. This, of course, must be done before collecting experimental
data, so this job is called experimental design.

11.1 Normal random variables
Suppose we are estimating the mean value µ of a normal random variable

N (µ, σ2) with a known variance σ2. The half-length of the confidence interval
is zα/2σ/

√
n, see Section 5.1. Thus, if it must not to exceed ε, we need

zα/2σ/
√
n ≤ ε

Solving this inequality for n gives

n ≥
z2
α/2σ

2

ε2

This give the minimal size of the experimental sample n.
What if σ2 is unknown (as it normally is)? We cannot use its estimate

s2, because our calculations must be done before the experiment, so no data
are available yet!

In this case, we may use some reasonable guess of the value of σ2. Alter-
natively, we may run a preliminary smaller experiment (collecting just a few
values of the random variable) with the sole purpose of (roughly) estimating
σ2. Then we compute n and run the real experiment collecting n values of
the variable and estimating µ.
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11.2 Proportions
Suppose we are estimating the proportion p of a binomial random variable

X = b(n, p). The half-length of the confidence interval is zα/2
√
p̂(1− p̂)/n.

Thus, if it must not to exceed ε, we need

zα/2
√
p̂(1− p̂)/n ≤ ε

Solving this inequality for n gives

n ≥
z2
α/2p̂(1− p̂)

ε2

Here we run into a seemingly unsolvable problem: to find the minimal value
of n we already have to know the estimate p̂, which will only be available
after the experiment.

There are two ways to resolve this problem. First, we may use a reason-
able guess about the value of p (certain expected value, which does not have
to be precise, a rough approximation would suffice).

Second, if there are absolutely no expectations or guesses available, we
can note that

p̂(1− p̂) ≤ 1/4

for all values 0 < p̂ < 1. Then it will be always enough to have

n ≥
z2
α/2

4ε2
(*)

This will give us a very accurate estimate for n when p̂ ≈ 0.5, but it may be
a significant “overshot” if p̂ is close to 0 or 1 (in that case a much smaller
value of n may be sufficient for our purposes).

11.3 Example
How many people do we need to poll (see Example 9.3) so that the margin

of errors in the 95% confidence interval be less than 0.03?
Solution: here α = 0.05, hence we use percentile z0.025 = 1.96. Since no

expected (or guessed) value of p is given, we have to use the universal bound
(*), which will be quite accurate anyway because in elections usually p is
close to 0.5:

n ≥ (1.96)2

4× (0.03)2
= 1067.11

Hence we need to poll at least 1068 people.
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12 Advanced topics in estimation

In many examples, we only used the sample mean x̄ and/or the sample vari-
ance s2 to estimate unknown parameters, construct confidence intervals, etc.
So we only needed two numbers ‘summarizing’ the entire sample x1, . . . , xn.
Does it mean that the sample itself can be discarded once a few crucial ‘sum-
maries’, like x̄ and s2, are computed? Wouldn’t the individual values of xi’s
help in any way if we knew them? Couldn’t they improve our conclusions?

12.1 Sufficient statistics
Recall that the likelihood function is

L(θ) = f(x1; θ) · · · f(xn; θ)

This function involves both unknown parameters θ and observed data x1, . . . , xn.
Suppose that we can ‘separate’ them so that

L(θ) = g
(
u(x1, . . . , xn), θ)

)
· h(x1, . . . , xn)

where g, h, u and some functions. Then u(x1, . . . , xn) is called sufficient
statistic. The factor h(x1, . . . , xn) that also depends on the data is not in-
cluded in sufficient statistics.

12.2 Sufficient statistics for normals
The likelihood function is

L(µ, σ2) =
n∏
i=1

1√
2πσ2

e−
(xi−µ)

2

2σ2 =
1

[2πσ2]n/2
e−

∑
i
(xi−µ)

2

2σ2

Here the data and parameter are “tangled together”. But the expression in
the exponent can be modified as∑

i

(xi − µ)2

2σ2
=

∑
i x

2
i − 2µ

∑
i xi + nµ2

2σ2

So we have separated parameters from the data: the values x1, . . . , xn only
appear in two expressions:

u1 =
∑
i

xi and u2 =
∑
i

x2
i

These are sufficient statistics for normal samples.
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12.3 Remark
Note that u1 and u2 are equivalent to x̄ and s2 in the following sense:

knowing u1 and u2 one can compute x̄ = u1/n and s2 = (u2−u2
1/n)/(n− 1),

see Section 3.21, and vice versa: u1 = nx̄ and u2 = (n − 1)s2 + nx̄2. So we
can also say that x̄ and s2 are sufficient statistics for normals.

12.4 Meaning of sufficient statistics
The theory says that for all statistical purposes (estimation, construction

of confidence intervals, etc.) it is enough to have the values of sufficient
statistics. The values of individual observations x1, . . . , xn cannot improve
statistical inferences, so they can be discarded.

This is very convenient in practice: instead of recording and storing all
n observed values of a normal random variable, we only need to record and
store two values of sufficient statistics: u1 and u2, see above!

Moreover, the values such as u1 and u2 can be easily computed ‘on-line’,
if the data x1, . . . , xn arrive sequentially, one by one. Indeed, every xi must
be added to u1, its square must be added to u2, then xi can be discarded.

12.5 Sufficient statistics for Poisson
The likelihood function is

L(λ) =
n∏
i=1

λxi

xi!
e−λ =

λx1+···+xn

x1! · · · xn!
e−λn

We see here two expressions involving the data: x1 + · · ·+ xn and x1! · · ·xn!,
however, the latter is just a factor (denoted by h(x1, . . . , xn) in the general
formula), hence it can be ignored. The only sufficient statistic is

u = x1 + · · ·+ xn.

As a rule, the number of sufficient statistics corresponds to the number of
unknown parameters, but there are exceptions...

12.6 Sufficient statistics for uniforms
This is a tricky problem. Let x1, . . . , xn be random values of a uniform

random variable X = U(a, b) with unknown parameters a < b. Its density
function is f(x) = 1/(b − a) for a < x < b (and zero elsewhere). Hence the
likelihood function is

L(a, b) =

{ 1
(b−a)n

if a < xi < b for all i

0 elsewhere
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Here we do not see any data x1, . . . , xn in the expression for L(a, b). However,
they are involved in the condition “a < xi < b for all i”. So this condition
gives us sufficient statistics. It can be rewritten as

a < min{x1 . . . , xn} = x(1) b > max{x1 . . . , xn} = x(n).

Thus, the extreme values of the sample, x(1) and x(n), are two sufficient
statistics.

12.7 MLE for uniforms
We can also compute the maximum likelihood estimate of the parameters

a and b of a uniform random variable X = U(a, b). To find the MLE, we need
to maximize the likelihood function L(a, b). Clearly, the fraction 1/(b− a)n

takes larger values when b − a gets smaller, i.e. when a and b get closer
together. However, we cannot make them arbitrarily close because of the
restrictions in the previous section. To make them as close to each other as
possible we need to set

â = min{x1 . . . , xn} = x(1) b̂ = max{x1 . . . , xn} = x(n).

These are the MLE for a and b.

12.8 Asymptotic distribution of MLE
Suppose θ̂n is the maximum likelihood estimate of an unknown parameter

θ based on a sample x1, . . . , xn of size n. In Chapter 3 we learned that the
MLE usually have errors of order 1/

√
n, that is their typical values are

θ̂n = θ ±O(1/
√
n).

Here we describe the distribution of MLE much more precisely. The estimate
θ̂n is, approximately, a normal random variable with mean θ (which is the
actual value of the parameter) and variance σ2

n, i.e.

θ̂ ≈ N (θ, σ2
n)

and the variance satisfies a general formula

σ2
n =

1

−nE
(
∂2

∂θ2
ln f(x; θ)

)
=

1

nE
(
∂
∂θ

ln f(x; θ)
)2
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where f(x; θ) denotes the probability density function of the random variable.
The above two formulas are equivalent, and in practice you can use either
one. We will demonstrate how they work below.

As we can see, the variance is ∼ 1/n, hence the standard deviation is
∼ 1/

√
n, which makes typical errors ∼ 1/

√
n, as we know already.

12.9 Rao-Cramer lower bound
The previous section gives a precise formula for the variance (i.e., for

typical errors) of the MLE. A natural question is – are there better estimates
than MLE? That is, can some other estimates have a smaller variance (i.e.,
smaller typical errors)? The answer is NO.

First of all, the accuracy of an estimate θ̂ is measured by the mean squared
error (MSE), see Section 3.11, and we have the decomposition

MSE(θ̂) = Var(θ̂) + [bias(θ̂)]2

When the bias is significant, the estimate cannot be accurate, it is not good.
In our theoretical analysis, we usually restrict ourselves to unbiased estimates
(where the bias is zero) or almost unbiased estimates (by this we mean that
the bias is of order less than 1/

√
n). Then the accuracy of the estimate θ̂ is

characterized by its variance Var(θ̂) only.
A general theorem called Rao-Cramer lower bound says that for any un-

biased (or almost unbiased, in the above sense) estimate the variance has the
lower bound:

Var(θ̂) ≥ 1

−nE
(
∂2

∂θ2
ln f(x; θ)

)
=

1

nE
(
∂
∂θ

ln f(x; θ)
)2

These are the exact same (!) formulas we had for σ2
n in the previous section.

Thus, no estimate can be better (i.e. more accurate) than the MLE.
This theoretical fact explains the overwhelming popularity of maximum

likelihood estimates in practical statistics.

12.10 Efficiency
An estimate θ̂ is said to be efficient (or 100% efficient) if its variance

coincides with the expression given by the Rao-Cramer lower bound (i.e. its
variance takes the smallest possible value, so the estimate is optimal).
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If the variance Var(θ̂) is greater than its lower bound

Varmin =
1

−nE
(
∂2

∂θ2
ln f(x; θ)

)
then the ratio

Eff =
Varmin

Var(θ̂)

is called the efficiency of the estimate θ̂. It never exceeds 1, it can only be
smaller than 1.

In practical terms, the value of the efficiency means the following: if the
estimate θ̂ has, say, efficiency 1/2 (or 50%), then in order to achieve the
same accuracy as the MLE does, our ‘poor’ estimate θ̂ would require twice
as many data points.

12.11 Example: exponentials
Let X be an exponential random variable, then its density is

f(x;µ) =
1

µ
e−

x
µ , x > 0

where µ > 0 is the parameter. We will computet the Rao-Cramer lower
bound. Taking logarithm we get

ln f(x;µ) = − lnµ− x

µ

Differentiating with respect to µ gives

∂

∂µ
ln f(x;µ) = − 1

µ
+

x

µ2

Now we have two options. First, we can square this expression and take its
mean value:

E
( 1

µ2
− 2x

µ3
+
x2

µ4

)
=

1

µ2
− 2E(X)

µ3
+

E(X2)

µ4

For the exponential random variable, E(X) = µ and E(X2) = Var(X) +
[E(X)]2 = 2µ2. Hence we obtain

1

µ2
− 2µ

µ3
+

2µ2

µ4
=

1

µ2
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Thus

Varmin =
µ2

n
.

Alternatively, we can take the second order derivative

∂2

∂µ2
ln f(x;µ) =

1

µ2
− 2x

µ3

and then the mean value

E
( 1

µ2
− 2x

µ3

)
=

1

µ2
− 2µ

µ3
= − 1

µ2

and then

Varmin =
µ2

n
(note that the two minuses cancel out). We have seen in Section 3.14 that
the variance of the MLE µ̂ is exactly µ2/n.

12.12 Example
Let X be a random variable with density function

f(x; θ) = θ xθ−1, 0 < x < 1

where θ > 0 is a parameter. We will compute the Rao-Cramer lower bound.
Taking logarithm we get

ln f(x; θ) = ln θ + (θ − 1) lnx

Differentiating with respect to θ gives

∂

∂θ
ln f(x; θ) =

1

θ
+ lnx

Differentiating with respect to θ again gives

∂2

∂θ2
ln f(x; θ) = − 1

θ2
.

Note that the variable x is gone! Now the mean value is

E
(
− 1

θ2

)
= − 1

θ2

and then

Varmin =
θ2

n
(note again that the two minuses cancel out).
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13 Hypotheses testing: introduction

In the previous sections, the results of our work was numerical: point esti-
mates and confidence intervals were some numbers. In the real life, numbers
are used to make certain practical decisions. In Example 10.2, the results of
the test may be used by the management of a large hotel chain to select one
detergent over the other.

The life of statisticians would have been easier if all they had to provide
were numbers, and then some other ‘responsible people’ made final decisions.
But our life is not that simple. Statisticians have to make (or at least suggest)
final decisions, keeping numbers and other technical details to ourselves.

Making a decision usually requires choosing between two (or more) avail-
able options (such as recommending to buy detergent A versus detergent B).
We call these options hypotheses, because they remain hypothetical (poten-
tial) until statisticians select one of them and reject the others.

13.1 Example
A manufacturer of detergents knows that the efficiency of its product (the

probability of successful removal of stains) is p0 = 0.72. Engineers propose a
new technological method claiming that the efficiency of the detergent would
increase. A small quantity of detergent was obtained in a lab by using the
new technology and tested on n = 100 stains. It successfully removed x = 81
of them.

Should the manufacturer adopt the new technology? This is a serious
question, because updating technology is a costly process. The manufacturer
must be confident that the new detergent is indeed better than the old one.
Statisticians must determine if the efficiency of the new detergent, let us call
it p, is greater (or not greater) than p0. They must tell the manufacturer:
“observed data make us, say, 95% confident that p > p0”. Or else, “there is
no sufficient evidence to claim, with 95% confidence, that p > p0”.

Note: the level of confidence (here 95%) has to be prescribed. One can
never be 100% sure of anything when dealing with random events – even
a fair coin flipped 100 times may land on Heads all 100 times (this is ex-
tremely unlikely, but possible). In practical work, we can set the level of
confidence in advance to something high enough, such as 95%, and then feel
fairly comfortable with our conclusions. That’s what testing hypotheses is
all about.
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13.2 Null and alternative hypotheses
In the above example, the base hypothesis is that there is no improvement

in the efficiency of detergent, i.e. p takes its default value p = p0. This is called
the null hypothesis. The other hypothesis is that there is an improvement, i.e.
p takes an alternative value p > p0. This is called the alternative hypothesis :

H0 : p = p0 (null hypothesis)

H1 : p > p0 (alternative hypothesis)

We note that the null hypothesis only includes one value of the parameter
p. Such hypotheses are said to be simple. On the contrary, the alterna-
tive hypothesis covers a whole interval of values of the parameter p. Such
hypotheses are said to be composite.

13.3 Errors of type I and II
Statisticians need to decide which hypothesis is true. They may accept

H0 and reject H1, or accept H1 and reject H0. At the same time, one of
these two hypotheses is actually true, either H0 or H1. We have four possible
combinations:

accepted:

H0 H1

H0 OK Error-I
true:

H1 Error-II OK

The diagonal combinations H0 −H0 and H1 −H1 are OK, in these cases
the statisticians make the right decision. The other two combinations mean
statistical errors:

Type I error: accepting H1 when H0 is actually true.

Type II error: accepting H0 when H1 is actually true.

Statisticians want to reduce the probabilities of errors:

P(Error I) = α (significance level)

P(Error II) = β

These two values are crucial in hypothesis testing.
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13.4 Actual test
How do we actually choose one hypothesis over the other, in the above

example? Denote by p̂ = 81/100 = 0.81 the estimate of the unknown param-
eter p obtained from the observations. Obviously, if p̂ is sufficiently high, i.e.
p̂ ≥ c, then we should accept the hypothesis H1, otherwise we should reject
it and accept H0. Here c is a certain critical value. The interval p̂ ≥ c is the
critical region (the region of the values of the estimate where we make the
‘critical’ decision to accept H1).

How do we choose c? Here is a common practice: set a certain (small)
value for the probability of type I error, such as α = 0.1 or α = 0.05 or
α = 0.01, and choose c that makes α equal to that value, see below.

13.5 The choice of c
Suppose the value of α is prescribed. The probability of type I error can

be computed as

α = P(p̂ > c; H0 is true) = P
(
x
n
> c; p = p0

)
By using normal approximation (de Moivre-Laplace theorem), x ≈ N (np, npq),
hence x

n
≈ N (p, pq

n
), where p = p0 (since we assume the null hypothesis is

true) and q = 1− p = 1− p0. So the above probability is

α = P
(
x
n
> c
)
≈ 1− Φ

( c− p0√
p0(1− p0)/n

)
thus

c− p0√
p0(1− p0)/n

= zα

hence
c = p0 + zα

√
p0(1− p0)/n

For example, let α = 0.05. Then z0.05 = 1.645 and

c = 0.72 + 1.645
√

0.72 · 0.28/100 = 0.794

If the estimate p̂ exceeds the critical value c = 0.794 (which it does, since we
have p̂ = 0.81), then statisticians accept H1 with the 95% confidence level.

The condition p̂ > c = p0 + zα
√
p0(1− p0)/n is equivalent to

Z =
p̂− p0√

p0(1− p0)/n
> zα
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The new quantity Z here has approximately standard normal distribution
N (0, 1). We call it the test statistic, it is used to test the given hypotheses.
The critical region can be described as Z > zα.

In our example,

Z =
0.81− 0.72√
0.72 · 0.28/100

= 2.00 > z0.05 = 1.645

thus we are in the critical region, i.e. accept H1.
Another popular name for the test statistic Z is Z-score. Any test statis-

tics that has a standard normal distribution N (0, 1) is called Z-score.

13.6 Power of the test
We designed the test to make α small enough (=0.05), but what about

β? To compute the type II error we again use normal approximation:

β = P(p̂ < c; H1 is true)

= P(x/n < c; p > p0) ≈ Φ
( c− p√

p(1− p)/n

)
We see that β is a function of the unknown parameter p. This is why it could
not be used to design the test: if we set β to a small value (such as 0.05), we
still would not be able to determine c, because the unknown parameter p is
involved in the formula here.

Since we want β to be small, we call the value K = 1 − β the power of
the test. The smaller β, the more powerful the test is.

For example, if the actual efficiency of the new detergent is p = 0.85, then

β = Φ
( 0.794− 0.85√

0.85 · 0.15/100

)
= Φ(−1.57) = 0.0582

so the power of the test is K = 0.9418 (very high). That is, while Type I
error would occur with probability 5% (by design), Type II error would occur
with probability 5.82% (by calculation).

13.7 Trade-off between α and β
Suppose we try to decrease the probability of type I error and set α = 0.01.

Then z0.01 = 2.326 and

c = 0.72 + 2.326
√

0.72 · 0.28/100 = 0.8244
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Assuming again that the the actual efficiency of the new detergent is p = 0.85,
we obtain

β = Φ
( 0.8244− 0.85√

0.85 · 0.15/100

)
= Φ(−0.717) = 0.2367

So the probability of type II error increased from 5.82% to 23.67%. The
power of the test dropped accordingly from 0.9418 to 0.7633. This means, in
practical terms, that the alternative hypothesis is now likely to be rejected
even if it is true. By the way, in our example p̂ = 0.81 < c = 0.8244, so we do
reject H1 when α = 0.01 (recall that we have accepted H1 when α = 0.05).

Here is a classical trade-off in statistical hypothesis testing: making α
smaller automatically increases β and vice versa. In practice one should look
for a reasonable compromise. Here are some guidelines:

Choosing α smaller reduces the chances of accepting the alternative hy-
pothesis H1, whether it is true or not. This is a ‘safe play’, reflecting the
tendency to stick to default, shying away from alternatives and risks they
involve.

Choosing α larger increases the chances of accepting the alternative hy-
pothesis H1, whether it is true or not. This is a ‘risky play’, an aggressive
strategy oriented to finding alternatives, innovations and profit.

13.8 p-value
In the above example, we first set α = 0.05 and accepted H1. Then we

reset α to 0.01 and rejected H1. Obviously, there is a borderline between
acceptance and rejection, i.e. there is a value (called the probability value, or
for brevity the p-value) such that

if α > p-value, we accept H1 (reject H0)

if α < p-value, we reject H1 (accept H0)

Many people find these rules hard to memorize. A popular chant can help:

P is low – the null must go; P is high – the null will fly

To compute the p-value, we must use the formula for α, but substitute

53



the estimated value of p̂ for the critical value c, that is

p-value = 1− Φ
( 0.81− 0.72√

0.72 · 0.28/100

)
= 1− Φ(2.00) = 0.0228

So, for any α > 0.0228 we accept H1, for any α < 0.0228 we reject H1.
Recall that the significance level α (the risk level) must be specified a

priori, rather than computed from the data. On the contrary, the p-value is
computed from the data, there is no need to specify α. This is convenient:
now the statisticians can report the p-value and leave the burden of making
the final decision to other responsible people.
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14 Hypotheses testing: proportions

14.1 Summary of the previous chapter
Suppose X = b(n, p) is a binomial random variable with an unknown

proportion p. We have tested the null hypothesis H0 : p = p0 against the
alternative hypothesis H1 : p > p0. In an experiment, we have observed a
value x of the variable X. Then we used the test statistic (Z-score)

Z =
x/n− p0√
p0(1− p0)/n

and accepted the alternative H1 whenever Z > zα, where α was the preset
level of significance. The p-value was computed by the rule: p-value =
1− Φ(Z).

14.2 Two other alternatives
In our example, engineers were interested in increasing the proportion p

(the efficiency of the detergent). In other applications it may be desirable to
decrease the proportion p (e.g., if it represents the failure rate). Then the
alternative hypothesis would be H1 : p < p0. In that case we use the same
test statistic Z and accept the hypothesis H1 if Z is too small, precisely if
Z < −zα. The p-value is computed by the rule: p-value = Φ(Z).

In yet other applications it may be desirable to change p either way, or
just verify whether or not the value of p equals its default value p0. Then the
alternative hypothesis is H1 : p 6= p0 (the two-sided hypothesis). In that case
we use the same test statistic Z and accept the hypothesis H1 if Z differs
from zero either way, precisely if |Z| > zα/2. The p-value is computed by the
rule: p-value = 2 [1− Φ(|Z|)]. Summary:

H0 H1 Critical region p-value Test statistic

p > p0 Z > zα 1− Φ(Z)

p = p0 p < p0 Z < −zα Φ(Z) Z = x/n−p0√
p0(1−p0)/n

p 6= p0 |Z| > zα/2 2 [1− Φ(|Z|)]
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14.3 Two proportions
In the previous example, we assumed that the efficiency of the ‘old’ deter-

gent was known (p0 = 0.72). What if it isn’t? Then it should be determined
experimentally, just as the efficiency of the new detergent. Then we will have
to compare two proportions, as in the original Example 10.2.

Suppose X1 = b(n1, p1) and X2 = b(n2, p2) are two binomial random
variables. We want to compare p1 and p2. Our null (base) hypothesis is
H0 : p1 = p2. The alternative H1, depending on the particular goals of the
test, may one of three forms: p1 > p2 or p1 < p2 or p1 6= p2. In an experiment,
we observe the values x1 and x2 of these variables.

As it follows from the analysis in Section 10.1, the following statistic has
a standard normal distribution N (0, 1):

x1/n1 − x2/n2 − (p1 − p2)√
p1(1−p1)

n1
+ p2(1−p2)

n2

But this expression must be adapted to hypotheses testing. First of all, we
only need to know its distribution under the null hypothesis, i.e. when p1 =
p2. Then the term p1 − p2 in the numerator vanishes. In the denominator,
the unknown value p1 = p2 can be replaced with its best estimated (the
combined, or pooled estimate from the two experiments):

p̂ =
x1 + x2

n1 + n2

(the total number of successes over the total number of trials). Thus we get
the test statistic (Z-score)

Z =
x1/n1 − x2/n2√
p̂(1− p̂)

(
1
n1

+ 1
n2

)
The actual test is completed as before, according to the table:

H0 H1 Critical region p-value Test statistic

p1 > p2 Z > zα 1− Φ(Z)

p1 = p2 p1 < p2 Z < −zα Φ(Z) Z = x1/n1−x2/n2√
p̂(1−p̂)

(
1
n1

+ 1
n2

)
p1 6= p2 |Z| > zα/2 2 [1− Φ(|Z|)] p̂ = x1+x2

n1+n2
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14.4 Example
A UAB doctor notices that many patients having Menier’s disease also

have hearing trouble. Menier’s disease is very hard to diagnose. So the doc-
tor proposes to include the hearing test into the diagnostic procedure. To
determine if his theory is correct the doctor uses hearing test on 96 patients
(known to have Menier’s disease) and on randomly selected 119 healthy peo-
ple. The results of his experiment are presented in the table below:

Fail Pass Total

Ill 71 25 96

Healthy 76 43 119

(these are real data obtained at the UAB Medical School in about 1997).
The doctor expects that ill patients would fail the test more frequently

than healthy people do. It looks like this indeed happens in his experiment.
But is there a sufficient evidence to claim the existence of such a tendency
with a high confidence level?

We proceed with the test. Let p1 denote the probability of failure of the
hearing test for ill patients and p2 that for healthy people. We test the null
hypothesis H0 : p1 = p2 against the alternative H1 : p1 > p2. We start with

p̂ =
71 + 76

96 + 119
= 0.6837

(note that we treat ‘failures of the hearing test’ as ‘successes’), then

Z =
71/96− 76/119√

0.6837 · 0.3163 ·
(

1
96

+ 1
119

) = 1.5825

If we set α = 0.1, then Z > z0.1 = 1.282, so we accept the alternative H1

(thus validating the doctor’s theory).
But if we set α = 0.05, then Z < z0.05 = 1.645, so we reject the alternative

H1 (thus invalidating the doctor’s theory).
The p-value here is 1 − Φ(1.5825) = 0.0571. Thus if the medical com-

munity is willing to take a risk higher than 5.71% in this experiment, then
the doctor’s theory should be welcomed. Otherwise it should be rejected
(until further tests, perhaps). Whatever the actual standards in the medical
community, we can say (from statisticians viewpoint) that the data mildly
support the doctor’s theory, but do not give an overwhelming evidence.
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14.5 Remark
In the above example, the doctor expects that ill patients would fail the

test more frequently than healthy people do. What if the doctor does not
have any specific expectations either way, he only believes that Menier’s
disease somehow affects the results of the hearing test, whether increasing
failures or decreasing failures?

Then we have to test the null hypothesis H0 : p1 = p2 against the two-
sided alternative H1 : p1 6= p2. In that case the critical region is |Z| > zα/2.

Now if we set α = 0.1, then |Z| < z0.05 = 1.645, we reject the alternative
(thus invalidating the doctor’s theory).

Only if we set α = 0.2, then |Z| > z0.1 = 1.282, then we accept the
alternative (thus validating the doctor’s theory).

The p-value now is 2 [1 − Φ(1.5825)] = 0.1142, i.e. the critical risk level
is 11.42%.

We see that the acceptance of the two-sided alternative hypothesis is
twice as more risky than that of the one-sided alternative. It is common in
statistics: better formulated, well-focused hypotheses have higher chances of
acceptance.

14.6 Warning
The form of the alternative hypothesis must be specified by the doctor

based on general medical considerations (or previous experience). This must
be done before the experiment is performed! Neither the doctor, nor statis-
ticians should look into the experimental data for clues of how to specify the
alternative hypothesis. This would constitute a ‘statistical cheating’. Any-
one doing such inappropriate things is making a serious mistake and may
arrive at totally wrong conclusions.
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15 Hypotheses testing: one normal distribution

15.1 Example
Suppose the average score in calculus tests at a particular university is

used to be 60 (out of 100). The university considers adopting a new text-
book hoping the students would learn better and get higher scores. In an
experimental class of n = 25, calculus was taught by the new book, and the
average score in this class was 64. Is there a sufficient evidence to claim that
the test scores would increase if the new book is adopted?

We agreed to consider the test scores as values of a normal random vari-
able N (µ, σ2). Our primary interest here is the average µ: is it greater than
60 or not? The secondary parameter σ is not relevant to the question posed
and for simplicity we assume that it is known: σ = 10.

Thus we need to test the null (base) hypothesis H0 : µ = 60 against the
alternative H1 : µ > 60.

15.2 General method
Suppose we are testing the null hypothesis H0 : µ = µ0 against the alter-

native H1 : µ > µ0.
The point estimate of the unknown parameter µ is x̄. It has a normal

distribution N (µ, σ2/n). Under the null hypothesis µ = µ0 its distribution
is N (µ0, σ

2/n). The following statistics (Z-score)

Z =
x̄− µ0

σ/
√
n

has a standard normal distribution N (0, 1).
If the alternative hypothesis is true, then µ is large and we expect x̄ to

be large, and so Z is expected to be large as well. Hence the critical region
must be of the form Z > c. Given the significance level α, the probability of
type I error must be

P(Z > c; H0 is true) = α

hence c = zα. The critical region is Z > zα. Note the similarity with
Section 14.2. As in that section, now the p-value is 1− Φ(Z).

15.3 Example (continued)
In our example Z = 64−60

10/5
= 2. So if we set α = 0.05, then Z > z0.05 =

1.645, so we accept H1 (adopt the new textbook). Even if we set α = 0.025,
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then Z > z0.025 = 1.96, so we again accept H1. But if we set α = 0.01,
then Z > z0.01 = 2.326, so we accept H0 (and reject the new textbook). The
p-value is 1− Φ(2) = 0.0228, so the ‘borderline’ risk level is 2.28%.

15.4 Summary
The alternative hypothesis may be of two other forms: µ < µ0 and µ 6= µ0.

Accordingly, the test proceeds as follows:

H0 H1 Critical region p-value Test statistic

µ > µ0 Z > zα 1− Φ(Z)

µ = µ0 µ < µ0 Z < −zα Φ(Z) Z = x̄−µ0
σ/
√
n

µ 6= µ0 |Z| > zα/2 2 [1− Φ(|Z|)]

15.5 A general principle
Constructing confidence intervals and testing hypothesis we use the same

statistics. There is a general principle: the null hypothesis H0 : θ = θ0 about
the unknown parameter θ is accepted if the value θ0 is in the 1−α confidence
interval for θ. Applying this principle we need to remember that when the
alternative is two-sided H1 : θ 6= θ0, then the CI must be two-sided, but if
the alternative is one-sided, then the CI also must be two-sided.

15.6 Power function
Suppose the critical region is specified by x̄ > 62. Then we can compute

the power function

K(µ) = 1− β = P(x̄ > 62) = 1− Φ
(62− µ

2

)
Here are a few of its values:

62 63 64 65 66 67 68

0.5000 0.6915 0.8413 0.9332 0.9772 0.9938 0.9987

We see that the power function (which is the probability of accepting H1

if it is correct) starts with moderate values (50% to 69%) but quickly gets
over 90% and then over 99%. If the actual average of calculus test scores
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with the new textbook is 68, this fact will be recognized by our test, and the
textbook will be adopted with probability 99.87%.

But what if the actual average with the new textbook is only 63? Then
the chance of adoption is mere 69.15%, even though the new score of 63 is
higher than the old one of 60. Our test is simply not powerful enough to
recognize such a relatively small difference (63 − 60 = 3) between the old
and new averages, the chance of its failure (of making the wrong decision)
exceeds 30%.

How to increase the power of the test? Obviously, by testing more stu-
dents, by enlarging the experimental class. The larger the sample the more
accurate statistical conclusions.

15.7 Sample size: experimental design
Here we again come to the experimental design. Suppose we are testing

the hypothesis µ = µ0 against µ > µ0. We want the significance level (which
is the probability of type I error) to be equal to a small value, α. In addition,
we want the probability of type II error be equal to another small value, β
for a particular value of µ = µ1. How can we design such a test?

The probability of type I error is

α = P(x̄ > c; µ = µ0) = 1− Φ
(c− µ0

σ/
√
n

)
hence

c− µ0

σ/
√
n

= zα

The probability of type II error is

β = P(x̄ < c; µ = µ1) = Φ
(c− µ1

σ/
√
n

)
hence

c− µ1

σ/
√
n

= z1−β = −zβ

We arrive at a system of equations:

c− µ0 = zασ/
√
n

c− µ1 = −zβσ/
√
n
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Solving it for n and c gives

n =
(zα + zβ)2σ2

(µ1 − µ0)2

and

c =
µ0zβ + µ1zα
zα + zβ

We emphasize that if µ1 − µ0 is small, then there isn’t much difference be-
tween the null hypothesis and the alternative hypothesis, they are hard to
distinguish. This is why n must be large to make that distinction possible.

15.8 Example (continued)
Suppose in our calculus test example, we want the significance level to be

α = 0.025. Also suppose that if the average test score with the new book is
63 (versus the old average of 60), we want this fact to be recognized by our
test with probability 95%, i.e. we want β = 0.05. Then we need

n =
(1.96 + 1.645)2 · 100

(63− 60)2
= 144.4

i.e. we need at least 145 students for the experimental class(es). The critical
value should be

c =
1.645 · 60 + 1.96 · 63

1.645 + 1.96
= 61.63

So if the average score in the experimental class(es) exceeds 61.63, we will
adopt the new textbook, otherwise we reject it.

15.9 Remark
In the above analysis we assumed that µ1 > µ0. But the same formulas

for n and c apply in the case µ1 < µ0.

15.10 Unknown variance
So far we greatly simplified our life by assuming that σ was known. In

practice we rarely have such a luxury. If σ2 is unknown, then it should be
replaced with its best estimate s2, and the normal distribution – with the
t-distribution (the latter has n− 1 degrees of freedom). The test statistic is

T =
x̄− µ0

s/
√
n

and the test procedure goes as follows:
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H0 H1 Critical region p-value Test statistic

µ > µ0 T > tα(n− 1) 1− F (T )

µ = µ0 µ < µ0 T < −tα(n− 1) F (T ) T = x̄−µ0
s/
√
n

µ 6= µ0 |T | > tα/2(n− 1) 2 [1− F (|T |)]

where F (x) denotes the distribution function of the t random variable with
n− 1 degrees of freedom.

The textbook explains how to compute an “approximate” p-value by
using Table VI, see the next example. Exact p-value can be found with the
help of the on-line calculator on the instructor’s web page.

15.11 Example
Suppose n = 24 random values of a normal random variable yielded

x̄ = 0.079 and s = 0.255. Test the hypothesis H0 : µ = 0 against H1 : µ > 0
at the 5% significance level.

Solution: Since σ2 is unknown we use the T-statistic

T =
0.079− 0

0.255/
√

24
= 1.518

Since T = 1.518 < t0.05(23) = 1.714, we accept the null hypothesis H0.
To determine the “approximate” p-value, we find in Table VI two per-

centiles that are closest to the value of the T-statistic on both sides of it:
t0.1(23) = 1.319 and t0.05(23) = 1.714 (note that we must use the same
number of degrees of freedom, 23). Then the p-value is between the two
corresponding percentages, i.e. the p-value is between 5% and 10%, or in the
interval (0.05, 0.1).

The on-line calculator on the instructor’s web page gives a precise answer:
p-value=0.0713.

15.12 Test for the variance
So far we have tested the mean value µ of a normal random variable

X = N (µ, σ2). In practice it is sometimes necessary to test the variance σ2.
For example, let σ represent a typical error in readings of a blood pressure
monitor. A new brand of monitor is considered by a doctor, who might want
to test if its typical readings error σ exceeds a certain threshold σ0.
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The null hypothesis says that σ2 = σ2
0. The alternative may be of one of

the three forms: σ2 > σ2
0 or σ2 < σ2

0 or σ2 6= σ2
0. To test these hypotheses

we use the statistic

χ2 =
(n− 1)s2

σ2
0

which has a χ2 distribution with n−1 degrees of freedom. The test procedure
is summarized below:

H0 H1 Critical region Test statistic

σ2 > σ2
0 χ2 > χ2

α(n− 1)

σ2 = σ2
0 σ2 < σ2

0 χ2 < χ2
1−α(n− 1) χ2 = (n−1)s2

σ2
0

σ2 6= σ2
0 χ2 > χ2

α/2(n− 1) or

χ2 < χ2
1−α/2(n− 1)

Note that in the third case σ2 6= σ2
0 the critical region consists of two intervals:

χ2 > χ2
α/2(n−1) and χ2 < χ2

1−α/2(n−1). This means that if the test statistic

χ2 falls into either of these intervals, we accept H1.
The formulas for the p-value are rather complicated, we omit them. The

textbook explains how to compute an “approximate” p-value by using Table
IV, see the next example.

15.13 Example
Suppose n = 16 random values of a normal random variable yielded

x̄ = 10 and s2 = 8. Test the hypothesis H0 : σ2 = 16 against H1 : σ2 < 16 at
the 1% significance level.

Solution: the test statistic is χ2 = 15·8
16

= 7.5. Since χ2 = 7.5 >
χ2

0.99(15) = 5.229, we are not in the critical region, so we accept H0.
To determine the “approximate” p-value, we find in Table IV two per-

centiles that are closest to the value of our test statistic: χ2
0.95(15) = 7.261

and χ2
0.90(15) = 8.547 (note that we must use the same number of degrees of

freedom, 15). Note that the subscripts 0.95 and 0.9 are the values of 1− α,
so the corresponding values of α are 0.05 and 0.1. Then the p-value is be-
tween the two corresponding α-percentages, i.e. the p-value is between 5%
and 10%, or in the interval (0.05, 0.1).

The on-line calculator on the instructor’s web page gives a precise answer:
p-value=0.0577.
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16 Hypotheses testing: two normals

Let x1, . . . , xn be calculus test scores in one class and y1, . . . , ym calculus test
scores in another class in the same university. The classes were taught from
the same textbook but by two different professors. The university wants
to combine these two sets of scores for some larger analysis assuming that
they can be treated as values of the same normal random variable. But
is it a correct assumption? Maybe the professors teach and/or grade too
differently?

Just looking up the scores for similarities or differences is not enough,
only a formal test can determine whether or not these two samples can be
treated as values of the same normal random variable.

16.1 Formal test
Let x1, . . . , xn be random values of a normal variable X = N (µX , σ

2
X)

and y1, . . . , ym random values of a normal variable Y = N (µY , σ
2
Y ). We want

to test the hypothesis H0 : X = Y against the alternative H1 : X 6= Y .
Since a normal random variable is completely determined by its mean µ

and variance σ2, the null hypothesis really says that µX = µY and σ2
X = σ2

Y .
We will test these two identities separately, in two steps.

Which identity should we test first? Recall that the information about
variances is essential for the analysis of means (Chapter 6) but the analysis
of variances does not require any knowledge about means (Chapter 8). So
we start with the variances.

16.2 Step 1: variances
We test the null hypothesisH0 : σ2

X = σ2
Y against the alternativeH1 : σ2

X 6=
σ2
Y . We use the F-statistic

F =
s2
y/σ

2
Y

s2
x/σ

2
X

which has F (m−1, n−1) distribution, see Chapter 8. Under the null hypoth-
esis σ2

X = σ2
Y , thus the F-statistic becomes simple: F = s2

y/s
2
x. Accordingly,

the test proceeds as follows
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H0 H1 Critical region Test statistic

σ2
Y > σ2

X F > Fα(m− 1, n− 1)

σ2
Y = σ2

X σ2
Y < σ2

X F < 1/Fα(n− 1,m− 1) F = s2
y/s

2
x

σ2
Y 6= σ2

X F > Fα/2(m− 1, n− 1) or

F < 1/Fα/2(n− 1,m− 1)

We include the cases H1 : σ2
Y > σ2

X and H1 : σ2
Y < σ2

X for completeness.
For our test of equality of two normal distributions we only need to know
if σ2

Y 6= σ2
X . Note that the critical region consists of two intervals: F >

Fα/2(m− 1, n− 1) and F < 1/Fα/2(n− 1,m− 1). This means that if the test
statistic F falls into either of these intervals, we accept H1. An approximate
p-value can be found as in the previous chapters.

If the test determines that the variances are distinct (i.e. we accept H1),
then the entire test stops. The normal distributions are different, there is no
need to test their means.

If the variances are found to be equal (i.e. we accept H0), then the test
continues.

16.3 Step 2: means
We test the null hypothesisH0 : µX = µY against the alternativeH1 : µX 6=

µY . Since we already determined (at Step 1) that the variances were equal,
we can use the facts from Section 6.5. We use the test statistic

T =
x̄− ȳ√

(n−1)s2x+(m−1)s2y
n+m−2

√
1
n

+ 1
m

which has a T-distribution t(r) with r = n+m− 2 degrees of freedom.
Accordingly, the test proceeds as follows:

H0 H1 Critical region Test statistic

µX > µY T > tα(r)

µX = µY µX < µY T < −tα(r) T = x̄−ȳ√
(n−1)s2x+(m−1)s2y

n+m−2

√
1
n

+ 1
m

µX 6= µY |T | > tα/2(r)

66



We include the cases H1 : µX > µY and H1 : µX < µY for completeness.
For our test of equality of two normal distributions we only need to know if
µX 6= µY . An approximate p-value can be found as in the previous chapters.

Now we make the final conclusion. If the test determines that the means
are distinct (i.e. we accept H1), then the normal distributions are different.
If the means are found to be equal (i.e. we accept H0), then the normal
distributions are identical.

16.4 Example
Suppose the calculus test scores of 10 students in one class yielded x̄ = 73

and sx = 25 and the calculus test scores of 13 students in another class
yielded ȳ = 82 and sy = 28. Can we treat all these scores as values of the
same normal random variable? Test this hypothesis at a 10% significance
level.

Step 1. Testing variances. The test statistic is

F = s2
y/s

2
x = 282/252 = 1.2544

Since
1.2544 < F0.05(12, 9) = 3.07

and

1.2544 >
1

F0.05(9, 12)
=

1

2.80
= 0.357

we are not in the critical region, so we accept H0 (the variances are equal).
We proceed to Step 2.

Step 2. Testing means. The test statistic is

T =
73− 82√

9·252+12·282

10+13−2

√
1
10

+ 1
13

= −0.7997

Since
|T | = 0.7997 < t0.05(21) = 1.721

we are not in the critical region, so we accept H0 (the means are equal).
The final conclusion: the calculus test scores from both classes can be

treated as values of the same normal random variable.
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16.5 Remark
Step 1 and step 2 can be used as separate tests, if we only want to test the

identity between the means or that between the variances of the two normal
distributions. For example, if we need to test the hypothesis H0 : µX = µY
against the alternative H1 : µX > µY or H1 : µX > µY or H1 : µX 6= µY (and
assume that the variances are equal), then we use the table in Step 2.

16.6 Remark
We will not try to compute the p-value of the combined test.
Actually, the test consists of two steps, and each step has its own p-value,

so the p-value of the entire test should be the smaller of the two p-values.

16.7 Remark
In the previous example our test statistics were quite far from the corre-

sponding critical values, so the acceptance of the null hypotheses was quite
certain (it left no doubts). This demonstrates that the test is not very power-
ful, it easily misses (ignores) relatively small differences between the samples.
The differences have to be large in order for the test to reject the null hy-
potheses.
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17 χ2 goodness-of-fit test

17.1 Proportions revisited
Recall the test on proportions from Section 14.2: suppose Y = b(n, p) is

a binomial random variable with an unknown ‘proportion’ p. If we test the
null hypothesis H0 : p = p0 against the two-sided alternative H1 : p 6= p0, we
use the Z-statistic

Z =
y/n− p0√
p0(1− p0)/n

and the critical region is |Z| > zα/2. This critical region can also be expressed
by Z2 > z2

α/2. We denote

Q = Z2 =
(y/n− p0)2

p0(1− p0)/n

Now recall that in Section 7.2 we introduced a χ2 random variable. We see
now that the statistic Q = Z2 is a χ2 random variable with one degree of
freedom. Since

α = P(|Z| > zα/2) = P(Z2 > z2
α/2) = P(Q > z2

α/2)

and
α = P

(
Q > χ2

α(1)
)
,

we conclude that z2
α/2 = χ2

α(1). The critical region is now expressed as

Q > χ2
α(1).

Let us also modify the expression for Q as follows. Denote by p1 = p0

the probability of success and p2 = 1 − p0 the probability of failure. Also
let y1 = y denote the number of successes and y2 = n − y1 the number of
failures. Then

Q =
(y1/n− p1)2

p1p2/n
=

(y1 − np1)2

np1p2

=
(y1 − np1)2

np1

+
(y1 − np1)2

np2

=
(y1 − np1)2

np1

+
(y2 − np2)2

np2

Here we used two facts. First,

1

p1p2

=
1

p1

+
1

p2
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which can be verified directly by using the obvious relation p1 + p2 = 1.
Second, since y2 = n−y1 and np2 = n−np1, we have y2−np2 = −(y1−np1),
hence (y2 − np2)2 = (y1 − np1)2.

The formula for Q has a remarkable symmetry between successes and
failures. In the first term we square the difference between the observed
number of successes y1 and the theoretically expected number of successes
np1 and divide it by the latter. In the second term we square the difference
between the observed number of failures y2 and the theoretically expected
number of failures np2 and divide it by the latter. Recall that for binomial
random variables we only have two possible outcomes in every trial: success
and failure.

17.2 Pearson’s test
In 1900 K. Pearson extended the above scheme to trials with more that

two possible outcomes. For example, when we roll a die, we observe one of
six possible outcomes.

Suppose we perform n trials in which we observe one of k possible out-
comes. In the end we count the number of times every outcome was observed:
the first outcome was observed y1 times, the second outcome y2 times, etc.
Of course,

y1 + y2 + · · ·+ yk = n (link-1)

(the total number of trials). Suppose we expect the first outcome to come
up with some probability p1, the second outcome with some probability p2,
etc. Of course, p1 + · · ·+ pk = 1. Then the (theoretically) expected number
of times the outcomes should come up are np1, np2, . . . , npk. Of course,

np1 + np2 + · · ·+ npk = n (link-2)

By analogy with our ‘binomial’ statistic Q we compute

Q =
(y1 − np1)2

np1

+ · · ·+ (yk − npk)2

npk

Pearson proved that this Q-statistic has a χ2 distribution with k− 1 degrees
of freedom.

Now suppose we are testing the null hypothesis that our values p1, . . . , pk
are correct values of the probabilities of the outcomes in our trials. The
alternative is ‘everything else’, i.e. H1 simply says that these values of the
probabilities (at least some of them) are incorrect.
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To test this hypothesis with a significance level α, we compute the Q-
statistic as above and check the critical region Q > χ2

α(k − 1).

17.3 Example
Suppose we roll a die n = 60 times and observe 8 ones, 13 twos, 9 threes,

6 fours, 15 fives, and 9 sixes. Our goal is to test the hypothesis that the die
is fair, i.e. that the probability of every outcome is 1/6. We use the 10%
significance level.

To compute the Q-statistic, we list all the observed frequencies, then
all the theoretically expected frequencies, then the corresponding differences
(ignoring the signs):

8 13 9 6 15 9
10 10 10 10 10 10
2 3 1 4 5 1

The Q-statistic is

Q =
22

10
+

32

10
+

12

10
+

42

10
+

52

10
+

12

10
=

56

10
= 5.6

Sice 5.6 < χ2
0.1(5) = 9.236, we accept the null hypothesis: the die appears to

be fair (or ‘fair enough’).

17.4 Remarks
Note that the greatest contribution 52 = 25 to the value of the final

numerator (56) comes from a single outcome with the maximal discrepancy
between ‘theory’ and ‘experiment’ (10 versus 15). This is quite typical for
the χ2 test: one ‘bad apple’ may ‘spoil’ the whole picture.

Also note that the Q-value 5.6 is quite far from its critical value 9.236
(even though we chose a pretty big risk level α = 0.1). Thus, the χ2 test
does not appear to be very powerful – the chances of accepting the alternative
hypothesis are not high, even if it is true. This is because the χ2 test has a
‘universal’ alternative – it tests the null hypotheses against ‘everything else’.
We already remarked in Section 14.5 that the alternative hypothesis should
be well focused in order to increase its chances of acceptance. The nature of
the χ2 test does not allow any focusing.
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17.5 Why ‘degrees of freedom’?
It is time to explain the mysterious term ‘degrees of freedom’. The fre-

quencies y1, . . . , yk are, generally, independent from each other (‘free vari-
ables’) except that they must satisfy one constraint (link1). The probabil-
ities p1, . . . , pk are independent variables (‘free parameters’) except for the
constraint p1 + . . .+ pk = 1, see the corresponding equation (link2). In both
cases, the constraint ‘cancels’ one degree of freedom – if we know k − 1 fre-
quencies (or probabilities), we can immediately compute the last one. This
explains why there are k − 1 degrees of freedom.

17.6 Example
When a person is trying to make up a random sequence of digits, he/she

usually is avoiding repetitions or putting two numbers that differ by one next
to each other (thinking that it would not look ‘random’). This is a basis to
detect whether the sequence is truly random or was made up.

Suppose in a sequence of 51 digits there are no repetitions and only 8
neighboring pairs differ by one. Is this a truly random sequence? Assume
the 5% significance level.

Solution: the probability of a repetition is 1/10 and the probability of
a pair of numbers differing by one is (approximately) 2/10. All the other
pairs appear with probability 1− 0.1− 0.2 = 0.7. This way we classify pairs
into three categories, thus k = 3. We record the observed frequencies, then
the theoretically expected frequencies, then the corresponding differences
(ignoring the signs):

0 8 42
5 10 35
5 2 7

The Q-statistic is

Q =
52

5
+

22

10
+

72

35
= 6.8

Sice 6.8 > χ2
0.05(2) = 5.991, we are in the critical region, thus we accept the

alternative hypothesis: the sequence is not truly random, it is made up.
Note: this is one of the tests used by the IRS to detect tax fraud in tax

return forms.
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17.7 Remarks
The χ2 test is the most popular in statistics, it has a long history and a

solid reputation. Its advantage is the universality, it can be applied to almost
any problem. The disadvantage is ... also the universality of the alternative
hypothesis – the test cannot be focused to any specific alternative, it has to
run against ‘everything else’ – as a result, its power is low.

The theoretical foundation of the χ2 test makes use of some normal ap-
proximations to binomials. Those are considered to be accurate enough if all
the theoretical frequencies satisfy npi ≥ 5. We need to verify this condition
in our examples.

17.8 Example
Two friends, A and B, play a game by flipping a coin three times. If three

heads come up, A pays B three dollars, if two heads and one tail, then A
pays B one dollar, etc. They played 80 rounds of that game and recorded
the results: three heads appeared 7 times, two heads 21 times, one head 36
times, and zero heads (three tails) 16 times. The friends suspected that the
coin may not be really fair, as it lands on tails too often. They decided to
verify their guess by using the χ2 test with a 10% significance level.

Assuming that the coin is fair, the probabilities of all possible outcomes
in this game are 1/8 for three heads or three tails and 3/8 for two heads (and
one tail) or one head (and two tails). Below is the record of the observed
frequencies, the theoretically expected frequencies, and the corresponding
differences (ignoring the signs):

7 21 36 16
10 30 30 10
3 9 6 6

The Q-statistic is

Q =
32

10
+

92

30
+

62

30
+

62

10
= 8.4

Sice 8.4 > χ2
0.1(3) = 6.25, we are in the critical region, thus we accept the

alternative hypothesis: the coin is not fair, it is ‘loaded’ !

17.9 Example continued
Now the friends want to estimate the probability that the coin lands heads

and redo the test. The compute the total number of tosses 80× 3 = 240 and
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the total number of times the coin landed on heads: 7×3 + 21×2 + 36 = 99.
Then they come up with an estimate 99/240 = 0.4125.

Thus the probabilities of the above three outcomes are, according to the
binomial distribution:

P(3 heads) = 0.41253 = 0.07, P(2 heads) = 3× 0.41252 × 0.5875 = 0.3

P(1 head) = 3× 0.4125× 0.58752 = 0.427, P(0 heads) = 0.58753 = 0.203

Now the frequency table looks like

7 21 36 16
5.6 24 34.16 16.24
1.4 3 1.84 0.24

The Q-statistic is

Q =
1.42

5.6
+

32

24
+

1.842

34.16
+

0.242

16.24
= 0.827

Its value is very small, so the null hypothesis will be surely accepted. But!
The critical region changes: it is now Q > χ2

0.1(2) = 4.605. The number
of degrees of freedom has changed: it is 2 instead of 3. Why? Because we
have estimated one parameter in the model: the probability of landing on
heads. Each estimate of an unknown parameter used in the χ2 test creates
a new link between the frequencies, and it reduces the number of degrees of
freedom by one. Generally, if r parameters are estimated, then the number
of degrees of freedom is k − 1− r.

The rest of this Chapter is optional...

17.10 Example
A small company recorded the number of orders it received every day

during a period of 50 days. Suppose there were no days without orders, one
day with one order, two days with two orders, 10 days with three orders, 9
days with four orders, 6 days with five orders, 5 days with six orders, 7 days
with seven orders, 3 days with eight orders, 5 days with nine orders, one day
with ten orders, and one days with eleven orders.

The company wants to treat the number of orders per day as a Poisson
random variable for some important analysis. Before doing this it wants to
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test if this assumption is correct, i.e. if the number of orders per day can be
treated as values of a Poisson random variable.

First of all, a Poisson random variable has a parameter λ, whose value is
unknown and needs to be estimated. Its best estimate is

λ̂ = x̄ =
1× 1 + 2× 2 + 3× 10 + 4× 9 + · · ·+ 11× 1

50
= 5.4

Now the probability that x orders are received on a day can be computed by
the Poisson formula

P(X = x) =
λx

x!
e−λ

The following table represents all recorded outcomes, their observed frequen-
cies xi and their expected theoretical frequencies npi for i = 1, . . . , 11:

outcomes 0 1 2 3 4 5 6 7 8 9 10 11

observation 0 1 2 10 9 6 5 7 3 5 1 1

theory 0.2 1.2 3.3 5.9 8 8.7 7.8 6 4 2.4 1.3 0.6

But here we have two problems. First of all, there are many more out-
comes that have not been observed: 0, 12, 13,. . .. There are infinitely many
of them! Second, some of the theoretical frequencies are less than 5 (failing
to satisfy the important condition of the applicability of the test).

To solve these problems we group outcomes. Outcomes whose theoretical
frequencies are low can be combined into one or more group so that the
combined theoretical frequencies will satisfy the condition npi ≥ 5.

We combine small outcomes 0, 1, 2, 3 into one group with the combined
theoretical frequency 10.65. And we combine large outcomes 8, 9, 10, 11, . . .
into another group with the combined theoretical frequency 8.9. Now the
table looks like this:

outcomes ≤ 3 4 5 6 7 ≥ 8

observation 13 9 6 5 7 10

theory 10.65 8 8.65 7.8 6 8.9

difference 1.35 1 2.65 2.8 1 1.1

The Q-statistic is

Q =
1.352

10.65
+

12

8
+

2.652

8.65
+

2.82

7.8
+

12

6
+

1.12

8.9
= 2.763
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Since we made six groups of outcomes (there are six terms in the Q-formula),
we have k = 6. Also, we have estimated one parameter, so the number of
degrees of freedom is 6− 1− 1 = 4. The critical region is Q > χ2

α(4).
To complete the test, suppose α = 0.05. Then since 2.763 < χ2

0.05(4) =
9.488, we accept the null hypothesis: the number of orders per day is, indeed,
a Poisson random variable.

What is the p-value of the test? Based on Table IV, we only can say that
it is greater than 0.1. The one-line calculator on the instructor’s web page
gives a precise value 0.598. This means the alternative hypothesis can only
be accepted if one takes an unrealistically high risk of 59.8%. Nobody takes
such a risk in statistics, so the null hypothesis is accepted beyond doubts.

17.11 Remarks
Combining outcomes with small probabilities has advantages and disad-

vantages. On the one hand, it allows us to form groups that have high enough
probabilities and then run the χ2 test. On the other hand, combining out-
comes leads to a certain loss of details of information. This issue is similar
to the trade-off between larger bins and smaller bins when constructing a
histogram, recall Section 1.5.

In the previous example, we have verified that the data can be treated
as values of a Poisson random variable, i.e. that the Poisson distribution fits
out data well. This explains the name goodness-of-fit test.

17.12 Fitting continuous random variables
In the previous example we dealt with a discrete random variable (Pois-

son). Suppose now that we observe values x1, . . . , xn of a continuous random
variable. Then we may want to check if that random variable belongs to a
particular type, such as exponential or normal. This also can be done by the
χ2 test.

First, we estimate the unknown parameters. Then we need to divide the
entire range of possible values into several intervals. For each interval we
count the number of observed points xi in it (these numbers will be treated
as frequencies), as well as compute the probability of being in each interval.
Then we form the Q-statistic. If there are k intervals and we have estimated
r parameters, then the critical region will be Q > χ2

α(k − 1− r).
This approach is common in many applications. It requires a careful selec-

tion of intervals (not too big and not too small), just like in the construction
of histograms in Section 1.5.
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18 Contingency tables

In this and next chapters we discuss several variations of the χ2 test.

18.1 Example
In a university, officials want to compare the grades received by male

students versus those of female students. They pick at random 50 male
students and 50 female students and record their calculus grades:

A B C D F Total

Female 8 13 16 10 3 50

Male 4 9 14 16 7 50

Total 12 22 30 26 10 100

Is there a sufficient evidence to claim that distributions of grades for
male and female students are different, or should we conclude that they are
comparable (homogeneous)? What we do here is the homogeneity test.

18.2 Test of equality of two distributions: setting
More generally, suppose trials are performed that have k possible out-

comes. In one experiment, n1 such trials are performed, and the recorded
frequencies are y11, . . . , yk1. In another experiment, n2 such trials are per-
formed, and the recorded frequencies are y12, . . . , yk2. Note that the first
index refers to the outcome, and the second to the experiment. The data
can be presented by a ‘contingency table’:

1 2 . . . k

Exp-I y11 y21 . . . yk1

Exp-II y12 y22 . . . yk2

The probabilities of the k outcomes in the first experiment p11, . . . , pk1

are unknown, and so are the probabilities of these k outcomes in the second
experiment p12, . . . , pk2. We want to test the null hypothesis

H0 : p11 = p12, . . . , pk1 = pk2

against the alternative that is again sort of ‘everything else’, i.e. H1 simply
says that H0 is false.
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18.3 Test of equality of two distributions: procedure
Since pij are unknown, they must be estimated first. Under the null

hypothesis, pi1 = pi2 is just one unknown parameter for each i = 1, . . . , k.
Its best estimate is obtained by combining data from both experiments:

p̂i1 = p̂i2 =
yi1 + yi2
n1 + n2

(the total number of occurrences of the ith outcome over the total number
of trials).

Then we compute the Q-statistic by the same general formula as in the
previous chapter:

Q =
k∑
i=1

(yi1 − n1p̂i1)2

n1p̂i1
+

k∑
i=1

(yi2 − n2p̂i2)2

n2p̂i2

The critical region is then Q > χ2
α(r), where α is the significance level and r

is the number of degrees of freedom.
What is r here? Originally, we have 2k random variables yij. There

are two obvious links y11 + · · · + yk1 = n1 and y12 + · · · + yk2 = n2, which
eliminate 2 degrees of freedom. And we have estimated k − 1 parameters
p̂i1 = p̂i2 for i = 1, . . . , k − 1 (the last one, p̂k1 = p̂k2, need not be estimated
since the probabilities must add up to one). Thus the total number of degrees
of freedom is

r = 2k − 2− (k − 1) = k − 1

Note that the number of degrees of freedom equals (k − 1) · (2 − 1). Later
we will see that it is a general formula:

r = (number of rows− 1) · (number of columns− 1)

18.4 Example 18.1 finished
In our example with male and female students, we have p̂11 = 12/100 =

0.12, p̂21 = 0.22, p̂31 = 0.3, p̂41 = 0.26, and p̂51 = 0.10. Then

Q =
(8− 6)2

6
+

(13− 11)2

11
+ · · ·+ (7− 5)2

5
= 5.18

Since 5.18 < χ2
0.05(4) = 9.488 (here we assume α = 0.05), we accept H0.

That is, both groups of students have similar distributions of grades.
The p-value (according to the on-line calculator on the instructor’s web

page) is 0.2693.
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18.5 Remark
A quick look at the table in Section 18.1 suggests that male students

do get lower grades: fewer A’s and B’s, but more D’s and F’s. But the χ2

test was not able to recognize this. We see again that the test is not very
powerful, and the reason is its universality: it is unable to ‘focus’ on any
specific alternative hypothesis, it simply checks H0 against ‘everything else’.

18.6 Independence test
We may look at Example 18.1 differently: do the grades depend on the

gender of the students? Or are these two attributes independent? So the
test described above applies whenever we want to test the independence of
two attributes.

In such experiments, every observation comes with two attributes (like
every student has a certain gender and gets a certain grade). We count the
observed frequency for every pair of values of these two attributes, make a
contingency table, and proceed with the χ2 test as above.

18.7 Example
Let us revisit Example 14.4. There, every patient has two attributes:

his/her condition (ill or healthy) and the result of the hearing test (pass or
fail). The doctor’s theory is that these two attributes are related (correlated).
So the doctor can use the χ2 independence test to check his theory. We recall
the experimental results (contingency table):

Fail Pass Total

Ill 71 25 96

Healthy 76 43 119

Total 147 68 215

We first estimate the probabilities:

p̂11 =
147

215
= 0.6837, p̂21 =

68

215
= 0.3163

and compute the theoretically expected frequencies:

96 · 0.6837 = 65.6, 96 · 0.3163 = 30.4
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119 · 0.6837 = 81.4, 119 · 0.3163 = 37.6

Then compute the Q-statistic

Q =
(71− 65.6)2

65.6
+

(25− 30.4)2

30.4
+

(76− 81.4)2

81.4
+

(43− 37.6)2

37.6
= 2.54

The p-value (according to the on-line calculator on the instructor’s web page)
is 0.111.

We see that this p-value is almost identical to the one we got using the
binomial test in Section 14.5 against the two-sided alternative. (There the
p-value was 0.114, the small difference is entirely due to round-off errors.)

Again we see that the χ2 test can only deal with a ‘universal’ alternative
(which covers ‘everything else’). On the contrary, the binomial test used in
Section 14.4 could be made more focused (one-sided), and thus it was able
to reduce the p-value to 0.057.

18.8 Final remark
Nonetheless, our doctor chose to use the χ2 test, rather than the binomial

test, despite the lower power of the former. The doctor’s rationale was that
the χ2 had a very high reputation, and its conclusion would be accepted
by the medical community. The binomial test, on the other hand, is less
known and looks as something ‘special’, ‘hand-made’, and ‘unreliable’, thus
its results might be doubtful.
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19 Test about several means

19.1 Example
In a university, several professors teach different sections of Calculus-I,

after which the students take a common final exam. The officials want to
compare the average performance of students from different sections. Do
students taught by different professors receive significantly different average
scores, or are all the averages comparable (so that there is no significant
difference)?

The officials assume that the scores in each section have a normal distri-
bution with the same variance (in all sections), but possibly different means.
They want to determine if the means are significantly different or not.

19.2 Test of equality of several means: settings
Suppose we have several samples from different normal distributions:

x11, . . . , x1n1 from N (µ1, σ
2)

x21, . . . , x2n2 from N (µ2, σ
2)

. . . . . .

xm1, . . . , xmnm from N (µm, σ
2)

The mean values µ1, . . . , µm and the (common) variance σ2 are unknown.
We are testing the hypothesis

H0 : µ1 = µ2 = · · · = µm

against a universal alternative (which says that at least some of the means
are different).

The unknown parameters µ1, . . . , µm are estimated by the sample means

x̄1· =
1

n1

n1∑
i=1

x1i, . . . , x̄m· =
1

nm

nm∑
i=1

xmi

Note that x̄i· denotes the sample mean within the ith sample; the dot indi-
cates that the second index is eliminated by summation. We also denote

x̄·· =
1

n

m∑
j=1

nj∑
i=1

xji
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the grand mean (here n = n1 + · · ·+ nm).
The individual observations xji within each sample vary about the cor-

responding sample mean x̄j·, and sample means x̄j· vary about the grand
mean x̄··. While the former reflect natural statistical data variations, the
latter may reflect possible differences between means µj. Our strategy is to
‘separate’ these two variations and compare their values. This procedure is
known as analysis of variances (ANOVA).

19.3 Analysis of variances
We compute the total (TO) sum of squares (SS) of variations:

SS(TO) =
m∑
j=1

nj∑
i=1

(xji − x̄··)2 =
m∑
j=1

nj∑
i=1

(xji − x̄j· + x̄j· − x̄··)2

=
∑
j

∑
i

(xji − x̄j·)2

︸ ︷︷ ︸
SS(E)

+
∑
j

nj(x̄j· − x̄··)2

︸ ︷︷ ︸
SS(T)

+ 2
∑
j

∑
i

(xji − x̄j·)(x̄j· − x̄··)︸ ︷︷ ︸
=0

= SS(E) + SS(T)

Fortunately, the double sum of cross-products vanishes (all its terms cancel
out). The first sum of squares reflects statistical errors within samples, the
second sum of squares reflects differences between samples (treatments).

The terminology here is borrowed from medical sciences, where patients
are given different treatments in order to test various methods or types of
medicines.

19.4 Test procedure
The following facts are established in (advanced) probability theory:

SS(TO)

σ2
is χ2(n− 1)

SS(E)

σ2
is χ2(n−m)

SS(T)

σ2
is χ2(m− 1)
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(note that (n−m) + (m− 1) = n− 1). Also, the statistics SS(E) and SS(T)
are independent.

We cannot use the χ2 values since σ2 is unknown. But the ratio

F =

SS(T)
σ2(m−1)

SS(E)
σ2(n−m)

=
SS(T)/(m− 1)

SS(E)/(n−m)

does not contain σ2, which cancels out, and it has an F-distribution with
m− 1 and n−m degrees of freedom. Hence the critical region is

F > Fα(m− 1, n−m)

where α is the significance level.
The test is usually summarized in the so called ANOVA table:

SS DoF MS F p-value

Treatment SS(T) m− 1 SS(T)/(m− 1)

Error SS(E) n−m SS(E)/(n−m) F · · ·

Total SS(TO) n− 1 SS(TO)/(n− 1)

Here DoF stands for degrees of freedom and MS for mean squares.

19.5 Example
Four samples, each with three observations, yield the following results:

x̄

X1 : 13 8 9 10

X2 : 15 11 13 13

X3 : 8 12 7 9

X4 : 11 15 10 12

grand mean: 11
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Note that m = 4 and n1 = n2 = n3 = n4 = 3.
We compute the test statistics:

SS(E) = 32 + 22 + 12 + 22 + 22 + 02 + 12 + 32 + 22 + 12 + 32 + 22 = 50

SS(T) = 3 (10− 11)2 + 3 (13− 11)2 + 3 (9− 11)2 + 3 (12− 11)2 = 30

F =
30/3

50/8
= 1.6

Assume that α = 0.05. Since 1.6 < F0.05(3, 8) = 4.07, then we accept the
null-hypothesis H0: there is no significant differences between the means of
these four random variables. The p-value (obtained by the on-line calculator)
is 0.2642.

The ANOVA table looks like this:

SS DoF MS F p-value

Treatment 30 3 30/3

Error 50 8 50/8 1.6 0.2642

Total 80 11 80/11
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20 Two-factor analysis of variances

20.1 Example
Suppose the auto industry engineers want to determine which factors

affect the gas mileage of cars. In a simplified experiment, they test several
types of cars with several brands of gasoline and record the observed gas
mileage for each pair of “car + brand of gas”.

Here is a table describing such an experiment with 3 types of cars and 4
brands of gas:

gasoline

1 2 3 4 mean

1 16 18 21 21 19

car 2 14 15 18 17 16

3 15 15 18 16 16

mean 15 16 19 18 17

The last column contains the row means, and the last row contains the
column means. The bottom right value 17 is the grand mean.

We see that there are some variations within the table, some variations
between columns and some – between rows. The question is whether those
variations are significant to conclude that the type of car or the brand of
gasoline (or both) affect the gas mileage.

20.2 General setting
Suppose in an experiment, the observed result depends on two factors.

The first factor has a levels (values) and the second factor has b levels (val-
ues). For each combination of values of these two factors, an experimental
observation is recorded. Thus we get an a× b table of observations:
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2nd factor

1 2 · · · b mean

1 x11 x12 · · · x1b x̄1·

1st factor
...

...
...

. . .
...

...

a xa1 xa2 · · · xab x̄a·

mean x̄·1 x̄·2 · · · x̄·b x̄··

We use the same convention for denoting means with dots, as in the previous
chapter.

Here we are testing two separate hypothesis: HA : there is no significant
variations between rows (i.e., the 1st factor does not affect the observed
results), and HB : there is no significant variations between columns (i.e.,
the 2nd factor does not affect the observed results). Each hypothesis has
its own alternative, which says that there is a significant variation (i.e. the
corresponding factors affects the outcome).

20.3 Test procedure
We analyze variances in a way similar to the previous section. Again we

compute the total (TO) sum of squares (SS) of variations:

SS(TO) =
a∑
i=1

b∑
j=1

(xij − x̄··)2

=
a∑
i=1

b∑
j=1

[
(xij − x̄i· − x̄·j + x̄··) + (x̄i· − x̄··) + (x̄·j − x̄··)

]2
=
∑
i

∑
j

(xij − x̄i· − x̄·j + x̄··)
2

︸ ︷︷ ︸
SS(E)

+ b
a∑
i=1

(x̄i· − x̄··)2

︸ ︷︷ ︸
SS(A)

+ a
b∑

j=1

(x̄·j − x̄··)2

︸ ︷︷ ︸
SS(B)

+2
∑
i

∑
j

· · ·︸ ︷︷ ︸
=0

= SS(E) + SS(A) + SS(B)
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Fortunately again, all the double sums of cross-products vanish (all their
terms cancel out), and we do not even include them explicitly.

The first sum of squares reflects statistical errors within samples, the
second and third sums of squares reflect variations between rows and columns,
respectively.

The following facts are established in (advanced) probability theory:

SS(E)

σ2
is χ2

(
(a− 1)(b− 1)

)
SS(A)

σ2
is χ2(a− 1)

SS(B)

σ2
is χ2(b− 1)

Here σ2 denotes the unknown variance of statistical errors. Also, the statistic
SS(E) is independent from SS(A) and SS(B).

We cannot use the χ2 values since σ2 is unknown. But the ratio

FA =
SS(A)/(a− 1)

SS(E)/[(a− 1)(b− 1)]

has an F-distribution with a−1 and (a−1)(b−1) degrees of freedom. Hence
the critical region for testing the hypothesis HA is

FA > Fα
(
a− 1, (a− 1)(b− 1)

)
where α is the significance level.

Similarly, the ratio

FB =
SS(B)/(b− 1)

SS(E)/[(a− 1)(b− 1)]

has an F-distribution with b−1 and (a−1)(b−1) degrees of freedom. Hence
the critical region for testing the hypothesis HB is

FB > Fα
(
b− 1, (a− 1)(b− 1)

)
where α is the significance level.
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20.4 Example (continued)
We return to our example with 3 cars and 4 brands of gasoline. The

statistic SS(E) is the hardest to compute:

SS(E) = (16− 15− 19 + 17)2 + · · · = 4

Now
SS(A) = 4 (22 + 12 + 12) = 24

SS(B) = 3 (22 + 12 + 22 + 12) = 30

Thus

FA =
24/2

4/6
= 18

and

FB =
30/3

4/6
= 15

Let us pick α = 0.01. Since 18 > F0.01(2, 6) = 10.92, we reject HA. Since
15 > F0.01(3, 6) = 9.78, we reject HB as well. Note that the critical values
for the two hypotheses are different. The p-values (obtained by the on-line
calculator) are 0.0029 for the hypothesis HA and 0.0034 for the hypothesis
HB. Both p-values are well below 1%, so the rejection of both hypotheses is
very safe.

Our final conclusion is that there is a significant variations both between
rows and between columns (hence, the type of a car and the brand of gasoline
both affect the gas mileage).

20.5 Extension
In the previous example, we had one observation for each combination of

values of the two factors (one data per cell in the table). Suppose now we
have c > 1 observations in each cell, we denote them by xijk, where i and j
are the levels of the two factors and k = 1, . . . , c is the index of individual
observations for the given pair i, j of values of the factors.

Now, with more data available, we can test an extra hypothesis in this
experiment.
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The analysis of variances now is more complicated:

SS(TO) =
a∑
i=1

b∑
j=1

c∑
k=1

(xijk − x̄···)2

= bc

a∑
i=1

(x̄i·· − x̄···)2

︸ ︷︷ ︸
SS(A)

+ ac

b∑
j=1

(x̄·j· − x̄···)2

︸ ︷︷ ︸
SS(B)

+ c
a∑
i=1

b∑
j=1

(x̄ij· − x̄i·· − x̄·j· + x̄···)
2

︸ ︷︷ ︸
SS(AB)

+
∑
i

∑
j

∑
k

(xijk − x̄ij·)2

︸ ︷︷ ︸
SS(E)

= SS(A) + SS(B) + SS(AB) + SS(E)

where we used the same general rule for denoting sample means. For example,

xij· =
1

c

c∑
k=1

xijk, xi·· =
1

bc

b∑
j=1

c∑
k=1

xijk

and so on.
Now we can test three hypotheses: HA and HB, as before, and HAB –

about interactions between the factors A and B. It might happen that not
only the factors A and B have direct affect on the observations, but also
certain pairs of values of A and B have an extra effect. For example, the car
1 may have the best gas mileage, the gasoline brand 2 may have the best gas
mileage, but the car 1 and gasoline 2 may “not mix too well”, so that this
pair may have a poor gas mileage. In that case the interaction between the
factors has a significant effect and must be included in the analysis.

We test these three hypotheses as follows. The factor A is significant if

FA =
SS(A)/(a− 1)

SS(E)/[ab(c− 1)]
> Fα

(
a− 1, ab(c− 1)

)
The factor B is significant if

FB =
SS(B)/(b− 1)

SS(E)/[ab(c− 1)]
> Fα

(
b− 1, ab(c− 1)

)
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The interaction between the factors A and B is significant if

FAB =
SS(AB)/[(a− 1)(b− 1)]

SS(E)/[ab(c− 1)]
> Fα

(
(a− 1)(b− 1), ab(c− 1)

)
Here α is the significance level of the test.

In practice, one usually starts by testing the hypotheses A and B. If both
factors are determined to be significant, then one tests the interactions. If
one of the factors is not significant, then there is no need to test interactions.

20.6 Three factors
It is interesting to discuss a model which involves three factors: A, B, and

C. For simplicity, assume that each factor has two levels (say, low and high).
We denote the low value by − and the high value by +.

For example, it is common in industry to analyze various factors that may
affect the quality of the product. In a preliminary test, several potentially
significant factors are selected, and for each factor two values (a lower and
a higher) are set. Then for each combination of values of all the selected
factors an experimental product is manufactured and its quality measured.

All possible combinations of three factors are represented by sequences of
pluses and minuses of length three, from −−− to +++. For example, −−−
corresponds to the lower values of all the factors, etc. There are 2×2×2 = 8
such sequences. For each sequence (combination of values of the factors), a
single experimental value is observed, we denoted them by x1, . . . , x8:

run A B C observ. AB AC BC ABC

1 − − − x1 + + + −

2 + − − x2 − − + +

3 − + − x3 − + − +

4 + + − x4 + − − −

5 − − + x5 + − − +

6 + − + x6 − + − −

7 − + + x7 − − + −

8 + + + x8 + + + +
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This table is extended by four columns corresponding to interactions:
three pairwise interactions AB, AC, and BC, and the triple interaction ABC
(between all the factors). Those columns are obtained by ‘multiplying’ the
corresponding columns A, B, and C. The ‘multiplication rules’ are these: we
treat + as +1 and − as −1. Therefore, + times − is −, for example. Also,
− times − is +, etc.

Now we can test 7 hypotheses: about the significance of individual factors
A, B, and C, about the significance of the pairwise interactions AB, AC, and
BC, and about the significance of the triple interaction ABC. We compute
seven test statistics:

[A] = (−x1 + x2 − x3 + x4 − x5 + x6 − x7 + x8)/8

[B] = (−x1 − x2 + x3 + x4 − x5 − x6 + x7 + x8)/8

[C] = (−x1 − x2 − x3 − x4 + x5 + x6 + x7 + x8)/8

[AB] = (+x1 − x2 − x3 + x4 + x5 − x6 − x7 + x8)/8

[AC] = (+x1 − x2 + x3 − x4 − x5 + x6 − x7 + x8)/8

[BC] = (+x1 + x2 − x3 − x4 − x5 − x6 + x7 + x8)/8

[ABC] = (−x1 + x2 + x3 − x4 + x5 − x6 − x7 + x8)/8

Note that the sequence of signs in each line is taken from the corresponding
column of the table.

20.7 Example
Suppose the following values are observed:

x1 = 41.0 x2 = 30.5 x3 = 47.7 x4 = 27.0
x5 = 39.5 x6 = 26.5 x7 = 48.0 x8 = 27.5

The test statistics are computed as follows:

[A] [B] [C] [AB] [AC] [BC] [ABC]

−8.06 1.56 0.56 −2.19 −0.31 0.81 0.31

Now we construct a plot consisting of seven points. Their x-coordinates are
the ordered statistics:

−8.06, −2.19, −0.31, 0.31, 0.56, 0.81, 1.56
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The y-coordinates of our seven points are the “equally spaced” percentiles of
the standard normal distribution Z = N (0, 1), i.e. z1/8, z2/8, z3/8, z4/8, z5/8,
z6/8, z7/8; the values of these percentiles are

−1.15, −0.67, −0.32, 0.00, 0.32, 0.67, 1.15

Thus our seven points have the following coordinates:

(−8.06,−1.15), (−2.19,−0.67), . . . , (0.81, 0.67), (1.56, 1.15).

Assuming that none of the factors or their combinations are significant, these
seven points should lie approximately on a straight line on the xy plane.
However, if some of these points appear ‘out of line’ (outliers), they indicate
the factors or interactions that are significant!

The seven points in our example are plotted below. We see a linear pat-
tern in the middle (near the origin), but some points are ‘out of line’. The
point that is the farthest from the line is [A] = (−8.06,−1.15), it indicates
that the factor A is the most significant. Two more points [B] = (1.56, 1.15)
and [AB] = (−2.19,−0.67) appear to be somewhat out-of-line, so the fac-
tor B and the interaction AB are of some significance. Other factors and
interactions appear to be insignificant.

-

6

q q q q q q
q

x

y

[A]

[AB]

[B]
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21 Regression

In the previous section certain points (xi, yi) were expected to approximately
lie on a straight line. Such things happen in many applications.

For example, let x1, . . . , xn be SAT scores of n students and y1, . . . , yn
their scores in a calculus test in college. We expect that those who got
higher SAT scores would get higher calculus scores, so these n points should
lie on a certain curve or line with a positive slope.

Or let s1, . . . , sn be the values of a stock market index recorded on n con-
secutive days of trading. Then we may expect that the points (1, s1), . . . , (n, sn),
where the first coordinate represents time (the day counter), lie on a certain
curve describing the evolution of the stock market. If we knew that curve,
we would be able to predict the behavior of the stock index in the future!

21.1 Regression
Suppose we want to determine a curve y = g(x) that is best to describe

a set of observed pairs of values (x1, y1), . . . , (xn, yn). That is, we assume
that these points approximately lie on a curve and want to determine the
equation of that curve.

It is commonly assumed that x1, . . . , xn are not random but y1, . . . , yn are
random (say, xi represent the time moments when the values yi are observed
and recorded, like in the stock market example above). Then the function
y = g(x) is called the regression of y on x, and determining that function is
called the regression problem.

In practical applications, regression is used to estimate (predict) the value
of y = g(x) for various values of x. We often call x the explanatory or
predictor variable, and y the response variable.

21.2 Maximum likelihood method
Assume that each random value yi is given by

yi = g(xi) + εi

where g(xi) is the actual value of the (unknown) function at the point xi and
εi is the statistical error (measurement error). It is usually assumed that
ε1, . . . , εn are independent normal random variables with zero mean and a
common variance σ2. That is, εi = N

(
0, σ2

)
. The variance σ2 is unknown.
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Then yi = N (g(xi), σ
2), and its density function is

f(yi) =
1√

2πσ2
e−

(yi−g(xi))
2

2σ2

The joint density function (or likelihood function) is

L =
n∏
i=1

f(yi) =

(
1√

2πσ2

)n
e−

∑
(yi−g(xi))

2

2σ2

Its logarithm is

lnL = −n ln
√

2πσ2 − 1

2σ2

n∑
i=1

(yi − g(xi))
2

Now suppose we want to find the best possible curve y = g(x) by the maxi-
mum likelihood method, i.e. by maximizing lnL. Clearly, to make lnL bigger
we need to make

H =
n∑
i=1

(yi − g(xi))
2

smaller, so we want to minimize the value of H, i.e. find a curve such that
the sum of squares of the distances from our points to the curve is as small
as possible. This is called the least squares method or the least squares fit
(LSF).

Suppose we found such a curve y = g(x), then we can estimate σ2 by
using the maximum likelihood method again. Solving the equation

0 =
d

dσ2
lnL = − n

2σ2
+

∑
(yi − g(xi))

2

2σ4

gives the MLE for σ2

σ̂2 =

∑
(yi − g(xi))

2

n
=
H

n

The values ri = yi − g(xi) are often called errors (of observations) or
residuals, and H is called the residual sum of squares (RSS). Now

σ̂ =

√∑
(yi − g(xi))2

n

can be called the root mean squared error.
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21.3 Linear regression
In the simples case, the unknown curve is a line given by equation

y = α1 + βx

where α1 is the intercept and β is the slope. These are the parameters to
be estimated. For convenience, we change parameter α1 = α − βx̄, where
x̄ is the sample mean (the average) of x1, . . . , xn. Then the equation of the
unknown line is

y = α + β(x− x̄)

The least squares method requires the minimization of the function

H(α, β) =
n∑
i=1

(
yi − α− β(xi − x̄)

)2

Setting partial derivatives to zero gives two equations:

0 = −1

2

∂H

∂α
=

n∑
i=1

yi − nα

0 = −1

2

∂H

∂β
=

n∑
i=1

yi(xi − x̄)− β
n∑
i=1

(xi − x̄)2

Thus the MLE for α and β are

α̂ = ȳ and β̂ =

∑
yi(xi − x̄)∑
(xi − x̄)2

21.4 Basic statistics for two samples
We have two sets of values: x1, . . . , xn and y1, . . . , yn. Accordingly, we

have two sample means

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi

and two sample variances

s2
x =

1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

( n∑
i=1

x2
i − nx̄2

)
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s2
y =

1

n− 1

n∑
i=1

(yi − ȳ)2 =
1

n− 1

( n∑
i=1

y2
i − nȳ2

)
In addition, to measure the dependence (correlation) between these samples
we use sample covariance

cxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
1

n− 1

( n∑
i=1

xiyi − nx̄ȳ
)

and sample correlation coefficient

r =
cxy
sxsy

Just as in probability theory, the sample correlation coefficient takes values
−1 ≤ r ≤ 1. The values close to 1 indicate strong positive correlation, the
values close to −1 indicate strong negative correlation, and if r = 0 then the
samples are uncorrelated.

In these terms, the least squares estimates of the linear regression param-
eters are

α̂ = ȳ and β̂ =
cxy
s2
x

= r · sy
sx

We note that positive slope β > 0 corresponds to positive correlation r > 0,
negative slope β < 0 corresponds to negative correlation r > 0. The zero
slope β = 0 corresponds to uncorrelated x and y variables.

21.5 Residuals
The value ŷi = α̂ + β̂(xi − x̄) is the estimated value of the unknown

function y = α+ β(xi − x̄) at the point xi. Recall that the difference yi − ŷi
is called the residual and

RSS =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(
yi − α̂− β̂(xi − x̄)

)2

is the residual sum of squares (RSS). There is a shortcut formula for the RSS:

RSS =
n∑
i=1

(yi − ȳ)2 − β̂
n∑
i=1

(xi − x̄)(yi − ȳ)

= (n− 1)
(
s2
y −

c2
xy

s2
x

)
= (n− 1)

s2
xs

2
y − c2

xy

s2
x

= (n− 1)(1− r2)s2
y
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Note: if RSS=0, then the points (xi, yi) lie exactly on a straight line. This
happens precisely when r = ±1, i.e. when the correlation between x and y
takes one of its extreme values.

21.6 Example
Approximate five points

(−1, 1), (0, 2), (1, 2), (2, 3), (3, 4)

by a line y = α1 + βx. In other words, fit a line to these points.
Solution. First, we compute five ‘accumulators’∑

xi = 5,
∑

yi = 12,
∑

x2
i = 15,

∑
y2
i = 34,

∑
xiyi = 19

Then we compute basic statistics:

x̄ = 1, ȳ = 2.4, s2x = 15−5
4 = 2.5, s2y = 34−5·2.42

4 = 1.35, cxy = 19−5·2.4
4 = 1.75

Now we get
α̂ = 2.4 and β̂ = 0.7

The equation of the least squares line is

y = 2.4 + 0.7(x− 1) = 1.7 + 0.7x

The residual sum of squares is

RSS = 4 ·
10
4
· 5.2

4
− 49

16
10
4

=
52− 49

10
= 0.3

Note that RSS is small, which indicates the line is pretty close to the given
points.

Lastly, the estimate of σ2 is

σ̂2 =
0.3

5
= 0.06

A plot showing the given points and the best line is called scatter plot.
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21.7 Distributions of estimates
It is known in (advanced) probability theory that the estimates α̂ and β̂

have normal distributions and σ̂2 is related to a χ2 distribution:

α̂ = N
(
α,
σ2

n

)
, β̂ = N

(
β,

σ2

(n− 1)s2
x

)
, σ̂2 =

σ2

n
· χ2(n− 2)

In addition, these three estimates are independent.

21.8 Remark
The independence of the above estimates may help to prevent some mis-

interpretation of the data. For example, if the observed points happen to
lie exactly on a line (so that the RSS is zero or nearly zero), one may feel
‘lucky’ and assume that one has found the actual line, i.e. its parameters α̂
and β̂ are close to the actual values of α and β. This need not be the case at
all: there is no correlation between the RSS and the accuracy of the fit (the
accuracy of the estimates of the parameters α and β).

Likewise, if the points are badly misaligned, so that the RSS is large, it
would not mean at all that the estimates of α and β are poor: the least
squares line may be actually very close to the theoretical line.
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21.9 Unbiasedness and efficiency
We note that E(α̂) = α and E(β̂) = β, so that the estimates α̂ and β̂ are

unbiased. They are also 100% efficient (this fact requires computation of the
Rao-Cramer lower bound, which is beyond the scope of this course).

21.10 Variances and their adjustment
The variances of the estimates are

Var(α̂) =
σ2

n
Var(β̂) =

σ2

(n− 1)s2
x

These formulas are useful, too. Suppose we want to increase the accuracy of
our estimates, i.e. reduce their variances. Of course, increasing n would help,
as always. But we can improve the estimate β̂ even without increasing n, by
increasing s2

x. This can be achieved by positioning the points xi ‘wisely’ – as
far from their center x̄ as possible. For example, if we are to select n points
from an interval (A,B), then we should put n/2 points near A and the other
n/2 points near the other end B.

21.11 Confidence intervals
Knowing the distributions of our estimates of the unknown parameters

we can construct confidence intervals.
The confidence interval for α is

α̂± tγ/2(n− 2)

√
σ̂2

n− 2

The confidence interval for β is

β̂ ± tγ/2(n− 2)

√
ˆnσ2

(n− 2)(n− 1)s2
x

The confidence interval for σ2 is[
nσ̂2

χ2
γ/2(n− 2)

,
nσ̂2

χ2
1−γ/2(n− 2)

]
We denoted the confidence coefficient by 1 − γ. Note that the number of
degrees of freedom is n − 2, because we have estimated two parameters in
the model (α and β).
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21.12 Testing hypotheses
We can also test hypotheses about the unknown parameters. The most

common hypothesis is H0 : β = 0. Its meaning is that the unknown line is
flat (has zero slope), i.e. there is no correlation between the x and y variables.

The test about β with significance level γ can be summarized in the table:

H0 H1 Critical region Test statistic

β > β0 T > tγ(n− 2)

β = β0 β < β0 T < −tγ(n− 2) T = β̂−β0√
n

ˆ
σ2

(n−2)(n−1)s2x

β 6= β0 |T | > tγ/2(n− 2)

21.13 Example (continued)
The confidence interval for α is

2.4± tγ/2(3)

√
0.06

3

The confidence interval for β is

0.7± tγ/2(3)

√
0.3

30

The confidence interval for σ2 is[
0.3

χ2
γ/2(3)

,
0.3

χ2
1−γ/2(3)

]
If we want to test the hypothesis is H0 : β = 0 against the two-sided alterna-
tive H1 : β 6= 0, then we use the T statistic

T =
0.7√
0.3/30

= 7.0

The critical region is T = 7 > tγ/2(3). It is quite clear that we will accept
H1 for all reasonable values of γ.
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21.14 Prediction
The main purpose of approximating the observed points (xi, yi) with a

function y = g(x), in particular with a line y = α + β(x − x̄), is to be able
to predict the value y at some other points x. For example, if x is the time
variable, we may want to predict the value of our function y = g(x) in the
future.

Of course, the point estimate of y = g(x) would be ŷ = α̂+β̂(x−x̄). Next
we want to construct a confidence interval for y. It is given by the formula

ŷ ± c tγ/2(n− 2)

where 1− γ denotes the confidence level, and

c =

√
nσ̂2

n− 2
·

√
1

n
+

(x− x̄)2

(n− 1)s2
x

We note that the half length of this confidence interval is c tγ/2(n−2), and it
is a function of x. It takes the smallest value at x = x̄, hence the prediction
is the most accurate at the center x̄ of the x sample. Then the interval gets
larger on both sides of x̄, and it grows approximately linearly with x− x̄.

The above interval was constructed for the actual value y = g(x) of the
unknown function, i.e. for the model value of y. Suppose now we want to esti-
mate the experimentally observed value yexp at the point x. Our assumptions
say that yexp = y + ε, where ε is a statistical error represented by a normal
random variable N (0, σ2). We see that yexp contains an additional error (the
measurement error), so it is ‘more random’. The confidence interval for yexp

should be larger than the one for y, and it is given by the formula

ŷ ± cexp tγ/2(n− 2)

where 1− γ denotes the confidence level, and

cexp =

√
nσ̂2

n− 2
·

√
1 +

1

n
+

(x− x̄)2

(n− 1)s2
x

Note that cexp is slightly greater than c, hence the second confidence interval
is slightly larger than the first.

The rest of this Chapter is optional...
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21.15 Polynomial fit
In many practical problems the regression y = g(x) is nonlinear, then one

needs to fit some nonlinear functions to the observed points (xi, yi). Here we
discuss fitting polynomials

g(x) = β0 + β1x+ · · ·+ βkx
k

here k ≥ 1 is the degree of the polynomial and β0, . . . , βk are unknown
coefficients to be estimated. The degree k is supposed to be chosen. The
least squares method is based on the minimization of

H(β0, . . . , βk) =
n∑
i=1

(yi − β0 − β1xi − · · · − βkxki )2

Setting partial derivatives to zero gives us a system of equations

β0 · n+ β1

∑
xi + · · ·+ βk

∑
xki =

∑
yi

β0

∑
xi + β1

∑
x2
i + · · ·+ βk

∑
xk+1
i =

∑
xiyi

· · · · · ·

β0

∑
xki n+ β1

∑
xk+1
i + · · ·+ βk

∑
x2k
i =

∑
xki yi

This is a system of k + 1 linear equations with k + 1 unknowns. Solving
such systems in practice is difficult for large k, but there are many computer
programs that do that quickly and accurately.

In MATLAB, one can fit a polynomial of degree k by using the procedure
polyfit:

p = polyfit(x,y,k)

where k is the degree of the polynomial, x is the vector of x-values and y
is the vector of y-values. The procedure returns p, the vector of estimated
coefficients.

The rest of this chapter is optional...

21.16 Choice of the degree k
If the data points cannot be well approximated by a straight line, one

may try parabolas (k = 2), cubic polynomials (k = 3), etc., until the fit is
satisfactory. But how should we decide if the fit is satisfactory or not?

102



The residual sum of squares (RSS) measures the overall discrepancy be-
tween the best polynomial fit and the data points. It steadily gets smaller as
k increases. To measure ‘how well’ the polynomial describes the points one
uses the quantity

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

where
ŷi = β̂0 + β̂1xi + · · ·+ β̂kx

k
i

is the estimated (predicted) value of the function. The quantity R2 show
how much of the original variation in the y sample is explained by the fit.
The value 1−R2 tells us how much of the variation remains unaccounted for
by the fit.

The value of R2 steadily growth from 0 to 1 as the degree k increases.
One usually consider R2 = 0.8 or R2 = 0.9 to be a good fit.

But one should not attempt to go ‘too far’ and choose the degree k too
high. Theoretically, it is possible to reduce the RSS to zero (and then R2

will reach its maximal value R2 = 1), but we definitely do not want that:
the corresponding polynomial curve will be ridiculous – it will wiggle up and
down trying to adapt itself to every single data point. This phenomenon is
known as overfit.

So which degree k is optimal? When do we stop increasing the degree of
the polynomial? Some researchers examine the residuals di = yi − ŷi, plot
them as a function of xi. If the residuals have some pattern or follow some
trend (for example, go up or down for many consecutive xi’s), then one may
try a higher degree to account for that trend. If the residuals look ‘chaotic’
(without any clear pattern), then the fit is assumed to be good enough. This
method is quite subjective, though.

21.17 Cross-validation
A more objective method to find an optimal degree k is the cross-validation.

One divides the data points into two groups: a training set (a larger group)
to which one fits a polynomial, and a test set (a smaller group) of points
on which the polynomial is ‘tested’. Precisely, if (xj, yj) is the ‘test set’
(1 ≤ j ≤ m with some m < n), then one computes the predicted values ŷj
and the overall residual sum of squares for the test set

RSStest =
m∑
j=1

(yi − ŷi)2
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which is treated as the discrepancy of the fit. Note that the test points
(xj, yj) were not used in the construction of the polynomial (they were not
part of the training set), hence the polynomial need not adapt to them.

The value of RSStest usually decreases as k growth, indicating that the
fit becomes better, but when the degree k gets too high, the RSStest starts
growing again. The degree k for which the RSStest takes its minimal value is
optimal.

21.18 Leave-one-out
The above method requires an arbitrary partitioning of the data set into

two groups. For different partitions, one may find different values of the
optimal degree k, thus making the results ambiguous and confusing.

To eliminate the dependence on the partition one should combine many
different partitions. In a popular algorithm, one partitions the data set of n
points into two groups: a training set of n−1 points and a single-point ‘test’
set. The polynomial is constructed by using the n − 1 training points, and
then tested on the remaining point (xj, yj) giving a single residual squared
(yj − ŷj)2.

Then one repeats this procedure for every point of the sample: take a
point (xj, yj), leave it out, fit a polynomial to the remaining n − 1 points,
evaluate its value ŷj for x = xj, then compute (yj − ŷj)2. The overall sum of
squares

RSSall =
n∑
j=1

(yi − ŷi)2

is then treated as the discrepancy of the fit by polynomials of degree k. The
degree k for which the RSSall takes its minimal value is optimal.
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22 Nonparametric methods

22.1 General description
So far we discussed statistical problems where the unknown random vari-

ables were only partially unknown, that is their type (normal, binomial, or
other) was known, and the parameter(s) were to be determined. Now we
turn to problems where the random variable X is completely unknown, i.e.
we know nothing about its type or distribution.

How can we characterize a totally unknown random variable, if there are
no parameters to test or estimate? Most random variables can be character-
ized by their mean values and variances, so that E(X) and Var(X) can be
regarded as important parameters to determine.

But we must remember that not all random variables have mean value
or variance (example: the Cauchy random variable has neither). Trying to
determine a nonexistent quantity may not be rewarding.

On the other hand, every random variable has median, quartiles, and
more generally percentiles. These are characteristics that can be determined
statistically. Note: if we accurately determine sufficiently many percentiles,
then we effectively can reconstruct the distribution function of X.

22.2 Order statistics
Recall that a percentile πp is a number that divides the probability dis-

tribution according to the ratio p : (1 − p), i.e. satisfying F (πp) = p, where
F is the distribution function. If we have a sample x1, . . . , xn and order it as
x(1) ≤ x(2) ≤ · · · ≤ x(n), then dividing this ordered sample according to the
ratio p : (1− p) seems to be a good way to estimate the percentile πp.

For brevity, we denote yi = x(i), i.e. y1 ≤ y2 ≤ · · · ≤ yn will be the ordered
sample. The capital letters Yr will denote the random variables associated
with yr.

22.3 Estimates for percentiles
To estimate πp, we compute r = p(n + 1). If r is an integer, then yr is

the estimate of πp. Otherwise we take the two integers r and r+ 1 closest to
p(n+ 1), i.e. r < p(n+ 1) < r + 1 and estimate πp by (yr + yr+1)/2:

π̂p =

{
yr if r = p(n+ 1) is an integer

1
2
[yr + y(r+1)] if r < p(n+ 1) < r + 1
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In particular, to estimate the median m = π1/2, we use the rule

m̂ =

{
y(n+1)/2 if n is odd

1
2
[yn/2 + y(n+2)/2] if n is even

The order statistics y1, . . . , yn will play an instrumental role in the non-
parametric statistics.

22.4 Distribution of order statistics
In probability, we learned that the random variable Yr had distribution

function

Gr(y) = P(Yr ≤ y) = P
(
b(n, F (y)) ≥ r

)
=

n∑
k=r

(
n

k

)
[F (y)]k[1− F (y)]n−k

or, alternatively,

Gr(y) = P
(
b(n, 1− F (y)) ≤ n− r

)
=

n−r∑
k=0

(
n

k

)
[1− F (y)]k[F (y)]n−k

Here b(n, p) denotes a binomial random variable with probability of success
p. Note that “at least r successes” is the same as “at most n− k failures”.

22.5 Practical calculation: Table II
Probabilities P(b(n, p) ≤ r) related to a binomial random variable X =

b(n, p) can be found in Table II. It covers values n = 2, . . . , 25 (for larger n’s,
we use normal approximation) and p = 0.05, 0.1, 0.15, 0.2, . . . , 0.5.

What do we do if p > 0.5? In that case we switch “successes” and
“failures”, which replaces p with 1− p:

P(b(n, p) ≤ r) = P(b(n, 1− p) ≥ n− r) = 1− P(b(n, 1− p) ≤ n− r − 1).

22.6 Examples
(a) Let n = 9 and F (0.1) = 0.1. Determine G1(0.1).
Solution:

G1(0.1) = P(Y1 ≤ 0.1) = P(b(9, 0.1) ≥ 1)

= 1− P(b(9, 0.1) ≤ 0) = 1− 0.3874 = 0.6126

106



The value 0.3874 was taken from Table II.
(b) Let n = 9 and F (0.7) = 0.7. Determine G8(0.7).
Solution:

G8(0.7) = P(Y8 ≤ 0.7) = P(b(9, 0.7) ≥ 8) = 1− P(b(9, 0.7) ≤ 7)

= 1− P(b(9, 0.3) ≥ 2) = P(b(9, 0.3) ≤ 1) = 0.1960

The value 0.1960 was taken from Table II. Note that in the second line we
used the trick of switching successes and failures.

22.7 Three important formulas
We continue the analysis of Section 22.4. Substitute y = πp, then F (y) =

F (πp) = p, hence

P(Yr ≤ πp) = P
(
b(n, p) ≥ r

)
=

n∑
k=r

(
n

k

)
pk(1− p)n−k

Similarly,

P(Yr ≥ πp) = P
(
b(n, p) < r

)
=

r−1∑
k=0

(
n

k

)
pk(1− p)n−k

and

P(Yr1 ≤ πp ≤ Yr2) = P
(
r1 ≤ b(n, p) < r2

)
=

r2−1∑
k=r1

(
n

k

)
pk(1− p)n−k

(In the inequalities on the left hand side, we can replace ≤ with < and ≥
with >, because Yr is a continuous random variable.)

22.8 Example
Let y1 ≤ · · · ≤ y13 be an ordered sample of size n = 13 from an unknown

random variable. For its median m we have

P(y4 ≤ m ≤ y10) = P(4 ≤ b(13, 0.5) ≤ 9) = 0.9539− 0.0461 = 0.9078

the numerical values are taken from Table II.
Thus, the interval (y4, y10) can be regarded as a confidence interval for

the median m with confidence level 90%.
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22.9 Table 8.4-1
Table 8.4-1 on page 438 in the book gives confidence intervals for the

median m for small samples of size 5 ≤ n ≤ 20. It also gives the correspond-
ing confidence levels. These are recommended confidence intervals, one can
change them in practice. But remember: making the CI shorter reduces the
confidence level, making the CI wider increases confidence level.

For example, for n = 13, the recommended interval is (Y3, Y11) with level
97.76%. We can use a shorter interval (Y4, Y10), but it has a lower confidence
level of 90.78% (see the previous section).

22.10 Example
Suppose a sample of size n = 10 is

3.8, 4.1, 2.5, 4.2, 3.4, 2.8, 4.6, 3.3, 2.8, 3.7,

Find a confidence interval for the percentile π0.4.
Solution: let us try (y1, y5) = (2.5, 3.4):

P(y1 ≤ π0.4 ≤ y5) = P(2.5 ≤ π0.4 ≤ 3.4) = 0.6331− 0.0060 = 0.6271

This is a very short interval, but the confidence level is rather low, 62.71%.

22.11 Normal approximation for large n
When n is large (n ≥ 20), we can use normal approximation b(n, p) ≈

N
(
np, np(1− p)

)
, then

Gr(y) ≈ P
(
N
(
nF (y), nF (y)(1− F (y))

)
≥ r − 1

2

)
= 1− Φ

(
r − 1

2
− nF (y)√

nF (y)(1− F (y))

)
(we applied histogram correction).

22.12 Example
Find a confidence interval for the median m if the sample size is n = 100.
Solution. Let us try (y40, y60):

P(y40 ≤ m ≤ y60) = P(40 ≤ b(100, 0.5) < 60)

≈ P
(
39.5 ≤ N (50, 25) ≤ 59.5

)
= Φ

(59.5− 50

5

)
− Φ

(39.5− 50

5

)
= Φ(1.9)− Φ(−2.1) = 0.9534
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We got a CI with level 95.34%.

22.13 CI for percentiles for large n
Suppose we want to construct a CI for the unknown percentile πp with

confidence level 1− α. Then we need to find the orders r1 and r2 such that

1− α = P
(
Yr1 ≤ πp ≤ Yr2

)
= P

(
r1 ≤ b(n, p) ≤ r2 − 1

)
≈ P

(
r1 − 1

2
≤ N

(
np, np(1− p)

)
≤ r2 − 1

2

)
= Φ

(
r2 − 1

2
− np√

np(1− p)

)
− Φ

(
r1 − 1

2
− np√

np(1− p)

)
Assigning the probabilities α/2 to each tail gives us the following formulas:

r2 − 1
2
− np√

np(1− p)
= zα/2

r1 − 1
2
− np√

np(1− p)
= −zα/2

Thus
r2 = 1

2
+ np+ zα/2

√
np(1− p)

r1 = 1
2

+ np− zα/2
√
np(1− p)

Of course we need to round off these values to the nearest integer (to be safe,
it is better to round r1 to the nearest smaller integer and r2 to the nearest
greater integer).

22.14 Example
Find an 80% confidence interval for the first quartile π1/4 for a sample of

size n = 27.
Solution: here α/2 = 0.1, so we use z0.1 = 1.282.

r2 = 0.5 + 6.75 + 1.282
√

27 · 0.25 · 0.75 = 10.2

r1 = 0.5 + 6.75− 1.282
√

27 · 0.25 · 0.75 = 4.3
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So the confidence interval is (y4, y10). This is not entirely safe: we reduced
r1 (which is safe) but also reduced r2 (which may be dangerous). To verify
our result, we can find the actual confidence level of this interval:

P(y4 ≤ π1/4 ≤ y10) = P
(
4 ≤ b(27, 0.25) ≤ 9

)
= 0.8201

(the numerical value is obtained by using the on-line calculator on the in-
structor’s web page). Thus the actual confidence level is even higher than
the required 80%, so we are OK.
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23 Wilcoxon tests

Here we test hypotheses about the median m of an unknown random variable.

23.1 Example
In a polluted lake, the median of length of fish is known to be m0 = 3.7.

Authorities clean up the lake expecting the fish to get better and grow. To
check up the results, they have n = 10 fish caught randomly and measure
their lengths:

5.0, 3.9, 5.2, 5.5, 2.8, 6.1, 6.4, 2.6, 1.7, 4.3

Is there sufficient evidence that the length of fish has increased?
Let m denote the unknown median of the fish length after the clean-

up. We are testing the hypothesis H0 : m = m0 against the alternative
H1 : m > m0.

23.2 ‘Old’ sign test
One computes the differences between the sample lengths and the median

m0 = 3.7:

1.3, 0.2, 1.5, 1.8, −0.9, 2.4, 2.7, −1.1, −2.0, 0.6

Here 7 values are positive and 3 values are negative, so it appears that most
fish grew. But seven and three are too small numbers, so the test will not
be able to substantiate the desired conclusion. A smarter test by Wilcoxon
(see below) uses not only the signs but also magnitudes of the observations,
hence its conclusions are sharper.

23.3 Wilcoxon test - I
Given a sample x1, . . . , xn of values of an unknown random variable we

compute the differences di = xi−m0. Then we arrange their absolute values
|d1|, . . . , |dn| in the increasing order and assign ranks (from 1 to the smallest
to n to the biggest). Then we add the signs of di’s to the ranks; i.e. if di < 0
then we negate its rank. Lastly we sum up the signed ranks and obtain the
Wilcoxon statistic W .
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23.4 Example continued
In our example the differences xi −m0 are

1.3, 0.2, 1.5, 1.8, −0.9, 2.4, 2.7, −1.1, −2.0, 0.6

Their magnitudes arrange in the increasing order are

0.2 < 0.6 < 0.9 < 1.1 < 1.3 < 1.5 < 1.8 < 2.0 < 2.4 < 2.7

So the ranks (in the original order) are

5, 1, 6, 7, 3, 9, 10, 4, 8, 2

The signed ranks (corresponding to the signed differences) are

5, 1, 6, 7, −3, 9, 10, −4, −8, 2

Their sum is

W = 5 + 1 + 6 + 7− 3 + 9 + 10− 4− 8 + 2 = 25

23.5 Distribution of Wilcoxon statistic
The statistic W has approximately normal distribution W ≈ N (µ, σ2)

with

µ = 0 and σ2 =
n(n+ 1)(2n+ 1)

6

So we can compute the Z statistic

Z =
W − µ
σ

=
W√

n(n+ 1)(2n+ 1)/6

Then the test is completed as follows:

H0 H1 Critical region p-value

m > m0 Z > zα 1− Φ(Z)

m = m0 m < m0 Z < −zα Φ(Z)

m 6= m0 |Z| > zα/2 2 [1− Φ(|Z|)]
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23.6 Example continued
In our example

Z =
25√

10 · 11 · 21/6
=

25√
385

= 1.274

If the significance level α = 0.1, then the critical region is Z > z0.1 = 1.282.
We accept H0. The p-value of the test is 0.1013.

23.7 Remark
It is easy to see why

E(W ) = 0 and Var(W ) =
n(n+ 1)(2n+ 1)

6

Under the null hypothesis, P(xi < m0) = P(xi > m0) = 0.5. So, every rank
has equal chance to be positive or negative, hence its average value is zero.

Next, the variance of rank k is

Var(k) = E(k2) = k2

and

Var(W ) = 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

23.8 Tie breakers
If two differences have equal magnitudes, |xi −m0| = |xj −m0|, then we

average the corresponding ranks. For example, if the ordered sequence is
0.2 < 0.6 ≤ 0.6 < 1.1 · · · , then we assign ranks 1, 21

2
, 21

2
, 4, etc.

23.9 Median test for two samples
Suppose we have two samples: x1, . . . , xn1 are values of a random vari-

able X, and y1, . . . , yn2 are values of another random variable Y . We want
to compare their medians mx and my, i.e. test H0 : mx = my against the
alternative H1 : mx > my or mx < my.

The traditional ‘median test’ goes as follows: we combine the two samples,
arrange all the n1 + n2 values in the increasing order, and count the number
of x’s in the lower half of the combined sample. Let V be that number. If
H0 is true, we expect V ≈ n1/2, if mx > my we expect V < n1/2, and if
mx < my we expect V > n1/2.
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The statistic V has the following distribution (assuming theH0 hypothesis
is true and n1 + n2 = 2k is even):

P(V = v) =

(
n1

v

)(
n2

k−v

)(
n1+n2

k

)
Then we can compute the p-value of the test as follows. If we are testing
the hypothesis H1 : mx > my and vexp denotes the experimental (computed)
value of the V statistic, then

p-value = P(V ≤ vexp) =
∑
v≤vexp

(
n1

v

)(
n2

k−v

)(
n1+n2

k

)
If we are testing the hypothesis H1 : mx < my, then

p-value = P(V ≥ vexp) =
∑
v≥vexp

(
n1

v

)(
n2

k−v

)(
n1+n2

k

)
23.10 Example

Let the x sample be 6, 3, 2, 4, 9, and the y sample be 7, 7, 5, 10, 15. Test
the hypothesis H0 : mx = my against the alternative H1 : mx < my.

Solution. Here n1 = n2 = 5. The combined sample is

2, 3, 4, 5, 6
∣∣∣ 7, 7, 9, 10, 15

and there are four x’s in the lower half (2, 3, 4, 6), so vexp = 4. Then the
p-value is

p-value = P(V ≥ 4) = P(V = 4) + P(V = 5)

=

(
5
4

)(
5
1

)(
10
5

) +

(
5
5

)(
5
0

)(
10
5

) =

(
5
4

)(
5
1

)
+
(

5
5

)(
5
0

)(
10
5

) =
5 · 5 + 1 · 1

252
=

26

252

So the p-value is about 10%. This result is not very compelling, the test does
not clearly demonstrate the validity of either hypothesis H0 or H1.

23.11 Remark
The above median test is weak, because it only relies on the number of

x’s in the lower half of the combined sample and does not use the magnitude
of x’s. The following smarter test by Wilcoxon improves the median test.
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23.12 Wilcoxon test - II
We combine the two samples, arrange all the n1 + n2 values in the in-

creasing order, and assign ranks (from 1 to the smallest to n to the biggest).
The we compute the Wilcoxon statistics

W = sum of ranks of y′s

In our example, y’s have ranks 4, 61
2
, 61

2
, 9 and 10 (note that we used the

tie breaker rule to average the ranks of equal values), so

W = 4 + 61
2

+ 61
2

+ 9 + 10 = 36

23.13 Distribution of the second Wilcoxon statistic
The statistic W has approximately normal distribution W ≈ N (µ, σ2)

with

µ =
n2(n1 + n2 + 1)

2
and σ2 =

n1n2(n1 + n2 + 1)

12
So we can compute the Z statistic

Z =
W − µ
σ

=
W − n2(n1 + n2 + 1)/2√
n1n2(n1 + n2 + 1)/12

Then the test is completed as follows:

H0 H1 Critical region p-value

mx > my Z < −zα Φ(Z)

mx = my mx < my Z > zα 1− Φ(Z)

mx 6= my |Z| > zα/2 2 [1− Φ(|Z|)]

23.14 Example finished
In our example

Z =
36− 5 · 11/2√

5 · 5 · 11/12
= 1.78

Hence
p-value = 1− Φ(1.78) = 0.0375

The p-value of 3.75% is a much more definite indication in favor of the
alternative hypothesis than 10% in 23.10. The Wilcoxon test is thus sharper
than the median test.
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24 Run tests

In the previous chapter we tested the hypothesis that two random variables
X and Y had the same median mx = my. If they do, then still X and Y
may be different random variables (having different distribution functions).
For example, the random variables X = N (0, 1) and Y = N (0, 10000) have
zero median but very different distributions (typical values of X are within
the interval [−3, 3], and typical values of Y are or order ±100).

Here we test the hypothesis that X and Y have identical distributions,
i.e. the same distribution function H0 : FX = FY . The alternative hypothesis
will be H1 : FX 6= FY (the denial of the null hypothesis).

24.1 Run test
Let x1, . . . , xn1 observed values of X and y1, . . . , yn2 observed values of Y .

We combine the two samples, arrange all the n1 +n2 values in the increasing
order, and underline consecutive x’s and consecutive y’s in the combined
sample to get something like this:

x yyy xx yyy x y xx y · · ·

Every string of consecutive x’s or y’s (including singletons) is called a run.
We count runs in the entire combined sample. Let R denote the number of
runs.

If the null hypothesis is true, i.e. X and Y have identical distributions,
then x’s and y’s should be mixed up evenly in the combined sample, thus
the runs should be short and the number of runs large.

On the other hand, if FX 6= FY , then there must be intervals where x’s
appear more frequently than y’s, and vice versa. Then we expect longer runs
and their number smaller.

Thus the critical region of the test is R < C, where C is a critical value.
Let rexp denote the experimental (computed) value of the R statistic. Then
the p-value of the test can be computed by

p-value = P(R ≤ rexp) =
∑
r≤rexp

P(R = r).

24.2 Distribution of R for small samples
When n is small, we use exact formulas for the probabilities P(R = r).

Here they are.

116



If r = 2k is an even number, then

P(R = 2k) =
2
(
n1−1
k−1

)(
n2−1
k−1

)(
n1+n2

n2

)
If r = 2k + 1 is an odd number, then

P(R = 2k + 1) =

(
n1−1
k

)(
n2−1
k−1

)
+
(
n1−1
k−1

)(
n2−1
k

)(
n1+n2

n2

)
24.3 Example

Consider the data from Example 23.10. Here is the combined sample
with underlined runs:

2 3 4 5 6 7 7 9 10 15

The total number of runs is R = 6.
The p-value of the test is

∑
r≤6 P(R = r). Here we go:

P(R = 2) =
2
(

4
0

)(
4
0

)(
10
5

) =
2

252

P(R = 3) =

(
4
1

)(
4
0

)
+
(

4
0

)(
4
1

)(
10
5

) =
8

252

P(R = 4) =
2
(

4
1

)(
4
1

)(
10
5

) =
32

252

P(R = 5) =

(
4
2

)(
4
1

)
+
(

4
1

)(
4
2

)(
10
5

) =
48

252

P(R = 6) =
2
(

4
2

)(
4
2

)(
10
5

) =
72

252

The total is

p-value =
6∑
r=2

P(R = r) =
162

252
≈ 0.64

The p-value of 64% is an overwhelming evidence in favor of H0. Thus, we
conclude that the two random variables have identical distributions.
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24.4 Controversy?
But stop! In the previous Chapter, we analyzed the same example by

the second Wilcoxon test and concluded that mx < my, i.e. X and Y had
different medians! How can they have the same distribution?

Well, it is not uncommon in statistical practice that different methods
applied to the same data sets lead to different (often logically inconsistent
and even opposite) conclusions. Every statistical conclusion may or may not
be correct, and there is always a chance that it is wrong.

In hypotheses testing, when we accept H0 (as in 24.3), we simply conclude
that there is not enough evidence to accept H1. The run test was not able
to recognize the difference between the two samples, thus it had to ‘give up’
and stick to the null hypothesis. The second Wilcoxon test was ‘smarter’
and caught the difference between the two samples, thus arriving at the
alternative hypothesis.

24.5 Distribution of R for large samples
When the samples are large (n1 ≥ 10 and n2 ≥ 10), then R is approxi-

mately a normal random variable R ≈ N (µ, σ2), where

µ =
2n1n2

n1 + n2

+ 1

and

σ2 =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)

So we can compute the Z statistic

Z =
R− µ
σ

Now the critical region will be Z < −zα and the p-value= Φ(Z).

24.6 Example
In our example n1 = n2 = 5, so

µ =
2 · 5 · 5

10
+ 1 = 6

σ2 =
50(50− 10)

102 · 9
=

20

9
so Z = 0 and the p-value is Φ(0) = 0.5. This is different from the exact
p-value=0.62 obtained earlier, but in the same ‘ballpark’.

The rest of this chapter is optional...
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24.7 Tests for randomness
The run test can be modified to test something quite unusual – the “ran-

domness” of experimental data. We have always assumed that the observa-
tions x1, . . . , xn were statistically independent, i.e. arrived randomly. How-
ever, in practice the values x1, . . . , xn may follow a certain pattern.

For example, consider the stock market index recorded at the end of
every trading day during a month. It often happens that the index tends to
decrease toward the end of the month. Or it often follows periodic cycles – it
drops in the beginning every week and recovers by the end of the week. Or
it may change alternatively - drops followed by rises, followed by drops, etc.

In such cases the sequence x1, . . . , xn is not completely random but follows
certain patterns (trends up or down, or cycles). To detect these patterns we
can use an adapted run test.

24.8 Run test for randomness
We divide the sample x1, . . . , xn into upper and lower halves. Then we

replace every xi with a U (if it belongs to the upper half) or an L (if it
belongs to the lower half). Then the sequence x1, . . . , xn becomes a sequence
of U ’s and L’s. We underline strings of consecutive U ’s and consecutive L’s
(‘runs’) and get something like this:

LLUUU LU LLLLU LLUUU · · ·

Let R be the number of runs.

24.9 Tie breaking
If n = 2k is even, then there is equal number n1 = n2 = k of U ’s and L’s.

If n = 2k + 1 is odd, then we make the number of U ’s larger (n1 = k + 1)
and the number of L’s smaller (n2 = k).

24.10 Distribution of R
If the sample is purely random (without patterns), then the R statistic has

distribution, which is described in Section 24.2 for small n and in Section 24.5
for large n. So we can use all those formulas.

24.11 Test procedure for trends
If we are trying to detect a trend (up or down), then we expect the sample

to start with L’s and end with U ’s or vice versa, thus runs are long and their
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number is small. Then the critical region is R < C, where C is some critical
value, and the p-value can be computed by

p-value = P(R ≤ rexp) =
∑
r≤rexp

P(R = r)

where rexp is the experimental value of the R statistic.

24.12 Test procedure for cycles
If we are trying to detect cycles, then we expect that L’s and U ’s alternate,

thus runs are short (mostly singletons) and their number is big. Then the
critical region is R > C and the p-value can be computed by

p-value = P(R ≥ rexp) =
∑
r≥rexp

P(R = r)

where rexp is the experimental value of the R statistic.

24.13 Example
Consider a sample 5, 2, 3, 6, 8, 4, 10, 7. It looks like the numbers tend to

increase. Can we conclude that these numbers are not completely random?
Solution: We are testing the sample for a trend (up or down). Here n = 8

is even, so n1 = n2 = 4. The upper half is 6, 8, 10, 7 and the lower half is
5, 2, 3, 4. The sequence is

LLLUU LUU

so there are R = 4 runs. The p-value can be computed as

p-value = P(R = 2) + P(R = 3) + P(R = 4)

=
2
(

3
0

)(
3
0

)(
8
4

) +

(
3
1

)(
3
0

)
+
(

3
0

)(
3
1

)(
8
4

) +
2
(

3
1

)(
3
1

)(
8
4

)
=

2

70
+

6

70
+

18

70
=

26

70
≈ 0.37

The p-value of 37% is a strong evidence in favor of H0. Hence the test failed
to detect a trend (no surprise, we only have 8 observations!..).
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24.14 Another example
Suppose in the previous example we are testing the hypothesis for cycles.

Then the p-value would be

p-value = P(R ≥ 4)

= P(R = 4) + P(R = 5) + P(R = 6) + P(R = 7) + P(R = 8)

= 1− P(R = 2)− P(R = 3)

= 1−
2
(

3
0

)(
3
0

)(
8
4

) −
(

3
1

)(
3
0

)
+
(

3
0

)(
3
1

)(
8
4

)
= 1− 2

70
− 6

70
=

62

70
≈ 0.89

The p-value of 89% is an ‘absolute’ evidence in favor of H0, i.e. there is not a
trace of evidence of cycles (which is obvious even when you just look at the
sample).

24.15 Remark
For large samples (n ≥ 20) we should use normal approximation with all

the formulas of Section 24.5.
Let us apply normal approximation to the above example (even though

n is too small, so the approximation would not be accurate): we have R ≈
N (µ, σ2), where

µ =
2n1n2

n1 + n2

+ 1 = 5

and

σ2 =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
=

12

7

So the Z statistic is

Z =
4− 5√

12/7
= −0.76

Now for the trend test the p-value is Φ(−0.76) = 0.2236. For the cycle test
the p-value is 1− Φ(−0.76) = 0.7764.
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25 Kolmogorov-Smirnov test

This is our last nonparametric test.

25.1 Test about the distribution function
Suppose we have a sample x1, . . . , xn of observed values of an unknown

random variable X and want to check whether X has a hypothetical distri-
bution function F (x). That is, let FX(x) denote the unknown distribution
function of X, then we want to test the hypothesis H0 : FX(x) = F (x) against
the alternative H1 : FX(x) 6= F (x).

25.2 Empirical distribution function
First of all, we need to estimate the unknown object, in this case the

distribution function FX(x). Its value at any point x is equal to P(X ≤
x). This probability can be estimates by using methods for binomials, see
Section 3.7.

Consider the event {X ≤ x}, think of it as ‘success’, then p = P(X ≤ x)
is the probability of success. In our sample, the empirical number of successes
is #{i : xi ≤ x}, hence the estimate of p is

p̂ =
#{i : xi ≤ x}

n

This is our estimate for FX(x), it is denoted by Fn(x) and called the empirical
distribution function (EDF).

25.3 Construction of EDF
Let y1, . . . , yn denote the ordered sample x1, . . . , xn, that is yi = x(i).

Then

Fn(x) =


0 for x < y1

i/n for yi ≤ x < yi+1

1 for x ≥ yn

That is, Fn(x) is a step function that jumps up by 1/n at every sample point,
see illustration later.

25.4 Distribution of Fn(x)
The number of successes #{i : xi ≤ x} has distribution b(n, p), where p =

F (x). Therefore the value Fn(x) has distribution 1
n
b(n, F (x)). In particular,
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its mean value and variance are

E
(
Fn(x)

)
= F (x), Var

(
Fn(x)

)
=
F (x)(1− F (x))

n

A typical error (standard deviation) is

∣∣Fn(x)− F (x)
∣∣ ∼ √F (x)(1− F (x))√

n

25.5 Test statistic
Our test statistic will be

Dn = sup
x

∣∣Fn(x)− F (x)
∣∣

which is the maximal distance between the graph of the the empirical distri-
bution function and that of the hypothetical distribution function. Of course,
whenever this distance is too large, we should reject H0. Thus the critical
region is Dn > d, where d is the critical value.

The value d is given in Table VIII in the book, it depends on the sample
size n and the significance level α.

For large n, the table gives an asymptotic formula in the form a/
√
n,

where a is some constant. This makes sense because the distance between
Fn(x) and F (x) is of order 1/

√
n, see the previous section.

25.6 Practical computation of Dn

Even though the formula for Dn involves finding the maximum difference
Fn(x) − F (x) over all real x’s, in practice it is enough to compute that
difference only at the sample points, i.e. we should compute Fn(xi) − F (xi)
for all i = 1, . . . , n and take the largest one (in absolute value).

Note however that the empirical distribution function Fn is discontinuous
at every sample point xi, i.e. it takes two different values – one on the left
and one on the right. We need to try both, i.e. we actually need to compute
2n differences, rather than n.

25.7 Example
Test the hypothesis that the sample

−0.4, 0.2, −0.1, 0.8, 0.3
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came from the random variable X = U(−1, 1). Let α = 0.1.
Solution. The hypothetical distribution function is F (x) = (x + 1)/2.

The table below records the values of F (x) and Fn(x) at the sample points,
as well as the differences:

x -0.4 -0.1 0.2 0.3 0.8

F (x) 0.3 0.45 0.6 0.65 0.9

left Fn(x) 0 0.2 0.4 0.6 0.8

right Fn(x) 0.2 0.4 0.6 0.8 1.0

left diff. 0.3 0.25 0.2 0.05 0.1

right diff. 0.1 0.05 0.0 0.15 0.1

The largest difference is Dn = 0.3 (in bold, see the table). Since Dn <
d = 0.51 (from Table VIII), we accept H0.
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25.8 Confidence band for FX
The empirical distribution function Fn(x) provides the best estimate for

the unknown distribution function FX(x). If we want a confidence interval
with level 1− α, then we move Fn(x) up and down by the distance d, where
d is taken from Table VIII and corresponds to the given sample size n and
α.
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This gives us two bounds - an upper bound for F (x) and a lower bound
for F (x); the area in between is called the confidence band. That band is
where we expect F (x) to be, with probability 1− α.

Note: if the confidence band sticks above the line y = 1 or below the
line y = 0, it should be trimmed accordingly, since all distribution functions
must be between 0 and 1.

25.9 Variant: two sample
Kolmogorov-Smirnov (KS) test can be adjusted to the problem discussed

in the preamble to Chapter 24: given two samples, x1, . . . , xn1 from a random
variable X and y1, . . . , yn2 from a random variable Y , we want to test the
hypothesis H0 : FX = FY against the alternative H1 : FX 6= FY .

In this case we construct the two empirical distribution functions: Fn1(x)
for X and Fn2(x) for Y , and compute

Dn = sup
x

∣∣Fn1(x)− Fn2(x)
∣∣

The critical region is again Dn > d, where d is given in Table VIII.

25.10 The p-value
There is a formula for the p-value of the Kolmogorov-Smirnov test:

p-value ≈ Q
(√

nDn

)
where Q is a function defined by infinite series

Q(t) = 2
∞∑
i=1

(−1)i−1e−2i2t2

Here n is the size of the sample for the standard KS test (one sample), and

n =
n1n2

n1 + n2

for the adapted variant that deals with two samples of sizes n1 and n2.
The infinite series in the formula for Q(t) converges very fast, so it can

be easily computed numerically, by taking just a few terms.
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25.11 Improvement: Anderson-Darling test
The formula for Dn has a certain drawback. Since the difference Fn(x)−

F (x) has variance

Var
(
Fn(x)− F (x)

)
=
F (x)(1− F (x))

n

(see section 25.4), it is smaller when F (x) ≈ 0 and F (x) ≈ 1 and larger when
F (x) ≈ 0.5. Thus the formula

Dn = sup
x

∣∣Fn(x)− F (x)
∣∣

is not well balanced – it is likely to overlook statistically significant differences
in the ‘extreme’ ranges, where F (x) ≈ 0 and F (x) ≈ 1.

Anderson and Darling proposed a more balanced formula for D:

D∗n = sup
x

∣∣Fn(x)− F (x)
∣∣√

F (x)(1− F (x))

It is harder to compute, but it makes the test more efficient.
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