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The Isotropic XY-Spin Chain

Fix a real-valued sequence {v}};>1 and for each integer n > 1, set

n—1 n
— X X y .y . ~Z
Ho = (0 ofsa+o]o]a) + > wef,
j=1 j=t

acting on

H, = (§n§)<c2
j=1

Here, the Pauli matrices are
N 01 0 —i 5 1 0
— , o) = , 0% =
10 i 0 0 -1
and for o € {x,y,z} and 1 < j < n we embed these into B(H,):

of =1 1" ®@1®---®1 with 0% in the j-th factor.



A Locality Review

Let us denote the Heisenberg dynamics associated to H, by
n __ _itH, —itH,
T (A) = e Ae forall A€ B(Hn)
For simplicity, take A, C B(H,) to be all those observables
supported at a single site 1 < k < n.

For bounded sequences {v;}, it is clear that Lieb-Robinson bounds

apply and for any p > 0,
I[77(A), B]|| < C||A||||B||e~#(Ik=KI=vitD

forany A€ Ay, B € Ay, and t € R with some v > 0 depending
on p and the sequence {v;}.

Can one prove a stronger statement if the {v;} are random?



A Strong Form of Dynamical Localization

Assume {v;} is an i.i.d. random sequence with compactly

supported bounded density p.
Theorem (Hamza-S-Stolz '11)

There are positive numbers C and n for which, given any integer
n > 1 the bound

’ <S“PI|[T{’(A)»B]|> < C||Al[|| B[~k
teR
holds for any A€ Ay, and B € A with1 < k < k' < n.

One can think of this as a Lieb-Robinson bound with zero velocity.

After reviewing some basic properties of this model, the main goal

of this talk is to prove this result.



Diagonalizing the Hamiltonian

As Gunter discussed, diagonalizing this Hamiltonian goes back to
LSM '61:

First, one introduces raising and lowering operators:

1 0 1
a*=(c"+i0Y) =
Lo* 1 io?) (0 O)

1 00
a— — X _ oY =
2(0 io”) (1 0>

It will also be useful to observe that:

. 10 . 0 0
a‘a= and aa* =
<0 0) (0 1)

i.e., these four operators form a basis for B(C?) = C?*2.



Jordan-Wigner Transform

Then, one introduces the non-local Jordan-Wigner transform:
a=a and ¢ =07...07 413

for each j > 2.

These operators are particularly useful because they satisfy the

canonical anti-commutation relations (CAR):
{g,ckt =0l and {¢,c}={c,c}=0.

We often collect them as vectors:



Re-writing the Hamiltonian

A short calculation shows that

n—1
Hn = Z( fof1 0707 +ZVJ 9j
j=1

n—1
= 2Zaaj+1—|— a113)) —I—ZVJ (2a7a; — 1)
Jj=1 j=1
n—1 n
= —2) (GG +cag)+ Y 12 e -
j=1 j=1
= 2c*M,c — E1
where
rn —1
-1 1%} n
Mn — and E = Zl/j

-1 v,



The Anderson model:

In the case that the {v;} are random, M, corresponds to the
well-studied Anderson model corresponding to a single quantum

particle in a random environment.
With our assumptions on the {;}, one can prove

Theorem (Dynamical Localization)

There exist positive numbers C' and 1/ such that for all integers
n>1andany k, k' € {1,...,n},

E (Sup|(e—itl\/ln)kk/|> < C/e_n/‘k—kq.

teR

For the purposes of this talk, we will assume this is well-known;

see, for example, Kunz-Souillard or Aizenman-Molchanov.



Summary of findings so far:
We have seen that this many-body XY Hamiltonian can be
expressed in terms of a single-particle Hamiltonian, i.e.,

H, =2c*M,c — E1

In the case that the {v;} are nice random variables, we also know
that the single-particle dynamics, i.e. ™ is dynamically
localized.

We now show that this implies the desired result for the

many-body dynamics, i.e. 7/'(:).



Bogoliubov Transformations

As we saw, M, is real symmetric. In this case, there is a real

orthogonal U, such that

UM, U, = N\ = diag(A\x)

Take
b1 C1
b2 Co
S =UL| ie. b=Ulc
bn Cn

Observe that these b-operators also satisfy the CAR and moreover

Hp =2c*"Mpc — E1 =2 " \cbib, — E1
k=1

Thus, this last transform expresses H,, as a system of free

Fermions.



Calculating the Many-Body Dynamics
As Gunter also discussed, a simple calculation shows that
T7(b) = e *Mby, and 7/(b}) = &b}
or
P(b) = e~2itNp
A further calculation, using that ¢ = U, b, shows that
m7(c) = e 2™Mnc or 70(c) = zk: (e_zitM")jk Ck

and so the many-body dynamics (of the c-operators) can be

expressed explicitly in terms of the single-particle dynamics.

We can now begin the proof of the main result.



Recall the Main Result:

Theorem

Assume {v;} is an i.i.d. random sequence with compactly
supported bounded density p. There are positive numbers C and n
for which, given any integer n > 1 the bound

E (i;@ 1172 (A), Bu) < CJlA]|Blle ¥

holds for any A€ Ay and B € Ay with1 < k < k' < n.



Proof of Main Result:

Fix 1 < k < k' < n as indicated and take B € Ay .
Consider first the non-local A = ¢y, i.e.:

n

[r{(c).B] = 3 (e*) g 8]

J=1
n

= Z (e_ZitM”>kj [¢j, B]

J=K

Using the single-particle dynamical localization result, we find that

n ' ~ Gk~ 2C1BI i)
E (sup [[77(c), Bl ) <278 S e 00 < 2151 -
t

. —1—em
J=K

This is an estimate of the type desired; excepting that it is for the
non-local observable c¢,. By taking adjoints, it is clear that a

similar result holds for c;.



Proof of Main Result (cont.):

Now take A = aj. Recall ay = of --- 05 _;ck. Observe that

[77(ak), Bl = 7¢(0%) -7 (0k-1)7¢'(ck), Bl +

+lr(01) - - 7 (0—1), Bl7i'(ck)
where we have used the automorphism property of 7/'(+), i.e.
7 (AB) = 7/ (A)7{(B)
and the Leibnitz rule:
[AB,C] = A[B,C]+ [A, C]B
It is clear then that

17 (), BIl < ll[7¢'(ex), BIll + Il (o) - - - 7' (k1) Bl



Proof of Main Result (cont.):
Now, for any j, the quantity appearing above satisfies

7' (a7) - - 7 (o7 ), Blll < |7 (7). B+l (o) - - - 7 (07-1), Bl
again by Leibnitz. Moreover,
of =2aaj— 1=2c¢c— 1

and so
[7{(07), Bl = 2[r{(c}), B]7{(¢;) + 27¢(¢;)[7{ (<)), Bl
and, in fact:
I[77(a7), BIIl < 2[|[7(c}), Blll + 2[[7'(¢;), BIll

Consequently,

17 (ak), Bl < 22 It (7). Blll + Il (<), BIIl)



Proof of Main Result (cont.):

Using our previous result, it is clear that

n 8C/HBH —n'(k'—j)
B (sl Bll) < PoL° Z

(18_C:|9|_Bn|/’)2 o1 (K—K)

IN

which is the result for A = a,.
By taking adjoints, a similar result holds for A = aj.

Using Leibnitz again, it is clear that a similar result holds for both

A= aia, and A = aay.

Since these operators form a basis for Ay, this completes the proof.



A Generalization

The isotropic XY model is not the only spin chain that reduces to
a system of free Fermions. Consider e.g. the anisotropic XY Spin

Hamiltonian

n—1 n
o = D il + ) ofer + (L= )ofofa] + 3w
j=1 J=1

with real parameters given by: interaction strengths {y;},
anisotropy {;}, and field strengths {v;}. Introducing the same
raising and lowering operators and then the Jordan-Wigner
transform, this many-body operator can also be written in terms of

an effective single-particle Hamiltonian.



Diagonalizing the Hamiltonian
As is discussed in the notes,

H,=C"M,C
where
* * *\t
C= (C13C2a"' yCnyC1,Coy 7Cn)
is a column vector and
* * * *
= (C]_,C2,"' yChyC1,C2, 0 7Cn)

In this case, the single particle Hamiltonian is a block-matrix



Diagonalizing the Hamiltonian(cont.)

with
vy —H1
A = 2
—Mn-1
—HMn—1 Vp
and
0 mm
—Y1H1
B, =
Yn—1Mn—1

—Yn—1Mn-1 0
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The More General Result (at least in words)
In our paper, we prove an analogous result:

If the single particle Hamiltonian M, is dynamically localized, then
the many body Hamiltonian satisfies dynamical localization as well,
in the sense that we establish a zero-velocity Lieb-Robinson bound

(in average).

What we do not quantify (and what remains an interesting open
question) is: Under what conditions is this more general, random

single particle system dynamically localized?
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For the Experts:

By re-ordering the basis vectors, the block-matrix above is easily

seen to be unitarily equivalent to

—1v10? p1S(m)
pS(m)t  —vo?

3§z
I

,un—ls(’)/n—l)
Mn—ls('}/n—l)t N Z

_(1
5(7)—(7 1)

The question now becomes: If some of these coefficients are

where

random, is such a one-dimensional, single-particle model

dynamically localized?




