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Introduction

Given m Dirac fermions created by the operator a;‘, j=1,..,m, with CAR
{aj,a;} = 0 and {a;,ax} =0,
2m Majorana fermions are defined as
Cok—1 = ax + a; and ¢y, = i(aj — ak)-

They satisfy
ck=c;,and c2 =1
CxCj = —CjCk-

Majorana operators form an algebra Cor, with relations {c;, ¢k} = 25j-



Introduction

Given m Dirac fermions created by the operator a;‘, j=1,..,m, with CAR

{aj,a;} = 0 and {a;,ax} =0,
2m Majorana fermions are defined as
Cok—1 = ax + a; and ¢y, = i(aj — ak)-
They satisfy
ck=c;,and c2 =1
CkCj = —CjCk-

Majorana operators form an algebra Cor, with relations {c;, ¢k} = 2Jj-
The number operator
Nk = ajax
has eigenvalues either 0 or 1.
The fermion parity operator
Pk = /- 2nk = (—1)”"/
has eigenvalue +1 if the number of fermions is even and —1 if it is odd. In terms of
Majorana operators
Py = —icok_1Cok-



The total fermion parity operator is

im
Pall = H Pk =1"C1C2...Com.
k

Any even pure state |¢) (| is the eigenstate of Py, i.e. Py |v) (¥| = £ |¢) (| the
eigenvalues depend on whether the parity of the number of fermions in |¢) is even or odd.

A Hermitian operator X is called even if it has the form

m

nk
X:OlO/‘f‘Z(’) Z Yt ook Gy -Gk

k=1 1<j1 <. <jog<2m

where ag, .., are real.
Any even operator commutes with Py, [X, P4y] = 0.



Fermionic Gaussian states
Fermionic Gaussian state is defined as

p=vexp{—i>_ Ajcic}
i#
where ~ is a normalization and (Aj) is a real anti-symmetric matrix.
Block-diagonalizing A we can re-express p is standard form
1
om

s

p= (I + iMkCok—1Cok),

k:

where ¢ = RT c with R block-diagonalization of A. Here A € [—1, 1]. For Gaussian pure
states A € {—1,1}.
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Fermionic Gaussian state is defined as

p=vexp{—i>_ Ajcic}
i#
where ~ is a normalization and (Aj) is a real anti-symmetric matrix.
Block-diagonalizing A we can re-express p is standard form
1
om

s

p= (I + iMkCok—1Cok),

k:

where ¢ = RT c with R block-diagonalization of A. Here A € [—1, 1]. For Gaussian pure
states A € {—1,1}.

Check: p is a pure state iff p2 = p. So

1 Z .

pF = 22m [TU+ ixBor—182k)?
k=1

1 m

TT0+ 237+ 20 Cok—182x)

= 52m
2 k=1

m 2
= 2177 H<1 —;A I+ i>\k&2k—1é2k)-
k=

Therefore p? = piff A2 = 1.



Given a state p € Copy, the correlation matrix M is

i
Mgy = §Tr(p[ca, cp]), witha,b=1,..,2m.

For a = b, we have Ma3 = 0 and
for a # b, we have M, = 5Tr(pcaCp — pCpCa) = iMr(pCaCp). Note that My = —Mpa.

It can be block-diagonalized by R € SO(2m)

m
_ 0 X T
m=RED 1 ( 4 )R.
j:



Given a state p € Copy, the correlation matrix M is

i
Mgy = §Tr(p[ca, cp]), witha,b=1,..,2m.

For a = b, we have Ma3 = 0 and
for a # b, we have M, = 5Tr(pcaCp — pCpCa) = iMr(pCaCp). Note that My = —Mpa.

It can be block-diagonalized by R € SO(2m)
m
- 0 N \pgr
M_R@( ~y 0 )R .
Jj=1
Fermionic linear optics (FLO) transformation maps Gaussian states into Gaussian states
UC,'U* = Z R,‘jCj
J

with R € SO(2m).
The total fermionic parity operator is invariant under FLO

UPgy = Py U.



Lemma
[1] (de Melo, Cwiklirski, Terhal).
The correlation matrix M of any even density state p € Cor, has eigenvalues +i\g, with
Xk € [-1,1], k =1, ..., m. Moreover MT M < | with equality iff p is a Gaussian pure state.
Dephasing procedure. Define the FLO transformation Uy, k = 1, ..., m as

UkeokUg = —cok, UkCok—1U* = —cok—1, UkciUg = ¢ Vi # 2k —1,2k.

It leaves the correlation matrix of p invariant. With pg = p, let

1 %k
Pk = E(qu + Ukpk—1U)-

After m steps, we get

pm = Pr Itk (el
K

where each |¢) (k| = zlm H}L (14 iBxjcoj—1Coj) is a Gaussian state, i.e. B = £1. Itis
an eigenvector to all ic;_1¢pj, j = 1, .., m, since ico;_1 Coj [Yhk) (Yk| = Bij [k (k| -
The correlation matrix of pm is

_ 0 >k PxBik ) T
Mpm_R@( =2k PxBik 0 A

j=1

Therefore MmeM,,m = [ iff pm is pure Gaussian. Since M,,,, = M,,, p is pure Gaussian.



Proposition

[1] Any even pure state |¢) (¢| € Cop, for m = 1,2, 3 is Gaussian.




Proposition
[1] Any even pure state [¢) (¢| € Cop for m = 1,2, 3 is Gaussian.

Proof.

For m = 1, a state can be written as p = |¢) (¢| = al + Bcycp. Since Trp = 1, we get
a = 1/2. From p? = p we get (o — 52)] + 2a8¢1¢o = al + BciCo. So B = i/2. So 1) ()|
is Gaussian.

For m = 2, block-diagonalize the correlation matrix. Then any state can be written as

p =) (] = al + >34 BCak—1Ca + Pay. Apply dephasing procedure: p, = p. Since p
is a convex mixture of pure Gaussian states, p = |¢) (¢| is Gaussian.

For m = 3, after block-diagonalization,

[¥) (| = el + BPay + 32k YkCok—1C2k + Do j<jc k<t MikiCiCiCk Cl- Note that

Py [¥) (¢| = £ |v) (] for even pure states. Apply dephasing procedure: pz = pis a
convex mixture of pure Gaussian states. So |¢) (¢| is Gaussian. O



A convex-Gaussian state is

p= ZP:‘U/‘,
i

where o; are pure Gaussian states, p; > 0and >, p; = 1.

Proposition

[1] For any even state p € Cop, there exists e > 0 such that pc = ep + (1 —€)//2™ is
convex-Gaussian.



A convex-Gaussian state is

P = Zpiah
i
where o; are pure Gaussian states, p; > 0and >, p; = 1.

Proposition
[1] For any even state p € Cop, there exists e > 0 such that pc = ep + (1 —€)//2™ is
convex-Gaussian.

Define
2m

A= ZC/@Ci € Com ® Com.
i=1

The operator A is invariant under U ® U for any FLO transformation.

Check: for any FLO U with R € SO(2m) we have

2m
URUAU*®U* =) UgU* ® UcU*
i=1
= Z RUC/ ® Rjkck
Lk

=ZC,‘®C]'.
)

Here we used that Z,- H,]‘R,‘k = Z,- I’I.I?—R,‘k = (RTR)jk = 5jk-



Gaussian-symmetric states

Lemma
[2] (Bravyi). An even state p € Copy is Gaussian iff [A, p ® p] = 0.



Gaussian-symmetric states

Lemma
[2] (Bravyi). An even state p € Cop is Gaussian iff [\, p ® p] = 0.

2m

IN(p @ p)All = > Trl(ca ® ca)(p ® p)(Co @ Cp)]
a,b=1

2m
=) Tr(CapCa ® CapCa) + Y _(TrcapCp)?

a=1 a#b
=2m— 2:(1'!’/0,3%/?)2
a#b
=2m—> (Mp)? =2m—>" (— > Mabea)
a,b a b

=2m—>">" Ml My =2m—TrM"M.
a b

For a pure state we have MTM = 1, so A(p ® p) = 0. For a mixed Gaussian state or
non-Gaussian state MTM < 1, so |A(p ® p)All; > 0.



Gaussian-symmetric states

Lemma
[2] (Bravyi). An even state p € Cop is Gaussian iff [\, p ® p] = 0.

2m

IN(p @ p)All = > Trl(ca ® ca)(p ® p)(Co @ Cp)]
a,b=1

2m
=) Tr(CapCa ® CapCa) + Y _(TrcapCp)?

a=1 a#b
=2m— 2:(1'!’/0,3%/?)2
a#b
=2m—> (Mp)? =2m—>" (— > Mabea)
a,b a b

=2m—>">" Ml My =2m—TrM"M.
a b

For a pure state we have MTM = 1, so A(p ® p) = 0. For a mixed Gaussian state or
non-Gaussian state MTM < 1, so |A(p ® p)All; > 0.

Corollary
[1] For an even state p € Com, A(p ® p) = 0 iff p is a pure Gaussian state.



For every Gaussian state v, the state |4, ¢) is contained in the null space of A.
Define a 'FLO twirl’

S(p) = / dU U ® UpU* ® U*.
FLO

Lemma

[1], [4] (Terhal, V.)
The projector onto the null-space of A is Mo = (27)S(|0,0) (0, 0]). Thus the states |1, )
where v is Gaussian span the null space of A.



For every Gaussian state v, the state |4, ¢) is contained in the null space of A.
Define a 'FLO twirl’

S(p) = / dU U ® UpU* ® U*.
FLO

Lemma

[1], [4] (Terhal, V.)
The projector onto the null-space of A is Mo = (27)S(|0,0) (0, 0]). Thus the states |1, )
where v is Gaussian span the null space of A.

Proof.
To show that MM = (27)S(]0,0) (0,0]), we need to show that for any X,
2m
Tr(x ) = ( i )T (X8(10,0) (0,0))).

Need only to consider S(X) instead of X.
The invariant subspace of S is spanned by / ® I, A, ..., A°™ operators. [4]
For any i # 0 we have

TrAMp_o =0 and TrA’S(|0,0)(0,0]) = TrS(A’) |0, 0) (0,0] = 0.



Overall prefactor:

A= Z, 1 Ci ® ¢j, each term c, ® c; has eigenvalue p; = +1.
Then eigenvalues of A are , ™ i with the projector onto the eigenstates

2m

Pi= oom H(/-I—M/Ci ® ).
=

The null space is spanned by ( ™) eigenvectors Py such that Z, 1 i = 0. Therefore

T =
Thus states |w 1) with ¢ Gaussian span the null space of A.
Q.E.D.

The null space of A is called Gaussian symmetric subspace.
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A= Z, 1 Ci ® ¢j, each term c, ® c; has eigenvalue p; = +1.
Then eigenvalues of A are , ™ i with the projector onto the eigenstates

2m

Pi= oom H(/-I—M/Ci ® ).
=

The null space is spanned by ( ™) eigenvectors Py such that Z, 1 i = 0. Therefore

T =
Thus states |w 1) with ¢ Gaussian span the null space of A.
Q.E.D.

The null space of A is called Gaussian symmetric subspace.

Lemma

[4] If a state T is such that
IA(r @ T)All < e,

then there exists a Gaussian state |1) close to T, i.e. such that

I —19) (@1l < € = y/2m(1 — V1 —e).



Proof
Let M be a correlation matrix of state 7.

0 N\ g7
MT:F{@( =Y OJ)R.

=il

-

Then
AT @ TAlly =2m — TrMI M, =2m—> " X2 <e.
i

So Y, )\]? > 2m — e. Since every )\I? <1, for every j, )\1.2 >1—e

A pure Gaussian state |¢) is
m
mo=r@®( 5 7 )A"
j=1 !

such that 3; = sign \;.



Proof
Let M be a correlation matrix of state 7.

m
— 0 X\ pr
MT*RG_B(—/\/ O)R'

j=1

-

Then
AT @ TAlly =2m — TrMI M, =2m—> " X2 <e.
i

So Y, )\]? > 2m — e. Since every )\I? <1, for every j, )\1.2 >1—e

A pure Gaussian state |¢) is
m
mo=r@®( 5 7 )A"
j=1 !

such that 3; = sign \;.
Consider the fidelity
F(r, [9) = (&7 1) -
Apply a dephasing procedure to 7. Since the correlation matrix M, stays invariant, the
fidelity F(7, |¢)) stays the same.
After dephasing the state has the form

™m=: > Pk ) (bkl
K

where |¢x) (px| = 5 [T, (7 + i/B;(CZj—1CZj) and [¢o) {do| := [) (].



Then F(,|¢)) = pp and so
I = [¥) &l 1 < 2v/1 = po.

Forevery j =1, ..., mwe have

Aj = Mr(2) — 1,2j) = Tr(icoj—1Cojrm) = D BFPx-
k

Note that

N=1-2 > p=2> p—1

k:,(ij',‘:—1 k:ﬁ;‘:1



Then F(,|¢)) = pp and so

l7 — 1) (@l ll1 < 2/1 = po.

Forevery j =1, ..., mwe have
Aj = Mr(2) — 1,2j) = Tr(icoj—1Cojrm) = D BFPx-
k

Note that

N=1-2 > p=2> p—1

k:,(ij',‘:—1 k:ﬁ;‘:1
Foreveryj=1,....mwehave 1 — e < )‘/2 < 1. Consider two possible cases:
Q@ If VT—€e< ) <1, wehave Zﬁjk:—1 pr < (1 — /T —¢). Note that py is not in the
sum, since 5}) =1,
Q If —v/T—€e> )\ > —1, we have Zﬁfﬂ pr < (1 — /T —¢). Note that py is not in the

sum, since ,8]9 =—1.



Then F(,|¢)) = pp and so

l7 — 1) (@l ll1 < 2/1 = po.

Forevery j =1, ..., mwe have

Aj = Mr(2) — 1,2j) = Tr(icoj—1Cojrm) = D BFPx-
K

Note that

N=1-2 > p=2> p—1

k:,(ij',‘:—1 k:ﬁ;‘:1
Foreveryj=1,....mwehave 1 — e < )‘/2 < 1. Consider two possible cases:
Q@ If VT—€e< ) <1, wehave Zﬁjk:—1 pr < (1 — /T —¢). Note that py is not in the
sum, since 5}) =1,
Q If —v/T—€e> )\ > —1, we have Zﬁfﬂ pr < (1 — /T —¢). Note that py is not in the
sum, since ,8]9 =—1.
gy Pi < 201 —vT=0).
There is no py in the sum and the only px absent in the sum is pg, so

m
T—p=3 p<5(1-V1i-o),

k40

Summing all inequalities (for every j) we obtain Zj”:’1 Ek-ﬁk
i

therefore

I = 19) @l < 2y/T=po < y/2m(1 = VI—e).
Q.E.D.



Finding convex-Gaussian states

Let p = >_; pioj with o; pure Gaussian. Then there exists a symmetric extension
pext = 3 P € C5, which is annihilated by AR and Tra, . npext = p.

Program. Input: p € Copy and an integer n > 2.

Question: Is there a pext € Cor sit.
@ Trpext =1
@ pext >0
@ Tra . nPext = p
@ Nlpey =0, Vk # |

Output: Yes, then provide pext, or No.

Since the null space of AK/ is spanned by |v, ), Where |¢) is Gaussian, the intersection
of all null-spaces of A¥! is spanned by vectors |4)®".



Finding convex-Gaussian states
Let p = >_; pioj with o; pure Gaussian. Then there exists a symmetric extension

pext = >_; Pio" € Coorl, which is annihilated by AK/ and Tra, . npext = p-
Program. Input: p € Cop; and an integer n > 2.

Question: Is there a pext € Cor sit.
@ Trpext =1
@ pext >0
@ Tra . nPext = p
@ Nlpey =0, Vk # |

Output: Yes, then provide pext, or No.

Since the null space of Ak is spanned by ¥, ¥) ., where [1)) is Gaussian, the intersection
of all null-spaces of A¥! is spanned by vectors |4)®".

The program can be done in the standard form of semi-definite program:
minimize ¢’

subjectto F+ Y xFi >0
i

X

Ax = b,

here x € R, ¢ € R? is a given vector, {Fi}i=o,...,a are given symmetric matrices and
A € RP*9 with rank(A) = p and b € RP are given.



Finding convex-Gaussian states
Let p = }°; pioj with o; pure Gaussian. Then there exists a symmetric extension
pext = > Pic2" € CSF, which is annihilated by A%/ and Tro . ppext = p.

Program. Input: p € Co;, and an integer n > 2.

Question: Is there a pext € Cor s.t.
@ Trpext =1
@ pext >0
@ Tra .. npext = p
0 Nlpey =0, Vk # I

Output: Yes, then provide pext, or No.

Since the null space of AK! is spanned by [¥, %), where [) is Gaussian, the intersection
of all null-spaces of A¥:! is spanned by vectors |4)®".

Theorem

[1] If an even state p € Cory has an n-Gaussian-symmetric extension for all n, then p is
convex-Gaussian, in other words, there exists a sequence of convex-Gaussian states
w1, ws, ... € Com S.L.
lim — wnll1 =0.
o llp nll1



Theorem

[4] Suppose that an even state p € Cor,, has an extension to n number of parties, where n is
sufficiently large. Then there exists a convex-Gaussian state o(n) such that

lo—a(n)ls < e(n) := 4% + \/2m(1 —4/1= 4||/\||$27m).

Denote G the set of convex-Gaussian states and G"” > p iff
3ol € CSN. Then

G'>DG>.. DG and Im G"=G.
n—oo
Proof

Denote p" := pext to n parties. The state p" is symmetric, therefore use
quantum de Finetti theorem:

Theorem

[3] (Christandl, Kénig, Mitchison, Renner).
Let |W) be a symmetric state on n parties and let ¢k = Triiq,...,n V) (W|. Then there exists
a probability distribution {«;} and states {7;} such that

ICF =D ajr@mli <e
J



Therefore there exists o; > 0, Z,' aj = 1, and states 7; € Cop, St
2m
||P?,2 - Zaj"'j Rl < €= 4?~
j

Applying A':2 we obtain

IAIFe=:&> IAY_ ai7(n) @ i(mAlly = > eyl ATi(n) ® 7j(n) Alls.
i j

Therefore for every j = 1,...m we obtain
A7 (n) @ Ti(MAl1 < e

For every j the state 7;(n) is €’-close to a pure Gaussian state |1;(n)). Therefore the state p
is close to the convex-Gaussian state:

o= oy () (i) 11 < llo =D aymi(m)lls + D ayllm(n) — |wi(n)) {wi(m)] I+
) i i
<E+ €.

Q.E.D.



Complementary criterion
Separability criteria

Let H = Ha ® H g be a finite dimensional Hilbert space. De-
note S the set of separable operators, i.e. the conical com-
bination of all pure product states {|v4) (¥a| ® |¥8) (¥}

pag € SV iff 3pagn € B(Hagn) St

1. PaBN = 0
2. Trgn—1(pagn) = paB

3. pagn is Bose symmetric in HY, i.e. pagn(1® Pé\}’,m) = pPagN-
The sequence {S’\’},‘f;’:1 converges to S from outside [5] (Doherty et al.):

lim SN=3s.

N— oo



Complementary criterion
Separability criteria

Let H = Ha ® H g be a finite dimensional Hilbert space. De-
note S the set of separable operators, i.e. the conical com-
bination of all pure product states {|v4) (¥a| ® |¥8) (¥}

pag € SV iff 3pagn € B(Hagn) St

1. PABN >0

2. Trgn—1(pagn) = paB
3. pagn is Bose symmetric in HY, i.e. pagn(1® Pé\}’,m) = pPagN-
The sequence {S’\’},‘f;’:1 converges to S from outside [5] (Doherty et al.):

lim SN=3s.

N— oo

Define sets SN as:

- N
SN = {N+dPAB+N dPA®/B pas € SN}

The sequence {:9"’}7\,‘;1 converges to S from inside [6]
(Navascues et al.)

S'c & c..cS, with Jjim SN =38

— 00



Program. Given a state pag € B(?) determine whether it is separable.

1. Check whether pag € SX. If ’NO”, then p is entangled. Done.
If "YES”, then go to 2.

2. Check whether pag € SK. If "YES”, then it is separable. Done.
If "NO”, repeat steps for k = k + 1.



Program. Given a state pag € B(?) determine whether it is separable.

1. Check whether pag € SX. If ’NO”, then p is entangled. Done.
If "YES”, then go to 2.

2. Check whether pag € SK. If "YES”, then it is separable. Done.
If "NO”, repeat steps for k = k + 1.

We have that

G'>G>.. oG

Define G" = {enp+ (1 — en)l/2™ : p € G"} C G.
Problem. Show that _
lim G" = G.

n—oo
Proposition

[1] For any even state p € Cop there exists e > 0 such that pc = ep+ (1 —€)//2™ is
convex-Gaussian.

l.e. need to show that
en — 1as n— oo, for pp € G".



Extension to Comn
The isomorphism J between Cop,, and Cg?,:’ is the following:

J(G)=1®..0C® Py ® ... 0 Py, for2m(k —1) +1 < j < 2mk,

where ¢; stands on the k-th component and P, acts on each Cap,.
J is the isomorphism since J(XY) = J(X)J(Y).



Extension to Comn
The isomorphism J between Cop,, and Cgs’n:’ is the following:

J(G)=1®..0C® Py ® ... 0 Py, for2m(k —1) +1 < j < 2mk,

where ¢; stands on the k-th component and P, acts on each Cap,.
J is the isomorphism since J(XY) = J(X)J(Y).
For n = 2, for any state

n= Z akZ,l Z,g € Cam,

k
where Z' acts on ¢, ..., Com and Z2 acts on Comyd, ---, Cam. Applying J this state gets
mapped to:
J() =" akZ} @ PEZE € Com @ Com,
k

where ¢, = 0, if Z is even and ¢, = 1, if Z} is odd.



Extension to Comn
The isomorphism J between Cop,, and Cgs’n:’ is the following:

J(G)=1®..0C® Py ® ... 0 Py, for2m(k —1) +1 < j < 2mk,

where ¢; stands on the k-th component and P, acts on each Cap,.
J is the isomorphism since J(XY) = J(X)J(Y).
For n = 2, for any state
n= Z akZ,l Z,g € Cam,
k
where Z' acts on ¢, ..., Com and Z2 acts on Comyd, ---, Cam. Applying J this state gets
mapped to:
J() =" akZ} @ PEZE € Com @ Com,
k
where ¢, = 0, if Z is even and ¢, = 1, if Z} is odd.
Any state
o= BkZi ® ZF € Com® Com
k
gets mapped onto a state

JN0) =D BkZIPAZE € Cam,
k

€
where P acts on Gt ---Cam-






The operator Ak is equivalent to I acting on Copmp: forany 1 < k # 1< n,

2m

Tl = (1) Comk—1)+j Com(i—1)+1-Cam(i—1)+j-Comi-
=

For an even state p = Zj a,-Zj‘ € Com the extension pext € Comp has the following form

pext =2~V p 4 Corr.

Every term in the correlations Corr = =, 6,-2/.1 Z/” acts nontrivially on the last (n — 1)

spaces spanned by a1 ... Comn. Here ZX acts on the space spanned by
Com(k—1)+1 ++- Comk-
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