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Abstract

In this tutorial we collect facts from the theory of self-adjoint operators, mostly with a
view of what is relevant for applications in mathematical quantum mechanics, in particular
for solving the Schrödinger equation. Specific topics include the spectral theorem and func-
tional calculus for self-adjoint operators, Stone’s Theorem, Laplacians and Fourier transform,
Duhamel’s formula and Dyson series, time-evolution of non-interacting quantum systems, as
well as the Baker-Campbell-Hausdorff fomula and Trotter product formula.

We assume that the user of these notes is familiar with basic functional analysis and linear
operator theory in Hilbert spaces. In most instances we don’t provide proofs. Details on both,
basic background as well as proofs, can be found in numerous books, such as [1, 3, 4, 5, 6].

1 Self-Adjoint Operators

Let H be a separable complex Hilbert space with inner product 〈·, ·〉, which we choose linear
in the second argument and conjugate-linear in the first argument. Let T be a densely defined
linear operator in H, i.e. T : D(T )→ H linear with D(T ) dense in H.

The adjoint T ∗ of T is the linear operator in H defined by

D(T ∗) = {g ∈ H : ∃h ∈ H such that 〈h, f〉 = 〈g, Tf〉 for all f ∈ D(T )} (1)

T ∗g = h . (2)

T is called self-adjoint if T ∗ = T (which includes the requirement D(T ∗) = D(T )).
Self-adjoint operators T are hermitean (defined as 〈Tg, f〉 = 〈g, Tf〉 for all f, g ∈ D(T ))

and symmetric (meaning that T ∗ is an extension of T ).
For unbounded operators these three properties are not equivalent. However, if T ∈ B(H),

the bounded and everywhere defined operators on H, then hermitean, symmetric and self-
adjoint all have the same meaning.

The resolvent set of a linear operator T in H is given by

ρ(T ) = {z ∈ C : T − z is injective and (T − z)−1 ∈ B(H)} (3)
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and (T − z)−1 is referred to as the resolvent of T at z.
The spectrum of T is the complement of the resolvent set,

σ(T ) = C \ ρ(T ). (4)

The resolvent set is open in C and thus the spectrum a closed subset of C.
For symmetric and, in particular, self-adjoint operators T the spectrum is real, σ(T ) ⊂ R.

2 The Spectral Theorem for Self-Adjoint Operators

There are at least two good reasons for the prominence of self-adjoint operators in mathemat-
ical physics (and for why they are preferred over hermitean and symmetric operators). One
reason is mathematical and given by the spectral theorem for self-adjoint operators, discussed
in this section. The other reason is physical and given by Stone’s Theorem, discussed in the
next section.

2.1 Spectral Theorem

A spectral family E in H is a family of orthogonal projections E(t), t ∈ R, in H with the
properties

(a) E(s) ≤ E(t) if s ≤ t (in the sense that 〈f, E(s)f〉 ≤ 〈f, E(t)f〉 for all f ∈ H),
(b) E is strongly right-continuous, i.e. limε→0+E(t+ ε)f = E(t)f for all t ∈ R and f ∈ H,
(c) E(t)→ 0 strongly as t→ −∞ and E(t)→ I strongly as t→∞.

The spectral theorem established a one-to-one correspondence between self-adjoint opera-
tors and spectral families:

Theorem 2.1 (Spectral Theorem). For every self-adjoint operator T there exists a spectral
family E such that

T =

∫
R
t dE(t). (5)

Vice versa, to every spectral family E the right hand side of (5) defines a self-adjoint operator
T .

In the case of unbounded self-adjoint operators T , the correct interpretation of (5) needs
some care for which we refer to the literature. For bounded self-adjoint T , which are charac-
terized by their associated sesquilinear form 〈·, T ·〉, (5) is equivalent to its weak form

〈g, Tf〉 =

∫
R
t d〈g, E(t)f〉 (6)

for all f, g ∈ H. Here d〈g, E(·)f〉 is the complex Borel measure on R defined via polarization
as

1

4
(ρg+f − ρg−f + iρg−if − iρg+if ), (7)
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where ρf is the bounded Borel measure with distribution function ρf (t) = 〈f, E(t)f〉. As a
special case we have

〈f, Tf〉 =

∫
t dρf (t). (8)

For a given self-adjoint operator T the spectral family E can be found from Stone’s formula

〈g, (E(b)− E(a))f〉 = lim
δ→0+

lim
ε→0+

1

2πi

∫ b+δ

a+δ

〈g, ((T − t− iε)−1 − (T − t+ iε)−1)f〉 dt. (9)

This formula (or one of its close relatives) is central to the proof of the Spectral Theorem,
where it is shown that (9) indeed defines a spectral family and that (5) holds with this choice
of E. However, in applications to concrete self-adjoint operators T one usually tries to exploit
specific properties of T for a more direct approach to studying its spectral family (see, for
example, Section 4 below).

Two of the most important applications of the spectral theorem are the introduction of a
functional calculus for self-adjoint operators as well as the definition of spectral types.

2.2 Functional Calculus

For Borel functions u : R→ C and a self-adjoint operator T with spectral family E one defines
the operator

u(T ) =

∫
u(t) dE(t), (10)

which, as above, is best interpreted in weak sense. Among the useful properties of the func-
tional calculus defined via (10) are:

• If u is bounded, than u(T ) ∈ B(H) with ‖u(T )‖ ≤ sup |u|.

• (u±v)(T ) = u(T )±v(T ) and (uv)(T ) = u(T )v(T ) (up to suitable domain considerations
if u and/or v are unbounded).

• For functions u where u(T ) can be defined in other natural ways, this definition will
coincide with the one via the functional calculus, for example

– If vz(t) = 1
t−z and z ∈ ρ(T ), then vz(T ) = (T − z)−1.

– For polynomials u(t) =
∑n

j=0 cjt
j one gets u(T ) =

∑n
j=0 cjT

j.

– If T is bounded and u is analytic in an open disc {z ∈ C : |z − a| < r} containing
σ(T ) and with Taylor series u(t) =

∑∞
j=0 cj(t− a)j, then u(T ) =

∑∞
j=0 cj(T − a)j,

where the series converges in operator norm.

2.3 Spectral Types

The bounded Borel measures ρf have unique Lebesgue decompositions

ρf = ρacf + ρscf + ρppf (11)
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into absolutely continuous, singular continuous and pure point measures. This can be used to
define the absolutely continuous spectrum σac(T ), the singular continuos spectrum σsc(T ) and
the pure point spectrum σpp(T ) of T via

σ•(T ) =
⋃
f∈H

supp ρ•f (12)

for • ∈ {ac, sc, pp}. Here the support of a Borel measure ρ on R is defined as

supp ρ = {t : ρ((t− ε, t+ ε)) > 0 for all ε > 0}. (13)

The set
Hac(T ) = {f ∈ H : ρf is purely absolutely continous} (14)

is a reducing subspace for T , the absolutely continuous subspace of H with respect to T . The
restriction Tac of T to Hac(T ) is the absolutely continuous part of T and satisfies σ(Tac) =
σac(T ).

Similarly, one defines the singular continuous and pure point subspacesHsc(T ) andHpp(T ),
as well as the singular continuous and pure point parts Tsc and Tpp of T . One has

H = Hac(T )⊕Hsc(T )⊕Hsc(T ) and T = Tac ⊕ Tsc ⊕ Tpp. (15)

3 Solving the Schrödinger Equation and Stone’s Theo-

rem

In quantum mechanics (at least in its version due to Schrödinger) the state of a quantum
mechanical system at time t is given by a normalized vector ψ(t) in a Hilbert space H. For a
system in initial state ψ0 ∈ H at t = 0 one finds ψ(t) by solving the Schrödinger equation

i∂tψ(t) = Hψ(t), ψ(0) = ψ0, (16)

where we have set Planck’s constant ~ = 1. Here H is the Hamiltonian of the system, a
self-adjoint operator in H representing the total energy of the system.

One can argue that self-adjointness of the Hamiltonian is necessary as well as sufficient
for guaranteeing the existence of a unique solution of the Schrödinger equation which also has
properties which one would like to have for physical reasons.

Sufficiency of self-adjointness of H is a consequence of the functional calculus: For all
t ∈ R let ut(x) = e−itx and define

U(t) = ut(H) = e−itH (17)

by the functional calculus. It can then be shown that ψ(t) = U(t)ψ0 is the unique solution of
(16) if ψ0 ∈ D(H) (in this case one finds that ψ(t) ∈ H for all t and ∂tψ(t) = −iHψ(t) in the
sense of a derivative of an H-valued function). For unbounded Hamiltonians H, one generally
interprets U(t)ψ0 as a solution of the Schrödinger equation even if ψ0 is not in the domain of
H.
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U(t) = e−itH is referred to as the time evolution of the Hamiltonian H.
The solution ψ(t) = U(t)ψ0 also has properties which one would expect from the time

evolution of a state in a closed quantum mechanical system. Mathematically, this is expressed
by the fact that U = (U(t))t∈R is a strongly continuous one-parameter unitary group (SCOUG).
This means that

• U(t) is unitary in H for all t ∈ R,

• U(0) = I and U(t+ s) = U(t)U(s) for all t, s ∈ R, and

• U(t)f → U(s)f as t→ s for all f ∈ H.

In particular, unitarity of U means that the solution ψ(t) = U(t)ψ0 preserves the norm
of ψ0, which was assumed to be one. In the canonical case where H is an L2-space over the
configuration space X of the system (with suitable measure), preservation of the L2-norm is
crucial for the probabilistic (Born) interpretation of quantum mechanical waves. According
to this interpretation,

pE,t = ‖χEψ(t)‖2 (18)

is the probability that the system will be in a configuration x ∈ E at time t, where E is any
measurable subset of X.

If one works under the reasonable postulate that the time-evolution of a quantum system
should be governed by a SCOUG, then the necessity of self-adjointness of the Hamiltonian is
a consequence of Stone’s Theorem:

Theorem 3.1 (Stone). If A is the infinitesimal generator of a SCOUG, then H = iA is
self-adjoint.

Here the infinitesimal generator A of U is defined as

D(A) = {f ∈ H : g = lim
h→0

1

h
(U(h)f − f) exists}, Af = g. (19)

Assume that H is the Hamiltonian of a quantum system and the Schrödinger equation
(16) is solved by ψ(t) = U(t)ψ0, where ψ0 ∈ D(H) and U(·) is a SCOUG with generator A.
Then, in particular,

−iHψ0 = ψ′(0) = lim
h→0

1

h
(U(h)ψ0 − ψ0). (20)

Thus ψ0 ∈ D(A) and −iHψ0 = Aψ0. Vice versa, if ψ0 ∈ D(A), then U(t)ψ0 solves (16) with
H = iA, meaning that we can only gain by choosing the domain of H at least as large as the
domain of A.

We combine this to get D(A) = D(H) and H = iA. Thus, by Stone’s Theorem, H is
self-adjoint.
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4 Calculating Time-Evolutions

Stone’s formula (9) and the functional calculus (10) can, at least in principle, be used to
determine the time-evolution U(t) = e−itH of a self-adjoint Hamiltonian H. However, in most
applications one takes a different approach. This exploits that Hamiltonians can often be
written in the form

H = H0 + V, (21)

where the time-evolution of H0 can be found explicitly and V can be considered as a pertur-
bation of H0 (in suitable sense). Often, but not always, H0 and V correspond to the kinetic
and potential energy of the quantum mechanical system.

4.1 Fourier transform

Let us discuss only the continuous and discrete Laplacians as the two most important exam-
ples of the kinetic energy operator H0. Both of these are translation invariant, one in the
continuum and one on the lattice Zd, meaning that both of them can be diagonalized via
Fourier transforms:

The continuous d-dimensional Laplacian is the self-adjoint operator

H0 = −∆ (22)

in H = L2(Rd) with domain D(H0) = H2(Rd), the second order Sobolev space (i.e. the space
of those L2-functions whose weak derivatives up to second order are still in L2).

The continuum Fourier transform on Rd is the unitary operator Fc : L2(Rd) → L2(Rd)
defined by

(Fcf)(y) = l.i.m.L→∞(2π)−d/2
∫

[−L,L]d
f(x)e−iy·x dx, (23)

(F−1
c g)(x) = l.i.m.L→∞(2π)−d/2

∫
[−L,L]d

g(y)e−iy·x dy, (24)

where l.i.m. denotes the L2-limit of functions in y and x, respectively. One has the unitary
equivalence

−∆ = Fc|x|2F−1
c , (25)

where, somewhat sloppily, |x|2 stands for the maximal multiplication operator with the func-
tion |x|2 =

∑d
j=1 x

2
j . This gives the representation

e−it(−∆) = Fce
−it|x|2F−1

c (26)

for the time-evolution of the Laplacian. From this one can derive the explicit formula

(e−it(−∆)f)(x) = l.i.m.L→∞ (4πit)−d/2
∫

[−L,L]d
ei|x−y|

2/4tf(y) dy, (27)

see e.g. [4].
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The d-dimensional discrete Laplacian is the bounded self-adjoint operator h0 on `2(Zd)
given by

(h0f)(x) = −
∑

y∈Zd: |x−y|=1

f(y) for all x ∈ Zd. (28)

Here |x| =
∑

j |xj| is the 1-norm. More appropriately, h0 should be referred to as the (negative)

adjacency operator on Zd, as it differs from the “correct” discrete Laplacian by 2dI. But the
effects of this shift are trivial, so that it is frequently neglected.

With the discrete Fourier transform Fd : L2([0, 2π)d)→ `2(Zd) given by

(Fdf)(n) = (2π)−d/2
∫

[0,2π)d
f(x)e−in·x dx, (29)

(F−1
d g)(x) = l.i.m.L→∞(2π)−d/2

∑
n∈Zd,|n|≤L

g(n)eix·n, (30)

one has

h0 = Fd

(
−2

d∑
j=1

cos(xj)

)
F−1
d . (31)

While this allows to represent the time-evolution of h0 as

e−ith0 = Fde
−it(−2

∑
j cos(xj))F−1

d , (32)

it does not lead to an explicit formula quite as simple as (27).

4.2 Duhamel’s Formula and Dyson Series

Once the “free” time-evolution e−itH0 is well understood, one can study the time evolution of
H = H0 + V by perturbative methods. The basic tool for this is Duhamel’s formula which,
for simplicity, we state here only for bounded V , while it also holds for certain unbounded
perturbations (e.g. those which are relatively H0-bounded with relative bound less than one).

Theorem 4.1 (Duhamel’s Formula). Let H0 be self-adjoint and V bounded and symmetric in
H and H = H0 + V . Then

e−itHψ0 = e−itH0ψ0 + (−i)
∫ t

0

e−i(t−t1)H0V e−it1Hψ0 dt1 (33)

for every ψ0 ∈ H.

Observe that the integrand on the right of (33) is continuous, so that the integral (as well
as other integrals appearing below) can be interpreted as a Riemann integral of an H-valued
function.

Proof. The proof of (33) proceeds by differentiation and subsequent integration: For ψ0 ∈
D(H0) = D(H) one has by an operator version of the product rule

d

dt
eitH0e−itHψ0 = eitH0iH0e

−itHψ0 − eitH0iHe−itHψ0 (34)

= −ieitH0V e−itHψ0. (35)

7



This is now integrated to yield

eitH0e−itHψ0 − ψ0 = (−i)
∫ t

0

eit1H0V e−it1Hψ0 dt1, (36)

from which (33) follows after multiplying by e−itH0 . This extends to general ψ0, as both sides
of (33) are bounded operators.

In some cases (33) can be used directly to obtain information on e−itH by using bounds on
the integral. In other cases, one may exploit that (33) can be iterated, i.e. one may express
e−it1Hψ0 under the integral by another application of Duhamel’s formula. This leads to the
Dyson series:

Theorem 4.2 (Dyson Series). Let H0 be self-adjoint and V bounded and symmetric, and
ψ0 ∈ H. Then

e−itHψ0 = e−itH0ψ0 (37)

+
∞∑
n=1

(−i)n
∫ t

0

∫ t1

0

. . .

∫ tn−1

0

e−i(t−t1)H0V

(
n−1∏
k=1

e−i(tk−tk+1)H0V

)
e−itnH0ψ0 dtn . . . dt2 dt1,

with convergence of the series in operator norm.

Proof. Iterating (33) ` times gives a partial sum from n = 1 to n = ` for the series in (37),
with the `-th term being replaced by

(−i)`
∫ t

0

∫ t1

0

. . .

∫ t`−1

0

e−i(t−t1)H0V

(
`−1∏
k=1

e−i(tk−tk+1)H0V

)
e−it`Hψ0 dt` . . . dt2 dt1, (38)

note the H in the last term under the integral. The integral (38) defines a bounded operator

with norm at most |t|
`!
‖V ‖`. Thus the partial sums converge to the series (37) in operator

norm.

4.3 Non-interacting systems, Baker-Campbell-Hausdorff and
Trotter

The simplest case for calculating the time-evolution of an additive Hamiltonian H = A + B
is when A and B commute, [A,B] = 0. Then

e−it(A+B) = e−itAe−itB. (39)

If A and B are bounded self-adjoint operators, then this follows with essentially the same
proof as for the “ordinary” exponential function (also using the last remark in Section 2.2
above. However, (39) also extends to suitable classes of unbounded self-adjoint operators.

For example, the Hamiltonian of a quantum system consisting of two non-interacting
subsystems governed by Hamiltonians H1, H2 in Hilbert spaces H1 and H2 is given by

H = H1 ⊗ I + I ⊗H2 in H = H1 ⊗H2. (40)
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Here the closure on the right is necessary if H1 and H2 are both unbounded. H1 ⊗ I and
I ⊗H2 commute, which leads to

e−itH = e−it(H1⊗I)e−it(I⊗H2) = (e−itH1 ⊗ I)(I ⊗ e−itH2) (41)

= e−itH1 ⊗ e−itH2 . (42)

Of course, this is what must happen physically: The two non-interacting systems evolve
separately in their respective Hilbert spaces. This formula for the time-evolution of non-
interacting quantum systems extends in an obvious way to systems consisting of an arbitrary
finite number of non-interacting subsystems.

In some cases where operators A and B don’t commute, one may instead use the Baker-
Campbell-Hausdorff formula to find the evolution of A+B. In its simplest version for square
matrices (or bounded operators) A and B such that [A, [A,B]] = [B, [A,B]] = 0, the BCH
formula says

eA+B = eAeBe−
1
2

[A,B]. (43)

Here matrix-exponentials are defined as Taylor series.
A proof of (43) can be sketched along exactly the same lines which were used above to

prove Duhamel’s formula and the Dyson series, but with more technical effort: (i) Differentiate
e−tBe−tAet(A+B), using that [B, e−tA] = −t[B,A]e−tA to simplify the result, (ii) integrate over
0 ≤ t ≤ 1, (iii) iterate the first two steps and recognize that the power series of et

2[A,B]/2 arises.
For self-adjoint A and B this gives the time evolution

e−it(A+B) = e−itAe−itBe
t2

2
[A,B]. (44)

As a special case, at least formally, this leads to the Weyl relation

ei(rp+sq) = e−irs/2eirpeisq. (45)

Here r, s ∈ R and p and q are the momentum and position operators in L2(R), i.e. (pf)(x) =
−if ′(x), (qf)(x) = xf(x). They satisfy [p, q] = −iI, and thus, in particular, [p, [p, q]] =
[q, [p, q]] = 0, so that formally (45) follows from (43). As p and q are unbounded operators,
the rigorous proof needs a bit more care than for the case of bounded operators, but, using
the theory of analytic vectors, follows essentially the same steps, see e.g. Section 5.2.1 in [2]
for details.

While the BCH formula (and certain analogues for higher order commutators) apply only
in very special cases, a much more generally applicable tool is the Trotter product formula. It
says that if A, B and A+B (with domain D(A) ∩D(B)) are self-adjoint in H, then

e−it(A+B)f = lim
n→∞

(
e−i

t
n
Ae−i

t
n
B
)n
f (46)

for all f ∈ H. For proofs see Theorem VIII.30 in [3] or Theorem 7.40 in [6]. In these references
one can also find a semi-group version of the Trotter product formula: If A, B and A+B are
semi-bounded from below, then

e−t(A+B)f = lim
n→∞

(
e−

t
n
Ae−

t
n
B
)n

(47)

for all f ∈ H and all t ≥ 0. The latter is relevant, for example, in the proof of the Feynman-
Kac formula, but we won’t go into this here, see, e.g., Chapter X.11 of [4].
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