
Advanced Probability, MA 587/687
(course guide)
Nikolai Chernov

The main part of the course is based on the electronic book

M. Finan, A Probability Course for Actuaries; A Preparation for Exam P/1

It is a large book (more than 500 pages). The purpose of this guide is to
describe what needs to be covered from this book.

This guide can be used by the instructor, as it gives a suggested content
of each lecture.

This guide can also be used by students. It emphasizes what they need
to know from the book (and what can be ignored).

The present course builds upon Probability Theory, MA 485/585, which
all the students are supposed to have taken earlier. The guide focuses on
the parts of the above electronic book that present the material specific to
Advanced Probability, MA 587/687.

1 Basic Definitions

2 Set Operations

3 The Fundamental Principle of Counting

4 Permutations and Combinations

Most of the content of the first four sections has been covered in Probability
Theory, MA 485/585. So they only need to be quickly reviewed in class.

The only novel (or relatively novel) topics here are

• Cardinality n(A) of a set A (page 11)

• Power set P(A) and its cardinality (page 13)

• Countable unions and intersections (page 21)

• Inclusion-Exclusion Principle for the cardinalities (page 23)
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• Cartesian Product and its cardinality (page 24)

• Circular permutations (page 39)

An important note: The cardinality of the power set, n(P(A)) = 2n(A),
is related to the problem of partitioning of A into two subsets. The number
of such partitions is equal to the cardinality of the power set.

Suggested homework problems:

1.3, 1.11, 2.5, 2.10, 2.17, 3.10, 4.5, 4.17, 4.18

5 Permutations and Combinations with Indistinguish-
able Objects

The material of this section is new, it was not included in Probability Theory,
MA 485/585. This section must be covered in full.

Most important topics:

• Theorem 5.1 (and Example 5.1)

• Theorem 5.2 (and Example 5.3)

• Theorem 5.3 (with the introductory example before it)

• Remark 5.4

• Theorem 5.4 (with optional Example 5.9)

Suggested homework problems:

5.1, 5.7, 5.9, 5.12a

6 Probability: Definition and Properties

7 Properties of Probability

Most of the content of sections 6 and 7 has been covered in Probability
Theory, MA 485/585. But now they can be presented in a somewhat more
formal manner.

Probability Theory begins with the following basic constructions:
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Probability space (or sample space) is the collection of all possible
outcomes

Events are certain subsets of the probability space

Probability is a numerical value (a number in the interval [0, 1]) as-
signed to each event

In any application where a procedure, or an experiment, or a game, may
end up in more than one way (has more than one possible outcome), the above
three basic constructions must be made before one can apply Probability
Theory. Thus, one needs to describe ALL possible outcomes, ALL events,
and specify their probabilities (or define a rule by which the probabilities can
be computed).

A standard notation for the above constructions is the triple (Ω,F ,P),
where Ω denotes the set of all possible outcomes, F denotes the collection of
events, and P denotes the probability.

In mathematical terms, Ω is just a set, whose elements are commonly
denoted by ω, i.e., ω ∈ Ω. (The book uses symbol S instead of Ω.)

Next, F is a set whose elements are subsets of Ω, i.e., for each A ∈ F we
can write A ⊂ Ω. Each event is a subset of Ω, but not necessarily vice versa,
i.e., not all subsets of Ω may qualify as events, see below.

Lastly, P is a function on F with values in [0, 1], i.e., P : F → [0, 1]. Its
value on A ∈ F is denoted by P(A), this is what we call the probability of
the event A.

The probability function P must satisfy certain requirements, stated as
Axioms 1, 2, 3 in the book.

The set F of all the events also must satisfy certain requirements (not
mentioned in the book). They are as follows:

(a) F must contain Ω, i.e., Ω must be an event (the largest event!)

(b) for any event A ∈ F its complement must be an event, too, i.e., Ac ∈ F
(c) for any sequence of events {An}n≥1, their union must be an event, i.e.,

∪∞n=1An ∈ F
It then follows that for any events A1, A2, . . . their union, intersection, com-
plements, differences, symmetric differences are events. In other words, one
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should be able to perform set operations on events. A collection F of subsets
of Ω that satisfies these requirements is called σ-algebra (or σ-field).

There are no requirements placed on the set Ω itself.
In mathematics, the triple (Ω,F ,P) is called measure space, and P is

called measure, or more specifically probability measure. Thus Probability
Theory is mathematically a part of Measure Theory. The latter is covered
fully in Real Analysis, MA 645/646. In this course we will try to avoid the
abstract concepts of Real Analysis and focus on practical aspects.

It should be emphasized how young the mathematical theory of Prob-
ability is: Kolmogorov’s axioms were introduced only in 1933. Until then
Probability was mostly an empirical science (based on the “experimental”
interpretation of probability described right before Kolmogorov’s axioms).

Countable Subadditivity should be mentioned: for any sequence of
events {En}n≥1 (not necessarily mutually exclusive) we have

P
(∪∞n=1En

) ≤
∞∑

n=1

P (En)

Two most common types of probability spaces can be described as follows:

Discrete spaces: Ω is a finite or countable set (such as N,Z,Q). In
such spaces, every subset is usually an event, i.e., we usually assume
that F = P(Ω). Then the probability is fully determined by its values
on one-point sets, because for every event A = {ω1, ω2, . . .} we have

P(A) = P({ω1}) + P({ω2}) + · · ·

Continuous spaces: Ω is a the real line R (or an interval in it, such
as (a, b) ⊂ R), or a plane R2, or a space R3, etc., or any well-defined
figure (domain) in Rk, such as a rectangle, box, disk, ball, surface, etc.
Events are “relatively good” subsets whose size (length, area, volume)
can be determined (see a striking example below). In such spaces the
probability of every one-point set is usually set to zero, i.e., P({ω}) = 0
for every ω ∈ Ω. Therefore the probability P of large events A ∈ F
must be defined differently. This is usually done with the help of certain
functions (distribution functions, density functions, etc.).

Note that the length/area/volume cannot be determined for any subset
of R, or R2, or R3, respectively. The most spectacular example is known as
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Banach–Tarski paradox: Given a solid ball in R3, there exists a decompo-
sition of the ball into a finite number of non-overlapping pieces (i.e., subsets),
which can then be put back together in a different way to yield two identical
copies of the original ball. The reassembly process involves only moving the
pieces around and rotating them, without changing their shape or size.

Figure 1: Banach–Tarski paradox illustrated

(This is often stated, colloquially, as “a pea can be chopped up and reassem-
bled into the Sun”.)

Thus if those pieces of the original ball had volume, we would observe an
impossible situation: the volume doubles. This paradox demonstrates that
those pieces of the ball cannot have volume, they are too “ugly”.

Continuity of Probabilities should be mentioned: for any increasing
sequence of events

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · ·
we have

P
(∪∞n=1En

)
= lim

n→∞
P (En)

and for any decreasing sequence of events

E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · ·

we have
P

(∩∞n=1En

)
= lim

n→∞
P (En)

Draw the corresponding diagrams.
Example 6.7 was discussed in Probability Theory, MA 485/585. Gener-

alize it as follows: suppose n objects are selected from a pool of N objects,
with replacement. What is the probability that all the selected objects are
distinct (no repetitions)? Answer:

P (all distinct) =
N

N
· N − 1

N
· · · N − n + 1

N
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For large N ’s we can approximate this probability as follows:

P (all distinct) = eln N
N

+ln N−1
N

+···+ln N−n+1
N

≈ e−
1
N
−···−n−1

N

= e−
n(n−1)

2N

We can make the following general conclusions:

• For n ¿ √
N this probability is almost 1, so all the selected objects

will be almost certainly distinct.

• For n À √
N the above probability is almost zero, so repetitions are

almost unavoidable.

• The transition occurs when n is of order
√

N , then the above probability
is neither close to zero nor close to one.

Relate this to random polls of large populations (and the popular in statistics
“5% guideline” for sampling from large populations)

The inclusion-exclusion formula given in Theorem 7.1 for two events and
in Theorem 7.2 for three events can be generalized to any number of events:

P (A1 ∪ · · · ∪An) =
∑

i

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak)− · · ·

Apply it to the following “matching problem”:
Suppose n couples attend a party where at some point men are randomly

paired with women for a dance. What is the probability that at least one
husband dances with his own wife?

Solution: let Ai denote the event that the ith man dances with his wife.
Then the probability that at least one husband dances with his wife is

P (A1 ∪ · · · ∪ An) =
∑

i

P (Ai)−
∑
i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak)− · · ·

= n · 1
n
− n(n−1)

2
· 1

n(n−1)
+ n(n−1)(n−2)

3!
· 1

n(n−1)(n−2)
− · · ·

= 1− 1

2!
+

1

3!
− · · ·

This is a finite sum (it has n terms), but for large n it converges to the infinite
series

1− 1

2!
+

1

3!
− · · · = 1− 1

e
≈ 0.6321
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so that above probability is approximately 1− 1
e
≈ 0.6321.

Suggested homework problems:

6.11, 7.9, 7.11, 7.16

8 Probability and Counting Techniques

This section gives a nice and efficient method for solving many practical
problems, so it deserves a review. Discuss Example 8.5.

Practice problems in the end of the section are either quite simple (8.1
to 8.10) or nearly impossible (8.11 to 8.13). The last three problems (all
nearly impossible) are taken from actuarial exams, so it would be good to
assign them. However they involve the material to be covered much later in
the course, so it is just too early to assign them now. Problem 8.11 can be
assigned in section 20.3, for example.

Suggested homework problem: 8.7.

9 Conditional Probability

10 Posterior Probabilities: Bayes’ Formula

11 Independent Events

Most of the content of these three sections has been covered in Probability
Theory, MA 485/585. So they only need be quickly reviewed in class.

Some useful notes:
Theorem 9.1 should be related to the material of Section 8.
For every fixed event A with P(A) > 0 the function PA : F → [0, 1]

defined by PA(B) = P(B|A) is a probability measure (different from the
original P). So the occurrence of an event A changes the probabilities of all
the other events. Practical example: weather forecast for the next 10 days
(in particular, the chances of rain, snow, etc.) is updated every day, as the
current weather conditions are taken into account (i.e., the current events
change the probabilities of the future events).

The definition of independent events is stated in the book as P(A|B) =
P(A) (given at the beginning of Section 11). It is technically incomplete, as it
does not cover the important case P(B) = 0. The standard official definition
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of independent events is P(A ∩ B) = P(A)P(B) (in the book, it is stated in
Theorem 11.1).

Note: the best way to illustrate independent events is to draw a rectangle
(representing the probability space Ω), one horizontal strip (stretching across
the rectangle, from left to right) and one vertical strip (stretching across the
rectangle, from top to bottom). Show that the relative area of the intersection
of the two strips is equal to the product of their relative areas.

A “philosophical” remark: independence in probability has some deep
relation with orthogonality in geometry.

A historic remark: Kolmogorov’s axioms of Probability Theory nicely
place it in the context of Measure Theory in mathematics, i.e., Probability
Theory appears to be a particular case of general Measure Theory. This
point of view is quite common, but it is not exactly accurate. Kolmogorov
himself said that these two disciplines evolve in parallel only until the notion
of independence is introduced. After that they go separate ways. There is no
such thing as “independence” in general Measure Theory, while in Probability
it plays a central role (or the central role!).

Suggested homework problems:

9.3, 9.1, 10.3, 10.9, 11.5, 11.6, 11.8

12 Odds and Conditional Probability

This is really a tiny note, not a serious section. The part after Example 12.2
can be just ignored. No homework exercises.

13 Discrete Random Variables

14 Probability Mass Function and Cumulative Distri-
bution Function

Most of the content of these two sections has been covered in Probability
Theory, MA 485/585. But now they can be presented in a somewhat more
formal manner.

A random variable can be defined as a function X : Ω → R. Its domain
is the probability space Ω, its values are real numbers. Each elementary
outcome ω ∈ Ω has a numerical value X(ω) ∈ R assigned to it.
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In practical situations, ω represents the actual outcome that occurs and
X(ω) represents the value we observe. For example, ω denotes the current
weather conditions and X(ω) the observed (measured) temperature of the
outside air. Weather conditions determine the air temperature, but many
different weather conditions may result in the same air temperature, i.e., we
often have X(ω) = X(ω′) for distinct possible outcomes ω 6= ω′.

Quite commonly, the probability space Ω and the respective probability
measure P are very difficult (or impossible) to describe, they remain unspec-
ified, “behind the scene”, while the values of X are observable, “visible”. We
will learn how to describe X in its own terms, without referring to Ω.

A random variable X is said to be discrete if its range is finite or count-
able, i.e., if all possible values of X can be numbered: x1, x2, . . .. For example,
they can be natural numbers, integers, rational numbers, etc.

The probability function (called probability mass function in the
book) of a r.v. X is denoted by p(x) and defined by p(x) = P(X = x). More
formally,

p(x) = P
({ω ∈ Ω: X(ω) = x}) = P

(
X−1(x)

)

(explain the meaning of X−1, draw diagrams, give examples, such as if f(x) =
x2, then f−1(1) = {1,−1} and f−1(−1) = ∅).

Of course, if X does not take value x ∈ R, i.e., when x is not one of the
x1, x2, . . ., then the above set X−1(x) is empty, so its probability is zero, i.e.,
p(x) = 0. On the other hand, p(x1), p(x2), . . . are usually positive numbers
(but some may be zero occasionally).

Note: p(x1) + p(x2) + · · · = 1.
Given a random variable X, the p.m.f. p(x) gives probabilities corre-

sponding to individual numbers x ∈ R. Likewise, we can define probabilities
corresponding to intervals (a, b) ⊂ R as follows:

P(a, b) = P(a < X < b) = P
({ω ∈ Ω: X(ω) ∈ (a, b)}) = P

(
X−1(a, b)

)
.

Quite obviously,

P(a, b) =
∑

xi∈(a,b)

p(xi)

Thus we now have a probability assigned to each interval (a, b). More gen-
erally, the probability of any subset A ⊂ R can be defined by

P(A) = P(X ∈ A) = P
({ω ∈ Ω: X(ω) ∈ A}) = P

(
X−1(A)

)
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and computed by

P(A) =
∑
xi∈A

p(xi)

Thus we obtain a probability measure on subsets of R (rather than on subsets
of Ω were it was originally defined). This new probability measure is induced
on R by the random variable X, and it often denoted by PX . It is called the
distribution of the random variable X.

Note: PX(A) can be computed in terms of values x1, x2, . . . and their prob-
abilities p(x1), p(x2), . . . alone, without any reference to the original proba-
bility space Ω and the original probability measure P on it. Thus we can
completely describe the random variable X in its own terms.

Quite commonly, the probability space Ω and the respective probability
measure P remain unspecified, “behind the scene”, and then the only “visi-
ble” part of the picture is the set of values x1, x2, . . . of the random variable
X and their probabilities p(x1), p(x2), . . .. They completely determine the
distribution of X, which includes probabilities of intervals and other subsets
of R.

The distribution function (or cumulative distribution function) of
a random variable X is defined by

F (a) = P(X ≤ a) = P
({ω ∈ Ω: X(ω) ≤ a}) = P

(
X−1(−∞, a]

)
.

If the students have not seen distribution functions of discrete random vari-
ables in MA 485/585, discuss Examples 14.4 and 14.5 and assign Practice
Problem 14.1.

Suggested homework problems: 13.7 and 13.11 (and possibly 14.1).

15 Expected Value of a Discrete Random Variable

16 Expected Value of a Function of a Discrete Random
Variable

Most of the content of these two sections has been covered in Probability
Theory, MA 485/585. But now they can be presented in a somewhat more
formal manner.

Let X : Ω → R be a discrete random variable with values

x1, x2, . . .
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and respective probabilities

p(x1), p(x2), . . .

The mean value (or expected value) of X is defined by

E(X) = x1p(x1) + x2p(x2) + · · · =
∑

xip(xi).

A more formal version of this formula is

E(X) =
∑

x∈X(Ω)

xP
(
X−1({x}))

A simple example: the indicator function IA (Examples 14.3 and 15.3 in the
book). It is a random variable, and we have E(IA) = P(A).

If the r.v. X takes infinitely many values, the computation of E(X) brings
us to an infinite series. That infinite series has a well-defined sum if and only
if it converges absolutely, i.e., if the sum

|x1|p(x1) + |x2|p(x2) + · · · =
∑

|xi|p(xi)

is finite. Thus the definition of the mean value E(X) requires the absolute
convergence of the above series. If it does not converge absolutely, the mean
value does not exist.

Example: suppose X takes values 0,−1, 2,−3, 4, . . . (i.e., xn = (−1)nn
for n ≥ 0) with probabilities p(xn) = 1

(n+1)(n+2)
, just like in Practice problem

13.7 in the book. Then the series

∞∑
n=0

xnp(xn) = 0 · 1

1 · 2 − 1 · 1

2 · 3 + 2 · 1

3 · 4 − · · ·

converges (its sum is approximately −0.0795). But does it give us the mean
value of X? No, because the series of absolute values diverges:

∞∑
n=0

|xn|p(xn) =
∞∑

n=0

n

(n + 1)(n + 2)
= ∞

(this is an analogue of the classical harmonic series,
∑∞

n=1
1
n

= ∞). The
random variable X in this example does NOT have a mean value.
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A function Y = g(X) of a random variable X should be defined as the
composition of two functions: X : Ω → R and g : R→ R. Draw a diagram.

Now the formula for the mean value of Y should make better sense: if we
denote yn = g(xn) for n ≥ 1 then

E(Y ) =
∑

y∈Y (Ω)

y P
(
Y −1({y})) =

∑

x∈X(Ω)

g(x)P
(
X−1({x}))

as it should be clear from the diagram that y = g(x) and X−1({x}) =
Y −1({y}).

Suggested homework problems: 16.6 and 16.11.

17 Variance and Standard Deviation

Most of the content of this section has been covered in Probability Theory,
MA 485/585. So it only need be quickly reviewed in class.

Remind the students of the “official” definition of the variance

Var(X) = E
[
(X − E(X))2

]

and the “shortcut” formula

Var(X) = E(X2)− [
E(X)

]2

Suggested homework problem: 17.2.

18 Binomial and Multinomial Random Variables

Binomial r.v.’s have been extensively covered in Probability Theory, MA
485/585, so they only need be quickly reviewed in class.

Multinomial random variables have not been mentioned in MA 485/585,
so they should be introduced here. They constitute a small part, though.

Suggested homework problems: 18.6 and 18.19.

19 Poisson Random Variable

Poisson r.v.’s have been extensively covered in Probability Theory, MA 485/585,
so they only need be quickly reviewed in class.
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Theorem 19.1 (Poisson approximation to binomials) should be stated
more formally:

Theorem. Let λ > 0 be a positive real number and k ≥ 0 a non-negative
integer. Let Xi, i ≥ 1, be a sequence of binomial random variables with
parameters ni and pi such that

lim
i→∞

ni = ∞, lim
i→∞

pi = 0, lim
i→∞

nipi = λ,

Then the binomial probabilities

P(Xi = k) =

(
ni

k

)
pk

i (1− pi)
ni−k

converge to the Poisson probability

lim
i→∞

P(Xi = k) =
λk

k!
e−λ

Suggested homework problems: 19.9 and 19.14.

20 Other Discrete Random Variables

This is a long section consisting of three parts. The first is devoted to ge-
ometric random variables fully covered in MA 485/585. Just remind the
students of the main formulas, including the mean and the variance.

The second covers Negative Binomials. Give the definition (both versions,
with x and y on the first page of section 20.2). Give formulas for the mean
and variance. Relate them to the corresponding formulas for the geometric
r.v. and describe how they can be easily derived.

Indeed, the negative binomial r.v. is just the sum of r independent copies
of the corresponding geometric r.v. (with the same probability od success),
so we just need to multiply the mean and variance of the latter by r. This is
based on the rules

E(X1 + · · ·+ Xr) = E(X1) + · · ·+ E(Xr)

and
Var(X1 + · · ·+ Xr) = Var(X1) + · · ·+ Var(Xr)
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that the students have learned in MA 485/585 (the second rule requires
independence of X1, . . . , Xr).

The third (and last) part, 20.3, is devoted to Hypergeometric Random
Variable. Give the definition. The following “contingency table” helps to
clarify the procedure:

Type Drawn Not drawn Total
A k n− k n
B r − k N − n− (r − k) N − n

Total r N − r N

Give the main formulas, including those for the mean and variance. Relate
them to those of the binomial r.v., binomial(r, p), with r trials and probability
of success p = n

N
. The relation goes as follows.

We can represent the hypergeometric r.v. X as X = X1 + · · ·+Xr, where
Xi takes two values: 1 (if the object drawn at step i is of type A) and 0
(otherwise, i.e., if the object is of type B). Then

E(X) = E(X1 + · · ·+ Xr) = E(X1) + · · ·+ E(Xr)

It is easy to convince ourselves that each Xi is just a Bernoulli r.v. with
P(Xi) = p = n

N
. Thus the mean value of the sum is rp = rn

N
, i.e., the

hypergeometric r.v. and the binomial(r, p) have exactly the same mean value.
For the variance, the formula given right before Example 20.12 is too

complicated and should be avoided. The one given in the part (c) of the
solution is easier to use and interpret; it can be written as follows:

Var(X) = r · n

N
· N − n

N
· N − r

N − 1

If we ignore the last factor, N−r
N−1

, we would just get the variance of the
binomial(r, p), i.e., rp(1− p). So where does that last factor come from?

It is because X1, . . . , Xn are not independent (unlike in the binomial
model), so the formula for the variance must include covariance terms:

Var(X1 + · · ·+ Xr) = Var(X1) + · · ·+ Var(Xr)

+ 2Cov(X1, X2) + · · ·+ 2Cov(Xr−1, Xr)

Since the objects are drawn from a finite population, drawing an object of
type A at the ith step reduces the likelihood that an object of type A will
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be drawn at other steps. So the variables X1, . . . , Xn are dependent; more
precisely they are negatively correlated, and this negative correlation reduces
the total variance. The reduction is represented by the factor N−r

N−1
, which is

less than one. Note that if r = 1, i.e., if only one object is drawn, then there
are no correlations, and respectively that extra factor is N−1

N−1
= 1.

More precisely, the contribution of the covariance terms can be com-
puted as follows. First, one can easily convince oneself that the covariance
Cov(Xi, Xj) is the same for each pair i, j. Then compute the covariance
Cov(X1, X2) (this should be a routine exercise), then multiply that covari-
ance by the doubled number of pairs i, j, i.e., by r(r−1). One will get exactly
the above formula for the variance Var(X). There is not need to bring the
details in class, just outline the approach.

Last note: there is a clear connection of Negative Binomials with geomet-
ric r.v.’s and Hypergeometric with binomials. Thus perhaps their names can
be regarded as misleading and should be switched...:-)

Suggested homework problems: 20.11, 20.17, 20.26, 20.34, and 8.11 (bonus)

21 Properties of the Cumulative Distribution Function

Most of the content of this section has been covered in Probability Theory,
MA 485/585. So it needs to be just reviewed in class, with emphasis on the
basic properties and formulas:

Properties: The distribution function F (t) of any random variable has three
basic properties:

• 0 ≤ F (t) ≤ 1

• F (t) is increasing (not strictly): F (t1) ≤ F (t2) for any t1 < t2

• limt→∞ F (t) = 1 and limt→−∞ F (t) = 0

• F (t) is right-continuous: F (t) = limn→∞ F (t + 1
n
)

The right continuity is based on the continuity of probabilities (Section 7),
explain.

In fact, the above three properties are characteristic properties, i.e., any
function F (t) with these properties is a distribution function for some random
variable. This gives an idea of what distribution functions are.
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Distribution functions need not be continuous, we have seen examples of
discontinuous distribution functions in Section 14.

The left-sided limit of a distribution function has the following meaning:

lim
n→∞

F (t− 1
n
) = P(X < t)

This relation is also based on the continuity of probabilities (Section 7), ex-
plain. We will briefly denote the left-sided limit by

F (t−) = lim
n→∞

F (t− 1
n
)

Basic formulas relating the distribution function to probabilities:

P(X ≤ t) = F (t)

P(X < t) = F (t−)

P(X ≥ t) = 1− F (t−)

P(X > t) = 1− F (t)

P(t < X < s) = F (s−)− F (t)

P(t < X ≤ s) = F (s)− F (t)

P(t ≤ X < s) = F (s−)− F (t−)

P(t ≤ X ≤ s) = F (s)− F (t−)

P(X = t) = F (t)− F (t−)

Do Example 21.5 in class.
An important fact: F (t) is discontinuous at t ∈ R if and only if P(X =

t) > 0, which is clear from the last formula above. Such real numbers (points)
t ∈ R are called atoms of the random variable X (they carry a positive
probability).

If X is discrete, then all its values are atoms, and the entire probability
distribution is concentrated on atoms. This is one “extreme”.

On the other hand, continuous random variables are characterized by the
fact that P(X = t) = 0 for all t ∈ R, i.e., they have no atoms. Equiva-
lently, their distribution function is continuous everywhere. This is the other
“extreme”.

In the studies of Probability Theory, we usually discuss discrete random
variables and continuous random variables separately, as two main classes, we
do not “mix” them together. In actuarial practice, however, one naturally

16



encounters “mixed” random variables, which have some atoms and some
continuous components.

For example, suppose the damage to a house is modeled by an exponential
random variable X with parameter λ > 0, i.e., P(X ≤ t) = 1−e−λt for t > 0.
This is a continuous random variable. Now suppose the insurance policy
has a franchise clause (not to be confused with deductible) of $500, i.e., the
claims below $500 are not honored, but the claims above $500 are paid in full.
Then the amount of payment becomes discontinuous – all the claims below
$500 are rejected, so they “lump” into a zero payment: t = 0 becomes an
atom. Payments above $500 remain modeled by the continuous exponential
distribution. Draw the respective graph of the distribution function.

A similar situation (a mixed distribution) arises when the insurance policy
has a maximum amount of payment.

Example 21.5 is a mixed random variable.
Suggested homework problems: 21.3, 21.5, 21.9

22 Continuous random variables

Most of the content of this section has been covered in Probability Theory,
MA 485/585, but now it should be presented more formally.

A random variable X is said to be continuous if P(X = t) = 0 for any
t ∈ R. Equivalently, its distribution function is continuous. This is the
official definition of continuous random variables.

In most cases, continuous random variables have a probability density
function, i.e. a function f(x) such that

P(X ∈ B) =

∫

B

f(x) dx

for any set B ⊂ R of real numbers (see the book).
However, there are continuous random variables that do not have a den-

sity function. Therefore it is not exactly correct to define continuous random
variables in terms of a density function (as one may not exist).

Such sloppy definitions are commonly given in books (and in the MA
485/585 Probability course), though. The reason is that continuous random
variables that do not have a density function are merely a mathematically
exotic phenomenon, they are never encountered in practice. So for all prac-
tical purposes we can just forget about them and think that all continuous
random variables have a density function.
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The density function f(x) has the following two properties:

f(x) ≥ 0 for all x ∈ R

and ∫ ∞

−∞
f(x) dx = 1

The second property allows us to determine an unknown constant in the
formula for f(x). For example, in homework problem 22.11 one needs to
determine k before computing the desired probability.

The relation between the distribution function F (x) and the density func-
tion f(x) is as follows:

f(x) = F ′(x)

so F (x) is an antiderivative of f(x). However not every antiderivative of f(x)
is F (x). One has to use the following rule:

F (t) =

∫ t

−∞
f(x) dx

It should be also emphasized that f(x) need not be specified at every single
point x ∈ R. For example, the uniform random variable X on the interval
(0, 1) has the following ‘rectangular’ density function:

f(x) =

{
1 for 0 < x < 1
0 for x < 0 or x > 1

This relation specifies f(x) everywhere except x = 0 and x = 1. The values
f(0) and f(1) do not matter, they can be set to 0 or to 1 (or to any real
number, for that matter). It is also common to ignore points where f(x)
happens to be discontinuous and specify f(x) only on its continuity intervals.

Last minor note: Remark 22.2 in the book is incorrect. There are random
variables for which the density function f(x) does not converge to zero as
x →∞ or x → −∞.

Suggested homework problem: 22.11

23 Expectation, Variance and Standard Deviation

Most of this was covered in MA 485/585.
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It is worth reviewing useful formulas in Theorems 23.1 and 23.2.
Stress that for mixed random variables one needs to combine summation

and integration for computing mean (and variance).
Do Examples 23.4 and 23.6 (without routine details).
Example 23.10 actually introduces Pareto distribution, it is worth dis-

cussing in detail (without computing mean and variance).
Remind the students of percentiles and the median.
Do Example 23.13.
Suggested homework problems: 23.11, 23.12, 23.13 (for extra credit).

Note: in Problem 23.13 the random variable is mixed!

24 The Uniform Distribution Function

Nothing new, just skip it.

25 Normal Random Variables

The integration of the density (involving polar coordinates) is worth doing
in class.

Say that µ is a location parameter and σ is a scale parameter for the
family of normal distributions. Explain the meaning, with graphs. Define
the Z-score: Z = X−µ

σ
(see the proof of Theorem 25.2). Describe its practical

importance as a measure of standing (in a population or a sample).
Emphasize the importance of percentiles in practical applications. Do

Example 25.3, part (c). Note: in Probability, percentiles are denoted by πp,
which means P(X ≤ πp) = p, so the subscript p corresponds to the ‘left’
(lower) part of the distribution. In statistics, percentiles for the standard
normal distribution are denoted by zα, which means P(X > zα) = α, so the
subscript α corresponds to the ‘right’ (upper) part of the distribution. In
other words, zα = π1−α. Draw a picture.

Why is such a different in notation? Because in statistics α is usually
small, so the right tail represents rare, unusual values of the random variable,
while the bulk of the distribution (below zα) represents its typical, common
values. According to a general philosophy of statistics, the most interesting
conclusions are made when the random variable takes its unusual values.
Those are most important, statisticians focus on tails of the distribution,
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rather than its bulk, so the notation zα is convenient since α represents the
size of the tail.

Discuss the diagram in Example 25.4. Add the interval µ± 3σ to it. The
corresponding probability is 99.7%.

Normal approximation to binomials: explain that Theorem 25.3 is not
enough to approximate individual binomial probabilities, one also needs its
“local version” (no need to state it, though).

Suggested homework problems: 25.8, 25.13, 25.17. (Give a hint for 25.8)

26 Exponential Random Variables

Most of it was covered in MA 485/585, except the uniqueness property (The-
orem 26.1). This should be presented in class (perhaps the use of logarithms
will make the proof easier to follow).

If Poisson process has not been discussed in MA 485/585 (it is the last
topic of the course, often left out), then it is a good time to cover it now.

Suggested homework problems: 26.11, 26.14.

27 Gamma and Beta Distributions

This was never mentioned in MA 485/585. Needs to be covered fully.
Introduce the Gamma distribution via the exponential distribution: X =

Gamma(λ, n) is the sum of n independent random variables, X = X1 + · · ·+
Xn, where each Xi is exponential(λ). Gamma(λ, α) is just a generalization
of this to non-integral values of the second parameter. Note: Γ(1

2
) =

√
π.

Motivate the Beta distribution – it describes proportions (example: pro-
portion of students getting a passing grade in a calculus class). Explain the
role of a and b: the fraction a

a+b
represents the average proportion, and the

magnitude of a and b determines the spread (the higher a and b, the narrower
the spread). Qualitatively interpret the formulas in Theorem 27.3: if we set
p = a

a+b
and q = 1 − p, then E(X) = p and Var(X) = pq

a+b+1
. Thus when

a, b → 0, the distribution converges to the “extreme” case of a Bernoulli ran-
dom variable which only takes two values, 0 and 1. When a, b →∞, then it
converges to the other “extreme”: X = p is a constant (no variation). Note
a symmetry of the beta function: B(a, b) = B(b, a).

Suggested homework problems: 27.4 (note: waiting time to catch a fish
is an exponential r.v.), 27.7 (bonus), 27.9 (bonus), 27.16(a), 27.19 (bonus).
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28 Distribution of a Function of a Random Variable

Nothing new, just skip it.

29 Joint Distributions

Mostly a repetition of MA 485/585, but the joint distribution function FXY

should be discussed a bit more thoroughly. Derive a formula for the proba-
bility of a rectangle (page 291), similar to the inclusion-exclusion formula.

An optional theoretical topic: Remind of the distinction between contin-
uous and absolutely continuous random variables. Note that it is harder to
make such a distinction for pairs of random variables. In particular, it is no
longer true that the following two properties are equivalent:

• For any (x, y) ∈ R2 we have P(X = x, Y = y) = 0

• FXY (x, y) is a continuous function of two variables

Give an example, such as X ≡ const, Y is uniform(0, 1).
For the reason above, there is only one definition of “jointly continuous”

random variables, and it corresponds to absolute continuity, i.e., the existence
of a density function.

Define marginal distributions, with formulas for p.m.f. and p.d.f. of marginal
distributions.

Suggested homework problems: 29.9, 29.12, 29.14. Give hints for 29.9
and 29.12 (draw the domain of integration).

30 Independent Random Variables

Mostly covered in MA 485/585. Remind of the formulas characterizing the
independence, in terms of p.m.f. and p.d.f. Discuss the criteria for indepen-
dence (Theorem 30.2), do Examples 30.2 and 30.3 (the latter can be done
fast without any calculations).

Suggested homework problems: 30.11, 30.13, 30.16 (give hints for all)

31 Sums of Two Independent Random Variables

This was not covered in MA 485/585. Derive the convolution formula first
in the discrete case (easy), then in the continuous case (Theorem 31.1). No

21



need to prove, just make analogy with the discrete case summation with
integration.

Review Examples 31.2 and 31.7. Interpret the result of Example 31.2 (the
sum of two independent Poissons is a Poisson). Emphasize the importance
of determining the limits of integration in Example 31.7. Note and explain
general facts: the sum of several independent geometric random variables is
a negative binomial (this helps with homework problem 31.5); the sum of
several independent exponential random variables is a gamma, and the sum
of two gammas is a gamma (Example 31.9).

Suggested homework problems: 31.5, 31.18, 31.21

32 Conditional Distributions: Discrete Case

This was not covered in MA 485/585. Cover thoroughly. Motivate this
section as follows: when two random variables X and Y are not independent,
they affect each other. But how exactly? The answer is the conditional
distribution. In practical terms, the known value of one random variable can
be used to predict the other, or compute the average value of the other.

On the other hand, in many practical experiments one knows X and then
the distribution of Y depending on X, so one knows pX and pX|Y . Then
one can find the joint p.m.f. by the formula pXY (x, y) = pY (y) · pX|Y (x|y).
Example from MA 485: roll a die, read its value Y and then toss a coin Y
times, then X is the number of heads observed.

Do Example 32.2, also compute the conditional expectation E(X|Y = 2),
because it is involved in Practice Problem 32.11.

Suggested homework problems: 32.3 and 32.11. Give a hint on 32.11
(conditional distribution is simply geometric).

33 Conditional Distributions: Continuous Case

This was not covered in MA 485/585. Cover thoroughly. Introduce contin-
uous formulas by analogy with discrete ones (summation is replaced with
integrations). Check that

∫
fX|Y dx = 1. Do Example 33.2 (note that the

joint density is unbounded! and interesting fact by itself). Relate the condi-
tional C.D.F. (after Example 33.2) to probabilities.

Suggested homework problems: 33.9, 33.10 and 33.15. Give hints.
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34 Joint Probability Distributions of Functions of Ran-
dom Variables

This was not covered in MA 485/585, but its importance is quite limited.
There are no actuarial-related practice problems. Suggestion: quickly go over
the theoretical formulas with the Jacobian of the transformation (of which
the students may have heard before). The most interesting example is the
Box-Muller transformation (Problem 34.8), which can be done quickly on the
board. (It was a graduate homework exercise in MA 585.)

No need to assign homework problems.

35 Properties of Expectation

Nothing really new, except the formula for the expectation of a function of
two random variables (quickly do Example 35.1). Right after that give the
formula for the expectation of a product of two independent random variables
(Proposition 35.5).

A very nice Example 25.2 is worth discussing (relate it to the Matching
Problem done in Section 7).

Sample mean is worth mentioning, explain its significance in statistical
terms.

Suggested homework problems: 35.6, 35.9, 35.15. Give a hint for 35.15.

36 Covariance, Variance of Sums, and Correlation

Almost nothing new. Review the formula for the variance of the sum of
n random variables. Present Theorem 36.2 (with a short proof), and as a
corollary – a description of the two extreme cases ρXY = ±1.

Emphasize that two random variables may be (i) independent, (ii) uncor-
related, and (iii) correlated. The “uncorrelated” situation is intermediate,
it can be regarded as “hidden dependence” (not visible in many practical
cases). Illustrate by graphs (Figure 36.1).

Suggested homework problems: 36.11, 36.16, 36.27.
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37 Conditional Expectation

It was actually introduced in Section 32, so just review it here. Give the
“double expectation property” (Theorem 37.1). Relate it to the law of total
probability.

Discuss the prediction problem. Start with a single random variable X
and define the best predictor (or estimator) c to be the number that minimizes
the mean squared error E(X − c)2. Then c = E(X) is the best predictor.
Now in the case of two random variable X and Y suppose the value of X
is observed and then Y needs to be predicted. Then the best predictor is
E(Y |X), which is exactly the conclusion of Theorem 37.2 (state it without
proof).

Suggested homework problem: 37.19 (for graduate students). Give a hint.

38 Moment Generating Function

Almost nothing new, just review quickly. Discuss the existence/convergence
issue. Do the Practice Problem 38.6 in class (the M.G.F. of a Cauchy random
variable does not exist).

Note: for exponential and Gamma random variables, MX(t) is defined for
t < λ. Review the formula for the M.G.F. of a sum of independent random
variables, compare it to the convolution formula...

Do Practice Problem 38.8 in class, a very nice exercise.
Suggested homework problems: 38.11 (give a hint, relate it to Gamma)

and 38.28 (extra credit for graduate students)

39 The Law of Large Numbers

Almost nothing new in theory. Discuss (to some extent) the difference be-
tween Weak and Strong versions of the L.L.N. Mention “Amazing shrinking
sliding rectangles”?

Suggested homework problem: 39.4

40 The Central Limit Theorem

If time permits, give a derivation using Moment Generating Functions and
Taylor expansion (with the purpose of “clearing the mystery of normal dis-
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tributions”). This goes as follows.
The Central Limit Theorem 40.2 states that

√
n

σ

(X1 + · · ·+ Xn

n
− µ

)

is approximately a standard normal random variable. Here X1, . . . , Xn are
i.i.d. random variables with mean E(Xi) = µ and variance Var(Xi) = σ2.
The above formula can be written is a better way:

1√
n

n∑
i=1

Xi − µ

σ

Let us denote Yi = Xi−µ
σ

. Then the above formula becomes

Y1 + · · ·+ Yn√
n

The new variables Y1, . . . , Yn are also i.i.d. random variables, and they have
simpler mean and variance:

E(Yi) =
µ− µ

σ
= 0, Var(Yi) =

Var(Xi)

σ2
= 1

Transforming Xi to Yi is called centering and norming of the given random
variables. The moment generating function of Yi has the following properties:

MYi
(0) = 1, M ′

Yi
(0) = 0, M ′′

Yi
(0) = 1

We approximate this function by its Taylor polynomial of the second degree:

MYi
(t) ≈ 1 + 0 · t + 1

2
t2 = 1 + 1

2
t2

Now due to independence of Y1, . . . , Yi we have

MY1+···+Yn(t) = [MYi
(t)]n ≈ [1 + 1

2
t2]n

Lastly we need to divide Y1 + · · ·+Yn by
√

n, which corresponds to dividing t
by
√

n in the formula for the moment generating function (see formulas after
Example 38.5, and also in MA 485/585). This gives

MY1+···+Yn√
n

(t) ≈
[
1 + t2

2n

]n
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Now taking the limit as n →∞ (a calculus exercise) gives

lim
n→∞

[
1 + t2

2n

]n

= e
t2

2

which is exactly the moment generating function of the standard normal
random variable!

Suggested homework problems: 40.12, 40.14, 40.16
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41 Markov Chains

This part of the course is not mentioned in MA 485/585, it should be covered
in full and at slow pace.

41.1 Introduction
Markov chains are very important in theoretical sciences (math physics,

dynamical systems, etc.) and practical applications (marketing, banking and
finance). Markov chains are required by Actuarial Exam MLC.

In basic Probability Theory, we mostly deal with independent events and
independent random variables. While these cover the majority of practical
applications, there are some where dependence between events and random
variables is substantial. Markov chains are sequences of events and/or ran-
dom variables that are dependent.

To introduce Markov chains, give the first example from the introductory
book, pages 1–6 (Lower/Middle/Upper classes). By this example introduce
basic elements of Markov chains: states, transition matrix, probability vector,
multiplication formulas, stationary vector (equilibrium), regular matrices,
representation by graphs, etc.

41.2 Two practical tasks
Explain how to do two practical tasks: (i) determine whether a given

matrix is regular (refer to Note on page 7, which needs to be corrected as
follows: “if two different powers, Pi and Pj, of the transition matrix P have
zeroes in the same positions, then the chain is not regular”) and (ii) find a
stationary vector. For this purpose, recommended exercises are 20, 21, 23,
25, 27, 28 from the introductory book.

41.3 Marketing model
Suppose there are four leading brand names of a certain product (such

as toothpaste). Each has a certain market share. Customers tend to switch
from one brand name to another when they buy the product next time. The
probabilities of switching from brand i to brand j can be determined by
market analysis, and they remain fairly stable in time. So the dynamics of
the market can be described by a Markov chain. See the illustration.

This model allows forecasting future market distributions. It also explains
the convergence back to equilibrium after occasional fluctuations (caused by
sales at discount prices, aggressive advertisement, etc.)
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Figure 2: Marketing model. The states A,B,C,D represent brand names.

41.4 Banking model
Another interesting example comes from banking practice. A bank has

current customers and former customers that are divided into categories de-
pending on how long ago they left, i.e., according to their “recency”. For
each category there is a certain probability of coming back, otherwise they
slide into the next category. See the illustration.

Describe the corresponding structure of the transition matrix (only two
non-zero entries in each row). Indicate why it is regular despite having so
many zeros.

41.5 Random walk
One can recall Random Walk covered in MA 485/585 as yet another

example of a Markov chain. It has infinitely many states, though. But
the restricted random walk (with upper and lower limit values) has finitely
many states, so it is a perfect example. Its interesting feature is that it is
not regular (unlike the previous examples that were all regular).

41.6 General notation
The formal notation are different in the introductory and advanced books.

We need to fix some for the use in class. The following notation can be used:

• States are labeled by 1, . . . , r (so r denotes the number of states)

• Transition probability from state i to state j is denoted by pij
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Current

Left < 1 month ago

Left 1 to 2 months ago

Left 2 to 3 months ago

Left > 3 months ago

Figure 3: Banking model. The states represent current and recent customers.

• Transition matrix is P = (pij); it is a square matrix of size r × r

• Probability vectors are denoted by v, their components by vi

• Initial distribution is described by a probability vector v(0)

• Distribution at time n is described by a probability vector v(n)

• Stationary distribution is described by a probability vector w

It is also convenient to introduce “unity” vector u with components (1, 1, . . . , 1).
The matrix P is stochastic, which means Pu = u. Thus u is an eigenvector
corresponding to the eigenvalue λ = 1. All the powers of P are also stochastic
matrices because the relation Pu = u easily implies Pnu = u for all n ≥ 1.
This can be used to show that P has no eigenvalues larger than one. Thus
λ = 1 is the largest (maximal) eigenvalue, i.e., for all other eigenvalues λ we
have |λ| ≤ 1.

41.7 Transition formula and stationary vector
The basic transition formula is v(n+1) = v(n)P. This easily implies v(n) =

v(0)Pn, hence Pn consists of n-step transition probabilities (from time 0 to
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time n). The stationary distribution w satisfies w = wP. Taking transpose
gives w = PTw where PT is the transpose of P (for vectors, we can adopt a
“sloppy” convention: they are either row vectors or column vectors depending
on their place in a particular formula).

The relation w = PTw shows that w is an eigenvector of PT correspond-
ing to the eigenvalue λ = 1. Recall that a matrix and its transpose always
have the same eigenvalues (but different eigenvectors). Thus the matrices P
and PT have the same eigenvalues but different eigenvectors. Since P has an
eigenvalue λ = 1 (with the eigenvector u), then so does PT , therefore there
is always a stationary vector w.

41.8 Simplex and a bit of topology
Another way to show the existence of a stationary vector is mathemati-

cally more sophisticated. The set of all probability vectors is a simplex (draw
images for r = 2 and r = 3). A simplex is a compact connected set (explain).
Now the formula v 7→ vP defines a transformation of that simplex into it-
self. And a general theorem by Brouwer asserts that any continuous map of
a compact convex set into itself has a fixed point. In our case this means
that there is a vector w such that w = wP.

41.9 (Non)uniqueness of stationary vector
It may happen that there is more than one stationary vector, i.e., there are

w1 = w1P and w2 = w2P, where w1 6= w2 are some distinct vectors. In that
case for any two constants c1, c2 we have (c1w1 +c2w2) = (c1w1 +c2w2)P, so
the whole 2D plane spanned by the vectors w1 and w2 consists of stationary
vectors. That plane intersects the simplex in a line (illustrate) that stretches
across the simplex and hits its border. The border is made of vectors whose
one component is zero (illustrate). Thus we can make a conclusion: if there
is more than one stationary vector, then one of them has a zero component.

This allows us to verify that for regular Markov chains the stationary
vector is unique (and all its components are positive). Indeed, suppose one
of the components of w is zero, i.e., wi = 0 for some i. Due to the stationarity
we have wi =

∑
j p

(k)
ji wj for every k ≥ 1, where p

(k)
ji denote the components

of Pk. For some k all p
(k)
ji > 0 are positive numbers, hence wi = 0 can only

happen if wj = 0 for all j, which is impossible.

41.10 Convergence to stationary vector
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A more elaborate argument shows that for any initial vector v(0) the
sequence v(n) = v(0)Pn converges to w, as n →∞. It goes as follows. First,
according to linear algebra

v(0) = (v
(0)
1 , . . . , v(0)

r ) = v
(0)
1 e1 + . . . v(0)

r er

where e1, . . . , er denote canonical basis vectors. Hence

v(0)Pn = v
(0)
1 e1P

n + . . . v(0)
r erP

n

Thus it is enough to show that eiP
n converges to w, as n → ∞, for every

i = 1, . . . , r. The vector eiP
n is actually the ith row of the matrix Pn.

Thus our goal is to show that all the rows of Pn converge to the same row
vector, as n → ∞. This means that in every column of Pn we have almost
equal numbers, and in the limit n →∞ every column will consist of the one
number repeated r times. The ith column of Pn is actually Pnei, so we need
to show that the components of the vector Pnei get closer to each other, as
n →∞.

Let us fix i = 1, . . . , r and see how the vector Pnei changes as n grows.
Let Mn denote the largest component of Pnei and mn the smallest one. Our
goal is to show that Mn −mn converges to zero, as n → ∞. Let k ≥ 1 be
such that Pk consists of positive numbers, and d > 0 denote the smallest of
those numbers. From the relation Pn+kei = PkPnei we can deduce that

Mn+k ≤ dmn + (1− d)Mn

and
mn+k ≥ (1− d)mn + dMn

Subtracting the second inequality from the first gives

Mn+k −mn+k ≤ (1− 2d)(Mn −mn)

Thus the difference Mn −mn decreases at least by a factor 1− 2d < 1 after
every k steps. Hence it converges to zero, as desired.

41.11 Irregular chains: Erenfest model and maze
Our next goal is to discuss Markov chains that are not regular. Give

examples of periodic chains. The simplest example is a cycle. A more in-
teresting example is the Erenfest model (Example 11.8 on page 410 in the
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advanced book). Give the transition matrix for N = 4 balls. Draw the graph.
Let the students guess why this chain is periodic. Use color chalk to mark
the periodic classes of states.

An even more interesting example is a maze (Example 11.22 on page
440–441 in the advanced book). Give the transition matrix (perhaps only
partially). Again, let the students guess why it is not regular (periodic).

41.12 Irreducible (ergodic) chains
Introduce the notion of irreducible (ergodic) Markov chain. Explain why

the previous examples were irreducible (though not regular). Stress that
regular chains are irreducible, but not vice versa.

For irreducible chains, the stationary state w is still unique, just as for
regular chains. The argument is almost the same as it is for regular chains,
except we have to find wj > 0 first and then find k ≥ 1 such that p

(k)
ji > 0.

However it is no longer true that for any initial vector v(0) the sequence
v(n) = v(0)Pn would converge to the stationary vector w. Give examples for
cycles and other periodic chains (the Erenfest model, the maze).

It is interesting to find the stationary vector for several examples: cycles,
the Erenfest model, and the maze (see the corresponding examples in the
advanced book). In all of these examples the stationary vector can be guessed
intuitively and the reasons can be clearly explained.

It helps to visualize the evolution of probabilities as follows. Start with
the maze example. One can think of a population of rats (rather than one
wandering rat) which move around the maze chaotically, each rat following
the rules of the maze. Then the fraction of that population in each room
represents the probability for a single rat to be in that room. The movement
of the whole population can be controlled and understood easier than that
of a single rat. This picture can be used to explain the description of the
stationary vector and the periodic character of the evolution of probabilities.

In more general Markov chains, one can think that water flows in pipes
between reservoirs (the states are reservoirs and the arrows representing tran-
sitions between states are pipes). Then one can explain how the water flows
between the states and eventually its amount (level) stabilizes in each reser-
voir for regular chains (or up to a period, in irreducible chains).

41.13 Cesaro convergence
As we said, it is no longer true that for any initial vector v(0) the sequence

v(n) = v(0)Pn would converge to the stationary vector w. On the other hand,
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Cesaro averages of the vectors v(0), . . . ,v(n) will converge to the stationary
vector w:

1

n + 1

(
v(0) + · · ·+ v(n)

) → w

as n →∞. Explain this fact in practical terms (counting average number of
“rats” in each room of the maze over an interval of time).

The above Cesaro convergence can be easily seen as follows. Replacing
v(n) with v(0)Pn gives

v(0)

n + 1

(
I + P + · · ·+ Pn

) → w

where I is the identity matrix. Now let us multiply both sides by I − P on
the right. After cancelations we get

v(0)

n + 1

(
I−Pn+1

) → wI−wP = w −w = 0

But indeed, the left hand side converges to zero because the denominator
grows (and Pn+1 does not: remember that it is a transition matrix, so its
components are ≤ 1).

On the subject of irreducible (ergodic) Markov chains, recommended
homework exercises from the advanced book are: 3, 4, 6, 9, 25, 26, 27,
28, 31(bonus) from Section 11.3 (pages 442–447). These are appropriate for
600 level students, but some of them may be assigned to 500 level students
as well.

41.14 Disconnected chains
Next we move to more general Markov chains that are not even irre-

ducible. Show simple examples with isolated states and/or non-communicating
groups of states; see Figure 6 on page 11 in the introductory book. (Another
example: a maze with an isolated room or with a wall dividing the maze
into disconnected “quarters”.) Describe consequences, in particular non-
uniqueness of stationary states. Show that there are stationary states with
zero components (which is consistent with our previous analysis).

Markov chains with disconnected parts can easily be divided into discon-
nected groups of states, and then one can describe the “life” in each group
separately.
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41.15 One-way transitions
A more interesting type of non-irreducible chains are those with one-

way transitions; see Figures 4 and 5 on pages 10–11 in the introductory
book. Those are connected but not irreducible (i.e., not ergodic). Show
examples. Describe ultimate consequences: mass leaks out of some states
and they eventually dry out. So every stationary vector has zero components
corresponding to those states.

We call states from which one-way transitions exist to other states “tran-
sient” or “non-essential” (to justify the latter term say that eventually those
states dry out, nothing will be left there eventually).

This takes us to the last big topic in the theory of Markov chains: absorb-
ing states. This topic perhaps requires more technical work from students
than other topics.

41.16 Absorbing chains
Give simple examples on pages 10–11 of the introductory book. Also

mention restricted random walks from MA 485, illustrated by ”Drunkard’s
walk” on page 416 of the advanced book. Use it as a primary example. Its
transition matrix P is given on page 416; see also below.

A more serious example (Ex. 6 in the introductory book) comes from life
sciences, describe it (maybe just briefly).

Define the canonical form of P – page 13 in the introductory book and
page 417 in the advanced book; note that they are arranged differently, choose
and fix the latter one for the class use:

P =

[
Q R
0 I

]

41.17 Analysis of primary example
Give several first powers of P for the primary example:

P =




0 0.5 0 0.5 0
0.5 0 0.5 0 0
0 0.5 0 0 0.5
0 0 0 1 0
0 0 0 0 1




=




Q R

0 I
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second power:

P2 =




0.25 0 0.25 0.5 0
0 0.5 0 0.25 0.25

0.25 0 0.25 0 0.5
0 0 0 1 0
0 0 0 0 1




third power:

P3 =




0 0.25 0 0.625 0.125
0.25 0 0.25 0.25 0.25
0 0.25 0 0.125 0.625
0 0 0 1 0
0 0 0 0 1




fourth power:

P4 =




0.125 0 0.125 0.625 0.125
0 0.25 0 0.375 0.375

0.125 0 0.125 0.125 0.625
0 0 0 1 0
0 0 0 0 1




fifth power:

P4 =




0 0.125 0 0.6875 0.1875
0.125 0 0.125 0.375 0.375

0 0.125 0 0.1875 0.6875
0 0 0 1 0
0 0 0 0 1




Explain in intuitive terms what is going on. Present the expressions for Pn

in the canonical form:

Pn =

[
Qn (I + Q + · · ·+ Qn−1)R
0 I

]

Next step is to find the limit of Pn as n → ∞. The following fact takes
place:

I + Q + · · ·+ Qn−1 → (I−Q)−1

as n →∞. Explain why (multiply by I−Q). The matrix

F = (I−Q)−1
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is called the fundamental matrix. Thus we get

lim
n→∞

Pn =

[
0 FR
0 I

]

For the primary example, we have

Q =




0 0.5 0
0.5 0 0.5
0 0.5 0




then

I−Q =




1 −0.5 0
−0.5 1 −0.5

0 −0.5 1




and

F = (I−Q)−1 =




1.5 1 0.5
1 2 1

0.5 1 1.5




Now we can find the block FR in the limit matrix:

FR =




0.75 0.25
0.5 0.5
0.25 0.75




Explain the meaning of the block FR: it gives “absorption probabilities”,
i.e., probabilities to end up in one of the absorbing states if the system is
originally in a non-absorbing state.

Next we compute the sum I + P + · · ·+ Pn. Its limit satisfies

I + P + · · ·+ Pn →
[
F ∗
0 ∗

]

as n → ∞. Thus, the fundamental matrix F gives us the expected number
of visits to each non-absorbing state before absorption occurs. Illustrate by
the primary example.

Moreover, the vector Fu (where again u denotes the column vector all of
whose components are 1) gives the average “time to absorption” from every
non-absorbing state. For the primary example

Fu =




1.5 1 0.5
1 2 1

0.5 1 1.5







1
1
1


 =




3
4
3




36



Ask a trick question in class: suppose there is only one absorbing state;
what is the block FR? Give answer, explain.

On the subject of absorbing Markov chains, recommended homework ex-
ercises are: 36 and 37 from the introductory book (page 17) and 9, 10 from
the advanced book (page 423). The latter two can be given to 600 level
students only.

41.18 No memory property
To finish the subject of Markov chains, emphasize their characteristic

property: probabilities of transitions to other states are fully determined by
where you are now, i.e., by your current state. They do not depend on your
“prehistory”, i.e., on the states you have visited before. In other words, “the
future only depends on the present and not on the past”.

This modeling principle may not be always realistic. For the very first
example, with Lower/Middle/Upper classes, the chances to go up or down
the “social ladder” may depend on where the family has been for several
generations, not just one (traditions, habits, “inertia” may play a role).

On the other hand, as studies show, for marketing models (mentioned
earlier) Markov chains are very appropriate – they describe the market evo-
lution quite accurately.

41.19 Chains with memory
If however longer memory needs to be taken into account, a more complex

Markov chain can be always constructed accordingly.
For example, suppose a drunkard walks on the line, as in a random walk

model, but his probabilities are as follows. After a left step he makes another
left step with probability 75% and turns around to make a right step with
probability 25%. Similarly, after a right step he makes another right step
with probability 75% and turns around to make a left step with probability
25%. (The drunkard has “inertia”.)

Thus if the drunkard is in state n, he will move either to n+1 or to n−1,
but the probabilities of these moves depend on the previous move, i.e., on
the “immediate history” of the drunkard’s walk. Now we can define a more
complex Markov chain as follows. The states are not just positions of the
drunkard but pairs consisting of his position n and the direction (L or R) of
the previous move. So the states are (n, L) and (n, R) for each whole number
n. This new chain has twice as many states as the old one.
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The transition probabilities for this new chain are, according to our de-
scription:

(n, L)
0.75→ (n− 1, L) (n, L)

0.25→ (n + 1, R)

and
(n,R)

0.75→ (n + 1, R) (n,R)
0.25→ (n− 1, L)

This is a more complex Markov chain, but still a Markov chain.
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42 Multivariate Normal Distributions

This is another topic where dependence plays a crucial role.

42.1 Motivation
Many variables naturally have normal (or close to normal) distributions.

Weight and height of a randomly selected person are two classical examples.
Suppose the height X has normal distribution with mean 165 cm and stan-
dard deviation 15 cm. Let the weight Y have normal distribution with mean
150 lb and standard deviation 35 lb. It is not hard to see that these two
normal random variables are NOT independent – taller people tend to be
heavier and shorter people lighter. There is correlation between X and Y
(the latter can be measured by correlation coefficient ρ = ρX,Y ).

For example, suppose we know that somebody’s height is 175 cm (which
is above average). What can we say about his weight? Is it still true that
his weight has a normal distribution with the same mean 150 lb and the
same standard deviation 35 lb. No, his statistical average weight should be
over 150 lb. So the mean (and perhaps the standard deviation) have to be
recomputed. How? This is the subject of this last part of the course.

42.2 Review of the normal distribution N (µ, σ2)
Recall that the density of a normal random variable X = N (µ, σ2) is

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 = c e−
1
2
(αx2+βx)

where we expanded the square (x− µ)2 = x2 − 2µx + µ2, so that

α =
1

σ2
, β = −2µ

σ2

and we “incorporated” the factor e−
µ2

2σ2 into the coefficient c. Thus the den-
sity can be generally described as

f(x) = c e−
1
2
Q(x)

where Q(x) = αx2+βx is a quadratic polynomial (without a free term) and c
a normalizing coefficient (whose value is fully determined by the requirement∫

f(x) dx = 1). In the polynomial Q, the first coefficient α is the reciprocal
of the variance σ2, i.e., a = 1/σ2, and the second coefficient β determines the
mean value µ.
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42.3 Two independent normals
Now let X = N (µX , σ2

X) and Y = N (µY , σ2
Y ) be two normal random

variables. We begin with the simplest relation between them: X and Y are
independent. Then their joint density is

f(x, y) =
1

2πσXσY

e
− (x−µX )2

2σ2
X

− (y−µY )2

2σ2
Y

= c e−
1
2
(Ax2+By2+Dx+Ey)

where again we expand the squares

(x− µX)2 = x2 − 2µXx + µ2
X

and
(y − µY )2 = y2 − 2µY y + µ2

Y

so that

A =
1

σ2
X

, B =
1

σ2
Y

, D = −2µX

σ2
X

, E = −2µY

σ2
Y

and we “incorporated” the factor e
− µ2

X
2σ2

X

− µ2
Y

2σ2
Y into the leading coefficient c.

Thus again the joint density can be generally described as

f(x, y) = c e−
1
2
Q(x,y)

where Q(x, y) = Ax2 + By2 + Dx + Ey is a quadratic polynomial (without
a free term).

42.4 Two dependent normals
Note that the product xy is missing from our formula for Q. This is be-

cause we assumed that X and Y were independent, so that their joint density
function is a product of fX(x) and fY (y). When X and Y are dependent,
then Q(x, y) = Ax2 + By2 + Cxy + Dx + Ey, so that

f(x, y) = c e−
1
2
Q(x,y) = c e−

1
2
[Ax2+By2+Cxy+Dx+Ey]

Now, because of the term Cxy, the function f(x, y) cannot be represented
as fX(x)fY (y).
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42.5 Plots of the joint density
To visualize the density f(x, y) one can draw its level curves f(x, y) =const.

These are the curves where Q(x, y) =const, i.e.,

Ax2 + By2 + Cxy + Dx + Ey = const

This is a quadratic equation, whose solution is a quadratic curve – ellipse,
hyperbola, or parabola (they are collectively called “conic sections”). For
the reason that the function f(x, y) must have a finite integral (because∫

f(x, y) dx dy = 1), the above curves can only be ellipses. More precisely,
they are concentric ellipses with common directions of axes.

X (height)

     Y
(weight)

Figure 4: Level curves of f(x, y).

The figure illustrates those ellipses for the variables X (height) and Y
(weight). The function f(x, y) takes larger values on smaller ellipses (closer
to their common center) and smaller values on larger ellipses (farther from
the center). The maximal value of f is taken right at the center. The graph
of f(x, y) looks like a “bell” (see page 310 in the electronic notes).

The figure clearly demonstrates dependence (positive correlation) be-
tween X and Y : taller people tend to be heavier and shorter people lighter.
For this reason the common major axis of our ellipses has positive slope. If X
and Y were independent, then we would have C = 0 (the term Cxy would be
missing) and the ellipses would have horizontal and vertical axes (no slope).
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42.6 Conversion to matrices
Let us figure out the meaning of the term Cxy. The quadratic (second

order) part of the formula for Q can be presented in matrix form:

Ax2 + By2 + Cxy =
[
x y

] [
A C/2

C/2 B

] [
x
y

]

The matrix

[
A C/2

C/2 B

]
is related to the so-called covariance matrix of

the pair X, Y :

V =

[
Cov(X, X) Cov(X,Y )
Cov(Y,X) Cov(Y, Y )

]
=

[
Var(X) Cov(X,Y )

Cov(X, Y ) Var(Y )

]

(we used the facts Cov(X,X) = Var(X), Cov(Y, Y ) = Var(Y ), and Cov(X,Y ) =
Cov(Y,X)). Because the diagonal terms are actually variances of our ran-
dom variables, this matrix is often called variance-covariance matrix.

Note that this matrix is symmetric, just like

[
A C/2

C/2 B

]
.

Now what is the relation between these two matrices? When X and Y
are independent, then, as we have seen before

[
A C/2

C/2 B

]
=

[
1/σ2

X 0
0 1/σ2

Y

]

and

V =

[
Var(X) 0

0 Var(Y )

]
=

[
σ2

X 0
0 σ2

Y

]

This indicates that these matrices are inverse of each other.
In the general case, the inverse of V is

V−1 =

[
σ2

X ρσXσY

ρσXσY σ2
Y

]−1

=
1

1− ρ2

[
1/σ2

X −ρ/(σXσY )
−ρ/(σXσY ) 1/σ2

Y

]

This is what

[
A C/2

C/2 B

]
is. So we conclude that

A =
1

(1− ρ2)σ2
X

, B =
1

(1− ρ2)σ2
Y

, C = − 2ρ

(1− ρ2)σXσY
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42.7 Joint density (without matrices)
The overall formula for the joint density looks like this:

f(x, y) =
1

2πσXσY

√
1− ρ2

e−
1
2
q(x,y) (1)

where

q(x, y) =
1

1− ρ2

[(x− µX

σX

)2

+
(y − µY

σY

)2

− 2ρ
(x− µX

σX

)(y − µY

σY

)]
(2)

(see also the formulas on top of page 308 in the hand-outs).

42.8 Joint density (with matrices)
Note that the denominator in the formula for f(x, y) can be given as

f(x, y) =
1

2π
√

detV
e−

1
2
q(x,y)

(the reason for this determinant will be made clear shortly), and the expres-
sion for q(x, y) can be given in matrix form:

q(x, y) =
[
x− µX y − µY

]
V−1

[
x− µX

y − µY

]

To the left and right of V−1 we have the same vector, it is just positioned
as a row-vector on the left and as a column-vector on the right (to make the
multiplication possible).

We can fully convert the formula to a vector-matrix form if we treat
X = [x, y] and µ = [µX , µY ] as vectors. Then

f(x, y) =
1

2π
√

detV
e−

1
2
(X−µ)V−1(X−µ)

42.9 Conditional mean and standard deviation
Let us go back to our motivating question: knowing a person’s height,

how do we recompute his/her average (expected) weight? Remember that we
knew the overall means and standard deviations for the height and weight of
a randomly selected person, i.e., we knew µX , σX and µY , σY . The previous
formulas indicate that we need also the correlation coefficient ρ between the
height and the weight.
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Now what we need is conditional mean (and conditional standard devia-
tion) for the weight Y , given that the height X takes a specific value, X = x.
The following formulas give us the conditional mean:

E(Y |x) = µY |x = µY + ρ
σY

σX

(x− µX) (3)

and conditional standard deviation:

σY |x = σY

√
1− ρ2 (4)

(see the formulas on page 307 in the electronic notes). Note that the con-
ditional mean E(Y |x) depends on x (as it should!), but rather strangely the
conditional standard deviation σY |x does not depend on x (still, it has to be
recomputed, as it is not the same as the given standard deviation σY ).

42.10 Practical use
Now we can compute conditional probabilities regarding the unknown

weight, given the known height, by standard formulas for normal distribu-
tions:

P(a < Y < b|X = x) = Φ

(
b− µY |x

σY |x

)
− Φ

(
a− µY |x

σY |x

)

The formulas for the conditional mean, standard deviation, and probabilities
of X, given a specific value Y = y, are the same, except we need to switch
X and Y (and use the same ρ).

Note that if X and Y are independent, then ρ = 0, and nothing has to
be recomputed (the conditional mean and standard deviation are the same
as the given ones). Only when there is a correlation ρ 6= 0, things have to be
adjusted.

Recommended homework exercise is 5.6-1 on page 311 in the electronic
notes.

42.11 Representation by standard normals
Next, recall that a general normal random variable X = N (µ, σ) can be

related to a standard normal Z = N (0, 1) by a formula X = µ + σZ. There
is a similar representation for a pair of normals.

Let Z1, Z2 be a “standard pair” so that both Z1 and Z2 have standard
normal distribution N (0, 1) and they are independent. Let

X = µX + σXZ1

Y = µY + ρσY Z1 +
√

1− ρ2σY Z2 (5)
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Then it is not hard to see, by standard rules of probability, that

E(X) = µX + σXE(Z1) = µX

Var(X) = σ2
XVar(Z1) = σ2

X

E(Y ) = µY + ρσYE(Z1) +
√

1− ρ2σYE(Z2) = µY

Var(Y ) = ρ2σ2
Y Var(Z1) + (1− ρ2)σ2

Y Var(Z2) = σ2
Y

Cov(X, Y ) = ρσXσY Var(Z1) + ρ
√

1− ρ2σXσY Cov(Z1, Z2) = ρσXσY

which is exactly what we need.
Now the joint density of Z1, Z2 is

f(z1, z2) =
1√
2π

e−
z2
1
2 × 1√

2π
e−

z2
2
2 =

1

2π
e−

z2
1+z2

2
2

To get the joint density of X, Y we can apply the rules of Section 34 of
Finan’s book. This involve

(a) Changing variables from z1, z2 to x, y, which leads to the replacement
of the sum z2

1 + z2
2 in the exponent with q(x, y) given by (2)

(b) dividing by the absolute value of the Jacobian

The Jacobian is

det

[
σX 0

ρσY

√
1− ρ2σY

]
= σXσY

√
1− ρ2

This is why we get the factors σXσY

√
1− ρ2 in the denominator of (1).

42.12 Conditional mean and standard deviation (revisited)
By the way, the formulas (5) can help us understand (3) and (4). Indeed,

if X = x is a specific value of X, then Z1 = x−µX

σX
, and

Y = µY + ρ
σY

σX

(x− µX) +
√

1− ρ2σY Z2

Now (3) and (4) follow by standard rules of probability, because E(Z2) = 0
and Var(Z2) = 1.

45



42.13 Linear transformation for a pair of r.v.’s (without matrices)

Now consider a general linear transformation of two random variables
X1, X2 into two other random variables Y1, Y2 given by

Y1 = aX1 + bX2

Y2 = cX1 + dX2

Then the new mean values are

µY1 = aµX1 + bµX2

µY2 = cµX1 + dµX2

The new variances and covariance are

Var(Y1) = a2Var(X1) + b2Var(X2) + 2ab Cov(X1, X2)

Var(Y2) = c2Var(X1) + d2Var(X2) + 2cd Cov(X1, X2)

Cov(Y1, Y2) = ac Var(X1) + bd Var(X2) + (ad + bc) Cov(X1, X2)

42.14 Linear transformation for a pair of r.v.’s (with matrices)
The above formulas look complicated, but again matrix notation comes

to the rescue. Let us express everything in terms of “random vectors”

X = (X1, X2) and Y = (Y1, Y2)

Their mean values are also vectors

µX = (µX1 , µX2) and µY = (µY1 , µY2)

and their covariance matrices will be denoted by

VX =

[
Var(X1) Cov(X1, X2)

Cov(X1, X2) Var(X1)

]

and

VY =

[
Var(Y1) Cov(Y1, Y2)

Cov(Y1, Y2) Var(Y1)

]

Now the transformation of X into Y can be written in matrix form as

Y = AX, A =

[
a b
c d

]

46



then their mean values are related by

µY = AµX

and their covariance matrices by

VY = AVXAT

(where AT denotes the transpose of the matrix A).

42.15 Reduction to an independent pair
If X1, X2 are two normal random variables, then Y1, Y2 are also two normal

random variables, and one can always find a matrix A such that Y1, Y2 will
be independent. Indeed, all we need is to make the covariance matrix VY

diagonal (to exclude the cross product term from the corresponding quadratic
polynomial).

It is known in linear algebra that if A is a rotation matrix (such matrices
are called orthogonal matrices), then AT coincides with the inverse A−1,
and then the matrix AVXA−1 corresponds to the rotation of the coordinate
system.

Again, it is known in linear algebra that every symmetric matrix (and VX

is symmetric!) can be made a diagonal matrix by a rotation of the coordinate
frame. After that VY will be diagonal, so Y1, Y2 will be independent.

Geometrically, the rotation transforms the ellipses corresponding to X1, X2

into the ellipses corresponding to Y1, Y2. After the rotation, the axes of the
ellipses will be aligned with the coordinate axes.

42.16 Bonus exercise
A bonus homework exercise (consisting of three parts):

(a) Let X1, X2 be two normal random variables with mean µX = (µX1 , µX2)
and covariance matrix VX. Show that

Y = A(X− µX)

gives us two independent standard normal random variables Y1, Y2 =
N (0, 1) if the matrix A is symmetric and satisfies A = B−1 and B2 =
VX. (The matrix B is called the square root of VX.)

(b) Does the matrix A always exist?

(c) How can you find A if you are given VX?
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42.17 Three or more normals
Let us extend our motivating example. Suppose that, along with the

height and weight of a randomly selected person, we record his/her blood
pressure (or some other physical parameter). Now we have three random
variables, X, Y, Z, that are all quite dependent on each other. Correlations
between them may be positive or negative.

This brings us to a model involving several normal random variables. We
denote them by X1, X2, . . . , Xn. Now the formulas may get very complicated,
but vectors and matrices again come to the rescue.

42.18 Joint density for n normals
Let X1, X2, . . . , Xn be n normal random variables. Their mean values can

be represented as a vector

µ = (µX1 , µX2 , . . . , µXn)

Their covariance matrix has size n× n and can be represented by

V =




Cov(X1, X1) · · · Cov(X1, Xn)
...

. . .
...

Cov(Xn, X1) · · · Cov(Xn, Xn)




Now the formula for the joint density of our normal random variables is

f(x1, . . . , xn) =
1√

(2π)n detV
e−

1
2
(x−µ)V−1(x−µ)

where x = (x1, x2, . . . , xn). This formula is almost identical to the one we
had for just two normal random variables. Vectors and matrices can handle
an arbitrary number of variables easily!

The level surfaces of the joint density function f(x1, . . . , xn) are ellipsoids
in Rn. They all have a common center and common directions of axes.

42.19 Independence criterion
Normal random variables X1, X2, . . . , Xn are independent if and only if

all their covariances are zero:

Cov(Xi, Xj) = 0 for all i 6= j

In this case the covariance matrix V will be diagonal, so its inverse V−1

will be diagonal, too, and the joint density f(x1, . . . , xn) will clearly factor
into a product of individual densities. This factorization is a characteristic
property of independent random variables.
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42.20 Linear transformation for n normals
Suppose n normal random variables X1, X2, . . . , Xn are transformed into

other random variables Y1, Y2, . . . , Yn linearly, i.e., by

Y1 = a11X1 + a12X2 + · · ·+ a1nXn

Y2 = a21X1 + a22X2 + · · ·+ a2nXn

· · ·
Yn = an1X1 + an2X2 + · · ·+ annXn

Again we use vector notation for our random variables

X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)

and their mean values

µX = (µX1 , . . . , µXn) and µY = (µY1 , . . . , µYn)

Their covariance matrices will be denoted by

VX =




Cov(X1, X1) · · · Cov(X1, Xn)
...

. . .
...

Cov(Xn, X1) · · · Cov(Xn, Xn)




and

VY =




Cov(Y1, Y1) · · · Cov(Y1, Yn)
...

. . .
...

Cov(Yn, Y1) · · · Cov(Yn, Yn)




Now the transformation of X into Y can be written in matrix form as

Y = AX, A =




a11 · · · a1n
...

. . .
...

an1 · · · ann




Then their mean values are related by

µY = AµX

and their covariance matrices by

VY = AVXAT

(where again AT denotes the transpose of the matrix A).
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42.21 Reduction to an independent set
If X1, . . . , Xn are n normal random variables, then Y1, . . . , Yn are also

n normal random variables, and one can always find a matrix A such that
Y1, . . . , Yn will be independent. All we need is to make the covariance matrix
VY diagonal.

It is known in linear algebra that if A is an orthogonal matrix, then AT

coincides with the inverse A−1, and then the matrix AVXA−1 corresponds
to the transformation of the coordinate system.

Again, it is known in linear algebra that every symmetric matrix (and VX

is symmetric!) can be made a diagonal matrix by an orthogonal transforma-
tion of the coordinate frame. After that VY will be diagonal, so Y1, . . . , Yn

will be independent.
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