CBMS: B'ham, AL June 17, 2014

Lieb-Robinson Bounds: A Tutorial

1

Robert Sims University of Arizona

Quantum Spin Systems

We consider quantum spin systems defined over a countable set Γ .

In many examples, $\Gamma = \mathbb{Z}^{\nu}$ with $\nu \geq 1$ (or some finite subset thereof), but this is not necessary.

To each $x \in \Gamma$, associate a single site Hilbert space, $\mathcal{H}_x = \mathbb{C}^{n_x}$ with $n_x \ge 2$.

To each finite $\Lambda \subset \Gamma$, associate the Hilbert space of states in Λ :

$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$

and an algebra of observables in Λ :

$$\mathcal{A}_{\Lambda} = \mathcal{B}(\mathcal{H}_{\Lambda})$$

As \mathcal{H}_{Λ} have finite dim., these \mathcal{A}_{Λ} are just the matrices over \mathcal{H}_{Λ} .

Observables and Support

For finite $\Lambda_0 \subset \Lambda \subset \Gamma$, $\mathcal{A}_{\Lambda_0} \subset \mathcal{A}_{\Lambda}$ in the sense that each $A \in \mathcal{A}_{\Lambda_0}$ can be associated to $\tilde{A} = A \otimes \mathbb{1}_{\Lambda \setminus \Lambda_0} \in \mathcal{A}_{\Lambda}$.

We say that $A \in \mathcal{A}_{\Lambda}$ is supported on $X \subset \Lambda$ if A can be written as $A = \tilde{A} \otimes \mathbb{1}_{\Lambda \setminus X}$ for some $\tilde{A} \in \mathcal{A}_X$. The mimimal such set X is called the support of A; denoted by $\operatorname{supp}(A)$.

Note that spatially disjoint observables commute, i.e., if $A \in A_X$ and $B \in A_Y$ and $X \cap Y = \emptyset$, then

$$[A,B]=0$$

where, with some abuse of notation, we are regarding A and B as observables in some A_{Λ} for Λ with $X \cup Y \subset \Lambda$.

Models

A model is defined through an interaction, i.e., a mapping Φ from the set of finite subsets of Γ to the local observable algebra with: $\Phi(X)^* = \Phi(X) \in \mathcal{A}_X$ for each finite $X \subset \Gamma$.

Given an interaction, one can define local Hamiltonians i.e., for any finite $\Lambda\subset\Gamma$ set

$$H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X)$$

and (using the spectral theorem) the corresponding Heisenberg dynamics, i.e.,

$$au^{eta}_t({\sf A})=e^{it{\sf H}_{eta}}{\sf A}e^{-it{\sf H}_{eta}}\quad {
m for any}\;{\sf A}\in {\cal A}_{eta}\,.$$

Example

5

Take $\Gamma = \mathbb{Z}^{\nu}$ for some $\nu \geq 1$.

For all $n \in \mathbb{Z}^{\nu}$, take $\mathcal{H}_n = \mathbb{C}^2$. In this case, with each finite $\Lambda \subset \mathbb{Z}^{\nu}$, the Hilbert space is

$$\mathcal{H}_{\Lambda} = \bigotimes_{n \in \Lambda} \mathbb{C}^2 = \mathbb{C}^{2^{|\Lambda|}}$$

Recall the Pauli matrices, i.e., σ^{α} with $\alpha \in \{x, y, z\}$ is given by

$$\sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

For finite $\Lambda \subset \mathbb{Z}^{\nu}$ and any $n \in \Lambda$ denote by $\sigma_n^{\alpha} \in \mathcal{A}_{\Lambda} = \mathcal{B}(\mathcal{H}_{\Lambda})$

 $\sigma_n^\alpha = 1\!\!1 \otimes \cdots 1\!\!1 \otimes \sigma^\alpha \otimes 1\!\!1 \otimes \cdots \otimes 1\!\!1 \quad \text{with } \sigma^\alpha \text{ in the n-th factor.}$

Example (cont.)

Let Φ be defined by

$$\Phi(X) = \begin{cases} J\left(\sigma_n^x \sigma_m^x + \sigma_n^y \sigma_m^y + \sigma_n^z \sigma_m^z\right) & \text{if } X = \{n, m\} \text{ and } |n - m| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

where J is a real parameter. Then, for each finite $\Lambda \subset \mathbb{Z}^{\nu}$,

$$H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X)$$

= $J \sum_{\langle n,m \rangle \in \Lambda} (\sigma_n^x \sigma_m^x + \sigma_n^y \sigma_m^y + \sigma_n^z \sigma_m^z)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is a nearest-neighbor Heisenberg Hamiltonian.

Quasi-Locality of the Dynamics

The basic idea:

Fix Γ and Φ . Let $X, Y \subset \Gamma$ with $X \cap Y = \emptyset$.

Take $A \in A_X$, $B \in A_Y$, and $\Lambda \subset \Gamma$ finite with $X \cup Y \subset \Lambda$. It is clear that

$$[\tau_0^{\Lambda}(A),B]=[A,B]=0$$

Note, however, that for general Φ , $\operatorname{supp}(\tau_t^{\Lambda}(A)) = \Lambda$ for any $t \neq 0$, since this is a non-relativistic system.

A typical Lieb-Robinson bound proves: for every $\mu > 0$, there exist C and v for which

$$\|[\tau_t^{\Lambda}(A), B]\| \le C \|A\| \|B\| e^{-\mu(d(X, Y) - v|t|)}$$

In particular, these bounds show the commutator is still small for

$$|t| \leq \frac{d(X,Y)}{v}$$

On the Structure of Γ

Generally, Γ is a countable set equipped with a metric d.

If Γ is finite, no further assumptions are necessary. Otherwise:

We assume there is a non-increasing function $F:[0,\infty)
ightarrow (0,\infty)$ for which:

i) F is uniformly integrable

$$\|F\| = \sup_{x\in\Gamma}\sum_{y\in\Gamma}F(d(x,y)) < \infty$$

ii) F satisfies the convolution condition

$$C = \sup_{x,y\in\Gamma}\sum_{z\in\Gamma}\frac{F(d(x,z))F(d(z,y))}{F(d(x,y))} < \infty$$

Given a set Γ and a function F satisfying i) and ii), it is easy to see that for any $a \ge 0$

$$F_a(x) = e^{-ax}F(x)$$

also satisfies i) and ii) with $\|F_a\| \le \|F\|$ and $C_a \le C$.

Example: Let $\Gamma = \mathbb{Z}^{\nu}$ for some $\nu \geq 1$. Then, for any $\epsilon > 0$, take

$$F(x) = \frac{1}{(1+x)^{\nu+\epsilon}}$$

then F satisfies i) and ii) with

$$C \leq 2^{
u+\epsilon+1} \sum_{z \in \mathbb{Z}^{
u}} F(|z|)$$

11

A Norm on Interactions

Fix Γ equipped with F as above. For any $a \ge 0$, let $\mathcal{B}_a(\Gamma)$ be the set of those Φ for which

$$\|\Phi\|_{a} = \sup_{\substack{x,y \in \Gamma \\ x,y \in X}} \sum_{\substack{X \subset \Gamma : \\ F_{a}(d(x,y))}} \frac{\|\Phi(X)\|}{F_{a}(d(x,y))} < \infty$$

This is a large class of interactions.

In fact, on \mathbb{Z}^{ν} with *F* as above:

General finite range, uniformly bounded interactions satisfy $\|\Phi\|_a < \infty$ for all a > 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Lieb-Robinson Bound

Theorem (Lieb-Robinson Bound)

Let Γ be equipped with F as above. Fix a > 0 and take $\Phi \in \mathcal{B}_a(\Gamma)$. There exist positive numbers c and v_{Φ} for which: Given any finite $X, Y \subset \Gamma$ with $X \cap Y = \emptyset$, any $A \in \mathcal{A}_X$ and $B \in \mathcal{A}_Y$, and finite $\Lambda \subset \Gamma$ with $X \cup Y \subset \Lambda$, then

 $\|[\tau_t^{\Lambda}(A), B]\| \le c \|A\| \|B\| \min[|X|, |Y|] e^{-a(d(X,Y)-v_{\Phi}|t|)}$

for all $t \in \mathbb{R}$. Here one can take

$$c = \frac{2\|F_0\|}{C_a}$$
 and $v_{\Phi} = \frac{2\|\Phi\|_a C_a}{a}$.

Some Comments

Only useful for small times as

 $\|[\tau_t^{\Lambda}(A), B]\| \le 2\|A\|\|B\|$

- Still a bound if $X \cap Y \neq \emptyset$, but the above may be better . . .
- ▶ min[|X|, |Y|] can be replaced by boundaries; not volumes. . .
- ► E.g. on Z^ν, with finite range, uniformly bounded Φ, one can optimize v_Φ over a > 0. This produces a best possible estimate; often dubbed a Lieb-Robinson velocity.

Our methods also apply in the case that a = 0 . . .

An Important Lemma

Let \mathcal{H} be a separable Hilbert space over \mathbb{C} and denote by $\mathcal{B}(\mathcal{H})$ the bounded linear operators over \mathcal{H} . A mapping $A : \mathbb{R} \to \mathcal{B}(\mathcal{H})$ is said to be strongly cont. (resp. strongly diff.) if: For all $\psi \in \mathcal{H}$, $A(t)\psi$ is cont. (resp. diff.) in t w.r.t. the norm-topology on \mathcal{H} .

Lemma

Let $A, B : \mathbb{R} \to \mathcal{B}(\mathcal{H})$ be strongly continuous with A also being self-adjoint, i.e. $A(t)^* = A(t)$ for all t. The strong solution of

$$f'(t) = i[A(t), f(t)] + B(t)$$
 with $f(0) = f_0 \in \mathcal{B}(\mathcal{H})$ (1)

(which is unique) satisfies the estimate

$$\|f(t)\| \le \|f_0\| + \int_{t_-}^{t_+} \|B(s)\| \, ds$$

for all $t \in \mathbb{R}$. Here $t_{-} = \min[0, t]$ and $t_{+} = \max[0, t]$.

Proof of Lemma

The Dyson series

$$U_t = \mathbb{1} + \sum_{n=1}^{\infty} i^n \int_0^t \int_0^{t_1} \cdots \int_0^{t_{n-1}} A(t_1) \cdots A(t_n) dt_n \cdots dt_1$$

can be used to construct a mapping $g:\mathbb{R}
ightarrow\mathcal{B}(\mathcal{H})$

$$g(t) = U_t g_0 U_t^*$$

which is a strong solution of

$$g'(t)=i[A(t),g(t)]$$
 with $g(0)=g_0\in \mathcal{B}(\mathcal{H})$

As U_t is unitary, it is clear that g is norm-preserving, i.e.,

$$||g(t)|| = ||g_0||$$
 for all *t*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of Lemma (cont.)

The mapping $f : \mathbb{R} \to \mathcal{B}(\mathcal{H})$ given by

$$f(t) = U_t \left(f_0 + \int_0^t U_s^* B(s) U_s \, ds \right) U_t^*$$

is easily seen to be a strong solution of (1). As such, it satisfies

$$\|f(t)\| \le \|f_0\| + \int_{t_-}^{t_+} \|B(s)\| \, ds$$

again, using unitarity of U_t . Uniqueness (in the context of both g and f) follows from an application of the Gronwall lemma.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of the LRB

Consider the function $f : \mathbb{R} \to \mathcal{A}_{\Lambda}$ given by

$$f(t) = \left[\tau_t^{\Lambda}(A), B\right] = \left[e^{itH_{\Lambda}}Ae^{-itH_{\Lambda}}, B\right]$$

It is clear that

$$\frac{d}{dt}\tau_t^{\Lambda}(A) = i\tau_t^{\Lambda}\left([H_{\Lambda}, A]\right) = i\tau_t^{\Lambda}\left([\tilde{H}_X, A]\right)$$

where

$$ilde{H}_X = \sum_{\substack{Z \subset \Lambda: \ Z \cap X
eq \emptyset}} \Phi(Z)$$

since A is supported in X. In this case,

$$f'(t) = i \left[\tau_t^{\Lambda} \left([\tilde{H}_X, A] \right), B \right]$$

= $i \left[\left[\tau_t^{\Lambda} (\tilde{H}_X), \tau_t^{\Lambda} (A) \right], B \right]$
= $-i \left[\left[\tau_t^{\Lambda} (A), B \right], \tau_t^{\Lambda} (\tilde{H}_X) \right] - i \left[\left[B, \tau_t^{\Lambda} (\tilde{H}_X) \right], \tau_t^{\Lambda} (A) \right]$
by Jacobi, i.e. $[[A, B], C] + [[B, C], A] + [[C, A], B] = 0$.

Proof of the LRB(cont.)

Re-writing things, we have shown that the function f satisfies

$$f'(t) = i[A(t), f(t)] + B(t)$$
 with $f(0) = [A, B]$

where we have set

$$A(t) = \tau_t^{\Lambda}(\tilde{H}_X)$$
 and $B(t) = i \left[\tau_t^{\Lambda}(A), \left[B, \tau_t^{\Lambda}(\tilde{H}_X)
ight]
ight]$

Using our lemma, we find that

$$\|[\tau_t^{\Lambda}(A), B]\| \le \|[A, B]\| + 2\|A\| \int_{t_-}^{t_+} \|[\tau_s^{\Lambda}(\tilde{H}_X), B]\| ds$$

It is now convenient to define

$$C_B(X,t) = \sup_{\substack{A \in \mathcal{A}_X:\\A \neq 0}} \frac{\|[\tau_t^{\Lambda}(A), B]\|}{\|A\|}$$

and observe that for t > 0 we have shown

$$C_B(X,t) \leq C_B(X,0) + 2 \sum_{\substack{Z \subset \Lambda:\\ Z \cap X \neq \emptyset}} \|\Phi(Z)\| \int_0^t C_B(Z,s) \, ds$$

Proof of the LRB(cont.) For any $Z \subset \Lambda$,

$C_B(Z,0) \leq 2 \|B\| \delta_Y(Z)$

and so iteration yields

$$C_B(X,t) \leq 2 \|B\| \sum_{n=0}^{\infty} \frac{(2|t|)^n}{n!} a_n$$

with

$$a_{n} = \sum_{\substack{Z_{1} \subset \Lambda: \\ Z_{1} \cap X \neq \emptyset}} \sum_{\substack{Z_{2} \subset \Lambda: \\ Z_{2} \cap Z_{1} \neq \emptyset}} \cdots \sum_{\substack{Z_{n} \subset \Lambda: \\ Z_{n} \cap Z_{n-1} \neq \emptyset}} \delta_{Y}(Z_{n}) \prod_{i=1}^{n} \|\Phi(Z_{i})\|$$

Now

$$a_1 \leq \sum_{x \in X} \sum_{y \in Y} \sum_{Z \ni x, y} \|\Phi(Z)\| \leq \|\Phi\|_a \sum_{x \in X} \sum_{y \in Y} F_a(d(x, y))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of the LRB(cont.)

 $\quad \text{and} \quad$

$$a_{2} \leq \sum_{x \in X} \sum_{y \in Y} \sum_{z \in \Lambda} \sum_{\substack{Z \subset \Lambda: \\ x, z \in Z_{1}}} \|\Phi(Z_{1})\| \sum_{\substack{Z_{2} \subset \Lambda \\ z, y \in Z_{2}}} \|\Phi(Z_{2})\|$$

$$\leq \|\Phi\|_{a}^{2} \sum_{x \in X} \sum_{y \in Y} \sum_{z \in \Lambda} F_{a}(d(x, z))F_{a}(d(z, y))$$

$$\leq \|\Phi\|_{a}^{2} C_{a} \sum_{x \in X} \sum_{y \in Y} F_{a}(d(x, y))$$

and similarly

$$a_n \leq \|\Phi\|_a^n C_a^{n-1} \sum_{x \in X} \sum_{y \in Y} F_a(d(x, y))$$

Since

$$\sum_{x \in X} \sum_{y \in Y} F_{\mathsf{a}}(d(x, y)) \le e^{-\mathsf{a}d(X, Y)} \min[|X|, |Y|] ||F||$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

we have finished the proof.

An Application

These Lieb-Robinson bounds show that: For any $\Phi \in \mathcal{B}_a(\Gamma)$, the application of the finite-volume dynamics to a local observable, i.e. $\tau_t^{\Lambda}(A)$, remains essentially local for small times, in the sense that $\tau_t^{\Lambda}(A)$ almost commutes with any *B* supported far away from the support of *A*. Moreover, the estimates proven are uniform in the finite volume Λ .

As a result, one can prove that the finite-volume dynamics have a thermodynamic limit. In fact, for any $\Phi \in \mathcal{B}_a(\Gamma)$, the finite-volume dynamics $\tau_t^{\Lambda}(A)$ have a limit as $\Lambda \to \Gamma$.

On the Thermodynamic Limit

As we have discussed, for any finite sets $\Lambda_0 \subset \Lambda \subset \Gamma$, the algebras $\mathcal{A}_{\Lambda_0} \subset \mathcal{A}_{\Lambda}$. In this case, we define

$$\mathcal{A}_{\Gamma}^{\mathrm{loc}} = \bigcup_{\Lambda \subset \Gamma} \mathcal{A}_{\Lambda}$$

the union taken over all finite subsets and take \mathcal{A}_{Γ} to be the norm-completion of $\mathcal{A}_{\Gamma}^{\text{loc}}$. \mathcal{A}_{Γ} is a C^* -algebra.

Theorem

Let a > 0 and $\Phi \in \mathcal{B}_a(\Gamma)$. There exists a strongly continuous, one-parameter group of automorphisms $\tau_t^{\Gamma}(\cdot)$ on \mathcal{A}_{Γ} and

$$\lim_{n\to\infty} \|\tau_t^{\Lambda_n}(A) - \tau_t^{\Gamma}(A)\| = 0$$

for any $A \in A_{\Gamma}$ and any non-decreasing, exhaustive sequence of finite subsets $\{\Lambda_n\}$. The convergence is uniform on compact sets.

Proof of Thermo. Limit

Fix $A \in A_X$. Take n > m large enough so that $X \subset \Lambda_m \subset \Lambda_n$. It is easy to see that

$$au_t^{\Lambda_n}(A) - au_t^{\Lambda_m}(A) = \int_0^t rac{d}{ds} \left(au_s^{\Lambda_n} \circ au_{t-s}^{\Lambda_m}(A)
ight) \, ds$$

and since

$$\frac{d}{ds}\left(\tau_s^{\Lambda_n}\circ\tau_{t-s}^{\Lambda_m}(A)\right)=i\tau_s^{\Lambda_n}\left(\left[H_{\Lambda_n}-H_{\Lambda_m},\tau_{t-s}^{\Lambda_m}(A)\right]\right)$$

it is clear that for t > 0

$$\left\| au_t^{\Lambda_n}(A) - au_t^{\Lambda_m}(A)
ight\| \leq \sum_{z \in \Lambda_n \setminus \Lambda_m} \sum_{Z \ni z} \int_0^t \left\| \left[\Phi(Z), au_s^{\Lambda_m}(A)
ight] \right\| \, ds$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof of Thermo. Limit (cont.)

And from the proof of the Lieb-Robinson bound

$$\begin{aligned} \left\| \tau_t^{\Lambda_n}(A) - \tau_t^{\Lambda_m}(A) \right\| &\leq 2 \|A\| C_a^{-1} \sum_{z \in \Lambda_n \setminus \Lambda_m} \sum_{Z \ni z} \|\Phi(Z)\| \times \\ &\times \int_0^t e^{2\|\Phi\|_a C_a s} ds \sum_{z' \in Z} \sum_{x \in X} F_a(d(z', x)) \\ &\leq 2 \|A\| \|\Phi\|_a \int_0^t e^{2\|\Phi\|_a C_a s} ds \times \\ &\times |X| \sup_{x \in X} \sum_{z \in \Lambda_n \setminus \Lambda_m} F_a(d(x, z)) \end{aligned}$$

This quantity clearly goes to 0 as $n, m \to \infty$. This proves that the sequence of finite volumes is Cauchy in norm (hence convergent) and the estimate is uniform on compact *t*-subsets.