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T H I N K  A B O U T  I T

M A R K O V  C H A I N S

If we know the probability that the child of a lower-class parent becomes middle-class or upper-
class, and we know similar information for the child of a middle-class or upper-class parent,
what is the probability that the grandchild or great-grandchild of a lower-class parent is
middle- or upper-class?

Using Markov chains, we will learn the answers to such questions. 
A stochastic process is a mathematical model that evolves over time in a

probabilistic manner. In this section we study a special kind of stochastic process,
called a Markov chain, where the outcome of an experiment depends only on the
outcome of the previous experiment. In other words, the next state of the system
depends only on the present state, not on preceding states. Applications of Markov
chains in medicine are quite common and have become a standard tool of med-
ical decision making. Markov chains are named after the Russian mathematician
A. A. Markov (1856–1922), who started the theory of stochastic processes.

Transition Matrix In sociology, it is convenient to classify people by income
as lower-class, middle-class, and upper-class. Sociologists have found that the
strongest determinant of the income class of an individual is the income class of
the individual’s parents. For example, if an individual in the lower-income class
is said to be in state 1, an individual in the middle-income class is in state 2, and
an individual in the upper-income class is in state 3, then the following proba-
bilities of change in income class from one generation to the next might apply.*

Table 1 shows that if an individual is in state 1 (lower-income class) then
there is a probability of 0.65 that any offspring will be in the lower-income class,
a probability of 0.28 that offspring will be in the middle-income class, and a proba-
bility of 0.07 that offspring will be in the upper-income class.

The symbol will be used for the probability of transition from state i to
state j in one generation. For example, represents the probability that a person
in state 2 will have offspring in state 3; from the table above,

p23 � 0.18.

p23

pij

*For an example with actual data, see Glass, D. V., and J. R. Hall, “Social Mobility in Great Britain:
A Study of Intergenerational Changes in Status,” in Social Mobility in Great Britain, D. V. Glass, ed.,
Routledge & Kegan Paul, 1954. This data is analyzed using Markov chains in Finite Markov Chains
by John G. Kemeny and J. Laurie Snell, Springer-Verlag, 1976.

Table 1
Next Generation

State 1 2 3

Current 1 0.65 0.28 0.07
Generation 2 0.15 0.67 0.18

3 0.12 0.36 0.52



Also from the table, and so on.
The information from Table 1 can be written in other forms. Figure 1 is a

transition diagram that shows the three states and the probabilities of going
from one state to another.

FIGURE 1

In a transition matrix, the states are indicated at the side and the top. If P
represents the transition matrix for the table above, then

1 2 3

A transition matrix has several features:

1. It is square, since all possible states must be used both as rows and as
columns.

2. All entries are between 0 and 1, inclusive; this is because all entries rep-
resent probabilities.

3. The sum of the entries in any row must be 1, since the numbers in the row
give the probability of changing from the state at the left to one of the
states indicated across the top.

Markov Chains A transition matrix, such as matrix P above, also shows two
key features of a Markov chain.

MARKOV CHAIN

A sequence of trials of an experiment is a Markov chain if

1. the outcome of each experiment is one of a set of discrete states;

2. the outcome of an experiment depends only on the present state, and
not on any past states.

For example, in transition matrix P, a person is assumed to be in one of three
discrete states (lower, middle, or upper income), with each offspring in one of
these same three discrete states.
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The transition matrix shows the probability of change in income class from
one generation to the next. Now let us investigate the probabilities for changes in
income class over two generations. For example, if a parent is in state 3 (the
upper-income class), what is the probability that a grandchild will be in state 2?

To find out, start with a tree diagram, as shown in Figure 2. The various prob-
abilities come from transition matrix P. The arrows point to the outcomes “grand-
child in state 2”; the grandchild can get to state 2 after having had parents in either
state 1, state 2, or state 3. The probability that a parent in state 3 will have a grand-
child in state 2 is given by the sum of the probabilities indicated with arrows, or

FIGURE 2

We used to represent the probability of changing from state i to state j in
one generation. This notation can be used to write the probability that a parent in
state 3 will have a grandchild in state 2:

This sum of products of probabilities should remind you of matrix multiplica-
tion—it is nothing more than one step in the process of multiplying matrix P
by itself. In particular, it is row 3 of P times column 2 of P. If represents the
matrix product then gives the probabilities of a transition from one state
to another in two repetitions of an experiment. Generalizing,

gives the probabilities of a transition from one state
to another in k repetitions of an experiment.

E X A M P L E  1 Transition Matrices
For transition matrix P (income-class changes),

(The numbers in the product have been rounded to the same number of deci-
mal places as in matrix P.) The entry in row 3, column 2 of gives the proba-
bility that a person in state 3 will have a grandchild in state 2; that is, that an
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(0.12)(0.65) � 0.078

(0.12)(0.28) � 0.0336

(0.12)(0.07) � 0.0084
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0.0336 � 0.2412 � 0.1872 � 0.4620.

P
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FOR REVIEW
Multiplication of matrices was
covered in Chapter 10 of
Calculus with Applications for
the Life Sciences. To get the entry
in row i, column j of a product,
multiply row i of the first matrix
times column j of the second
matrix and add up the products.
For example, to get the element
in row 1, column 1 of where

we calculate 

To get row 3,
column 2, the computation is

You should review matrix
multiplication by working out the
rest of and verifying that it
agrees with the result given in
Example 1.
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upper-class person will have a middle-class grandchild. This number, 0.46, is the
result (rounded to two decimal places) found through using the tree diagram.

Row 1, column 3 of gives the number 0.13, the probability that a person
in state 1 will have a grandchild in state 3; that is, that a lower-class person will
have an upper-class grandchild. How would the entry 0.47 be interpreted?

E X A M P L E  2 Powers of Transition Matrices
In the same way that matrix gives the probability of income-class changes
after two generations, the matrix gives the probabilities of change
after three generations.

For matrix P,

(The rows of don’t necessarily total 1 exactly because of rounding errors.) 
Matrix gives a probability of 0.25 that a person in state 2 will have a great-
grandchild in state 1. The probability is 0.52 that a person in state 2 will have a
great-grandchild in state 2.

A graphing calculator with matrix capability is useful for finding powers of
a matrix. If you enter matrix A, then multiply by A, then multiply the product by
A again, you get each new power in turn. You can also raise a matrix to a power
just as you do with a number.

Distribution of States Suppose the following table gives the initial distri-
bution of people in the three income classes.

To see how these proportions would change after one generation, use the 
tree diagram in Figure 3 on the next page. For example, to find the proportion of
people in state 2 after one generation, add the numbers indicated with arrows.

In a similar way, the proportion of people in state 1 after one generation is

and the proportion of people in state 3 after one generation is

The initial distribution of states, 21%, 68%, and 11%, becomes, after one
generation, 25.17% in state 1, 55.4% in state 2, and 19.43% in state 3. These

0.0147 � 0.1224 � 0.0572 � 0.1943.

0.1365 � 0.1020 � 0.0132 � 0.2517,

0.0588 � 0.4556 � 0.0396 � 0.5540
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Table 2
Class State Proportion

Lower 1 21%
Middle 2 68%
Upper 3 11%



FIGURE 3

distributions can be written as probability vectors (where the percents have been
changed to decimals rounded to the nearest hundredth)

and

respectively. A probability vector is a matrix of only one row, having nonnega-
tive entries, with the sum of the entries equal to 1.

The work with the tree diagram to find the distribution of states after 
one generation is exactly the work required to multiply the initial probability 
vector, and the transition matrix P:

In a similar way, the distribution of income classes after two generations can 
be found by multiplying the initial probability vector and the square of P, the 
matrix Using from above,

Next, we will develop a long-range prediction for the proportion of the pop-
ulation in each income class. Our work thus far is summarized below.

Suppose a Markov chain has initial probability vector

and transition matrix P. The probability vector after n repetitions of the
experiment is

X0 � Pn.
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Using this information, we can compute the distribution of income classes for
three or more generations as illustrated in Table 3. The initial probability vector,
which gives the distribution of people in each social class, is  

The results seem to approach the numbers in the probability vector

What happens if the initial probability vector is different from
Suppose is used; the same powers of 

the transition matrix as above give us the results in Table 4.

Although it takes a little longer, the results again seem to be approaching the
numbers in the probability vector the same numbers 
approached with the initial probability vector In either case,
the long-range trend is for about 50% of the people to be classifed as middle
class. This example suggests that this long-range trend does not depend on the
initial distribution of social class.

Regular Transition Matrices One of the many applications of Markov
chains is in finding long-range predictions. It is not possible to make long-range
predictions with all transition matrices, but for a large set of transition matrices,
long-range predictions are possible. Such predictions are always possible with
regular transition matrices. A transition matrix is regular if some power of the

�0.21 0.68 0.11�.
�0.286 0.489 0.225�,

�0.75 0.15 0.1��0.21 0.68 0.11�?

�0.286 0.489 0.225�.

�0.21 0.68 0.11�.
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Table 3
After Generation n Lower-Class Middle-Class Upper-Class

0 0.210 0.680 0.110
1 0.252 0.554 0.194
2 0.270 0.512 0.218
3 0.278 0.497 0.225
4 0.282 0.490 0.226
5 0.285 0.489 0.225
6 0.286 0.489 0.225
7 0.286 0.489 0.225

Table 4
After Generation n Lower-Class Middle-Class Upper-Class

0 0.75 0.15 0.1
1 0.522 0.347 0.132
2 0.407 0.426 0.167
3 0.349 0.459 0.192
4 0.318 0.475 0.207
5 0.303 0.482 0.215
6 0.295 0.485 0.220
7 0.291 0.487 0.222
8 0.289 0.488 0.225
9 0.286 0.489 0.225



matrix contains all positive entries. A Markov chain is a regular Markov chain
if its transition matrix is regular.

E X A M P L E  3 Regular Transition Matrices
Decide whether the following transition matrices are regular.

(a)

Solution Square A.

Since all entries in are positive, matrix A is regular.

(b)

Solution Find various powers of B.

Further powers of B will still give the same zero entries, so no power of 
matrix B contains all positive entries. For this reason, B is not regular.

NOTE If a transition matrix P has some zero entries, and does as well, you
may wonder how far you must compute to be certain that the matrix is not
regular. The answer is that if zeros occur in the identical places in both and

for any k, they will appear in those places for all higher powers of P, so
P is not regular.

Suppose that v is any probability vector. It can be shown that for a regu-
lar Markov chain with a transition matrix P, there exists a single vector V that
does not depend on v, such that gets closer and closer to V as n gets larger
and larger.

EQUILIBRIUM VECTOR OF A MARKOV CHAIN

If a Markov chain with transition matrix P is regular, then there is a unique
vector V such that, for any probability vector v and for large values of n,

Vector V is called the equilibrium vector or the fixed vector of the 
Markov chain.

In the example of income class, the equilibrium vector V is approximately
Vector V can be determined by finding for larger andPn�0.286 0.489 0.225�.

v � Pn � V.
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larger values of n, and then looking for a vector that the product ap-
proaches. Such an approach can be very tedious, however, and is prone to error.
To find a better way, start with the fact that for a large value of n,

as mentioned above. From this result, so that

Since for large values of n, it is also true that for 
large values of n (the product approaches V, so that must also 
approach V). Thus, and which suggests that

If a Markov chain with transition matrix P is regular, then there exists a
probability vector V such that

This vector V gives the long-range trend of the Markov chain. Vector V is found
by solving a system of linear equations, as shown in the next example.

E X A M P L E  4 Income Class
Find the long-range trend for the Markov chain in the income class example with
transition matrix

Solution This matrix is regular since all entries are positive. Let P represent this
transition matrix, and let V be the probability vector We want to find
V such that

or

Use matrix multiplication on the left.

Set corresponding entries from the two matrices equal to get

and

Simplify these equations.

 0.07v1 � 0.18v2 � 0.48v3 � 0

 0.28v1 � 0.33v2 � 0.36v3 � 0

 �0.35v1 � 0.15v2 � 0.12v3 � 0

0.07v1 � 0.18v2 � 0.52v3 � v3.

0.28v1 � 0.67v2 � 0.36v3 � v2,0.65v1 � 0.15v2 � 0.12v3 � v1,

�0.65v1 � 0.15v2 � 0.12v3 0.28v1 � 0.67v2 � 0.36v3 0.07v1 � 0.18v2 � 0.52v3� � �v1 v2 v3�

�v1 v2 v3�P � �v1 v2 v3�.
VP � V,

�v1 v2 v3�.

�0.65

0.15

0.12

0.28

0.67

0.36

0.07

0.18

0.52
�

VP � V.

VP � V.

v � Pn�1 � VP,v � Pn�1 � V
v � Pn�1v � Pn
v � Pn�1 � Vv � Pn � V

v � Pn � P � v � Pn�1 � VP.

v � Pn � P � V � P,

v � Pn � V,

v � Pn
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It is easy to see that the last equation is simply the sum of the first two equations
multiplied by so we will drop this equation. (The equations in the system ob-
tained from are always dependent.) To find the values of and re-
call that is a probability vector, so that

To find and solve the system

Using the Gauss-Jordan method, we obtain the reduced system of equations

.

Thus, and and the 
equilibrium vector is 

Some powers of the transition matrix P in Example 1 (the income class 
example) with entries rounded to two decimal places are shown here.

As these results suggest, higher and higher powers of the transition matrix P
approach a matrix having all rows identical; these identical rows have as entries
the entries of the equilibrium vector V. This agrees with the statement above: the
initial state does not matter. Regardless of the initial probability vector, the system
will approach a fixed vector V. This unexpected and remarkable fact is the basic
property of regular Markov chains: the limiting distribution is independent of the
initial distribution. This happens because some power of the transition matrix has
all positive entries, so that all the initial probabilities are thoroughly mixed.

We can now summarize these results.

PROPERTIES OF REGULAR MARKOV CHAINS

Suppose a regular Markov chain has a transition matrix P.

1. As n gets larger and larger, the product approaches a unique
vector V for any initial probability vector v. Vector V is called the
equilibrium vector or fixed vector.

v � Pn

P16 � �0.29

0.29

0.29

0.49

0.49

0.49
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0.22
�
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V � �104	363 532	1,089 245	1,089� �

v3 � 245	1,089v2 � 532	1,089,v1 � 104	363,
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v1 � v2 � v3 � 1.

 0.28v1 � 0.33v2 � 0.36v3 � 0

 �0.35v1 � 0.15v2 � 0.12v3 � 0

v3,v2,v1,

v1 � v2 � v3 � 1.

V � �v1 v2 v3�
v3,v2,v1,VP � V

�1,
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2. Vector V has the property that 

3. To find V, solve a system of equations obtained from the matrix
equation and from the fact that the sum of the entries of V is 1.

4. The powers come closer and closer to a matrix whose rows are
made up of the entries of the equilibrium vector V.

Absorbing Markov Chains Not all Markov chains are regular. In fact, some
of the most important life science applications of Markov chains do not involve
transition matrices that are regular. One type of Markov chain that is widely used
in the life sciences is called an absorbing Markov chain.

When we use the ideas of Markov chains to model living organisms, a com-
mon state is death. Once the organism enters that state, it is not possible to leave.
In this situation, the organism has entered an absorbing state.

For example, suppose a Markov chain has transition matrix

1 2 3

The matrix shows that the probability of going from state 1 to state 2, is 0.6,
and that the probability of staying in state 2, is 1. Thus, once state 2 is 
entered, it is impossible to leave. For this reason, state 2 is called an absorbing
state. Figure 4 shows a transition diagram for this matrix. The diagram shows that
it is not possible to leave state 2.

Generalizing from this example leads to the following definition.

ABSORBING STATE

State i of a Markov chain is an absorbing state if 

Using the idea of an absorbing state, we can define an absorbing Markov
chain.

ABSORBING MARKOV CHAIN

A Markov chain is an absorbing chain if and only if the following two
conditions are satisfied:

1. the chain has at least one absorbing state; and

2. it is possible to go from any nonabsorbing state to an absorbing state
(perhaps in more than one step).

Note that the second condition does not mean that it is possible to go from any
nonabsorbing state to any absorbing state, but it is possible to go to some 
absorbing state.

E X A M P L E  5 Absorbing Markov Chains
Identify all absorbing states in the Markov chains having the following matrices.
Decide whether the Markov chain is absorbing.

pii � 1.

p22,
p12,

�0.3

0

0.6

0.6

1

0.2

0.1

0

0.2
� � P.

1

2

3

Pn

VP � V,

VP � V.
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1 2 3

(a)

Solution Since and both state 1 and state 3 are absorbing
states. (Once these states are reached, they cannot be left.) The only nonab-
sorbing state is state 2. There is a 0.3 probability of going from state 2 to the
absorbing state 1, and a 0.2 probability of going from state 2 to state 3, so that
it is possible to go from the nonabsorbing state to an absorbing state. This
Markov chain is absorbing. The transition diagram is shown in Figure 5.

1 2 3 4

(b)

Solution States 2 and 4 are absorbing, with states 1 and 3 nonabsorbing. From
state 1, it is possible to go only to states 1 or 3; from state 3 it is possible 
to go only to states 1 or 3. As the transition diagram in Figure 6 shows,
neither nonabsorbing state leads to an absorbing state, so that this Markov
chain is nonabsorbing.

E X A M P L E  6 Management of Gallstones
Physicians who diagnose asymptomatic gallstones are faced with the decision to
either immediately remove the gall bladder to prevent possible life-threatening
complications or to postpone surgery until complications do occur. What is the
long-term trend of each strategy?

Solution In the absence of a clinical study, Markov chain analysis is often the only
effective way to evaluate the benefits and risks of various medical treatment
strategies. Markov chains can be used to model the scenario above.*

Suppose that in very simplified “postpone surgery” strategy, a patient will
continue to have asymptomatic gallstones (state A) from one 4-month period 
to the next with probability 0.95. One of two major complications (state C),
cholecystitis or biliary complications, may result, requiring surgery, with proba-
bility of 0.04. Because of the patient’s specific age, she will have the probability
of natural death of 0.01 (state D). If the disease progresses and becomes sympto-
matic, then surgery is performed with a risk of death from complications due to
surgery of 0.005. Once successful surgery is performed, the patient enters state
recovery (state R). Ninety percent of the patients move onto the well state (W)
while 9% stay in the recovery state each year and 1% die of natural causes. Once
a patient enters the well state, she continues there until death, with probability
0.99. The following matrix is the transition matrix for the strategy to post-
pone surgery until complications occur.

5 � 5

�0.6

0

0.9

0

0

1

0

0

0.4

0

0.1

0

0

0

0

1
�1
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4

p33 � 1,p11 � 1

� 1
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3
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*Sox, H., M. Blatt, M. Higgins, and K. Marton, Medical Decision Making, Butterworth Publishing,
Boston, 1988, pp. 191–193.
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Notice that state D is an absorbing state. Once the patient enters that state, it
is impossible to leave.

For the long-term trend of this strategy, find various powers of the transition
matrix. A computer or a graphing calculator can be used to verify the following
results, rounded to two decimal places.

As these results suggest, when is raised to higher and higher powers, the
system will tend toward the absorbing state, so that the probability is 1 that the
patient will eventually die.

This example suggests the following properties of absorbing Markov chains,
which can be verified using more advanced methods.

1. Regardless of the original state of an absorbing Markov chain, in a finite
number of steps the chain will enter an absorbing state and then stay in
that state.

2. The powers of the transition matrix get closer and closer to some particu-
lar matrix.

In addition, absorbing Markov chains have a third property not illustrated in 
Example 6.

3. The long-term trend depends on the initial state—changing the initial
state can change the final result.

The third property distinguishes absorbing Markov chains from regular Markov
chains, where the final result is independent of the initial state. This property is
not illustrated in Example 6 since there is only one absorbing state. In situations
where there is more than one absorbing state, as in Exercise 58, property 3 is 
apparent.

It would be preferable to have a method for finding the final probabilities of
entering an absorbing state without finding all the powers of the transition matrix,

P

 P32 �

0.19

0

0

0

0

0.01

0

0

0

0

0.01

0

0

0

0

0.51

0.73

0.72

0.72

0

0.27

0.27

0.28

0.28

1

 P8 �

0.66

0

0

0

0

0.03

0

0

0

0

0.03

0

0

0

0

0.20

0.93

0.92

0.92

0

0.08

0.07

0.08

0.08

1

A

C

R

W

D

P �

0.95

0

0

0

0

0.04

0

0

0

0

0

0.995

0.09

0

0

0

0

0.90

0.99

0

0.01

0.005

0.01

0.01

1

12 Markov Chains



















































as in Example 6. We do not really need to worry about the absorbing states 
(to enter an absorbing state is to stay there). Therefore, it is necessary only to
work with the nonabsorbing states. To see how this is done, let us use as an 
example the transition matrix from the gallstone problem in Example 6. Rewrite
the matrix so that the rows and columns corresponding to the absorbing state(s)
come first.

D A C R W

Let represent the identity matrix in the upper left corner; let O represent
the matrix of zeros in the upper right; let R represent the matrix in the lower left;
and let Q represent the matrix in the lower right. Using these symbols, P can be
written as

The fundamental matrix for an absorbing Markov chain is defined as 
matrix F, where

Here is the identity matrix corresponding in size to matrix Q, so that the
difference exists.

For the gallstone problem, using gives

The inverse was found using techniques from Chapter 10 of Calculus with Appli-
cations for the Life Sciences. In  Chapter 10, we also discussed finding the inverse
of a matrix with a graphing calculator.
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FOR REVIEW
To find the inverse of a matrix,
we first form an augmented
matrix by putting the original
matrix on the left and the identity
matrix on the right: The
Gauss-Jordan process is used to
turn the matrix on the left into the
identity. The matrix on the right
is then the inverse of the original
matrix: �I � A�1�.
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The fundamental matrix gives the expected number of visits to each state 
before absorption occurs. For example, if the patient is currently asympto-
matic, the first row of the fundamental matrix just computed says that she 
expects to have 20 four-month time periods (about 6.67 years) on average 
in this state and four-month time 
periods in the various living states before death. That is, her life expectancy is

years.
To see why this is true, consider a Markov chain currently in state i. The ex-

pected number of times that the chain visits state j at this step is 1 for i and 0 for
all other states. The expected number of times that the chain visits state j at the
next step is given by the element in row i, column j of the transition matrix Q. The
expected number of times the chain visits state j two steps from now is given by
the corresponding entry in the matrix The expected number of visits in all
steps is given by To find out whether this infinite sum
is the same as multiply the sum by 

which verifies our result.
It can be shown that

where is the identity matrix. As the zero 
matrix, and

so we see that FR gives the probabilities that if the system was originally in a non-
absorbing state, it ends up in one of the absorbing states.*

Finally, use the fundamental matrix F along with matrix R found above to get
the product FR.

The product matrix FR gives the probability that if the system was originally in 
a particular nonabsorbing state, it ended up in the absorbing state. For example,
the probability is 1 that if the patient was originally asymptomatic she ended up
dying, which, unfortunately, is what we expect.

In situations where there is more than one absorbing state, the product 
will show the probability that a nonabsorbing state will end up in a particular ab-
sorbing state.

Let us summarize what we have learned about absorbing Markov chains.
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*We have omitted details in these steps that can be justified using advanced techniques.



PROPERTIES OF ABSORBING MARKOV CHAINS

1. Regardless of the initial state, in a finite number of steps the chain will
enter an absorbing state and then stay in that state.

2. The powers of the transition matrix get closer and closer to some
particular matrix.

3. The long-term trend depends on the initial state.

4. Let P be the transition matrix for an absorbing Markov chain.
Rearrange the rows and columns of P so that the absorbing states
come first. Matrix P will have the form

where is an identity matrix, with m equal to the number of
absorbing states, and O is a matrix of all zeros. The fundamental
matrix is defined as

where has the same size as Q. The element in row i, column j of 
the fundamental matrix gives the number of visits to state j that are
expected to occur before absorption, given that the current state is 
state i.

5. The product FR gives the matrix of probabilities that a particular initial
nonabsorbing state will lead to a particular absorbing state.

E X A M P L E  7 Long-term Trend
Find the long-term trend for the transition matrix

1 2 3

Solution Rewrite the matrix so that absorbing states 2 and 3 come first.

2 3 1

Here and Find the fundamental matrix F.

The product FR is

If the system starts in the nonabsorbing state 1, there is a chance of ending
up in the absorbing state 2 and a chance of ending up in the absorbing state 3.5	7

2	7

FR � �10	7� �0.2 0.5� � �2	7 5	7� � �0.286 0.714�.
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16 Markov Chains

Decide whether each of the matrices in Exercises 1–4 could be a probability vector..

11. 12. 13. 14.

Decide whether each of the matrices in Exercises 5–8 could be a transition matrix, by
definition. Sketch a transition diagram for any transition matrices.

15. 6. 7. 8.

In Exercises 9– 11, write any transition diagrams as transition matrices.

9. 10. 11.

Find the first three powers of each of the transition matrices in Exercises 12–15 ( for
example, A, in Exercise 12). For each transition matrix, find the probability
that state 1 changes to state 2 after three repetitions of the experiment.

12. 13. 14. 15.

For each of the following transition matrices, find the first five powers of the matrix.
Then find the probability that state 2 changes to state 4 after 5 repetitions of the
experiment.

16. 17.

18. a. Verify that can be computed in two ways: (1) by first multiplying P by it-
self n times, then multiplying times this result; and (2) by multiplying 
multiplying this result by P, and continuing to multiply by P a total of n times.
(Hint: Use the fact that matrix multiplication is associative.)

X0 � P,X0

X0 � Pn
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b. Which of the two methods in part a is simpler? Explain your answer.

Which of the transition matrices in Exercises 19–22 are regular?

19. 20. 21. 22.

Find the equilibrium vector for each transition matrix in Exercises 23–26.

23. 24. 25. 26.

27. Find the equilibrium vector for the transition matrix

where and Under what conditions is this matrix regular?

28. Show that the transition matrix

has more than one vector V such that Why does this not violate the state-
ments of this section?

29. Let

be a regular matrix having column sums of 1. Show that the equilibrium vector for P
is 

30. Notice in Example 4 that the system of equations with the extra equation that
the sum of the elements of V must equal 1, had exactly one solution. What can you say
about the number of solutions to the system 

Find all absorbing states for the transition matrices in Exercises 31–34. Which are
transition matrices for absorbing Markov chains?

31. 32.

33. 34.

Find the fundamental matrix F for the absorbing Markov chains with the matrices in
Exercises 35–40. Also, find the product matrix FR.
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38. 39. 40.

41. How can we calculate the expected total number of times a Markov chain will visit
state j before absorption, regardless of the current state?

42. Suppose an absorbing Markov chain has only one absorbing state. What is the prod-
uct FR?

43. How can you tell by looking at a matrix whether it represents the transition matrix
from a Markov chain?

44. Under what conditions is the existence of an equilibrium vector guaranteed?

45. How can you tell from the transition matrix whether a Markov chain is absorbing 
or not?

46. Can a Markov chain be both regular and absorbing? Explain.
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LIFE SCIENCES
47. Immune Response A study of immune response in rabbits

classified the rabbits into four groups, according to the
strength of the response.* From one week to the next, the
rabbits changed classification from one group to another,
according to the following transition matrix.

1 2 3 4

a. What proportion of the rabbits in group 1 were still in
group 1 five weeks later?

b. In the first week, there were 9 rabbits in the first group,
4 in the second, and none in the third or fourth groups.
How many rabbits would you expect in each group after
4 weeks?

c. By investigating the transition matrix raised to larger
and larger powers, make a reasonable guess for the long-
range probability that a rabbit in group 1 or 2 will still
be in group 1 or 2 after an arbitrarily long time. Explain
why this answer is reasonable.

48. Research with Mice A large group of mice is kept in a
cage having connected compartments A, B, and C. Mice
in compartment A move to B with probability 0.3 and

to C with probability 0.4. Mice in B move to A or C with
probabilities of 0.15 and 0.55, respectively. Mice in C
move to A or B with probabilities of 0.3 and 0.6, respec-
tively. Find the long-range prediction for the fraction of
mice in each of the compartments.

49. Medical Prognosis A study using Markov chains to esti-
mate a patient’s prognosis for improving under various
treatment plans gives the following transition matrix as an
example:†

well ill dead

a. Estimate the probability that a well person will eventu-
ally end up dead.

b. Verify your answer to part a using the matrix product
FR.

c. Find the expected number of cycles that a well patient
will continue to be well before dying, and the expected
number of cycles that a well patient will be ill before
dying.

50. Contagion Under certain conditions, the probability that a
person will get a particular contagious disease and die from
it is 0.05, and the probability of getting the disease and sur-
viving is 0.15. The probability that a survivor will infect 
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Applications

*McGilchrist, C. A., C. W. Aisbett, and S. Cooper, “A Markov Transition Model in the Analysis of the
Immune Response,” Journal of Theoretical Biology, Vol. 138, 1989, pp. 17–21.
†Beck, J. Robert, and Stephen G. Paukeer, “The Markov Process in Medical Prognosis,” Medical De-
cision Making, Vol. 4, No. 3, 1983, pp. 419–458.



another person who dies from it is also 0.05, that a survivor
will infect another person who survives it is 0.15, and so on.
A transition matrix using the following states is given
below. A person in state 1 is one who gets the disease and
dies, a person in state 2 gets the disease and survives, and a
person in state 3 does not get the disease. Consider a chain
of people, each of whom interacts with the previous person
and may catch the disease from the individual, and then may
infect the next person.

a. Verify that the transition matrix is as follows:

Second Person
1 2 3

First Person

b. Find F and FR.

c. Find the probability that the disease eventually
disappears.

d. Given a person who has the disease and survives, find
the expected number of people in the chain who will get
the disease until a person who does not get the disease
is reached.

51. Medical Prognosis A study of patients at the University of
North Carolina Hospitals used a Markov chain model with
three categories of patients: 0 (death), 1 (unfavorable sta-
tus), and 2 (favorable status).* The transition matrix for a
cycle of 72 hr was as follows.

0 1 2

a. Find the fundamental matrix.

b. For a patient with a favorable status, find the expected
number of cycles that the patient will continue to have
that status before dying.

c. For a patient with an unfavorable status, find the ex-
pected number of cycles that the patient will have a fa-
vorable status before dying.

Medical Research A medical researcher is studying the risk
of heart attack in men. She first divides men into three weight
categories: thin, normal, and overweight. By studying the
male ancestors, sons, and grandsons of these men, the
researcher comes up with the following transition matrix.

Thin Normal Overweight

Thin 0.3 0.5 0.2

Normal 0.2 0.6 0.2

Overweight 0.1 0.5 0.4

Find the probabilities of the following for a man of normal
weight.

52. Thin son

53. Thin grandson

54. Thin great-grandson

Find the probabilities of the following for an overweight man.

55. Overweight son

56. Overweight grandson

57. Overweight great-grandson

Suppose that the distribution of men by weight is initially
given by Find each of the following
distributions.

58. After 1 generation

59. After 2 generations

60. After 3 generations

61. Find the long-range prediction for the distribution of
weights.

Genetics Researchers sometimes study the problem of mating
the offspring from the same two parents; two of these offspring
are then mated, and so on. Let A be a dominant gene for some
trait, and a the recessive gene. The original offspring can
carry genes AA, Aa, or aa. There are six possible ways that
these offspring can mate.

62. Suppose that the offspring are randomly mated with each
other. Verify that the transition matrix is given by the ma-
trix below.
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*Chen, Pai-Lien, Estrada J. Bernard, and Pranab K. Sen, “A Markov Chain Model Used in Analyzing
Disease History Applied to a Stroke Study,” Journal of Applied Statistics, Vol. 26, No. 4, 1999,
pp. 413–422.

State Mating

1 AA and AA
2 AA and Aa
3 AA and aa
4 Aa and Aa
5 Aa and aa
6 aa and aa



1 2 3 4 5 6

1 1 0 0 0 0 0

2 0 0 0

3 0 0 0 1 0 0

4

5 0 0 0

6 0 0 0 0 0 1

63. Identify the absorbing states.

64. Find matrix Q.

65. Find F, and the product FR.

66. If two parents with the genes Aa are mated, find the num-
ber of pairs of offspring with these genes that can be ex-
pected before either the dominant or the recessive gene no
longer appears.

67. If two parents with the genes Aa are mated, find the proba-
bility that the recessive gene will eventually disappear.

OTHER APPLICATIONS
68. Housing Patterns In a survey investigating changes in

housing patterns in one urban area, it was found that 75%
of the population lived in single-family dwellings and 25%
in multiple housing of some kind. Find years later, in a
follow-up survey, of those who had been living in single-
family dwellings, 90% still did so, but 10% had moved to
multiple-family dwellings. Of those in multiple-family
housing, 95% were still living in that type of housing,
while 5% had moved to single-family dwellings. Assume
that these trends continue.

a. Write a transition matrix for this information.

b. Write a probability vector for the initial distribution of
housing.

What percent of the population can be expected in each 
category after the following time periods?

c. 5 yr d. 10 yr

e. Write the transition matrix for a 10-yr period.

f. Use your result from part e to find the probability that
someone living in a single-family dwelling is still doing
so 10 yr later.

69. Voting Trends At the end of June in a presidential elec-
tion year, 40% of the voters were registered as liberal,
45% as conservative, and 15% as independent. Over a
one-month period, the liberals retained 80% of their con-

stituency, while 15% switched to conservative and 5% to
independent. The conservatives retained 70% and lost
20% to the liberals. The independents retained 60% and
lost 20% each to the conservatives and liberals. Assume
that these trends continue.

a. Write a transition matrix using this information.

b. Write a probability vector for the initial distribution.

Find the percent of each type of voter at the end of each of
the following months.

c. July d. August

e. September f. October

70. Cricket The results of cricket matches between England
and Australia have been found to be modeled by a Markov
chain.* The probability that England wins, loses, or draws
is based on the result of the previous game, with the fol-
lowing transition matrix:

Wins Loses Draws

.

a. Compute the transition matrix for the game after the
next one, based on the result of the last game.

b. Use your answer from part a to find the probability that,
if England won the last game, England will win the
game after the next one.

c. Use your answer from part a to find the probability that,
if Australia won the last game, England will win the
game after the next one.

71. Criminology A study of male criminals in Philadelphia
found that the probability that one type of offense is fol-
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*Colwell, Derek, Brian Jones, and Jack Gillett, “A Markov Chain in Cricket,” The Mathematics
Gazette, June 1991. 



lowed by another type can be described by the following
transition matrix.*

Nonindex Injury Theft Damage Combination

Nonindex 0.645 0.099 0.152 0.033 0.071

Injury 0.611 0.138 0.128 0.033 0.090

Theft 0.514 0.067 0.271 0.030 0.118

Damage 0.609 0.107 0.178 0.064 0.042

Combination 0.523 0.093 0.183 0.022 0.179

a. For a criminal who commits theft, what is the probabil-
ity that his next crime is also a theft?

b. For a criminal who commits theft, what is the probabil-
ity that his second crime after that is also a theft?

c. If these trends continue, what are the long-term proba-
bilities for each type of crime?

72. Education At one liberal arts college, students are classi-
fied as humanities majors, science majors, or undecided.
There is a 20% chance that a humanities major will change
to a science major from one year to the next, and a 45%
chance that a humanities major will change to undecided.
A science major will change to humanities with probability
0.15, and to undecided with probability 0.35. An undecided
will switch to humanities or science with probabilities of
0.5 and 0.3, respectively.

a. Find the long-range prediction for the fraction of stu-
dents in each of these three majors.

b. Compare the result of part a with the result in Exer-
cise 29. Make a conjecture, and describe how this con-
jecture, if true, would allow you to predict the answer to
part a with very little computation.

73. Rumors The manager of the slot machines at a major
casino makes a decision about whether or not to “loosen
up” the slots so that the customers get a larger payback.
The manager tells only one other person, a person whose
word cannot be trusted. In fact, there is only a probability
p, where that this person will tell the truth.
Suppose this person tells several other people, each of
whom tells several people, what the manager’s decision is.
Suppose there is always a probability p that the decision is
passed on as heard. Find the long-range prediction for the
fraction of the people who will hear the decision correctly.
(Hint: Use a transition matrix; let the first row be

and the second row be .)

74. Education A study of students taking a 20-question chem-
istry exam tracked their progress from one testing period to
the next.† For simplicity, we have grouped students scoring
from 0 to 5 in group 1, from 6 to 10 in group 2, from 11 to
15 in group 3, and from 15 to 20 in group 4. The result is
the following transition matrix.

1 2 3 4

a. Find the long-range prediction for the proportion of the
students in each group.

b. The authors of this study were interested in the number
of testing periods required before a certain proportion of
the students had mastered the material. Suppose that
once a student reaches group 4, the student is said to
have mastered the material and is no longer tested, so
the student stays in that group forever. Initially, all of
the students in the study were in group 1. Find the num-
ber of testing periods you would expect for at least 70%
of the students to have mastered the material. (Hint: Try
increasing values of n in .)

75. Weather The weather in a certain spot is classified as fair,
cloudy without rain, or rainy. A fair day is followed by a
fair day 60% of the time, and by a cloudy day 25% of the
time. A cloudy day is followed by a cloudy day 35% of the
time, and by a rainy day 25% of the time. A rainy day is fol-
lowed by a cloudy day 40% of the time, and by another
rainy day 25% of the time. What proportion of days are ex-
pected to be fair, cloudy, and rainy over the long term?

x0 � Pn
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*Stander, Julian, et al., “Markov Chain Analysis and Specialization in Criminal Careers,” The British
Journal of Criminology, Vol. 29, No. 4, Autumn 1989, pp. 319–335. The rounding was changed
slightly so the rows of the transition matrix sum to 1.
†Gunzenhauser, Georg W., and Raymond G. Taylor, “Concept Mastery and First Passage Time,” Na-
tional Forum of Teacher Education Journal, Vol. 1, No. 1, 1991–1992, pp. 29–34.



76. Ehrenfest Chain The model for the Ehrenfest chain con-
sists of 2 boxes containing a total of n balls, where n is any
integer greater than or equal to 2. In each turn, a ball is
picked at random and moved from whatever box it is in to
the other box. Let the state of the Markov process be the
number of balls in the first box.

a. Verify that the probability of going from state i to state j
is given by the following.

if and 

if and 

1 if and or and 
0 otherwise.

b. Verify that the transition matrix is given by

0 1 2 3 n

0 0 1 0 0 0

1 0 0 0

2 0 0 0

n 0 0 0 0 0

c. Write the transition matrix for the case 

d. Determine whether the transition matrix in part c is a
regular transition matrix.

e. Determine an equilibrium vector for the matrix in part c.
Explain what the result means.

77. Language One of Markov’s own applications was a 1913
study of how often a vowel is followed by another vowel or
a consonant by another consonant in Russian text. A simi-
lar study of a passage of English text revealed the follow-
ing transition matrix.

Vowel Consonant

Vowel 0.12 0.88

Consonant 0.54 0.46

Find the percent of letters in the English text that are ex-
pected to be vowels.

78. Random Walk Many phenomena can be viewed as exam-
ples of a random walk. Consider the following simple ex-
ample. A security guard can stand in front of any one of
three doors 20 ft apart in front of a building, and every
minute he decides whether to move to another door chosen
at random. If he is at the middle door, he is equally likely
to stay where he is, move to the door to the left, or move
to the door to the right. If he is at the door on either end,
he is equally likely to stay where he is or move to the mid-
dle door.

a. Verify that the transition matrix is given by

1 2 3

b. Find the long-range trend for the fraction of time the
guard spends in front of each door.

79. Student Retention At a particular two-year college, a
student has a probability of 0.25 of flunking out during a
given year, a 0.15 probability of having to repeat the
year, and a 0.6 probability of finishing the year. Use the
states below.

a. Write a transition matrix. Find F and FR.

b. Find the probability that a freshman will graduate.

c. Find the expected number of years that a freshman will
be in college before graduating or flunking out.

80. Transportation The city of Sacramento recently com-
pleted a new light rail system to bring commuters and
shoppers into the downtown area and relieve freeway con-
gestion. City planners estimate that each year, 15% of those
who drive or ride in an automobile will change to the light
rail system; 80% will continue to use automobiles; and the
rest will no longer go to the downtown area. Of those who
use light rail, 5% will go back to using an automobile, 80%
will continue to use light rail, and the rest will stay out of
the downtown area. Assume those who do not go down-
town will continue to stay out of the downtown area.
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a. Write a transition matrix. Find F and FR.

b. Find the probability that a person who commuted by au-
tomobile ends up avoiding the downtown area.

c. Find the expected number of years until a person who
commutes by automobile this year no longer enters the
downtown area.

81. Education Careers Data has been collected on the likeli-
hood that a teacher, or a student with a declared interest in
teaching, will continue on that career path the following
year.* We have simplified the classification of the original
data to four groups: high school and college students, new
teachers, continuing teachers, and those who have quit the
profession. The transition probabilities are given in the fol-
lowing matrix.

Student New Continuing Quit

Student 0.70 0.11 0 0.19

New 0 0 0.86 0.14

Continuing 0 0 0.88 0.12

Quit 0 0 0 1

a. Find the expected number of years that a student with an
interest in teaching will spend as a continuing teacher.

b. Find the expected number of years that a new teacher
will spend as a continuing teacher.

c. Find the expected number of additional years that a con-
tinuing teacher will spend as a continuing teacher.

d. Notice that the answer to part b is larger than the answer
to part a, and the answer to part c is even larger. Explain
why this is to be expected.

e. What other states might be added to this model to make
it more realistic? Discuss how this would affect the tran-
sition matrix.

82. Rat Maze A rat is placed at random in one of the compart-
ments of the maze pictured. The probability that a rat in
compartment 1 will move to compartment 2 is 0.3; to com-
partment 3 is 0.2; and to compartment 4 is 0.1. A rat in
compartment 2 will move to compartments 1, 4, or 5 with
probabilities of 0.2, 0.6, and 0.1, respectively. A rat in com-
partment 3 cannot leave that compartment. A rat in com-
partment 4 will move to 1, 2, 3, or 5 with probabilities of
0.1, 0.1, 0.4, and 0.3, respectively. A rat in compartment 5
cannot leave that compartment.

a. Set up a transition matrix using this information. Find
matrices F and FR.

Find the probability that a rat ends up in compartment 5 if
it was originally in the given compartment.

b. 1 c. 2 d. 3 e. 4

f. Find the expected number of times that a rat in com-
partment 1 will be in compartment 1 before ending up
in compartment 3 or 5.

g. Find the expected number of times that a rat in com-
partment 4 will be in compartment 4 before ending up
in compartment 3 or 5.

1 2

3 4 5
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Markov Chains

1. No 3. Yes 5. No 7. Yes 9. Not a transition diagram

A B C

11. Yes; 13. ; ; ; 0.4142

15. ; ; ; 0.301 17. The first power is the given 

matrix; ; ; 

; ; 0.17794 19. Regular

21. Regular 23. 25. 27. 31. State 2
is absorbing; matrix is that of an absorbing Markov chain. 33. No absorbing states; matrix is not that of an absorbing Markov 

chain. 35. ; 37. ; 39. ; 

41. Sum the elements in column j of the fundamental matrix 47. a. About 0.1859

b. About 2.34 in group 1, 2.62 in group 2, 3.47 in group 3, and 4.56 in group 4 c. 0 49. a. 1 c. ; 

51. a. b. 42.484 c. 26.144 53. 0.2 55. 0.4 57. 0.256 59.

61. 63. States 1 and 6 65. 67.
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d. 46.4% liberal, 38.05% conservative, and 15.55% independent e. 47.84% liberal, 36.705% conservative, and 15.455%
independent f. 48.704% liberal, 35.9605% conservative, and 15.3355% independent 71. a. 0.271 b. 0.187 c. 0.607 for
nonindex, 0.097 for injury, 0.174 for theft, 0.032 for damage, and 0.090 for combination. 73.

Fair Cloudy Rainy

75. Long-range prediction is 48.7% fair, 31.1% cloudy, and 20.1% rainy. 77. 38%
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