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One Species, d-Dimensional PVBS Models

Hilbert Space

Let Λ be a finite connected subset of Zd .
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The one-site Hilbert space is
give byHx = C2. The Hilbert
space for the whole system is
given by

HΛ =
⊗
x∈Λ

Hx
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PVBS Hamiltonian

For each dimension k = 1, . . . , d , we assign a parameter λk > 0,
λk 6= 1.

HΛ =
d∑

k=1

∑
x, x+ek∈Λ

hx, x+ek

hx, x+ek = |1, 1〉〈1, 1|+ |φk〉〈φk |, φk =
1√

1 + λ2
k

(|0, 1〉−λk |1, 0〉)
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Ground State Space
Let X ⊆ Λ. Then B = {ψΛ

X : X ⊆ Λ} is an orthonormal basis forHΛ where

ψΛ
X (x) =

{
|1〉 x ∈ X
|0〉 x /∈ X

Let λx =
∏d

k=1 λ
xk
k . Then ground state space for the one-species

d-dimensional PVBS Hamiltonian is given by

ψΛ
∅ =

⊗
x∈Λ

|0〉, ψΛ
1 =

1√
CΛ

∑
x∈Λ

λxψΛ
x (1)

When Λ is the rectangular lattice with end points (0, 0, . . . , 0) and
(n1, n2, . . . , nd ) then

CΛ =
d∏

k=1

c(λk , nk ) where c(λk , nk ) =
nk∑

i=0

λ2i
k .
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A Method for Proving the Spectral Gap in the Thermodynamic Limit

The Spectral Gap

Definition
Let ω ∈ GΓ be an infinite volume ground state obtained as a weak-*
limit of finite volume ground states. Then the spectral gap of the GNS
Hamiltonian Hω is

γω = sup{δ > 0 : spec(Hω) ∩ (0, δ) = ∅}

if the RHS is well defined, or zero otherwise. We say that the spectrum
is gapped if γω > 0.
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A Method for Proving the Spectral Gap in the Thermodynamic Limit

Lower Bound for the Spectral Gap

To prove the existence of a spectral gap in the thermodynamic limit,
we appeal to the following theorem.

Theorem (Spectral Gap Estimate)
Let Hω0 be the GNS Hamiltonian of the ground state ω0 ∈ GZd , and let
γZd be the spectral gap of Hω0 . Then

γZd ≥ lim inf
n≥1

λ1(n)

where λ1(n) is the smallest nonzero eigenvalue of the frustration-free
Hamiltonians HΛn , where Λn is an increasing and absorbing sequence
of lattices Λn ↗ Zd .
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A Method for Proving the Spectral Gap in the Thermodynamic Limit

Conditions for the Martingale Method
The following conditions must hold for one and the same integer value ` > 0.

(1) There exists a constant d` for which the local Hamiltonians satisfy

0 ≤
N∑

n=`

HΛn\Λn−`
≤ d`HΛN .

(2) The local Hamiltonians HΛn have a non-trivial kernel GΛn ⊆ HΛn .
Furthermore, there is a nonvanishing spectral gap γ` > 0 such that:

HΛn\Λn−`
≥ γ`(I− GΛn\Λn−`

)

for all n ≥ n` where GΛn is the orthogonal projection onto GΛn .

(3) There exists a constant ε` < 1√
`+1

and some n` such that for all n ≥ n`,

‖GΛn+1\Λn−`
En‖ ≤ ε`

where En = GΛn − GΛn+1 .
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A Method for Proving the Spectral Gap in the Thermodynamic Limit

The Martingale Method

Theorem
Assume that conditions (1)-(3) are satisfied for the same integer `.
Then for any N and any ψ ∈ HΛN such that GΛNψ = 0, one has

〈ψ, HΛNψ〉 ≥
γ`+1

d`+1
(1− ε`

√
`+ 1)2‖ψ‖2 (2)
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Spectral Gap for the PVBS Model

Sequence of Increasing Lattices
We first pick a sequence of finite volumes increasing to Zd to apply the
spectral gap estimate theorem. We choose the sequence of
hypercubic lattices

ΛN = [0,N]d ∩ Zd .

For each term ΛN of the sequence, we pick a finite sequence of
lattices Λ̃m ↗ ΛN to apply the martingale method. For this we choose

Λ̃m =
(
[0,N]d−1 × [0,m]

)
∩ Zd ,

m = 1, 2, . . . , N. The goal is to use the martingale method to obtain
a uniform lower bound for the spectral gaps

γ(ΛN) = min{λ ∈ spec(HΛN ) : λ > 0}.
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Lower Bound Estimate for PVBS

Theorem (Bounds for the Spectral Gap)
For the PVBS model defined on Zd with a single species of particle, the
spectrum in the thermodynamic limit to Zd is gapped if and only if λk 6= 1 for
all k = 1, . . . , d. Futhermore, the spectral gap, denoted γZd , is bounded by

γ(Bd )

2d

d∏
k=1

(1− ε(λk )
√

2)2 ≤ γZd ≤ min

{
(1− λk )2

1 + λ2
k

: k = 1, . . . , d

}
(3)

where

ε(λk ) =


λk√
1+λ2

k

λk < 1
1√

1+λ2
k

λk > 1
(4)

and Bd is the d-dimensional unit hypercube.
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Spectral Gap for the PVBS Model

Sketch of Proof:
Using the rectangular sequence Λ̃n ↗ ΛN , and ` = 1, we show that

‖GΛ̃n+1\Λ̃n−1
En‖ = sup

ψ∈GΛ̃n
∩G

Λ̃⊥n+1

‖GΛ̃n+1\Λ̃n−1
ψ‖

‖ψ‖
≤ ε(λd )

where

ε(λd ) =


λd√
1+λ2

d

λd < 1
1√

1+λ2
d

λd > 1

This satisfies ε(λd ) < 1√
2
. So by the martingale method,

γ(ΛN) ≥ γ(Λ
(1)
N )

2
(1− ε(λd )

√
2)2,

where
Λ

(1)
N =

(
[0,N]d−1 × [0, 1]

)
∩ Zd .
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Spectral Gap for the PVBS Model

Sketch of Proof:
The sublattice Λ

(1)
N still grows as N →∞, so the gap could close as

N →∞. We recursively apply the martingale method, once for each
direction the lattice grows to get the estimate:

γ(Λ
(k)
N ) ≥ γ(Λ

(k+1)
N )

2
(1− ε(λd−k )

√
2)2

where Λ
(k)
N = ([0,N]d−k × [0, 1]k ) ∩ Zd . Since Λ

(d)
N = Bd the

d-dimensional unit hypercube,

γ(ΛN) ≥ γ(Bd )

2d

d∏
k=1

(1− ε(λk )
√

2)2

and the result follows from the spectral gap estimate theorem.
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