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Abstract

In the following we present an introduction to the mathematical theory of the XY spin
chain. The importance of this model lies in the fact, first understood by Lieb, Schultz and
Mattis in [4], that the XY spin chain is one of very few “exactly solvable” models in the theory
of quantum many-body systems. Lieb, Schultz and Mattis considered the constant coefficient
case. In the variable coefficient case considered here, “exactly solvable” should be understood
as “reducible to an effective one-particle Hamiltonian”. The key method behind this is the
Jordan-Wigner transform, which allows to map the XY chain to a free Fermion system.

1 The isotropic XY -spin chain

For a positive integer n, consider the Hamiltonian

H = −
n−1∑
j=1

µj(σ
X
j σ

X
j+1 + σYj σ

Y
j+1)−

n∑
j=1

νjσ
Z
j , (1)

acting in H =
⊗n

j=1 C2. The first sum represents a chain of n spins with next neighbors
interacting through the X and Y -Pauli matrices. The second sum models the effect of an
additional transverse magnetic field acting on the spins.

The parameters µj and νj are real. We also assume µj 6= 0, as otherwise the chain breaks
into separate pieces which could be analyzed individually. In most of the physics literature
on the XY chain these parameters are chosen as constants µ 6= 0 and ν, but we want to stress
here that the methods used also work in the variable coefficient case. The word “isotropic”
refers to the fact that the two interaction terms, in the X and Y -Pauli matrices, respectively,
have equal weight. We start with this case, mostly because it is easier. The anisotropic XY
chain will be considered in Section 5 below.

To be specific, let

σ•
j = I ⊗ . . .⊗ I ⊗ σ• ⊗ I ⊗ . . .⊗ I, • ∈ {X, Y, Z}, (2)

with non-trivial entries in the j-th component of the tensor product, and choose the standard
representation

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
(3)
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of the Pauli matrices. We note that, using {A,B} = AB +BA to denote anti-commutators,

(σX)2 = (σY )2 = (σZ)2 = I, {σX , σY } = {σX , σZ} = {σY , σZ} = 0. (4)

We will frequently work with the lowering and raising operators

a :=
1

2
(σX − iσY ) =

(
0 0
1 0

)
, (5)

and

a∗ =
1

2
(σX + iσY ) =

(
0 1
0 0

)
. (6)

Note that

a∗a =

(
1 0
0 0

)
, and aa∗ =

(
0 0
0 1

)
(7)

are orthogonal projections. As above we write

aj = I ⊗ . . .⊗ I ⊗ a⊗ I ⊗ . . .⊗ I, (8)

a∗j = I ⊗ . . .⊗ I ⊗ a∗ ⊗ I ⊗ . . .⊗ I. (9)

This allows to express the Pauli matrices through

σXj = aj + a∗j , σYj = i(aj − a∗j), σZj = 2a∗jaj − I. (10)

The raising and lowering operators satisfy the mixed commutator and anti-commutator
relations

{aj, a∗j} = I, (aj)
2 = (a∗j)

2 = 0, (11)

[aj, a
∗
k] = [a∗j , a

∗
k] = [aj, ak] = 0 for j 6= k. (12)

Using these identities one verifies

σXj σ
X
j+1 + σYj σ

Y
j+1 = 2(a∗jaj+1 + a∗j+1aj), j = 1, . . . , n− 1, (13)

and therefore H can be expressed as

H = −2
n−1∑
j=1

µj(a
∗
jaj+1 + a∗j+1aj)−

n∑
j=1

νj(2a
∗
jaj − I). (14)

2 The Jordan-Wigner transform

Lieb, Schultz and Mattis [4] were the first to realize that the Hamiltonian of the xy-spin chain
is equivalent to an effective one-particle system, which, in cases where the Jacobi matrix
M representing the one-particle system can be diagonalized (in particular for the constant
coefficient case), makes the xy-spin chain explicitly solvable.
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The first step in this diagonalization is a Jordan-Wigner transform, where aj and a∗j are
replaced by a new set of so-called annihilation and creation operators (the meaning of which
will become clearer in Section 3)

cj := σZ1 . . . σ
Z
j−1aj, j = 1, . . . , n, (15)

and
c∗j = σZ1 . . . σ

Z
j−1a

∗
j . (16)

From this it follows readily that

c2
j = a2

j = 0, (c∗j)
2 = (a∗j)

2 = 0, c∗jcj = a∗jaj, cjc
∗
j = aja

∗
j , (17)

and therefore {cj, c∗j} = I. In fact, the cj and c∗j satisfy the canonical anti-commutation
relations (CAR),

{cj, c∗k} = δjkI, {cj, ck} = {c∗j , c∗k} = 0 for all j, k = 1, . . . , n, (18)

To verify this for k 6= j, use that {aj, σZj } = 0.
To express H in terms of the operators cj and c∗k, note that

a∗jaj+1 = c∗jσ
Z
j cj+1 = c∗j(2c

∗
jcj − I)cj+1 = −c∗jcj+1 (19)

and, taking adjoints,
a∗j+1aj = −c∗j+1cj. (20)

This leads to

H = 2
n−1∑
j=1

µj(c
∗
jcj+1 + c∗j+1cj)− 2

n∑
j=1

νjc
∗
jcj +

n∑
j=1

νjI

= 2c∗Mc+ E0I. (21)

Here c := (c1, . . . , cn)t, c∗ = (c∗1, . . . , c
∗
n), E0 :=

∑
j νj and M is the symmetric Jacobi matrix

M = (Mjk)
n
j,k=1 :=


−ν1 µ1

µ1
. . . . . .
. . . . . . µn−1

µn−1 −νn

 . (22)

In the theory of the XY chain it turns out that M plays the role of an effective one-particle
Hamiltonian. In principle, the many body Hamiltonian H (acting on a 2n-dimensional Hilbert
space) can be fully understood from properties of the one-particle Hamiltonian M (which acts
on an n-dimensional Hilbert space).
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3 Diagonalization of H

There is an orthogonal matrix U (with real entries) such that

UMU t = Λ = diag(λj), (23)

and therefore
e−iMt = U te−iΛtU = U tdiag(e−iλjt)U. (24)

Define b = (b1, . . . , bn)t by
b = Uc. (25)

By the bi-linearity of {·, ·} and orthogonality of U it follows readily that bj, j = 1, . . . , n
satisfies the CAR. Moreover,

H = 2c∗Mc+ E0I

= 2c∗U tΛUc+ E0I

= 2b∗Λb+ E0I

=
n∑
j=1

2λjb
∗
jbj + E0I, (26)

i.e. in terms of the new creation and annihilation operators H takes the form of a Hamiltonian
of a free Fermion system. Assuming knowledge of the λj, this operator can be explicitly diag-
onalized. This makes use of important algebraic properties of systems of operators satisfying
the CAR. For a somewhat useful introduction or a reminder of these properties see [5]. For a
brief treatment see Proposition II.6.2 in [7]. Some of them are:

• The operators b∗jbj, j = 1, . . . , n, are pairwise commuting orthogonal projections, mean-
ing that they can be simultaneously diagonalized.

• The intersection of the kernels of b∗jbj (which is the same as the kernel of bj) contains at
least one non-trivial normalized vector Ω, i.e. b∗jbjΩ = 0, j = 1, . . . , n.

• For each α = (α1, . . . , αn) ∈ {0, 1}n use successive creation operators b∗j to define

ψα = (b∗)αΩ := (b∗1)α1 . . . (b∗n)αnΩ, (27)

which are an orthonormal system of common eigenvectors for the b∗jbj:

b∗jbjψα =

{
0, if αj = 0,
ψα, if αj = 1.

(28)

• In the given case dimH = 2n, and thus the vectors ψα form an orthonormal basis. In
particular, the normalized vector Ω is unique up to a trivial phase. It is frequently
referred to as the “vacuum vector”.
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The vectors ψα are eigenvectors for H,

Hψα =

2
∑
j:αj=1

λj + E0

ψα, (29)

which gives the spectrum of H and, in particular, the ground state energy

2
n∑
j=1

min{0, λj}+ E0 (30)

and corresponding ground state ϕ0 = ψα(0) , where

α
(0)
j =

{
1, if λj < 0,
0, else.

(31)

which is non-degenerate if and only if λj 6= 0 for all j.
Note that E0 =

∑
j νj = −trM = −

∑
j λj. Using this we can re-write (29) and describe

the spectrum of H as

σ(H) = {2
∑
j:αj=1

λj − trM : α ∈ {0, 1}n}. (32)

We also note that the ψα are eigenvectors of the “total particle number” operator N :=∑
j b

∗
jbj. In fact, by (28),

Nψα = Nαψα, Nα := #{j : αj = 1}. (33)

The operator N could alternatively be defined by using the operators cj or aj since we have

N =
∑
j

b∗jbj =
∑
j

c∗jcj =
∑
j

a∗jaj, (34)

where (25) and orthogonality of U is used. The latter allows for a more concrete description
of the eigenspaces of N : Writing

e0 :=

(
0

1

)
, e1 :=

(
1

0

)
(35)

for the canonical basis vectors of C2 and

eα := eα1 ⊗ . . .⊗ eαn , α ∈ {0, 1}n (36)

for the product basis of
⊗nC2, it follows from N =

∑
j a

∗
jaj and (7) that N eα = Nαeα. Thus

the eigenspace of N to any integer k ∈ {0, 1, . . . , N} is spanned by the set of all eα with
exactly k up-spins, and thus has dimension

(
n
k

)
.

The fact that H commutes with N implies that all these eigenspaces are invariant under
H, which could also be verified directly from (14). Thus H conserves the number of up-spins
in each basis state, which is frequently referred to as conservation of particle number and
provides the reason for calling N the total particle number operator.

5



4 Dynamics of the creation and annihilation operators

For a bounded linear operator A on H we will write

τt(A) := eitHAe−itH (37)

for the Heisenberg dynamics under H.
We first observe that, for all k = 1, . . . , n,

τt(bk) = e−2itλkbk τt(b
∗
k) = e2itλkb∗k. (38)

To see the first identity (the second follows by taking adjoints) check by Taylor expansion,
using b2

k = 0, that
e2itλkb

∗
kbkbk = bk, (39)

and similarly, using bkb
∗
kbk = (−b∗kbk + I)bk = bk,

bke
−2itλkb

∗
kbk = e−2itλkbk. (40)

By combining this, we find (38) from

τt(bk) =
∏
`

e2itλ`b
∗
` b`bk

∏
m

e−2itλmb∗mbm

= e2itλkb
∗
kbkbke

−2itλkb
∗
kbk

= e−2itλkbk. (41)

Remark: A different proof of (38) uses that

d

dt
τt(bk) = −iτt([bk, H]) (42)

= −2i
∑
`

λ`τt([bk, b
∗
`b`]) (43)

= −2iλkτt([bk, b
∗
kbk]) (44)

= −2iλkτt(bk). (45)

The unique solution of this differential equation with initial condition τ0(bk) = bk is given by
(38).

Using (25), (38) and (24), we find the dynamics of the ck, working in convenient vector
notation,

τt(c) = eitHce−itH

= eitHU tbe−itH

= U teitHbe−itH

= U te−2itΛb

= U te−2itΛUc

= e−2iMtc, (46)
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or, in components,

τt(cj) =
∑
`

vj`(t)c`, (47)

where vj`(t) :=
(
e−2iMt

)
j`

. By taking adjoints we get

τt(c
∗
j) =

∑
`

vj`(t)c
∗
` . (48)

What this means is that information on the time evolution vj`(t) of the effective one-
particle Hamiltonian M can be turned into information on the Heisenberg evolution τt(·)
under the many-body Hamiltonian H. However, a difficulty arises from the fact that the
Jordan Wigner transform is non-local, meaning that the operators cj act non-locally (i.e. on
many spins simultaneously). In order to get information on the Heisenberg evolution of local
operators such as aj and a∗j from this, one needs to find ways to “undo” the Jordan-Wigner
transform, which is generally a non-trivial task.

One example where undoing of Jordan-Wigner turned out to be possible is described in
[2]. There the case of a random magnetic field, described by choosing the parameters νj as
i.i.d. random variables, is considered. In this case the effective Hamiltonian M becomes the
Anderson model. Known results on dynamical localization for the latter allow to deduce a
so-called zero-velocity Lieb-Robinson bound for the XY chain in random field, a result which
is interpreted as absence of information transport in the spin chain [2].

5 The anisotropic XY chain

We now consider an anisotropic generalization of (1), namely the Hamiltonian

Hγ = −
n−1∑
j=1

µj[(1 + γj)σ
X
j σ

X
j+1 + (1− γj)σYj σYj+1]−

n∑
j=1

νjσ
Z
j (49)

in H =
⊗n

j=1 C2. The additional parameters γj describe the anisotropy in the two interaction
terms. We will generally assume γj ∈ [0, 1], where the choice γj = 0 recovers the isotropic XY
chain and γj = 1 gives the quantum Ising chain, where only the interaction terms proportional
to σXj σ

X
j+1 appear. We use the notation Hγ, with γ being short for (γj)

n
j=1, to better distinguish

the anisotropic XY chain from the isotropic XY chain considered above.
Below we provide a mathematically streamlined version of a transformation described in [4]

for the constant coefficient case (and without magnetic field), adapted to the case of variable
coefficients µj, γj and νj. In addition to the Jordan-Wigner transform this uses a “Bogoliubov
transformation” (of which (25) can be considered as a special case) to reduce the Hamiltonian
to a free Fermion system.

Lieb, Schultz and Mattis [4] considered the model (49) without magnetic field, constant
µj = 1 and constant γj = γ ∈ (0, 1). A constant transverse magnetic field was added in [3]
and [1]. The Ising model case γ = 1 with constant transverse field was studied in [6].

Using facts from Section 1 as well as

σXj σ
X
j+1 − σYj σYj+1 = 2(ajaj+1 + a∗j+1a

∗
j) (50)
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we can express Hγ in terms of the operators aj as

Hγ = −2
n−1∑
j=1

µj[aja
∗
j+1 + aj+1a

∗
j + γj(ajaj+1 + a∗j+1a

∗
j)]−

n∑
j=1

νj(2a
∗
jaj − I). (51)

With cj as above, using (17), (19), (20) as well as

ajaj+1 = cjcj+1, a∗j+1a
∗
j = c∗j+1c

∗
j , (52)

we get

Hγ = −2
n−1∑
j=1

µj[cjc
∗
j+1 + cj+1c

∗
j + γj(cjcj+1 + c∗j+1c

∗
j)]−

n∑
j=1

νj(2c
∗
jcj − I)

= −
n−1∑
j=1

µj
[
cjc

∗
j+1 − c∗j+1cj + cj+1c

∗
j − c∗jcj+1 + γj(cjcj+1 − cj+1cj + c∗j+1c

∗
j − c∗jc∗j+1)

]
−

n∑
j=1

νj(c
∗
jcj − cjc∗j)

= C∗M̃C. (53)

where we have also used the anti-commutation properties (18). In the last line we have set

C = (c1, . . . , cn, c
∗
1, . . . , c

∗
n)t, (54)

a “column vector”, and interpret

C∗ = (c∗1, . . . , c
∗
n, c1, . . . , cn) (55)

as a “row vector”. We use the block matrix

M̃ =

(
A B
−B −A

)
, (56)

where A = M from (22) and

B =


0 γ1µ1

−γ1µ1
. . . . . .
. . . . . . . . .

. . . . . . γn−1µn−1

−γn−1µn−1 0

 . (57)

Note here that A∗ = At = A and B∗ = Bt = −B, and thus M̃∗ = M̃ t = M̃ . Block matrices
of the form (56) have many interesting properties (and their appearance in physics is not
restricted to the theory of quantum spin chains). One of these properties is that(

0 I
I 0

)
M̃

(
0 I
I 0

)
= −M̃, (58)
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i.e. M̃ is unitarily equivalent to −M̃ and, in particular, σ(M̃) = −σ(M̃).
Let S = A + B and 0 ≤ λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃n be the singular values of S, i.e. the

eigenvalues of (S∗S)1/2, counted with multiplicity. Let Λ̃ := diag(λ̃1, . . . , λ̃n). The singular
value decomposition of S gives orthogonal matrices U and V such that

USV t = U(A+B)V t = Λ̃. (59)

This implies
Λ̃ = Λ̃t = V StU t = V (A−B)U t. (60)

Let

W :=
1

2

(
V + U V − U
V − U V + U

)
. (61)

Then W is an orthogonal 2n × 2n-matrix. This can be checked by directly verifying that
WW t = I, or, alternatively, by noting that

SWS−1 =

(
V 0
0 U

)
, (62)

with the orthogonal matrix

S :=
1√
2

(
I I
−I I

)
. (63)

A calculation shows that W diagonalizes M̃ via

W

(
A B
−B −A

)
W t =

(
Λ̃ 0

0 −Λ̃

)
. (64)

This leads to another interesting property of block matrices of the form (56), namely that

S = A+B is invertible ⇐⇒ All λj 6= 0 ⇐⇒ M̃ =

(
A B
−B −A

)
is invertible. (65)

It is easily checked that
B := WC (66)

is of the form
B = (b1, . . . , bn, b

∗
1, . . . , b

∗
n)t. (67)

That the cj, j = 1, . . . , n, satisfy CAR is equivalent to

CC∗ + J(CC∗)tJ = I2n, (68)

the 2n×2n-identity matrix (where the 1’s and 0’s which appear are understood as the operators
I and 0 on H). Here

J :=

(
0 In
In 0

)
= J t.
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Note that JW = WJ and JW t = W tJ . By (66),

BB∗ + J(BB∗)tJ = WCC∗W t + J(WCC∗W t)tJ

= W (CC∗ + J(CC∗)tJ)W t

= WI2nW
t

= I2n. (69)

Thus the bj, j = 1, . . . , n, satisfy CAR as well. Essentially, what we have shown here is the
fact that (66) is a Bogoliubov transformation.

This Bogoliubov transformation diagonalizes Hγ: By (53) and (64) we have

Hγ = C∗M̃C = B∗WM̃W tB = B∗
(

Λ̃ 0

0 −Λ̃

)
B

=
n∑
j=1

λ̃j(b
∗
jbj − bjb∗j)

= 2
n∑
j=1

λ̃jb
∗
jbj − Ẽ0I, (70)

where Ẽ0 =
∑n

j=1 λ̃j. Thus Hγ has been written in the form of a free fermion system.
As in Section 3 we can argue that the intersections of the kernels of the bj is one-

dimensional, i.e. that they contain an essentially unique vaccum vector Ω̃ from which an
ONB of eigenvectors of Hγ is found as

ψα = (b∗1)α1 . . . (b∗n)αnΩ̃, α ∈ {0, 1}n. (71)

The corresponding eigenvalues are 2
∑

j:αj=1 λ̃j − Ẽ0, so that one gets

σ(Hγ) =

2
∑
j:αj=1

λ̃j − Ẽ0 : α ∈ {0, 1}n
 . (72)

All λ̃j are non-negative, which leads to expressions for the ground state and ground state
energy which, at least formally, look simpler than what was obtained for the isotropic case in
Section 3 above: The ground state energy of Hγ is

E0 = −Ẽ0 = −tr(S∗S)1/2. (73)

If S = A + B (or, equivalently by (65), M̃) is invertible, then the vacuum vector Ω̃ is the
unique ground state of Hγ.

For theoretical arguments it is a useful property that the ground state coincides with the
vacuum (which was not the case in Section 3 above). From this point of view, the diagonal-
ization procedure described in the current section is superior to the one for the isotropic case
described earlier. However, in concrete examples there is also a price to pay, which comes
in the form of having to find a the singular value decomposition (59) of the non-self-adjoint
matrix A+B instead of just the eigenvalues and eigenvectors of the self-adjoint A.
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Remark: Of course, the isotropic XY -chain should arise as a special case of the anisotropic
XY -chain. Indeed, the Hamiltonians in (1) and (51) coincide in the case where all γj = 0,
which is expressed by the fact that M from (22) reappears as A in (56), while the off-diagonal
blocks ±B in (56) vanish in the isotropic case. The reason that (70) takes a form different from
(26) is that the λj and λ̃j are chosen differently. In (26) the λj are chosen as eigenvalues of M ,
while when using (70) in the isotropic case the λ̃j are eigenvalues of |A| = |M |. Essentially,
treating the isotropic xy-chain as a special case of the methods introduced for the anisotropic

xy-chain amounts to block-diagonalizing

(
|M | 0

0 −|M |

)
instead of

(
M 0
0 −M

)
, which are, of

course, unitarily equivalent.

We end this section by describing how the arguments on dynamics from Section 4 can be
extended to the anisotropic case. For the Heisenberg dynamics of bk and b∗k one finds as before

τt(bk) = e−2itλkbk τt(b
∗
k) = e2itλkb∗k, (74)

i.e.

τt(B) =

(
e−2itΛ 0

0 e2itΛ

)
B. (75)

Furthermore,

τt(C) = eitHγCe−itHγ

= eitHγW tBe−itHγ

= W teitHγBe−itHγ

= W t

(
e−2itΛ 0

0 e2itΛ

)
B

= W t

(
e−2itΛ 0

0 e2itΛ

)
WC

= e−2itM̃C, (76)

or, writing out the first n components,

τt(cj) =
n∑
`=1

vj,`(2t)c` +
n∑
`=1

vj,n+`(2t)c
∗
` , j = 1, . . . , n, (77)

where
vj,`(t) :=

(
e−iM̃t

)
j,`
. (78)
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