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The XY Spin Chain: The Model

The anisotropic XY spin chain is given by the self-adjoint
Hamiltonian

Hn =
n−1∑
j=1

µj [(1 + γj)σ
x
j σ

x
j+1 + (1− γj)σyj σ

y
j+1] +

n∑
j=1

νjσ
z
j

on the Hilbert space Hn =
⊗n C2.

Coupling strengths {µj}, anisotropy factors {γj}, and external
magnetic field {νj}
Anisotropic means γj 6= 0
Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Mj := I ⊗ · · · ⊗ I ⊗M ⊗ I ⊗ · · · ⊗ I (nontrivial in jth
component)
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Random Block Operators

Via the Jordan-Wigner transform, one reduces the problem to
proving dynamical localization for the random block operator

M̂n =

(
An Bn

−Bn −An

)
where

An =


ν1 −µ1

−µ1
. . .

. . .
. . .

. . . −µn−1

−µn−1 νn



Bn =


0 −µ1γ1

µ1γ1
. . .

. . .
. . .

. . . −µn−1γn−1

µn−1γn−1 0


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Random Block Operators

[Elgart/Shamis/Sodin, 2012] - showed dynamical localization
for a wider class of random block operators, at large disorder.

How about small disorder? Since the 1-D Anderson model is
dynamically localized at all energies at small disorder, is M̂n as
well?
It is convenient to write M̂n in the basis
(e1, en+1, e2, en+2, ..., en, e2n) as

Mn =


ν1σ

z −µ1S(γ1)

−µ1S(γ1)t ν2σ
z . . .

. . .
. . . −µn−1S(γn−1)

−µn−1S(γn−1)t νnσ
z


where σz =

(
1 0
0 −1

)
and S(γ) =

(
1 γ
−γ −1

)
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Random Block Operators: Main Result

Mn is an example of a block Jacobi matrix.

To study the effects of introducing randomness into our
model, assume:

{νj} are i.i.d. with nontrivial distribution ρ of compact support
γj ≡ γ ∈ (0, 1) ∪ (1,∞) (0=isotropic, 1=Ising model)
µj ≡ 1

Let Pj : `2([1, n];C2)→ C2 be the projection Pju = u(j).
With such coefficients we have

Theorem (Main Result)

For every compact interval J ⊂ R \ {0} and every ζ ∈ (0, 1), there
exist constants C = C (J, ζ) <∞ and η = η(J, ζ) > 0 such that
for all n ∈ N and j , k ∈ [1, n],

E
(

sup
t∈R
‖Pje

−itMnχJ(Mn)P∗k‖
)
≤ Ce−η|j−k|

ζ
.
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Random Block Operators: Applications

What does this result tell us about the anisotropic XY spin
chain?

Generalizing [Hamza/Sims/Stolz, 2012],

Theorem

If there exist ζ ∈ (0, 1) and C > 0, η > 0 such that for all n ∈ N
and j , k ∈ [1, n],

E
(

sup
t∈R
‖Pje

−itMnP∗k‖
)
≤ Ce−η|j−k|

ζ
, (1)

then for every ε ∈ (0, η), there exists C ′ = C ′(η, ε, ζ) > 0 such
that

E
(

sup
t∈R
‖[τnt (A),B]‖

)
≤ C ′‖A‖‖B‖e−(η−ε)|j−k|ζ (2)

for all 1 ≤ j < k, n ≥ k, A ∈ Aj , and B ∈ A[k,n]. Furthermore, if
(1) holds with ζ = 1, then (2) holds with ε = 0.
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Random Block Operators: Applications

Equation (2) may be regarded as a “zero-velocity”
Lieb-Robinson bound for the anisotropic XY chain.

The question becomes: When does Equation (1) hold?

Our main result contains a spectral projection χJ(Mn) where
J ⊂ R \ {0} is a compact interval.

Three (or more?) options to obtain an interesting result:

When γ = 0 (isotropic), use that (1) holds for 1-D Anderson
model for arbitrary nontrivial distributions (of compact
support) - the distributions do not need to be nice.
When γ 6= 0, find cases where Mn has a spectral gap about 0.
Then χJ(Mn) = I for J ⊃ Σas and all n ∈ N.
Prove (1) from scratch, starting with regularity of Lyapunov
exponents at 0.

Jacob W. Chapman Localization for Random Block Operators 8/23
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Random Block Operators: Applications

When might Mn have a spectral gap about 0?

One case in which this happens is if the single-site distribution
ρ is supported in either (2,∞) or (−∞,−2). In this case, we
use a result analogous to one in [Kirsch/Metzger/Müller,
2011]:

Proposition

Let
M̂ =

(
A B
−B −A

)
.

If there exists λ > 0 such that A ≥ λ or −A ≥ λ, then
σ(M̂) ∩ (−λ, λ) = ∅.

For example, if supp ρ ⊂ (2,∞), then the a.s. spectrum of the
Anderson model is Σ ⊂ [−2, 2] + (2,∞). Thus An ≥ λ > 0.

Jacob W. Chapman Localization for Random Block Operators 9/23
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Proof of Main Result: A Thouless Formula

It is natural to extend Mn to the infinite-volume, bounded,
self-adjoint operator

Mν,γ :=



. . .
. . .

. . . ν−1σ
z −S(γ)

−S(γ)t ν0σ
z −S(γ)

−S(γ)t ν1σ
z . . .

. . .
. . .


Recall σz =

(
1 0
0 −1

)
and S(γ) =

(
1 γ
−γ −1

)

Proving dynamical localization for Mν,γ is equivalent to
proving it for Mn (finite vs. infinite volume):
[Germinet/Klopp, 2012]
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Proof of Main Result: A Thouless Formula

Proof adapts strategy from [Klein/Lacroix/Speis, 1990] for
Anderson model on a strip Z× {1, ..., `}.

First ingredient: a Thouless formula, which transfers regularity
of Lyapunov exponents to the integrated density of states

For Anderson models on strips, there are two proofs of the
Thouless formula: [Craig/Simon, 1983], [Kotani/Simon, 1988]

Lyapunov index γ(E ) := 1
` [γ1(E ) + · · ·+ γ`(E )]

Thouless formula for Anderson model on a strip:

γ(E ) =

∫
R

log |E − E ′|dN(E ′)

where E 7→ N(E ) is the integrated density of states.

Jacob W. Chapman Localization for Random Block Operators 11/23
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A Thouless Formula

Non-standard hopping - modify [Craig/Simon, 1983] to get

γ(E ) = −1

`
E(log | det g |) +

∫
R

log |E − E ′|dN(E ′)

It is valid for ergodic block Jacobi matrices:

M = M(ω) =



. . .
. . .

. . . V−1 −S−1

−S t
−1 V0 −S0

−S t
0 V1

. . .
. . .

. . .


where f , g : Ω→ R`×` measurable, f (ω) symmetric, g(ω)
invertible, ‖f (ω)‖+ ‖g(ω)‖+ ‖g(ω)−1‖ ≤ D <∞ a.s.,
T ergodic bijection, Vn(ω) := f (T nω), Sn(ω) := g(T nω)
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Dynamical Localization: Assumption

We prove dynamical localization for the class of models

M = M(ω) =
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. . .
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
where {Vn} ⊂ R`×` are compactly supported i.i.d. symmetric,
{Sn} ⊂ R`×` are compactly supported i.i.d. invertible,
{Vn} and {Sn} independent from each other,
‖V0‖+ ‖S0‖+ ‖S−1

0 ‖ ≤ D <∞ a.s.

Note: this covers the anisotropic XY spin chain with ` = 2,
Vn = νnσ

z , Sn = S(γ).
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Dynamical Localization: Assumption

Fürstenberg group GµE := 〈suppµE 〉 is the smallest closed
subgroup of the symplectic 2`× 2` matrices containing
suppµE , where µE is the common distribution of the i.i.d.
transfer matrices for the finite difference equation associated
with M.

Main Assumption (MA): GµE is p-contracting and
Lp-strongly irreducible for every p = 1, ..., ` and E ∈ I , where
I ⊂ R is an open interval.

See [Bougerol/Lacroix, 1985] for definitions of these concepts.
Suffice it to say, they generalize the notions of
noncompactness and strong irreducibility required by
Fürstenberg’s theorem in the ` = 1 case.
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Dynamical Localization: Theorem

Let Pj : `2(Z;C`)→ C` is the projection Pju = u(j).

We proved

Theorem (Dynamical Localization)

If (MA) holds, then for every compact interval J ⊂ I and every
ζ ∈ (0, 1), there exist C <∞ and η > 0 such that for every L ∈ N
and j , k ∈ [−L, L],

E
(

sup
t∈R
‖PjχJ(M[−L,L])e

−itM[−L,L]P∗k‖
)
≤ Ce−η|j−k|

ζ
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Dynamical Localization: Application of Theorem

For a particular model, all one must do is verify that (MA)
holds.

When does (MA) hold? A sufficient (but not necessary)
condition [Gol’dsheid/Margulis, 1989] is that GµE is
Zariski-dense in the symplectic group for all E ∈ I , i.e. every
polynomial in 2`× 2` variables which vanishes on GµE also
vanishes on the symplectic group.
In practice, one shows this by finding `(2`+ 1) linearly
independent elements in the Lie algebra associated with GµE
(for each E ).
This is what we did for the anisotropic XY chain, where ` = 2.
We found 10 lin. indep. elements in GµE for all E 6= 0. This
establishes our Main Result (for the XY chain).
Our construction follows both [Gol’dsheid/Margulis, 1989]
and [Boumaza/Stolz, 2007].
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Proof of Theorem

Our result on dynamical localization is proven by the
bootstrap multiscale analysis (MSA) of [Germinet/Klein,
2001].

It is sufficient (see survey [Klein, 2008]) to show a Wegner
estimate and an initial length scale estimate. Two important
inputs:

Thouless formula (reg. of Lyap. ⇒ reg. of IDS)
Representation formula for Green’s function
(pos. of Lyap. ⇒ exp. decay of Green’s function)

We establish these estimates by adapting arguments from
[Klein/Lacroix/Speis, 1990] for Anderson model on a strip.

Appropriate care must be taken to account for non-standard
hopping terms.
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Open Questions

How can we remove χJ(Mn), J ⊂ R \ {0}, from our Main
Result (in cases where 0 ∈ Σas)? What happens at E = 0?

The Fürstenberg group Gµ0 is no longer irreducible. Transfer
matrices essentially reduce to a diagonal 2× 2 block matrix.

In fact, we have shown that

γ1(0) > γ2(0)(≥ 0)

That the first Lyapunov exponent is positive is nice. The
effects of the second being zero would be an interesting study.

But to prove localization, suppose we assume
γ1(0) > γ2(0) > 0 (which happens “generically”). Can one
prove the required regularity of the Lyapunov exponents at 0?
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A question such as this arises already for the Ising model,
which arises from γ = 1:



. . .
. . .

. . . Vω(−1) −S(1)
−S(1)t Vω(0) −S(1)

−S(1)t Vω(1)
. . .

. . .
. . .


∼=



. . .
. . .

. . . 0 −2
−2 0 ω0

ω0 0 −2
−2 0 ω1

ω1 0
. . .

. . .
. . .



Standard arguments give non-compactness and strong
irreducibility of GµE , but again only for E 6= 0.
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Thus γ(E ) > 0 for all E 6= 0.

We can surely find cases where γ(0) = |E(logω0)| > 0. Can
we manage a proof of dynamical localization at all energies?

Main difficulty is that lack of irreducibility at 0 implies a lack
of uniqueness of an invariant measure associated with the
Lyapunov exponent (used to prove Hölder continuity of
Lyapunov exponents).

If we can prove it, can we extend the proof to the anisotropic
XY spin chain? This would involve understanding a more
abstract, higher-order dynamical system.
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