A classification of gapped Hamiltonians in d = 1

Sven Bachmann

Mathematisches Institut Ludwig-Maximilians-Universität München

Joint work with Yoshiko Ogata

NSF-CBMS school on quantum spin systems

Quantum spin systems

 $\,\vartriangleright\,$ A lattice Γ of finite dimensional quantum systems (spins), with Hilbert space

$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x \,, \qquad \Lambda \subset \Gamma \,, \text{finite}$$

- \triangleright Observables on $\Lambda \subset \Gamma$: $\mathcal{A}_{\Lambda} = \mathcal{L}(\mathcal{H}_{\Lambda})$
- ▶ Local Hamiltonian: a sum of short range interactions $\Phi(X) = \Phi(X)^* \in \mathcal{A}_X$

$$H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X)$$

$$\tau_{\Lambda}^{t}(A) = \exp(\mathrm{i}tH_{\Lambda})A\exp(-\mathrm{i}tH_{\Lambda})$$

States

The quasi-local algebra A_{Γ} :

$$\mathcal{A}_{\Gamma} = \overline{\bigcup_{\Lambda \subset \Gamma} \mathcal{A}_{\Lambda}}^{\|\cdot\|}$$

State ω : a positive, normalized, linear form on \mathcal{A}_{Γ}

ightharpoonup Finite volume Λ : $\mathcal{A}_{\Lambda} = \mathcal{B}(\mathcal{H}_{\Lambda})$ and

$$\omega(A) = \operatorname{Tr}(\rho_{\Lambda}^{\omega} A)$$

where ρ_{Λ}^{ω} is a density matrix

 \triangleright Infinite systems Γ : No density matrix in general

But: Nets of states ω_{Λ} on \mathcal{A}_{Λ} have weak-* accumulation points ω_{Γ} as $\Lambda \to \Gamma$: states in the thermodynamic limit

The Ising model

Now: $\Gamma = \mathbb{Z}$, $\mathcal{H}_x = \mathbb{C}^2$, spin 1/2, translation invariant Φ :

$$\Phi(X,s) = \begin{cases} -s\sigma_x^3 & \text{if } X = \{x\} \text{ for some } x \in \mathbb{Z}, \quad h \geq 0 \\ -\sigma_{x-1}^1\sigma_x^1 & \text{if } X = \{x-1,x\} \text{ for some } x \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

$$H_{[0,N-1]}(s)=-\sum_{x=1}^N\sigma_{x-1}^1\sigma_x^1-s\sum_{x=0}^{N-1}\sigma_x^3 \qquad \text{(anisotropic XY chain)}$$

- $\triangleright s \gg 1$: Unique ground state, gapped
- $ho \ s \ll 1$: Two ground states, gapped
- ightharpoonup Decay of correlations: exponential everywhere, polynomial at s_c

In between: the spectral gap closes: order - disorder QPT

Local vs topological order: physics

Ordered phases \sim non-unique ground state

- ho The usual picture: Local order parameter, e.g. $\omega(\sigma_0^3)$
- \triangleright 'Topological order': Local disorder, for $A \in \mathcal{A}_X$, $X \subset \Lambda$,

$$||P_{\Lambda}AP_{\Lambda} - C_A \cdot 1|| \le Cd(X, \partial \Lambda)^{-\alpha}, \qquad C_A \in \mathbb{C},$$

 P_{Λ} : The spectral projection associated to the ground state energy Cannot be smoothly deformed to a 'normal' state

- ▷ Positive characterization of topological order (?)
 - ho Topological degeneracy: if Λ_g has genus g, then $\dim P_{\Lambda_g} = f(g)$
 - Anyonic vacuum sectors
 - ▷ Topological entanglement entropy

What is a (quantum) phase transition?

A simple answer: A phase transition without temperature but under a continuous change of a parameter:

- Qualitative change in the set of ground states, parametrized by a coupling
- Localization-delocalization, parametrized by the disorder
- > Percolation, parametrized by the probability
- Bifurcations in PDEs
- Higgs mechanism, parametrized by the coupling
- > ...

Ground state phases

A slightly more precise answer: Consider:

- ightharpoonup A smooth family of interactions $\Phi(s), s \in [0,1]$
- ▶ The associated Hamiltonians

$$H_{\Lambda}(s) = \sum_{X \in \Lambda} \Phi(X, s)$$

 \triangleright Spectral gap above the ground state energy $\gamma_{\Lambda}(s)$ such that

$$\gamma_{\Lambda}(s) \ge \gamma(s) \begin{cases} > 0 & (s \ne s_c) \\ \sim C |s - s_c|^{\mu} & (s \to s_c) \end{cases} \quad \text{QPT}$$

 \triangleright Associated singularity of the ground state projection $P_{\Lambda}(s)$

Basic question: What is a ground state phase?

Stability

$$H_{\Lambda}(s) = \sum_{X \in \Lambda} (\Phi(X) + s\Psi(X))$$

If $\Psi(X)$ is local, *i.e.* $\Psi(X)=0$ whenever $X\cap\Lambda_0^c\neq\emptyset$, then usually

- $\,\,\vartriangleright\,$ Dynamics $\tau^t_{\Gamma,s}$ as a perturbation of $\tau^t_{\Gamma,0}$
- $\,dash$ Continuity of the spectral gap at s=0
- ▶ Local perturbation of ground states
- ho Equilibrium states: $\|\omega_{\beta,s}-\omega_{\beta,0}\|\leq \kappa s$ as $s\to 0$
- ightharpoonup Return to equilibrium: $\omega_{\beta,s} \circ \tau_{\Gamma,0}^t \to \omega_{\beta,0}$ as $t \to \infty$

For translation invariant perturbations: No general stability results, but

- > Perturbations of 'classical' Hamiltonians
- > Perturbations of frustration-free Hamiltonians

Automorphic equivalence

Definition. Two gapped H, H' are in the same phase if

- ightharpoonup there is $s\mapsto \Phi(s)$, C^0 and piecewise C^1 , with $\Phi(0)=\Phi,\Phi(1)=\Phi'$
- \triangleright the Hamiltonians H(s) are uniformly gapped

$$\inf_{\Lambda \subset \Gamma, s \in [0,1]} \gamma_{\Lambda}(s) \ge \gamma > 0$$

The set of ground states on Γ : $S_{\Gamma}(s)$.

Then there exists a continuous family of automorphism $\alpha_{\Gamma}^{s_1,s_2}$ of \mathcal{A}_{Γ}

$$\mathcal{S}_{\Gamma}(s_2) = \mathcal{S}_{\Gamma}(s_1) \circ \alpha_{\Gamma}^{s_1, s_2}$$

 $\alpha_{\Gamma}^{s_1,s_2}$ is local: satisfies a Lieb-Robinson bound

Now: Invariants of the equivalence classes?

Frustration-free Hamiltonians in d=1

Now $\Gamma=\mathbb{Z}$, and $\mathcal{H}_x\simeq\mathcal{H}=\mathbb{C}^n$ Consider spaces $\{\mathcal{G}_N\}_{N\in\mathbb{N}}$ such that $\mathcal{G}_N\subset\mathcal{H}^{\otimes N}$ and

$$\mathcal{G}_N = \bigcap_{x=0}^{N-m} \mathcal{H}^{\otimes x} \otimes \mathcal{G}_m \otimes \mathcal{H}^{\otimes (N-m-x)}$$

for some $m \in \mathbb{N}$; intersection property

Natural positive translation invariant interaction: G_m projection onto \mathcal{G}_m

$$\Phi(X) = \begin{cases} \tau_x(1 - G_m) & X = [x, x + m - 1] \\ 0 & \text{otherwise} \end{cases}$$

By the intersection property: $\operatorname{Ker} H_{[1,N]} = \mathcal{G}_N$, parent Hamiltonian

Matrix product states

Consider $\mathbb{B}=(B_1,\ldots,B_n)$, $B_i\in\mathcal{M}_k$ and two projections $p,q\in\mathcal{M}_k$

 \triangleright A CP map $\mathcal{M}_k \to \mathcal{M}_k$:

$$\widehat{E}^{\mathbb{B}}(a) = \sum_{\mu=1}^{n} B_{\mu} a B_{\mu}^{*}$$

- $\triangleright \mathbb{B} \in B_{n,k}(p,q)$ if
 - 1. Spectral radius of $\widehat{E}^{\mathbb{B}}$ is 1 and a non-degenerate eigenvalue
 - 2. No peripheral spectrum: other eigenvalues have $|\lambda| < 1$
 - 3. $e^{\mathbb{B}}$ and $\rho^{\mathbb{B}}$: right and left eigenvectors of $\widehat{E}^{\mathbb{B}}$: $pe^{\mathbb{B}}p$ and $q\rho^{\mathbb{B}}q$ invertible
- ightarrow A map $\Gamma_{N,p,q}^{k,\mathbb{B}}:p\mathcal{M}_kq o\mathcal{H}^{\otimes N}$:

$$\Gamma_{N,p,q}^{k,\mathbb{B}}(a) = \sum_{\mu_1,\dots,\mu_N=1}^n \operatorname{Tr}(paqB_{\mu_N}^* \cdots B_{\mu_1}^*) \psi_{\mu_1} \otimes \dots \otimes \psi_{\mu_N}$$

Gapped parent Hamiltonian

Notation:

$$\mathcal{G}_{N,p,q}^{k,\mathbb{B}} = \operatorname{Ran}\left(\Gamma_{N,p,q}^{k,\mathbb{B}}\right) \subset \mathcal{H}^{\otimes N}$$

and parent Hamiltonian $H_{N,p,q}^{k,\mathbb{B}}.$

Proposition. Assume that $\mathcal{G}_{N,p,q}^{k,\mathbb{B}}$ satisfies the intersection property. Then

- i. $H^{k,\mathbb{B}}_{N,p,q}$ is gapped
- ii. $\mathcal{S}_{\mathbb{Z}}(H^{k,\mathbb{B}}_{\cdot,p,q})=\left\{\omega_{\infty}^{\mathbb{B}}\right\}$
- iii. Let $d_L = \dim(p), d_R = \dim(q)$. There are affine bijections:

$$\mathcal{E}\left(\mathcal{M}_{d_L}\right) \to \mathcal{S}_{(-\infty,-1]}(H^{k,\mathbb{B}}_{\cdot,p,q}), \qquad \mathcal{E}\left(\mathcal{M}_{d_R}\right) \to \mathcal{S}_{[0,\infty)}(H^{k,\mathbb{B}}_{\cdot,p,q})$$

i.e. Unique ground state on \mathbb{Z} , edge states determined by p,q

Bulk state

Given \mathbb{B} , for $A \in \mathcal{A}_{\{x\}}$,

$$\mathbb{E}_A^{\mathbb{B}}(b) := \sum_{\mu,\nu=1}^n \langle \psi_{\mu}, A\psi_{\nu} \rangle B_{\mu} b B_{\nu}^*$$

Note: $\widehat{\mathbb{E}}^{\mathbb{B}} = \mathbb{E}_1^{\mathbb{B}}(b)$.

$$\omega_{\infty}^{\mathbb{B}}(A_x \otimes \cdots \otimes A_y) = \rho^{\mathbb{B}} \left(\mathbb{E}_{A_x}^{\mathbb{B}} \circ \cdots \circ \mathbb{E}_{A_y}^{\mathbb{B}}(e^{\mathbb{B}}) \right)$$

- $\triangleright \omega_{\infty}^{\mathbb{B}}(\Phi_{m,p,q}^{k,\mathbb{B}}(X))=0$: Ground state
- $\qquad \qquad \mathsf{Exponential\ decay\ of\ correlations\ if}\ \sigma(\widehat{\mathbb{E}}^{\mathbb{B}})\setminus\{1\}\subset\{z\in\mathbb{C}:|z|<1\}$

$$\omega_{\infty}^{\mathbb{B}}(A_x \otimes 1^{\otimes |y-x-1|} \otimes A_y) = \rho^{\mathbb{B}}\left(\mathbb{E}_A^{\mathbb{B}} \circ (\widehat{\mathbb{E}}^{\mathbb{B}})^{|y-x-1|} \circ \mathbb{E}_B^{\mathbb{B}}(e)\right)$$

Edge states

Note: $\omega_{\infty}^{\mathbb{B}}(A_x\otimes\cdots\otimes A_y)$ extends to \mathbb{Z} :

$$\rho^{\mathbb{B}}\left(\mathbb{E}_{A_x}^{\mathbb{B}}\circ\cdots\circ\mathbb{E}_{A_y}^{\mathbb{B}}(e^{\mathbb{B}})\right)=\rho^{\mathbb{B}}\left(\mathbb{E}_{1}^{\mathbb{B}}\circ\mathbb{E}_{A_x}^{\mathbb{B}}\circ\cdots\circ\mathbb{E}_{A_y}^{\mathbb{B}}(\mathbb{E}_{1}^{\mathbb{B}}(e^{\mathbb{B}}))\right)$$

For the same $\mathbb{E}^{\mathbb{B}}$,

$$\omega_{\varphi}^{\mathbb{B}}(A_0 \otimes \cdots \otimes A_x) := \varphi\left((pe^{\mathbb{B}}p)^{-1/2}p\left(\mathbb{E}_{A_0}^{\mathbb{B}} \circ \cdots \circ \mathbb{E}_{A_x}^{\mathbb{B}}(e^{\mathbb{B}})\right)p(pe^{\mathbb{B}}p)^{-1/2}\right)$$

for any state φ on $p\mathcal{M}_k p$, and $\omega_{\varphi}^{\mathbb{B}}(\Phi_{m,p,q}^{k,\mathbb{B}}(X))=0$

These extend to the right, but not to the left:

$$\mathcal{S}_{[0,\infty)}(H^{k,\mathbb{B}}_{\cdot,p,q}) \longleftrightarrow \mathcal{E}(\mathcal{M}_{d_L})$$

A complete classification

Theorem. Let $H:=H^{k,\mathbb{B}}_{\cdot,p',q}$ and $H':=H^{k',\mathbb{B}'}_{\cdot,p',q'}$ as in the proposition, with associated (d_L,d_R) , resp. (d'_L,d'_R) . Then,

$$H \simeq H' \iff (d_L, d_R) = (d'_L, d'_R)$$

Remark: No symmetry requirement

Proof by explicit construction of a gapped path of interactions $\Phi(s)$:

- ho on the fixed chain with $\mathcal{A}_{\{x\}} = \mathcal{B}(\mathbb{C}^n)$
- constant finite range

Bulk product states

Very simple representatives of each phase:

Proposition. Let $n \geq 3$, and $(d_L, d_R) \in \mathbb{N}^2$. Let $k := d_L d_R$. There exists \mathbb{B} and projections p, q in $\mathrm{Mat}_k(\mathbb{C})$ such that

- \Rightarrow dim $p = d_L$, dim $q = d_R$
- $\triangleright \mathbb{B} \in B_{n,k}(p,q)$
- $hd \mathcal{G}^{k,\mathbb{B}}_{m,p,q}$ satisfy the intersection property
- hd ho the unique ground state $\omega_{\infty}^{\mathbb{B}}$ of the Hamiltonian $H^{k,\mathbb{B}}_{\cdot,p,q}$ on \mathbb{Z} is the pure product state

$$\omega_{\infty}^{\mathbb{B}}(A_x \otimes \cdots \otimes A_y) = \prod_{i=x}^{y} \langle \psi_1, A_i \psi_1 \rangle$$

Example: the AKLT model

- $ightarrow \, \mathrm{SU}(2)$ -invariant, antiferromagnetic spin-1 chain
- Nearest-neighbor interaction

$$H_{[a,b]}^{AKLT} = \sum_{x=a}^{b-1} \left[\frac{1}{2} \left(S_x \cdot S_{x+1} \right) + \frac{1}{6} \left(S_x \cdot S_{x+1} \right)^2 + \frac{1}{3} \right] = \sum_{x=a}^{b-1} P_{x,x+1}^{(2)}$$

where $P_{x,x+1}^{(2)}$ is the projection on the spin-2 space of $\mathcal{D}_1\otimes\mathcal{D}_1$

- \triangleright Uniform spectral gap γ of $H_{[a,b]}$, $\gamma > 0.137194$
- $ightharpoonup H^{AKLT} = H^{2,\mathbb{B}}_{\cdot,1,1}$ with $\mathbb{B} \in B_{3,2}(1,1)$

$$B_1 = \begin{pmatrix} -\sqrt{1/3} & 0 \\ 0 & \sqrt{1/3} \end{pmatrix}, B_2 = \begin{pmatrix} 0 & -\sqrt{2/3} \\ 0 & 0 \end{pmatrix}, B_3 = \begin{pmatrix} 0 & 0 \\ \sqrt{2/3} & 0 \end{pmatrix}$$

 \triangleright the AKLT model belongs to the phase (2,2)

About the proof

$$\mathbb{B} \in B_{n,k}(p,q) \longrightarrow \begin{cases} \widehat{\mathbb{E}}^{\mathbb{B}} \longrightarrow \omega_{\infty}^{\mathbb{B}} \\ \Gamma_{N,p,q}^{k,\mathbb{B}} \longrightarrow \mathcal{G}_{N,p,q}^{k,\mathbb{B}} \longrightarrow H_{\cdot,p,q}^{k,\mathbb{B}}, \end{cases}$$

and by the proposition

$$\operatorname{Gap}(\widehat{\mathbb{E}}^{\mathbb{B}}) \quad \longrightarrow \quad \operatorname{Gap}(H^{k,\mathbb{B}}_{\cdot,p,q})$$

Given $\mathbb{B} \in B_{n,k}(p,q), \mathbb{B}' \in B_{n,k'}(p',q')$, construct a path of gapped 'parent' Hamiltonians $H^{k,\mathbb{B}(s)}_{\cdot,p(s),q(s)}$ by

- ightharpoonup embedding $\mathcal{M}_{k'} \hookrightarrow \mathcal{M}_k$ and interpolating
- \triangleright interpolating p(s), q(s): dimensions
- \triangleright interpolating $\mathbb{B}(s)$, keeping spectral properties of $\widehat{\mathbb{E}}^{\mathbb{B}(s)}$

Need pathwise connectedness of a certain subspace of $(\mathcal{M}_k)^{\times n}$

Primitive maps

$$\widehat{\mathbb{E}}^{\mathbb{B}} = \sum_{\mu=1}^{n} B_{\mu} \cdot B_{\mu}^{*}$$

i.e. $\{B_{\mu}\}$ are the Kraus operators

The spectral gap condition: Perron-Frobenius

- ▷ Irreducible positive map ⇒
 - 1. Spectral radius r is a non-degenerate eigenvalue
 - 2. Corresponding eigenvector e > 0
 - 3. Eigenvalues λ with $|\lambda| = r$ are $re^{2\pi i\alpha/\beta}$, $\alpha \in \mathbb{Z}/\beta\mathbb{Z}$
- \triangleright A primitive map is an irreducible CP map with $\beta=1$

Lemma. $\widehat{\mathbb{E}}^{\mathbb{B}}$ is primitive iff there exists $m \in \mathbb{N}$ such that

span
$$\{B_{\mu_1} \cdots B_{\mu_m} : \mu_i \in \{1, \dots, n\}\} = \mathcal{M}_k$$

Primitive maps

How to construct paths of primitive maps? Consider

$$Y_{n,k} := \left\{ \mathbb{B} : B_1 = \sum_{\alpha=1}^k \lambda_\alpha \left| e_\alpha \right\rangle \left\langle e_\alpha \right|, \quad \text{and} \quad \left\langle B_2 e_\alpha, e_\beta \right\rangle \neq 0 \right\}$$

with the choice

$$(\lambda_1, \ldots, \lambda_k) \in \Omega := \{\lambda_i \neq 0, \lambda_i \neq \lambda_j, \lambda_i / \lambda_j \neq \lambda_k / \lambda_l\}$$

Then,

$$|e_{\alpha}\rangle\langle e_{\beta}| \in \operatorname{span}\{B_{\mu_1}\cdots B_{\mu_m}: \mu_i \in \{1,2\}\}$$

for
$$m \ge 2k(k-1) + 3$$
.

Problem reduced to the pathwise connectedness of $\Omega\subset\mathbb{C}^k$ Use transversality theorem

Consequences

What we obtain:

$$\mathbb{B}(s) \in B_{n,k}(1,1) \subset B_{n,k}(p(s),q(s))$$

i.e. a good $\widehat{\mathbb{E}}^{\mathbb{B}(s)}$

For those:

- $\rhd \ \Gamma^{k,\mathbb{B}}_{m,p(s),q(s)} \text{ is injective } \quad \Rightarrow \quad \dim \mathcal{G}^{k,\mathbb{B}}_{m,p(s),q(s)} = d_R d_L$
- $\, \triangleright \, \mathcal{G}^{k, \mathbb{B}}_{m, p(s), q(s)} \text{ satisfy the intersection property}$
- i.e. a good path $H^{k,\mathbb{B}}_{\cdot,p(s),q(s)}$

Remarks

- ightharpoonup More work at s=0,1, where the given $\mathbb{B},\mathbb{B}'\notin Y_{n,k}$:
- \triangleright Why is it hard? Because $\dim \mathcal{H} = n$ is fixed
- \triangleright Simpler problem for $n \ge k^2$, i.e. by allowing periodic interactions
- ▷ Interaction range:

$$m_{min} = \max\{m, m', k^2 + 1, (k')^2 + 1\}$$

- $hd \ \$ all in all: $(d_L,d_R)=(d_L',d_R')$ is sufficient
- $hd (d_L,d_R)=(d_L',d_R')$ necessary: $H\simeq H'$ implies

$$\mathcal{S}_{[0,\infty)} = \mathcal{S}'_{[0,\infty)} \circ \alpha_{[0,\infty)}, \qquad \mathcal{S}_{(-\infty,-1]} = \mathcal{S}'_{(-\infty,-1]} \circ \alpha_{(-\infty,-1]}$$

and $\alpha_{\rm H}$ is bijective

Concrete representatives

$$S_0(\lambda, d) = \begin{pmatrix} 1 & & & \\ & \lambda & & \\ & & \ddots & \\ & & & \lambda^{d-1} \end{pmatrix}, \qquad S_+(d) = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix},$$

Let

$$B_1 = S_0(\lambda_R, d_R) \otimes S_0(\lambda_L, d_L)$$

$$B_2 = S_+(d_R) \otimes S_0(\lambda_L, d_L)$$

$$B_3 = S_0(\lambda_R, d_R) \otimes S_+(d_L)$$

$$B_i = 0 \quad \text{if } i \ge 3.$$

Properties: $B_2^{d_R}=0$, $B_3^{d_L}=0$, and

$$B_1^* B_2^* = \lambda_R B_2^* B_1^*, \qquad B_1^* B_3^* = \lambda_L B_3^* B_1^*, \qquad B_2^* B_3^* = \left(\frac{\lambda_L}{\lambda_R}\right) B_3^* B_2^*.$$

Concrete spectrum

Simple consequence:

$$\widehat{\mathbb{E}}^{\mathbb{B}} = \mathbb{D} + \mathbb{N}_R + \mathbb{N}_L$$

with $\mathbb{D}=B_1\cdot B_1^*$ diagonal, $\mathbb{N}_R=B_2\cdot B_2^*$, $\mathbb{N}_L=B_3\cdot B_3^*$, nilpotent, and

$$\mathbb{D}\mathbb{N}_R = \lambda_R^{-2}\mathbb{N}_R\mathbb{D}, \qquad \mathbb{D}\mathbb{N}_L = \lambda_L^{-2}\mathbb{N}_L\mathbb{D}, \qquad \mathbb{N}_R\mathbb{N}_L = (\lambda_R/\lambda_L)^2\mathbb{N}_L\mathbb{N}_R.$$

Then,

$$\sigma(\widehat{\mathbb{E}}^{\mathbb{B}}) = \sigma(\mathbb{D})$$

Spectral gap if $\lambda_L, \lambda_R \neq 1$

Product vacuum in the bulk

Vectors? Recall

$$\Gamma_{N,p,q}^{k,\mathbb{B}}(a) = \sum_{\mu_1,\dots,\mu_N=1}^n \operatorname{Tr}(paqB_{\mu_N}^* \cdots B_{\mu_1}^*) \psi_{\mu_1} \otimes \dots \otimes \psi_{\mu_N}$$

The product $B_{\mu_1}\cdots B_{\mu_N}$ can have at most d_R-1 B_2 's, and d_L-1 B_1 's, so

$$\mathcal{G}_{N,p,q}^{k,\mathbb{B}} = \text{span}\left\{\Gamma_{N,p,q}^{k,\mathbb{B}}(pB_2^{\alpha}B_3^{\beta}q)\right\}_{\alpha=0,\dots,d_R-1,\beta=0,\dots,d_L-1}$$

for $\alpha = \beta = 0$, product vacuum:

$$\Gamma_{N,p,q}^{k,\mathbb{B}}(1) = \operatorname{Tr}(p1q(B_1^*)^m)\psi_1 \otimes \cdots \otimes \psi_1$$

Conclusions

- Construction of gapped Hamiltonians from frustration-free states
- \triangleright Unique ground state on $\mathbb Z$
- Edge index: Complete classification by the number of edge states (no symmetry)
- $\,\,\vartriangleright\,$ No bulk index: each phase has a representative with a pure product state on $\mathbb Z$
- Many-body localization?