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Quantum Spin Systems

We consider quantum spin systems defined over a countable set Γ.

In many examples, Γ = Zν with ν ≥ 1 (or some finite subset

thereof), but this is not necessary.

To each x ∈ Γ, associate a single site Hilbert space, Hx = Cnx

with nx ≥ 2.

To each finite Λ ⊂ Γ, associate the Hilbert space of states in Λ:

HΛ =
⊗
x∈Λ

Hx

and an algebra of observables in Λ:

AΛ = B(HΛ)

As HΛ have finite dim., these AΛ are just the matrices over HΛ.
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Observables and Support

For finite Λ0 ⊂ Λ ⊂ Γ, AΛ0 ⊂ AΛ in the sense that each A ∈ AΛ0

can be associated to Ã = A⊗ 1lΛ\Λ0
∈ AΛ.

We say that A ∈ AΛ is supported on X ⊂ Λ if A can be written as

A = Ã⊗ 1lΛ\X for some Ã ∈ AX . The mimimal such set X is

called the support of A; denoted by supp(A).

Note that spatially disjoint observables commute, i.e., if A ∈ AX

and B ∈ AY and X ∩ Y = ∅, then

[A,B] = 0

where, with some abuse of notation, we are regarding A and B as

observables in some AΛ for Λ with X ∪ Y ⊂ Λ.
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Models

A model is defined through an interaction, i.e., a mapping Φ from

the set of finite subsets of Γ to the local observable algebra with:

Φ(X )∗ = Φ(X ) ∈ AX for each finite X ⊂ Γ.

Given an interaction, one can define local Hamiltonians i.e., for any

finite Λ ⊂ Γ set

HΛ =
∑
X⊂Λ

Φ(X )

and (using the spectral theorem) the corresponding Heisenberg

dynamics, i.e.,

τΛ
t (A) = e itHΛAe−itHΛ for any A ∈ AΛ .
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Example

Take Γ = Zν for some ν ≥ 1.

For all n ∈ Zν , take Hn = C2. In this case, with each finite

Λ ⊂ Zν , the Hilbert space is

HΛ =
⊗
n∈Λ

C2 = C2|Λ|

Recall the Pauli matrices, i.e., σα with α ∈ {x , y , z} is given by

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)

For finite Λ ⊂ Zν and any n ∈ Λ denote by σαn ∈ AΛ = B(HΛ)

σαn = 1l⊗ · · · 1l⊗ σα ⊗ 1l⊗ · · · ⊗ 1l with σα in the n-th factor.
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Example (cont.)

Let Φ be defined by

Φ(X ) =

{
J
(
σxnσ

x
m + σynσ

y
m + σznσ

z
m

)
if X = {n,m} and |n −m| = 1,

0 otherwise.

where J is a real parameter.

Then, for each finite Λ ⊂ Zν ,

HΛ =
∑
X⊂Λ

Φ(X )

= J
∑

<n,m>∈Λ

(σxnσ
x
m + σynσ

y
m + σznσ

z
m)

is a nearest-neighbor Heisenberg Hamiltonian.



7

Quasi-Locality of the Dynamics

The basic idea:

Fix Γ and Φ. Let X ,Y ⊂ Γ with X ∩ Y = ∅.

Take A ∈ AX , B ∈ AY , and Λ ⊂ Γ finite with X ∪ Y ⊂ Λ.

It is clear that

[τΛ
0 (A),B] = [A,B] = 0

Note, however, that for general Φ, supp(τΛ
t (A)) = Λ for any t 6= 0,

since this is a non-relativistic system.

A typical Lieb-Robinson bound proves: for every µ > 0, there exist

C and v for which

‖[τΛ
t (A),B]‖ ≤ C‖A‖‖B‖e−µ(d(X ,Y )−v |t|)

In particular, these bounds show the commutator is still small for

|t| ≤ d(X ,Y )

v
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Heuristic sketch of supports at time t.

v |t|

’support’ of τΛ
t (A)

d(X,Y)

X

Y
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On the Structure of Γ

Generally, Γ is a countable set equipped with a metric d .

If Γ is finite, no further assumptions are necessary. Otherwise:

We assume there is a non-increasing function F : [0,∞)→ (0,∞)

for which:

i) F is uniformly integrable

‖F‖ = sup
x∈Γ

∑
y∈Γ

F (d(x , y)) <∞

ii) F satisfies the convolution condition

C = sup
x ,y∈Γ

∑
z∈Γ

F (d(x , z))F (d(z , y))

F (d(x , y))
<∞
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On Γ continued

Given a set Γ and a function F satisfying i) and ii), it is easy to see

that for any a ≥ 0

Fa(x) = e−axF (x)

also satisfies i) and ii) with ‖Fa‖ ≤ ‖F‖ and Ca ≤ C .

Example: Let Γ = Zν for some ν ≥ 1. Then, for any ε > 0, take

F (x) =
1

(1 + x)ν+ε

then F satisfies i) and ii) with

C ≤ 2ν+ε+1
∑
z∈Zν

F (|z |)
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A Norm on Interactions

Fix Γ equipped with F as above. For any a ≥ 0, let Ba(Γ) be the

set of those Φ for which

‖Φ‖a = sup
x ,y∈Γ

∑
X⊂Γ:

x ,y∈X

‖Φ(X )‖
Fa(d(x , y))

< ∞

This is a large class of interactions.

In fact, on Zν with F as above:

General finite range, uniformly bounded interactions satisfy

‖Φ‖a <∞ for all a > 0.
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A Lieb-Robinson Bound

Theorem (Lieb-Robinson Bound)

Let Γ be equipped with F as above. Fix a > 0 and take

Φ ∈ Ba(Γ). There exist positive numbers c and vΦ for which:

Given any finite X ,Y ⊂ Γ with X ∩ Y = ∅, any A ∈ AX and

B ∈ AY , and finite Λ ⊂ Γ with X ∪ Y ⊂ Λ, then

‖[τΛ
t (A),B]‖ ≤ c‖A‖‖B‖min[|X |, |Y |]e−a(d(X ,Y )−vΦ|t|)

for all t ∈ R. Here one can take

c =
2‖F0‖

Ca
and vΦ =

2‖Φ‖aCa

a
.
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Some Comments

I Only useful for small times as

‖[τΛ
t (A),B]‖ ≤ 2‖A‖‖B‖

I Still a bound if X ∩ Y 6= ∅, but the above may be better . . .

I min[|X |, |Y |] can be replaced by boundaries; not volumes. . .

I E.g. on Zν , with finite range, uniformly bounded Φ, one can

optimize vΦ over a > 0. This produces a best possible

estimate; often dubbed a Lieb-Robinson velocity.

I Our methods also apply in the case that a = 0 . . .
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An Important Lemma

Let H be a separable Hilbert space over C and denote by B(H)

the bounded linear operators over H. A mapping A : R→ B(H) is

said to be strongly cont. (resp. strongly diff.) if: For all ψ ∈ H,

A(t)ψ is cont. (resp. diff.) in t w.r.t. the norm-topology on H.

Lemma

Let A,B : R→ B(H) be strongly continuous with A also being

self-adjoint, i.e. A(t)∗ = A(t) for all t. The strong solution of

f ′(t) = i [A(t), f (t)] + B(t) with f (0) = f0 ∈ B(H) (1)

(which is unique) satisfies the estimate

‖f (t)‖ ≤ ‖f0‖+

∫ t+

t−

‖B(s)‖ ds

for all t ∈ R. Here t− = min[0, t] and t+ = max[0, t].
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Proof of Lemma

The Dyson series

Ut = 1l +
∞∑
n=1

in
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
A(t1) · · ·A(tn)dtn · · · dt1

can be used to construct a mapping g : R→ B(H)

g(t) = Utg0U∗t

which is a strong solution of

g ′(t) = i [A(t), g(t)] with g(0) = g0 ∈ B(H)

As Ut is unitary, it is clear that g is norm-preserving, i.e.,

‖g(t)‖ = ‖g0‖ for all t.
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Proof of Lemma (cont.)

The mapping f : R→ B(H) given by

f (t) = Ut

(
f0 +

∫ t

0
U∗s B(s)Us ds

)
U∗t

is easily seen to be a strong solution of (1). As such, it satisfies

‖f (t)‖ ≤ ‖f0‖+

∫ t+

t−

‖B(s)‖ ds

again, using unitarity of Ut . Uniqueness (in the context of both g

and f ) follows from an application of the Gronwall lemma.
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Proof of the LRB

Consider the function f : R→ AΛ given by

f (t) =
[
τΛ
t (A),B

]
=
[
e itHΛAe−itHΛ ,B

]
It is clear that

d

dt
τΛ
t (A) = iτΛ

t ([HΛ,A]) = iτΛ
t

(
[H̃X ,A]

)
where

H̃X =
∑
Z⊂Λ:

Z∩X 6=∅

Φ(Z )

since A is supported in X . In this case,

f ′(t) = i
[
τΛ
t

(
[H̃X ,A]

)
,B
]

= i
[[
τΛ
t (H̃X ), τΛ

t (A)
]
,B
]

= −i
[[
τΛ
t (A),B

]
, τΛ

t (H̃X )
]
− i
[[

B, τΛ
t (H̃X )

]
, τΛ

t (A)
]

by Jacobi, i.e. [[A,B],C ] + [[B,C ],A] + [[C ,A],B] = 0.
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Proof of the LRB(cont.)

Re-writing things, we have shown that the function f satisfies

f ′(t) = i [A(t), f (t)] + B(t) with f (0) = [A,B]

where we have set

A(t) = τΛ
t (H̃X ) and B(t) = i

[
τΛ
t (A),

[
B, τΛ

t (H̃X )
]]

Using our lemma, we find that

‖[τΛ
t (A),B]‖ ≤ ‖[A,B]‖+ 2‖A‖

∫ t+

t−

‖[τΛ
s (H̃X ),B]‖ ds

It is now convenient to define

CB(X , t) = sup
A∈AX :

A 6=0

‖[τΛ
t (A),B]‖
‖A‖

and observe that for t > 0 we have shown

CB(X , t) ≤ CB(X , 0) + 2
∑
Z⊂Λ:

Z∩X 6=∅

‖Φ(Z )‖
∫ t

0
CB(Z , s) ds
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Proof of the LRB(cont.)

For any Z ⊂ Λ,

CB(Z , 0) ≤ 2‖B‖δY (Z )

and so iteration yields

CB(X , t) ≤ 2‖B‖
∞∑
n=0

(2|t|)n

n!
an

with

an =
∑
Z1⊂Λ:

Z1∩X 6=∅

∑
Z2⊂Λ:

Z2∩Z1 6=∅

· · ·
∑
Zn⊂Λ:

Zn∩Zn−1 6=∅

δY (Zn)
n∏

i=1

‖Φ(Zi )‖

Now

a1 ≤
∑
x∈X

∑
y∈Y

∑
Z3x ,y

‖Φ(Z )‖ ≤ ‖Φ‖a
∑
x∈X

∑
y∈Y

Fa(d(x , y))
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Proof of the LRB(cont.)

and

a2 ≤
∑
x∈X

∑
y∈Y

∑
z∈Λ

∑
Z⊂Λ:

x ,z∈Z1

‖Φ(Z1)‖
∑
Z2⊂Λ

z,y∈Z2

‖Φ(Z2)‖

≤ ‖Φ‖2
a

∑
x∈X

∑
y∈Y

∑
z∈Λ

Fa(d(x , z))Fa(d(z , y))

≤ ‖Φ‖2
aCa

∑
x∈X

∑
y∈Y

Fa(d(x , y))

and similarly

an ≤ ‖Φ‖naCn−1
a

∑
x∈X

∑
y∈Y

Fa(d(x , y))

Since ∑
x∈X

∑
y∈Y

Fa(d(x , y)) ≤ e−ad(X ,Y ) min[|X |, |Y |]‖F‖

we have finished the proof.
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An Application

These Lieb-Robinson bounds show that: For any Φ ∈ Ba(Γ), the

application of the finite-volume dynamics to a local observable, i.e.

τΛ
t (A), remains essentially local for small times, in the sense that

τΛ
t (A) almost commutes with any B supported far away from the

support of A. Moreover, the estimates proven are uniform in the

finite volume Λ.

As a result, one can prove that the finite-volume dynamics have a

thermodynamic limit. In fact, for any Φ ∈ Ba(Γ), the finite-volume

dynamics τΛ
t (A) have a limit as Λ→ Γ.
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On the Thermodynamic Limit

As we have discussed, for any finite sets Λ0 ⊂ Λ ⊂ Γ, the algebras

AΛ0 ⊂ AΛ. In this case, we define

Aloc
Γ =

⋃
Λ⊂Γ

AΛ

the union taken over all finite subsets and take AΓ to be the

norm-completion of Aloc
Γ . AΓ is a C ∗-algebra.

Theorem

Let a > 0 and Φ ∈ Ba(Γ). There exists a strongly continuous,

one-parameter group of automorphisms τΓ
t (·) on AΓ and

lim
n→∞

‖τΛn
t (A)− τΓ

t (A)‖ = 0

for any A ∈ AΓ and any non-decreasing, exhaustive sequence of

finite subsets {Λn}. The convergence is uniform on compact sets.
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Proof of Thermo. Limit

Fix A ∈ AX . Take n > m large enough so that X ⊂ Λm ⊂ Λn. It is

easy to see that

τΛn
t (A)− τΛm

t (A) =

∫ t

0

d

ds

(
τΛn
s ◦ τ

Λm
t−s(A)

)
ds

and since

d

ds

(
τΛn
s ◦ τ

Λm
t−s(A)

)
= iτΛn

s

([
HΛn − HΛm , τ

Λm
t−s(A)

])
it is clear that for t > 0∥∥∥τΛn

t (A)− τΛm
t (A)

∥∥∥ ≤ ∑
z∈Λn\Λm

∑
Z3z

∫ t

0

∥∥∥[Φ(Z ), τΛm
s (A)]

∥∥∥ ds
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Proof of Thermo. Limit (cont.)

And from the proof of the Lieb-Robinson bound∥∥∥τΛn
t (A)− τΛm

t (A)
∥∥∥ ≤ 2‖A‖C−1

a

∑
z∈Λn\Λm

∑
Z3z
‖Φ(Z )‖ ×

×
∫ t

0
e2‖Φ‖aCasds

∑
z ′∈Z

∑
x∈X

Fa(d(z ′, x))

≤ 2‖A‖‖Φ‖a
∫ t

0
e2‖Φ‖aCasds ×

×|X | sup
x∈X

∑
z∈Λn\Λm

Fa(d(x , z))

This quantity clearly goes to 0 as n,m→∞. This proves that the

sequence of finite volumes is Cauchy in norm (hence convergent)

and the estimate is uniform on compact t-subsets.


