A complete criterion for convex-Gaussian states detection

Anna Vershynina Institute for Quantum Information, RWTH Aachen, Germany joint work with B. Terhal

NSF/CBMS conference "Quantum Spin Systems" The University of Alabama at Birmingham June 17, 2014

Outline of the talk

- Introduction
- Fermionic Gaussian states
- Gaussian-symmetric states
- A complete criterion for detection of convex-Gaussian states
- Work in progress

Introduction

Given *m* Dirac fermions created by the operator a_j^* , j = 1, ..., m, with CAR

$$\{a_{j}, a_{k}^{*}\} = \delta_{jk}$$
 and $\{a_{j}, a_{k}\} = 0$

2m Majorana fermions are defined as

$$c_{2k-1} = a_k + a_k^*$$
 and $c_{2k} = i(a_k^* - a_k)$.

They satisfy

$$c_k = c_k^*$$
, and $c_k^2 = 1$
 $c_k c_j = -c_j c_k$.

Majorana operators form an algebra C_{2m} with relations $\{c_i, c_k\} = 2\delta_{ik}$.

Introduction

Given *m* Dirac fermions created by the operator a_i^* , j = 1, ..., m, with CAR

$$\{a_{j}, a_{k}^{*}\} = \delta_{jk}$$
 and $\{a_{j}, a_{k}\} = 0$

2m Majorana fermions are defined as

$$c_{2k-1} = a_k + a_k^*$$
 and $c_{2k} = i(a_k^* - a_k)$.

They satisfy

$$c_k = c_k^*$$
, and $c_k^2 = 1$
 $c_k c_j = -c_j c_k$.

Majorana operators form an algebra C_{2m} with relations $\{c_j, c_k\} = 2\delta_{jk}$. The number operator

$$n_k = a_k^* a_k$$

has eigenvalues either 0 or 1. The fermion parity operator

$$P_k = I - 2n_k = (-1)^{n_k} I$$

has eigenvalue +1 if the number of fermions is even and -1 if it is odd. In terms of Majorana operators

$$P_k = -ic_{2k-1}c_{2k}.$$

The total fermion parity operator is

$$P_{all}=\prod_k P_k=i^m c_1 c_2 ... c_{2m}.$$

Any even pure state $|\psi\rangle \langle \psi|$ is the eigenstate of P_{all} , i.e. $P_{all} |\psi\rangle \langle \psi| = \pm |\psi\rangle \langle \psi|$ the eigenvalues depend on whether the parity of the number of fermions in $|\psi\rangle$ is even or odd.

A Hermitian operator X is called even if it has the form

$$X = \alpha_0 I + \sum_{k=1}^{m} (i)^k \sum_{1 \le j_1 < \dots < j_{2k} \le 2m} \alpha_{j_1, \dots, j_{2k}} c_{j_1} \dots c_{j_{2k}},$$

where $\alpha_0, \alpha_{j_1,...,j_{2k}}$ are real. Any even operator commutes with $P_{all}, [X, P_{all}] = 0$.

Fermionic Gaussian states

Fermionic Gaussian state is defined as

$$\rho = \gamma \exp\{-i \sum_{i \neq j} A_{ij} c_i c_j\}$$

where γ is a normalization and (A_{ij}) is a real anti-symmetric matrix. Block-diagonalizing A we can re-express ρ is standard form

$$\rho = \frac{1}{2^m} \prod_{k=1}^m (I + i\lambda_k \tilde{c}_{2k-1} \tilde{c}_{2k}),$$

where $\tilde{c} = R^T c$ with R block-diagonalization of A. Here $\lambda \in [-1, 1]$. For Gaussian pure states $\lambda \in \{-1, 1\}$.

Fermionic Gaussian states

Fermionic Gaussian state is defined as

$$\rho = \gamma \exp\{-i \sum_{i \neq j} A_{ij} c_i c_j\}$$

where γ is a normalization and (A_{ij}) is a real anti-symmetric matrix. Block-diagonalizing A we can re-express ρ is standard form

$$\rho = \frac{1}{2^m} \prod_{k=1}^m (I + i\lambda_k \tilde{c}_{2k-1} \tilde{c}_{2k}),$$

where $\tilde{c} = R^T c$ with *R* block-diagonalization of *A*. Here $\lambda \in [-1, 1]$. For Gaussian pure states $\lambda \in \{-1, 1\}$.

<u>Check:</u> ρ is a pure state iff $\rho^2 = \rho$. So

$$\rho^{2} = \frac{1}{2^{2m}} \prod_{k=1}^{m} (I + i\lambda_{k}\tilde{c}_{2k-1}\tilde{c}_{2k})^{2}$$
$$= \frac{1}{2^{2m}} \prod_{k=1}^{m} (I + \lambda_{k}^{2}I + 2i\lambda_{k}\tilde{c}_{2k-1}\tilde{c}_{2k})^{2}$$
$$= \frac{1}{2^{m}} \prod_{k=1}^{m} \left(\frac{1 + \lambda^{2}}{2}I + i\lambda_{k}\tilde{c}_{2k-1}\tilde{c}_{2k}\right)^{2}$$

Therefore $\rho^2 = \rho$ iff $\lambda_k^2 = 1$.

Given a state $\rho \in C_{2m}$, the correlation matrix *M* is

$$M_{ab} = \frac{i}{2} \operatorname{Tr}(\rho[c_a, c_b]), \text{ with } a, b = 1, ..., 2m.$$

For a = b, we have $M_{aa} = 0$ and for $a \neq b$, we have $M_{ab} = \frac{i}{2} \text{Tr}(\rho c_a c_b - \rho c_b c_a) = i \text{Tr}(\rho c_a c_b)$. Note that $M_{ab} = -M_{ba}$.

It can be block-diagonalized by $R \in SO(2m)$

$$M = R \bigoplus_{j=1}^{m} \left(egin{array}{cc} 0 & \lambda_j \ -\lambda_j & 0 \end{array}
ight) R^T.$$

Given a state $\rho \in C_{2m}$, the correlation matrix *M* is

$$M_{ab} = \frac{i}{2} \operatorname{Tr}(\rho[c_a, c_b]), \text{ with } a, b = 1, ..., 2m.$$

For a = b, we have $M_{aa} = 0$ and for $a \neq b$, we have $M_{ab} = \frac{i}{2} \text{Tr}(\rho c_a c_b - \rho c_b c_a) = i \text{Tr}(\rho c_a c_b)$. Note that $M_{ab} = -M_{ba}$.

It can be block-diagonalized by $R \in SO(2m)$

$$M = R \bigoplus_{j=1}^{m} \begin{pmatrix} 0 & \lambda_j \\ -\lambda_j & 0 \end{pmatrix} R^T.$$

Fermionic linear optics (FLO) transformation maps Gaussian states into Gaussian states

$$Uc_i U^* = \sum_j R_{ij} c_j$$

with $R \in SO(2m)$. The total fermionic parity operator is invariant under FLO

$$UP_{all} = P_{all}U.$$

Lemma

[1] (de Melo, Ćwikliński, Terhal). The correlation matrix M of any even density state $\rho \in C_{2m}$ has eigenvalues $\pm i\lambda_k$, with $\lambda_k \in [-1, 1]$, k = 1, ..., m. Moreover $M^T M \leq I$ with equality iff ρ is a Gaussian pure state.

Dephasing procedure. Define the FLO transformation U_k , k = 1, ..., m as

$$U_k c_{2k} U_k^* = -c_{2k}, \ U_k c_{2k-1} U^* = -c_{2k-1}, \ U_k c_i U_k^* = c_i \ \forall i \neq 2k-1, 2k$$

It leaves the correlation matrix of ρ invariant. With $\rho_0 = \rho$, let

$$\rho_k = \frac{1}{2}(\rho_{k-1} + U_k \rho_{k-1} U_k^*).$$

After *m* steps, we get

$$\rho_{m} = \sum_{k} p_{k} \left| \psi_{k} \right\rangle \left\langle \psi_{k} \right|$$

where each $|\psi_k\rangle \langle \psi_k| = \frac{1}{2^m} \prod_{j=1}^m (I + i\beta_{kj}c_{2j-1}c_{2j})$ is a Gaussian state, i.e. $\beta_{kj} = \pm 1$. It is an eigenvector to all $ic_{2j-1}c_{2j}$, j = 1, ..., m, since $ic_{2j-1}c_{2j} |\psi_k\rangle \langle \psi_k| = \beta_{kj} |\psi_k\rangle \langle \psi_k|$. The correlation matrix of ρ_m is

$$M_{\rho_m} = R \bigoplus_{j=1}^m \begin{pmatrix} 0 & \sum_k p_k \beta_{jk} \\ -\sum_k p_k \beta_{jk} & 0 \end{pmatrix} R^T.$$

Therefore $M_{\rho_m}^T M_{\rho_m} = I$ iff ρ_m is pure Gaussian. Since $M_{\rho_m} = M_{\rho}$, ρ is pure Gaussian.

Proposition

[1] Any even pure state $\ket{\psi}ra{\psi}\in\mathcal{C}_{2m}$ for m= 1, 2, 3 is Gaussian.

Proposition

[1] Any even pure state $|\psi\rangle \langle \psi| \in C_{2m}$ for m = 1, 2, 3 is Gaussian.

Proof.

For m = 1, a state can be written as $\rho = |\psi\rangle \langle \psi| = \alpha I + \beta c_1 c_2$. Since $\text{Tr}\rho = 1$, we get $\alpha = 1/2$. From $\rho^2 = \rho$ we get $(\alpha^2 - \beta^2)I + 2\alpha\beta c_1 c_2 = \alpha I + \beta c_1 c_2$. So $\beta = i/2$. So $|\psi\rangle \langle \psi|$ is Gaussian.

For m = 2, block-diagonalize the correlation matrix. Then any state can be written as $\rho = |\psi\rangle \langle \psi| = \alpha I + \sum_{k=1}^{2} \beta_k c_{2k-1} c_{2k} + P_{all}$. Apply dephasing procedure: $\rho_2 = \rho$. Since ρ_2 is a convex mixture of pure Gaussian states, $\rho = |\psi\rangle \langle \psi|$ is Gaussian.

For m = 3, after block-diagonalization, $|\psi\rangle \langle \psi| = \alpha I + \beta P_{all} + \sum_k \gamma_k c_{2k-1} c_{2k} + \sum_{i < j < k < l} \eta_{ijkl} c_i c_j c_k c_l$. Note that $P_{all} |\psi\rangle \langle \psi| = \pm |\psi\rangle \langle \psi|$ for even pure states. Apply dephasing procedure: $\rho_3 = \rho$ is a convex mixture of pure Gaussian states. So $|\psi\rangle \langle \psi|$ is Gaussian.

A convex-Gaussian state is

$$\rho = \sum_{i} p_i \sigma_i,$$

where σ_i are pure Gaussian states, $p_i \ge 0$ and $\sum_i p_i = 1$.

Proposition

[1] For any even state $\rho \in C_{2m}$ there exists $\epsilon > 0$ such that $\rho_{\epsilon} = \epsilon \rho + (1 - \epsilon)I/2^m$ is convex-Gaussian.

A convex-Gaussian state is

$$\rho = \sum_{i} p_i \sigma_i,$$

where σ_i are pure Gaussian states, $p_i \ge 0$ and $\sum_i p_i = 1$.

Proposition

[1] For any even state $\rho \in C_{2m}$ there exists $\epsilon > 0$ such that $\rho_{\epsilon} = \epsilon \rho + (1 - \epsilon)I/2^m$ is convex-Gaussian.

Define

$$\Lambda = \sum_{i=1}^{2m} c_i \otimes c_i \in \mathcal{C}_{2m} \otimes \mathcal{C}_{2m}.$$

The operator Λ is invariant under $U \otimes U$ for any FLO transformation.

<u>Check</u>: for any FLO U with $R \in SO(2m)$ we have

$$U \otimes U \wedge U^* \otimes U^* = \sum_{i=1}^{2m} Uc_i U^* \otimes Uc_i U^*$$
$$= \sum_{i,j,k} R_{ijc_j} \otimes R_{ik}c_k$$
$$= \sum_j c_j \otimes c_j.$$

Here we used that $\sum_{i} R_{ij}R_{ik} = \sum_{i} r_{ji}^{T}R_{ik} = (R^{T}R)_{jk} = \delta_{jk}$.

Gaussian-symmetric states

Lemma

[2] (Bravyi). An even state $\rho \in C_{2m}$ is Gaussian iff $[\Lambda, \rho \otimes \rho] = 0$.

Gaussian-symmetric states

llΛ

Lemma

[2] (Bravyi). An even state $\rho \in C_{2m}$ is Gaussian iff $[\Lambda, \rho \otimes \rho] = 0$.

$$\begin{aligned} (\rho \otimes \rho) \Lambda \|_{1} &= \sum_{a,b=1}^{2m} \operatorname{Tr}[(c_{a} \otimes c_{a})(\rho \otimes \rho)(c_{b} \otimes c_{b})] \\ &= \sum_{a=1}^{2m} \operatorname{Tr}(c_{a}\rho c_{a} \otimes c_{a}\rho c_{a}) + \sum_{a \neq b} (\operatorname{Tr} c_{a}\rho c_{b})^{2} \\ &= 2m - \sum_{a \neq b} (\operatorname{Tr} i c_{a}c_{b}\rho)^{2} \\ &= 2m - \sum_{a,b} (M_{ab})^{2} = 2m - \sum_{a} \left(-\sum_{b} M_{ab}M_{ba}\right) \\ &= 2m - \sum_{a} \sum_{b} M_{ab}^{T}M_{ba} = 2m - \operatorname{Tr} M^{T}M. \end{aligned}$$

For a pure state we have $M^T M = I$, so $\Lambda(\rho \otimes \rho) = 0$. For a mixed Gaussian state or non-Gaussian state $M^T M < I$, so $\|\Lambda(\rho \otimes \rho)\Lambda\|_1 > 0$.

Gaussian-symmetric states

 $\|\Lambda$

Lemma

[2] (Bravyi). An even state $\rho \in C_{2m}$ is Gaussian iff $[\Lambda, \rho \otimes \rho] = 0$.

$$\begin{aligned} (\rho \otimes \rho) \Lambda \|_{1} &= \sum_{a,b=1}^{2m} \operatorname{Tr}[(c_{a} \otimes c_{a})(\rho \otimes \rho)(c_{b} \otimes c_{b})] \\ &= \sum_{a=1}^{2m} \operatorname{Tr}(c_{a}\rho c_{a} \otimes c_{a}\rho c_{a}) + \sum_{a\neq b} (\operatorname{Tr} c_{a}\rho c_{b})^{2} \\ &= 2m - \sum_{a\neq b} (\operatorname{Tr} i c_{a}c_{b}\rho)^{2} \\ &= 2m - \sum_{a,b} (M_{ab})^{2} = 2m - \sum_{a} \left(-\sum_{b} M_{ab}M_{ba}\right) \\ &= 2m - \sum_{a} \sum_{b} M_{ab}^{T}M_{ba} = 2m - \operatorname{Tr} M^{T}M. \end{aligned}$$

For a pure state we have $M^T M = I$, so $\Lambda(\rho \otimes \rho) = 0$. For a mixed Gaussian state or non-Gaussian state $M^T M < I$, so $\|\Lambda(\rho \otimes \rho)\Lambda\|_1 > 0$.

Corollary

[1] For an even state $\rho \in C_{2m}$, $\Lambda(\rho \otimes \rho) = 0$ iff ρ is a pure Gaussian state.

For every Gaussian state $\psi,$ the state $|\psi,\psi\rangle$ is contained in the null space of A. Define a 'FLO twirl'

$$\mathcal{S}(\rho) = \int_{FLO} dU \ U \otimes U \rho U^* \otimes U^*.$$

Lemma

[1], [4] (Terhal, V.)

The projector onto the null-space of Λ is $\Pi_{\Lambda=0} = \binom{2m}{m} S(|0,0\rangle \langle 0,0|)$. Thus the states $|\psi,\psi\rangle$ where ψ is Gaussian span the null space of Λ .

For every Gaussian state $\psi,$ the state $|\psi,\psi\rangle$ is contained in the null space of A. Define a 'FLO twirl'

$$\mathcal{S}(\rho) = \int_{FLO} dU \ U \otimes U \rho U^* \otimes U^*.$$

Lemma

[1], [4] (Terhal, V.)

The projector onto the null-space of Λ is $\Pi_{\Lambda=0} = \binom{2m}{m} \mathcal{S}(|0,0\rangle \langle 0,0|)$. Thus the states $|\psi,\psi\rangle$ where ψ is Gaussian span the null space of Λ .

Proof.

To show that $\Pi = \binom{2m}{m} \mathcal{S}(|0,0\rangle \langle 0,0|)$, we need to show that for any *X*,

$$\operatorname{Tr}(X \Pi) = {\binom{2m}{m}} \operatorname{Tr} \left(X \mathcal{S}(|0,0\rangle \langle 0,0|) \right).$$

Need only to consider S(X) instead of X. The invariant subspace of S is spanned by $I \otimes I, \Lambda, ..., \Lambda^{2m}$ operators. [4] For any $i \neq 0$ we have

$$\operatorname{Tr} \Lambda^{i} \Pi_{\Lambda=0} = 0 \quad \text{and} \quad \operatorname{Tr} \Lambda^{i} \mathcal{S}(|0,0\rangle \langle 0,0|) = \operatorname{Tr} \mathcal{S}(\Lambda^{i}) |0,0\rangle \langle 0,0| = 0.$$

Overall prefactor:

 $\Lambda = \sum_{i=1}^{2m} c_i \otimes c_i$, each term $c_i \otimes c_i$ has eigenvalue $\mu_i = \pm 1$. Then eigenvalues of Λ are $\sum_{i=1}^{2m} \mu_i$ with the projector onto the eigenstates

$$P_{\vec{\mu}} = \frac{1}{2^{2m}} \prod_{i=1}^{2m} (I + \mu_i \boldsymbol{c}_i \otimes \boldsymbol{c}_i).$$

The null space is spanned by $\binom{2m}{m}$ eigenvectors $P_{\vec{\mu}}$ such that $\sum_{i=1}^{2m} \mu_i = 0$. Therefore Tr $\Pi = \binom{2m}{m}$. Thus states $|\psi, \psi\rangle$ with ψ Gaussian span the null space of Λ . Q.E.D.

The null space of Λ is called **Gaussian symmetric** subspace.

Overall prefactor:

 $\Lambda = \sum_{i=1}^{2m} c_i \otimes c_i$, each term $c_i \otimes c_i$ has eigenvalue $\mu_i = \pm 1$. Then eigenvalues of Λ are $\sum_{i=1}^{2m} \mu_i$ with the projector onto the eigenstates

$$P_{\vec{\mu}} = \frac{1}{2^{2m}} \prod_{i=1}^{2m} (I + \mu_i \boldsymbol{c}_i \otimes \boldsymbol{c}_i).$$

The null space is spanned by $\binom{2m}{m}$ eigenvectors $P_{\vec{\mu}}$ such that $\sum_{i=1}^{2m} \mu_i = 0$. Therefore Tr $\Pi = \binom{2m}{m}$. Thus states $|\psi, \psi\rangle$ with ψ Gaussian span the null space of Λ . Q.E.D.

The null space of Λ is called **Gaussian symmetric** subspace.

Lemma

[4] If a state τ is such that

$$\|\Lambda(\tau\otimes\tau)\Lambda\|_1\leq\epsilon,$$

then there exists a Gaussian state $|\psi\rangle$ close to τ , i.e. such that

$$\left\| au - \left| \psi
ight
angle \left\langle \psi
ight\|_1 \le \epsilon' = \sqrt{2m(1 - \sqrt{1 - \epsilon})}.$$

Proof

Let M_{τ} be a correlation matrix of state τ .

$$M_{ au} = R igoplus_{j=1}^m \left(egin{array}{cc} 0 & \lambda_j \ -\lambda_j & 0 \end{array}
ight) R^T.$$

Then

$$\|\Lambda \tau \otimes \tau \Lambda\|_1 = 2m - \operatorname{Tr} M_{\tau}^T M_{\tau} = 2m - \sum_j \lambda_j^2 \leq \epsilon.$$

So
$$\sum_{j} \lambda_j^2 \ge 2m - \epsilon$$
. Since every $\lambda_j^2 \le 1$, for every j , $\lambda_j^2 \ge 1 - \epsilon$.

A pure Gaussian state $|\psi\rangle$ is

$$M_\psi = R igoplus_{j=1}^m \left(egin{array}{cc} 0 & eta_j \ -eta_j & 0 \end{array}
ight) R^T,$$

such that $\beta_j = \operatorname{sign} \lambda_j$.

Proof

Let M_{τ} be a correlation matrix of state τ .

$$M_{ au} = R igoplus_{j=1}^m \left(egin{array}{cc} 0 & \lambda_j \ -\lambda_j & 0 \end{array}
ight) R^T.$$

Then

$$\|\Lambda \tau \otimes \tau \Lambda\|_1 = 2m - \operatorname{Tr} M_{\tau}^T M_{\tau} = 2m - \sum_j \lambda_j^2 \leq \epsilon.$$

So
$$\sum_j \lambda_j^2 \ge 2m - \epsilon$$
. Since every $\lambda_j^2 \le 1$, for every j , $\lambda_j^2 \ge 1 - \epsilon$

A pure Gaussian state $|\psi
angle$ is

$$M_{\psi} = R igoplus_{j=1}^{m} \left(egin{array}{cc} 0 & eta_{j} \ -eta_{j} & 0 \end{array}
ight) R^{T},$$

such that $\beta_j = \operatorname{sign} \lambda_j$. Consider the fidelity

$$F(\tau, |\psi\rangle) = \langle \psi | \tau | \psi \rangle.$$

Apply a dephasing procedure to τ . Since the correlation matrix M_{τ} stays invariant, the fidelity $F(\tau, |\psi\rangle)$ stays the same. After dephasing the state has the form

$$\tau_{m} =: \sum_{k} p_{k} \ket{\phi_{k}} \bra{\phi_{k}},$$

where $|\phi_k\rangle \langle \phi_k| = \frac{1}{2^m} \prod_{j=1}^m (I + i\beta_j^k c_{2j-1} c_{2j})$ and $|\phi_0\rangle \langle \phi_0| := |\psi\rangle \langle \psi|$.

Then $F(\tau, |\psi\rangle) = p_0$ and so

$$|\tau - |\psi\rangle \langle \psi| \parallel_1 \le 2\sqrt{1 - p_0}.$$

For every j = 1, ..., m we have

$$\lambda_j = M_\tau(2j-1,2j) = \operatorname{Tr}(ic_{2j-1}c_{2j}\tau_m) = \sum_k \beta_j^k p_k.$$

Note that

$$\lambda_j = 1 - 2 \sum_{k: \beta_j^k = -1} p_k = 2 \sum_{k: \beta_j^k = 1} p_k - 1.$$

Then $F(\tau, |\psi\rangle) = p_0$ and so

$$|\tau - |\psi\rangle \langle \psi| \parallel_1 \le 2\sqrt{1 - p_0}.$$

For every j = 1, ..., m we have

$$\lambda_j = M_\tau(2j-1,2j) = \operatorname{Tr}(ic_{2j-1}c_{2j}\tau_m) = \sum_k \beta_j^k p_k.$$

Note that

$$\lambda_j = 1 - 2 \sum_{k: \beta_j^k = -1} p_k = 2 \sum_{k: \beta_j^k = 1} p_k - 1.$$

For every j = 1, ..., m we have $1 - \epsilon \le \lambda_j^2 \le 1$. Consider two possible cases:

If √1 − ε ≤ λ_j ≤ 1, we have ∑_{β_j^k=−1} p_k ≤ ½(1 − √1 − ε). Note that p₀ is not in the sum, since β_j⁰ = 1.
 If −√1 − ε ≥ λ_j ≥ −1, we have ∑_{β_j^k=1} p_k ≤ ½(1 − √1 − ε). Note that p₀ is not in the sum, since β_i⁰ = −1.

Then $F(\tau, |\psi\rangle) = p_0$ and so

$$|\tau - |\psi\rangle \langle \psi| \parallel_1 \le 2\sqrt{1 - p_0}.$$

For every j = 1, ..., m we have

$$\lambda_j = M_\tau(2j-1,2j) = \operatorname{Tr}(ic_{2j-1}c_{2j}\tau_m) = \sum_k \beta_j^k p_k.$$

Note that

$$\lambda_j = 1 - 2 \sum_{k: \beta_j^k = -1} p_k = 2 \sum_{k: \beta_j^k = 1} p_k - 1.$$

For every j = 1, ..., m we have $1 - \epsilon \le \lambda_j^2 \le 1$. Consider two possible cases:

- If $\sqrt{1-\epsilon} \le \lambda_j \le 1$, we have $\sum_{\beta_j^k = -1} p_k \le \frac{1}{2}(1-\sqrt{1-\epsilon})$. Note that p_0 is not in the sum, since $\beta_j^0 = 1$.
- If $-\sqrt{1-\epsilon} \ge \lambda_j \ge -1$, we have $\sum_{\beta_j^k=1} p_k \le \frac{1}{2}(1-\sqrt{1-\epsilon})$. Note that p_0 is not in the sum, since $\beta_j^0 = -1$.

Summing all inequalities (for every *j*) we obtain $\sum_{j=1}^{m} \sum_{k:\beta_j^k = -\operatorname{sign} \lambda_j} p_k \leq \frac{m}{2}(1 - \sqrt{1 - \epsilon})$. There is no p_0 in the sum and the only p_k absent in the sum is p_0 , so

$$1-p_0=\sum_{k\neq 0}p_k\leq \frac{m}{2}(1-\sqrt{1-\epsilon}),$$

therefore

$$\|\tau - |\psi\rangle \langle \psi\|_1 \leq 2\sqrt{1-p_0} \leq \sqrt{2m(1-\sqrt{1-\epsilon})}.$$

Q.E.D.

Finding convex-Gaussian states

Let $\rho = \sum_{i} p_i \sigma_i$ with σ_i pure Gaussian. Then there exists a symmetric extension $\rho_{\text{ext}} = \sum_{i} p_i \sigma_i^{\otimes n} \in C_{2m}^{\otimes n}$, which is annihilated by $\Lambda^{k,l}$ and $\text{Tr}_{2,..,n}\rho_{\text{ext}} = \rho$.

Program. *Input:* $\rho \in C_{2m}$ and an integer $n \geq 2$.

Question: Is there a $\rho_{ext} \in C_{2m}^{\otimes n}$ s.t.

- $\operatorname{Tr} \rho_{ext} = 1$ • $\rho_{ext} \ge 0$ • $\operatorname{Tr}_{2,...,n}\rho_{ext} = \rho$
- $\Lambda^{k,l}\rho_{ext} = 0, \forall k \neq l$

Output: Yes, then provide ρ_{ext} , or No.

Since the null space of $\Lambda^{k,l}$ is spanned by $|\psi,\psi\rangle_{k,l}$ where $|\psi\rangle$ is Gaussian, the intersection of all null-spaces of $\Lambda^{k,l}$ is spanned by vectors $|\psi\rangle^{\otimes n}$.

Finding convex-Gaussian states

Let $\rho = \sum_{i} p_i \sigma_i$ with σ_i pure Gaussian. Then there exists a symmetric extension $\rho_{\text{ext}} = \sum_{i} p_i \sigma_i^{\otimes n} \in C_{2m}^{\otimes n}$, which is annihilated by $\Lambda^{k,l}$ and $\text{Tr}_{2,..,n}\rho_{\text{ext}} = \rho$.

Program. *Input:* $\rho \in C_{2m}$ and an integer $n \geq 2$.

Question: Is there a $\rho_{ext} \in C_{2m}^{\otimes n}$ s.t.

- $\operatorname{Tr} \rho_{ext} = 1$ • $\rho_{ext} \ge 0$ • $\operatorname{Tr}_{2,...,n}\rho_{ext} = \rho$
- $\Lambda^{k,l}\rho_{ext} = 0, \forall k \neq l$

Output: Yes, then provide ρ_{ext} , or No.

Since the null space of $\Lambda^{k,l}$ is spanned by $|\psi,\psi\rangle_{k,l}$ where $|\psi\rangle$ is Gaussian, the intersection of all null-spaces of $\Lambda^{k,l}$ is spanned by vectors $|\psi\rangle^{\otimes n}$.

The program can be done in the standard form of semi-definite program:

minimize
$$c^T x$$

subject to $F_0 + \sum_i x_i F_i \ge 0$
 $Ax = b$,

here $x \in \mathbb{R}^d$, $c \in \mathbb{R}^d$ is a given vector, $\{F_i\}_{i=0,...,d}$ are given symmetric matrices and $A \in \mathbb{R}^{p \times d}$ with rank(A) = p and $b \in \mathbb{R}^p$ are given.

Finding convex-Gaussian states

Let $\rho = \sum_{i} \rho_{i}\sigma_{i}$ with σ_{i} pure Gaussian. Then there exists a symmetric extension $\rho_{ext} = \sum_{i} \rho_{i}\sigma_{i}^{\otimes n} \in C_{2m}^{\otimes n}$, which is annihilated by $\Lambda^{k,l}$ and $\operatorname{Tr}_{2,..,n}\rho_{ext} = \rho$.

Program. *Input:* $\rho \in C_{2m}$ and an integer $n \geq 2$.

Question: Is there a $\rho_{ext} \in C_{2m}^{\otimes n}$ s.t.

- $\text{Tr}\rho_{ext} = 1$
- $\rho_{\textit{ext}} \geq 0$
- $\operatorname{Tr}_{2,...,n}\rho_{ext} = \rho$
- $\Lambda^{k,l}\rho_{ext} = 0, \forall k \neq l$

Output: Yes, then provide ρ_{ext} , or No.

Since the null space of $\Lambda^{k,l}$ is spanned by $|\psi,\psi\rangle_{k,l}$ where $|\psi\rangle$ is Gaussian, the intersection of all null-spaces of $\Lambda^{k,l}$ is spanned by vectors $|\psi\rangle^{\otimes n}$.

Theorem

[1] If an even state $\rho \in C_{2m}$ has an n-Gaussian-symmetric extension for all n, then ρ is convex-Gaussian, in other words, there exists a sequence of convex-Gaussian states $\omega_1, \omega_2, \ldots \in C_{2m}$ s.t.

$$\lim_{n\to\infty}\|\rho-\omega_n\|_1=0.$$

Theorem

[4] Suppose that an even state $\rho \in C_{2m}$ has an extension to n number of parties, where n is sufficiently large. Then there exists a convex-Gaussian state $\sigma(n)$ such that

$$\|\rho - \sigma(n)\|_1 \leq \epsilon(n) := 4\frac{2^m}{n} + \sqrt{2m\left(1 - \sqrt{1 - 4\|\Lambda\|_1^2}\frac{2^m}{n}\right)}.$$

Denote *G* the set of convex-Gaussian states and $G^n \ni \rho$ iff $\exists \rho_{ext}^n \in C_{2m}^{\otimes n}$. Then

$$G^1 \supset G^2 \supset ... \supset G$$
 and $\lim_{n \to \infty} G^n = G$.

Proof

Denote $\rho^n := \rho_{ext}$ to *n* parties. The state ρ^n is symmetric, therefore use quantum de Finetti theorem:

Theorem

[3] (Christandl, König, Mitchison, Renner). Let $|\Psi\rangle$ be a symmetric state on n parties and let $\zeta^k = Tr_{k+1,...,n} |\Psi\rangle \langle \Psi|$. Then there exists a probability distribution $\{\alpha_i\}$ and states $\{\tau_i\}$ such that

$$\|\zeta^k - \sum_j \alpha_j \, \tau_j \otimes \tau_j\|_1 \le \epsilon$$

Therefore there exists $\alpha_j \geq 0$, $\sum_j \alpha_j = 1$, and states $\tau_j \in C_{2m}$, s.t.

$$\|\rho_{1,2}^n-\sum_j\alpha_j\,\tau_j\otimes\tau_j\|_1\leq\tilde\epsilon=4\frac{2^m}{n}.$$

Applying $\Lambda^{1,2}$ we obtain

$$\|\Lambda\|_1^2 \tilde{\epsilon} =: \hat{\epsilon} \ge \|\Lambda \sum_j \alpha_j \tau_j(n) \otimes \tau_j(n) \Lambda\|_1 = \sum_j \alpha_j \|\Lambda \tau_j(n) \otimes \tau_j(n) \Lambda\|_1.$$

Therefore for every j = 1, ...m we obtain

$$\|\Lambda \tau_j(n) \otimes \tau_j(n) \Lambda\|_1 \leq \epsilon.$$

For every *j* the state $\tau_j(n)$ is ϵ' -close to a pure Gaussian state $|\psi_j(n)\rangle$. Therefore the state ρ is close to the convex-Gaussian state:

$$\begin{split} \|\rho - \sum_{j} \alpha_{j} |\psi_{j}(n)\rangle \langle \psi_{j}(n)| \|_{1} &\leq \|\rho - \sum_{j} \alpha_{j}\tau_{j}(n)\|_{1} + \sum_{j} \alpha_{j} \|\tau_{j}(n) - |\psi_{j}(n)\rangle \langle \psi_{j}(n)| \|_{1} \\ &\leq \tilde{\epsilon} + \epsilon'. \end{split}$$

Q.E.D.

Complementary criterion

Separability criteria

Let $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ be a finite dimensional Hilbert space. Denote *S* the set of separable operators, i.e. the conical combination of all pure product states $\{|\psi_A\rangle \langle \psi_A| \otimes |\psi_B\rangle \langle \psi_B|\}$.

$$ho_{AB} \in S^N$$
 iff $\exists
ho_{AB^N} \in \mathcal{B}(\mathcal{H}_{AB^N})$ s.t.

1. $\rho_{AB^N} \ge 0$

2. $\operatorname{Tr}_{B^{N-1}}(\rho_{AB^N}) = \rho_{AB}$ 3. ρ_{AB^N} is Bose symmetric in \mathcal{H}_B^N , i.e. $\rho_{AB^N}(\mathbbm{1}\otimes \mathcal{P}_{sym}^N) = \rho_{AB^N}$. The sequence $\{S^N\}_{N=1}^{\infty}$ converges to *S* from outside [5] (Doherty et al.):

$$\lim_{N\to\infty}S^N=S.$$

Complementary criterion

Separability criteria

Let $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ be a finite dimensional Hilbert space. Denote *S* the set of separable operators, i.e. the conical combination of all pure product states $\{|\psi_A\rangle \langle \psi_A| \otimes |\psi_B\rangle \langle \psi_B|\}$.

$$ho_{AB} \in S^N$$
 iff $\exists
ho_{AB^N} \in \mathcal{B}(\mathcal{H}_{AB^N})$ s.t.

1. $\rho_{\textit{AB}^{N}} \geq 0$

2. $\operatorname{Tr}_{B^{N-1}}(\rho_{AB^N}) = \rho_{AB}$ 3. ρ_{AB^N} is Bose symmetric in \mathcal{H}_B^N , i.e. $\rho_{AB^N}(\mathbb{1} \otimes \mathcal{P}_{sym}^N) = \rho_{AB^N}$. The sequence $\{S^N\}_{N=1}^{\infty}$ converges to *S* from outside [5] (Doherty et al.):

$$\lim_{N\to\infty}S^N=S.$$

Define sets \tilde{S}^N as:

$$\tilde{S}^N = \{ \frac{N}{N+d} \rho_{AB} + \frac{1}{N+d} \rho_A \otimes I_B : \rho_{AB} \in S^N \}.$$

The sequence $\{\tilde{S}^N\}_{N=1}^\infty$ converges to S from inside [6] (Navascues et al.)

$$ilde{S}^1\subset ilde{S}^2\subset ...\subset S, ext{ with } \overline{\lim_{N
ightarrow\infty}S^N}=S.$$

Program. Given a state $\rho_{AB} \in \mathcal{B}(\mathcal{H})$ determine whether it is separable.

- 1. Check whether $\rho_{AB} \in S^k$. If "NO", then ρ is entangled. Done. If "YES", then go to 2.
- 2. Check whether $\rho_{AB} \in \tilde{S}^k$. If "YES", then it is separable. Done. If "NO", repeat steps for k = k + 1.

Program. Given a state $\rho_{AB} \in \mathcal{B}(\mathcal{H})$ determine whether it is separable.

- 1. Check whether $\rho_{AB} \in S^k$. If "NO", then ρ is entangled. Done. If "YES", then go to 2.
- 2. Check whether $\rho_{AB} \in \tilde{S}^k$. If "YES", then it is separable. Done. If "NO", repeat steps for k = k + 1.

We have that

$$G^1 \supset G^2 \supset ... \supset G.$$

Define $\tilde{G}^n = \{\epsilon_n \rho + (1 - \epsilon_n)I/2^m : \rho \in G^n\} \subset G.$ **Problem.** Show that

$$\overline{\lim_{n\to\infty}\tilde{G}^n}=G$$

Proposition

[1] For any even state $\rho \in C_{2m}$ there exists $\epsilon > 0$ such that $\rho_{\epsilon} = \epsilon \rho + (1 - \epsilon)I/2^m$ is convex-Gaussian.

I.e. need to show that

$$\epsilon_n \to 1$$
 as $n \to \infty$, for $\rho_n \in G^n$.

Extension to C_{2mn}

The isomorphism *J* between C_{2mn} and $C_{2m}^{\otimes n}$ is the following:

 $J(c_j) = I \otimes ... \otimes c_j \otimes P_{all} \otimes ... \otimes P_{all}, \text{ for } 2m(k-1) + 1 \leq j \leq 2mk,$

where c_j stands on the *k*-th component and P_{all} acts on each C_{2m} . *J* is the isomorphism since J(XY) = J(X)J(Y).

Extension to C_{2mn}

The isomorphism *J* between C_{2mn} and $C_{2m}^{\otimes n}$ is the following:

$$J(c_j) = I \otimes ... \otimes c_j \otimes P_{all} \otimes ... \otimes P_{all}$$
, for $2m(k-1) + 1 \le j \le 2mk$

where c_j stands on the *k*-th component and P_{all} acts on each C_{2m} . *J* is the isomorphism since J(XY) = J(X)J(Y).

For n = 2, for any state

$$\mu = \sum_{k} \alpha_k Z_k^1 Z_k^2 \in \mathcal{C}_{4m},$$

where Z^1 acts on $c_1, ..., c_{2m}$ and Z^2 acts on $c_{2m+1}, ..., c_{4m}$. Applying J this state gets mapped to:

$$J(\mu) = \sum_{k} \alpha_{k} Z_{k}^{1} \otimes P_{all}^{\epsilon_{k}} Z_{k}^{2} \in \mathcal{C}_{2m} \otimes \mathcal{C}_{2m},$$

where $\epsilon_k = 0$, if Z_k^1 is even and $\epsilon_k = 1$, if Z_k^1 is odd.

Extension to C_{2mn}

The isomorphism *J* between C_{2mn} and $C_{2m}^{\otimes n}$ is the following:

$$J(c_j) = I \otimes ... \otimes c_j \otimes P_{all} \otimes ... \otimes P_{all}$$
, for $2m(k-1) + 1 \le j \le 2mk$

where c_j stands on the *k*-th component and P_{all} acts on each C_{2m} . *J* is the isomorphism since J(XY) = J(X)J(Y).

For n = 2, for any state

$$\mu = \sum_{k} \alpha_k Z_k^1 Z_k^2 \in \mathcal{C}_{4m},$$

where Z^1 acts on $c_1, ..., c_{2m}$ and Z^2 acts on $c_{2m+1}, ..., c_{4m}$. Applying J this state gets mapped to:

$$J(\mu) = \sum_{k} \alpha_{k} Z_{k}^{1} \otimes P_{all}^{\epsilon_{k}} Z_{k}^{2} \in \mathcal{C}_{2m} \otimes \mathcal{C}_{2m},$$

where $\epsilon_k = 0$, if Z_k^1 is even and $\epsilon_k = 1$, if Z_k^1 is odd. Any state

$$\sigma = \sum_{k} \beta_{k} Z_{k}^{1} \otimes Z_{k}^{2} \in \mathcal{C}_{2m} \otimes \mathcal{C}_{2m}$$

gets mapped onto a state

$$J^{-1}(\sigma) = \sum_{k} \beta_{K} Z_{k}^{1} P_{all}^{\epsilon_{k}} Z_{k}^{2} \in \mathcal{C}_{4m},$$

where $P_{all}^{\epsilon_k}$ acts on $c_{2m+1}...c_{4m}$.

The operator $\Lambda^{k,l}$ is equivalent to Γ acting on C_{2mn} : for any $1 \le k \ne l \le n$,

$$\Gamma^{k,l} = \sum_{j=1}^{2m} (-1)^{m-j} c_{2m(k-1)+j} c_{2m(l-1)+1} \dots \hat{c}_{2m(l-1)+j} \dots c_{2ml}$$

The operator $\Lambda^{k,l}$ is equivalent to Γ acting on C_{2mn} : for any $1 \le k \ne l \le n$,

$$\Gamma^{k,l} = \sum_{j=1}^{2m} (-1)^{m-j} c_{2m(k-1)+j} c_{2m(l-1)+1} \dots \hat{c}_{2m(l-1)+j} \dots c_{2ml}$$

For an even state $\rho = \sum_{j} \alpha_{j} Z_{j}^{1} \in C_{2m}$ the extension $\rho_{ext} \in C_{2mn}$ has the following form

$$\rho_{ext} = 2^{-m(n-1)}\rho + Corr.$$

Every term in the correlations $Corr = \sum_{j} \beta_j Z_j^1 \dots Z_j^n$ acts nontrivially on the last (n - 1) spaces spanned by $c_{2m+1} \dots c_{2mn}$. Here Z^k acts on the space spanned by $c_{2m(k-1)+1} \dots c_{2mk}$.

References

F. de Melo, P. Ćwikliński, B. M. Terhal. The power of noisy fermionic quantum computation. New Journal of Physics, 15, 1: 013015, 2013.

S. Bravvi.

Lagrangian representation for fermionic linear optics. Quant. Inf. Comp., 5:216-238, 2005.

M. Christandl, R. König, G. Mitchison, R.Renner One-and-a-half guantum de Finetti theorems. Comm. Math. Phys., 273:473-498, 2007.

B. M. Terhal, A. Vershynina To be published.

A. C. Doherty, P. A. Parrilo, F. M. Spedalieri Complete family of separability criteria. Phys. Rev. A 69, 022308, 2004.

Navascués, Miguel, Masaki Owari, and Martin B. Plenio. Complete Criterion for Separability Detection. Physical review letters 103.16: 160404, 2009.