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The Isotropic XY-Spin Chain

Fix a real-valued sequence {νj}j≥1 and for each integer n ≥ 1, set

Hn =
n−1∑
j=1

(σxj σ
x
j+1 + σyj σ

y
j+1) +

n∑
j=1

νjσ
z
j ,

acting on

Hn =
n⊗

j=1

C2

Here, the Pauli matrices are

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
and for α ∈ {x , y , z} and 1 ≤ j ≤ n we embed these into B(Hn):

σαj = 1l⊗ · · · 1l⊗ σα ⊗ 1l⊗ · · · ⊗ 1l with σα in the j-th factor.
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A Locality Review

Let us denote the Heisenberg dynamics associated to Hn by

τnt (A) = e itHnAe−itHn for all A ∈ B(Hn)

For simplicity, take Ak ⊂ B(Hn) to be all those observables

supported at a single site 1 ≤ k ≤ n.

For bounded sequences {νj}, it is clear that Lieb-Robinson bounds

apply and for any µ > 0,

‖[τnt (A),B]‖ ≤ C‖A‖‖B‖e−µ(|k−k ′|−v |t|)

for any A ∈ Ak , B ∈ Ak ′ , and t ∈ R with some v > 0 depending

on µ and the sequence {νj}.

Can one prove a stronger statement if the {νj} are random?
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A Strong Form of Dynamical Localization

Assume {νj} is an i.i.d. random sequence with compactly

supported bounded density ρ.

Theorem (Hamza-S-Stolz ’11)

There are positive numbers C and η for which, given any integer

n ≥ 1 the bound

E
(

sup
t∈R
‖[τnt (A),B]‖

)
≤ C‖A‖‖B‖e−η|k−k ′|

holds for any A ∈ Ak and B ∈ Ak ′ with 1 ≤ k < k ′ ≤ n.

One can think of this as a Lieb-Robinson bound with zero velocity.

After reviewing some basic properties of this model, the main goal

of this talk is to prove this result.
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Diagonalizing the Hamiltonian

As Gunter discussed, diagonalizing this Hamiltonian goes back to

LSM ’61:

First, one introduces raising and lowering operators:

a∗ =
1

2
(σx + iσy ) =

(
0 1

0 0

)

a =
1

2
(σx − iσy ) =

(
0 0

1 0

)
It will also be useful to observe that:

a∗a =

(
1 0

0 0

)
and aa∗ =

(
0 0

0 1

)

i.e., these four operators form a basis for B(C2) = C2×2.



6

Jordan-Wigner Transform

Then, one introduces the non-local Jordan-Wigner transform:

c1 = a1 and cj = σz1 . . . σ
z
j−1aj

for each j ≥ 2.

These operators are particularly useful because they satisfy the

canonical anti-commutation relations (CAR):

{cj , c∗k} = δjk1l and {cj , ck} = {c∗j , c∗k} = 0 .

We often collect them as vectors:

c =


c1

c2

...

cn

 or c∗ = (c∗1 , c
∗
2 , · · · , c∗n)
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Re-writing the Hamiltonian

A short calculation shows that

Hn =
n−1∑
j=1

(σxj σ
x
j+1 + σyj σ

y
j+1) +

n∑
j=1

νjσ
z
j

= 2
n−1∑
j=1

(a∗j aj+1 + a∗j+1aj) +
n∑

j=1

νj(2a∗j aj − 1l)

= −2
n−1∑
j=1

(c∗j cj+1 + c∗j+1cj) +
n∑

j=1

νj(2c∗j cj − 1l)

= 2c∗Mnc − E1l

where

Mn =


ν1 −1

−1 ν2
. . .

. . .
. . . −1

−1 νn

 and E =
n∑

j=1

νj
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The Anderson model:

In the case that the {νj} are random, Mn corresponds to the

well-studied Anderson model corresponding to a single quantum

particle in a random environment.

With our assumptions on the {νj}, one can prove

Theorem (Dynamical Localization)

There exist positive numbers C ′ and η′ such that for all integers

n ≥ 1 and any k, k ′ ∈ {1, . . . , n},

E
(

sup
t∈R
|(e−itMn)kk ′ |

)
≤ C ′e−η

′|k−k ′|.

For the purposes of this talk, we will assume this is well-known;

see, for example, Kunz-Souillard or Aizenman-Molchanov.
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Summary of findings so far:

We have seen that this many-body XY Hamiltonian can be

expressed in terms of a single-particle Hamiltonian, i.e.,

Hn = 2c∗Mnc − E1l

In the case that the {νj} are nice random variables, we also know

that the single-particle dynamics, i.e. e itMn , is dynamically

localized.

We now show that this implies the desired result for the

many-body dynamics, i.e. τnt (·).
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Bogoliubov Transformations

As we saw, Mn is real symmetric. In this case, there is a real

orthogonal Un such that

Ut
nMnUn = Λ = diag(λk)

Take 
b1

b2

...

bn

 = Ut
n


c1

c2

...

cn

 i.e. b = Ut
nc

Observe that these b-operators also satisfy the CAR and moreover

Hn = 2c∗Mnc − E1l = 2
n∑

k=1

λkb
∗
kbk − E1l

Thus, this last transform expresses Hn as a system of free

Fermions.
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Calculating the Many-Body Dynamics

As Gunter also discussed, a simple calculation shows that

τnt (bk) = e−2itλkbk and τnt (b∗k) = e2itλkb∗k

or

τnt (b) = e−2itΛb

A further calculation, using that c = Unb, shows that

τnt (c) = e−2itMnc or τnt (cj) =
∑
k

(
e−2itMn

)
jk
ck

and so the many-body dynamics (of the c-operators) can be

expressed explicitly in terms of the single-particle dynamics.

We can now begin the proof of the main result.



12

Recall the Main Result:

Theorem

Assume {νj} is an i.i.d. random sequence with compactly

supported bounded density ρ. There are positive numbers C and η

for which, given any integer n ≥ 1 the bound

E
(

sup
t∈R
‖[τnt (A),B]‖

)
≤ C‖A‖‖B‖e−η|k−k ′|

holds for any A ∈ Ak and B ∈ Ak ′ with 1 ≤ k < k ′ ≤ n.
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Proof of Main Result:

Fix 1 ≤ k < k ′ ≤ n as indicated and take B ∈ Ak ′ .

Consider first the non-local A = ck , i.e.:

[τnt (ck),B] =
n∑

j=1

(
e−2itMn

)
kj

[cj ,B]

=
n∑

j=k ′

(
e−2itMn

)
kj

[cj ,B]

Using the single-particle dynamical localization result, we find that

E
(

sup
t
‖[τnt (ck),B]‖

)
≤ 2C ′‖B‖

n∑
j=k ′

e−η
′(j−k) ≤ 2C ′‖B‖

1− e−η′
e−η

′(k ′−k)

This is an estimate of the type desired; excepting that it is for the

non-local observable ck . By taking adjoints, it is clear that a

similar result holds for c∗k .
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Proof of Main Result (cont.):

Now take A = ak . Recall ak = σz1 · · ·σzk−1ck . Observe that

[τnt (ak),B] = τnt (σz1) · · · τnt (σzk−1)[τnt (ck),B] +

+[τnt (σz1) · · · τnt (σzk−1),B]τnt (ck)

where we have used the automorphism property of τnt (·), i.e.

τnt (AB) = τnt (A)τnt (B)

and the Leibnitz rule:

[AB,C ] = A[B,C ] + [A,C ]B

It is clear then that

‖[τnt (ak),B]‖ ≤ ‖[τnt (ck),B]‖+ ‖[τnt (σz1) · · · τnt (σzk−1),B]‖
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Proof of Main Result (cont.):

Now, for any j , the quantity appearing above satisfies

‖[τnt (σz1) · · · τnt (σzj ),B]‖ ≤ ‖[τnt (σzj ),B]‖+‖[τnt (σz1) · · · τnt (σzj−1),B]‖

again by Leibnitz. Moreover,

σzj = 2a∗j aj − 1l = 2c∗j cj − 1l

and so

[τnt (σzj ),B] = 2[τnt (c∗j ),B]τnt (cj) + 2τnt (c∗j )[τnt (cj),B]

and, in fact:

‖[τnt (σzj ),B]‖ ≤ 2‖[τnt (c∗j ),B]‖+ 2‖[τnt (cj),B]‖

Consequently,

‖[τnt (ak),B]‖ ≤ 2
k∑

j=1

(
‖[τnt (c∗j ),B]‖+ ‖[τnt (cj),B]‖

)
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Proof of Main Result (cont.):

Using our previous result, it is clear that

E
(

sup
t
‖[τnt (ak),B]‖

)
≤ 8C ′‖B‖

1− e−η′

k∑
j=1

e−η
′(k ′−j)

≤ 8C ′‖B‖
(1− e−η′)2

e−η
′(k ′−k)

which is the result for A = ak .

By taking adjoints, a similar result holds for A = a∗k .

Using Leibnitz again, it is clear that a similar result holds for both

A = a∗kak and A = aka
∗
k .

Since these operators form a basis for Ak , this completes the proof.
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A Generalization

The isotropic XY model is not the only spin chain that reduces to

a system of free Fermions. Consider e.g. the anisotropic XY Spin

Hamiltonian

Hn =
n−1∑
j=1

µj [(1 + γj)σ
x
j σ

x
j+1 + (1− γj)σyj σ

y
j+1] +

n∑
j=1

νjσ
z
j

with real parameters given by: interaction strengths {µj},
anisotropy {γj}, and field strengths {νj}. Introducing the same

raising and lowering operators and then the Jordan-Wigner

transform, this many-body operator can also be written in terms of

an effective single-particle Hamiltonian.
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Diagonalizing the Hamiltonian

As is discussed in the notes,

Hn = C ∗MnC

where

C = (c1, c2, · · · , cn, c∗1 , c∗2 , · · · , c∗n)t

is a column vector and

C ∗ = (c∗1 , c
∗
2 , · · · , c∗n , c1, c2, · · · , cn)

In this case, the single particle Hamiltonian is a block-matrix

Mn =

(
An Bn

−Bn −An

)



19

Diagonalizing the Hamiltonian(cont.)

with

An =


ν1 −µ1

−µ1 ν2
. . .

. . .
. . . −µn−1

−µn−1 νn


and

Bn =



0 γ1µ1

−γ1µ1
. . .

. . .
. . .

. . .
. . .

. . .
. . . γn−1µn−1

−γn−1µn−1 0


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The More General Result (at least in words)

In our paper, we prove an analogous result:

If the single particle Hamiltonian Mn is dynamically localized, then

the many body Hamiltonian satisfies dynamical localization as well,

in the sense that we establish a zero-velocity Lieb-Robinson bound

(in average).

What we do not quantify (and what remains an interesting open

question) is: Under what conditions is this more general, random

single particle system dynamically localized?
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For the Experts:

By re-ordering the basis vectors, the block-matrix above is easily

seen to be unitarily equivalent to

M̃n =



−ν1σ
z µ1S(γ1)

µ1S(γ1)t −ν2σ
z . . .

. . .
. . .

. . .
. . .

. . . µn−1S(γn−1)

µn−1S(γn−1)t −νnσz


where

S(γ) =

(
1 γ

−γ −1

)
The question now becomes: If some of these coefficients are

random, is such a one-dimensional, single-particle model

dynamically localized?


