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Introduction

Given m Dirac fermions created by the operator a∗j , j = 1, ..,m, with CAR

{aj , a∗k } = δjk and {aj , ak} = 0,

2m Majorana fermions are defined as

c2k−1 = ak + a∗k and c2k = i(a∗k − ak ).

They satisfy
ck = c∗k , and c2

k = 1

ck cj = −cj ck .

Majorana operators form an algebra C2m with relations {cj , ck} = 2δjk .

The number operator
nk = a∗k ak

has eigenvalues either 0 or 1.
The fermion parity operator

Pk = I − 2nk = (−1)nk I

has eigenvalue +1 if the number of fermions is even and −1 if it is odd. In terms of
Majorana operators

Pk = −ic2k−1c2k .
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The total fermion parity operator is

Pall =
∏

k

Pk = imc1c2...c2m.

Any even pure state |ψ〉 〈ψ| is the eigenstate of Pall , i.e. Pall |ψ〉 〈ψ| = ± |ψ〉 〈ψ| the
eigenvalues depend on whether the parity of the number of fermions in |ψ〉 is even or odd.

A Hermitian operator X is called even if it has the form

X = α0I +
m∑

k=1

(i)k
∑

1≤j1<...<j2k≤2m

αj1,...,j2k
cj1 ...cj2k

,

where α0, αj1,...,j2k
are real.

Any even operator commutes with Pall , [X ,Pall ] = 0.



Fermionic Gaussian states
Fermionic Gaussian state is defined as

ρ = γ exp{−i
∑
i 6=j

Aij ci cj}

where γ is a normalization and (Aij ) is a real anti-symmetric matrix.
Block-diagonalizing A we can re-express ρ is standard form

ρ =
1

2m

m∏
k=1

(I + iλk c̃2k−1c̃2k ),

where c̃ = RT c with R block-diagonalization of A. Here λ ∈ [−1, 1]. For Gaussian pure
states λ ∈ {−1, 1}.

Check: ρ is a pure state iff ρ2 = ρ. So

ρ2 =
1

22m

m∏
k=1

(I + iλk c̃2k−1c̃2k )2

=
1

22m

m∏
k=1

(I + λ2
k I + 2iλk c̃2k−1c̃2k )

=
1

2m

m∏
k=1

(1 + λ2

2
I + iλk c̃2k−1c̃2k

)
.

Therefore ρ2 = ρ iff λ2
k = 1.



Fermionic Gaussian states
Fermionic Gaussian state is defined as

ρ = γ exp{−i
∑
i 6=j

Aij ci cj}

where γ is a normalization and (Aij ) is a real anti-symmetric matrix.
Block-diagonalizing A we can re-express ρ is standard form

ρ =
1

2m

m∏
k=1

(I + iλk c̃2k−1c̃2k ),

where c̃ = RT c with R block-diagonalization of A. Here λ ∈ [−1, 1]. For Gaussian pure
states λ ∈ {−1, 1}.

Check: ρ is a pure state iff ρ2 = ρ. So

ρ2 =
1

22m

m∏
k=1

(I + iλk c̃2k−1c̃2k )2

=
1

22m

m∏
k=1

(I + λ2
k I + 2iλk c̃2k−1c̃2k )

=
1

2m

m∏
k=1

(1 + λ2

2
I + iλk c̃2k−1c̃2k

)
.

Therefore ρ2 = ρ iff λ2
k = 1.



Given a state ρ ∈ C2m, the correlation matrix M is

Mab =
i
2

Tr(ρ[ca, cb]), with a, b = 1, .., 2m.

For a = b, we have Maa = 0 and
for a 6= b, we have Mab = i

2 Tr(ρcacb − ρcbca) = iTr(ρcacb). Note that Mab = −Mba.

It can be block-diagonalized by R ∈ SO(2m)

M = R
m⊕

j=1

(
0 λj
−λj 0

)
RT .

Fermionic linear optics (FLO) transformation maps Gaussian states into Gaussian states

Uci U∗ =
∑

j

Rij cj

with R ∈ SO(2m).
The total fermionic parity operator is invariant under FLO

UPall = Pall U.
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Lemma

[1] (de Melo, Ćwikliński, Terhal).
The correlation matrix M of any even density state ρ ∈ C2m has eigenvalues ±iλk , with
λk ∈ [−1, 1], k = 1, ...,m. Moreover MT M ≤ I with equality iff ρ is a Gaussian pure state.

Dephasing procedure. Define the FLO transformation Uk , k = 1, ...,m as

Uk c2k U∗k = −c2k , Uk c2k−1U∗ = −c2k−1, Uk ci U∗k = ci ∀i 6= 2k − 1, 2k .

It leaves the correlation matrix of ρ invariant. With ρ0 = ρ, let

ρk =
1
2

(ρk−1 + Ukρk−1U∗k ).

After m steps, we get
ρm =

∑
k

pk |ψk 〉 〈ψk |

where each |ψk 〉 〈ψk | = 1
2m
∏m

j=1(I + iβkj c2j−1c2j ) is a Gaussian state, i.e. βkj = ±1. It is
an eigenvector to all ic2j−1c2j , j = 1, ..,m, since ic2j−1c2j |ψk 〉 〈ψk | = βkj |ψk 〉 〈ψk | .
The correlation matrix of ρm is

Mρm = R
m⊕

j=1

(
0

∑
k pkβjk

−
∑

k pkβjk 0

)
RT .

Therefore MT
ρm Mρm = I iff ρm is pure Gaussian. Since Mρm = Mρ, ρ is pure Gaussian.



Proposition
[1] Any even pure state |ψ〉 〈ψ| ∈ C2m for m = 1, 2, 3 is Gaussian.

Proof.
For m = 1, a state can be written as ρ = |ψ〉 〈ψ| = αI + βc1c2. Since Trρ = 1, we get
α = 1/2. From ρ2 = ρ we get (α2 − β2)I + 2αβc1c2 = αI + βc1c2. So β = i/2. So |ψ〉 〈ψ|
is Gaussian.

For m = 2, block-diagonalize the correlation matrix. Then any state can be written as
ρ = |ψ〉 〈ψ| = αI +

∑2
k=1 βk c2k−1c2k + Pall . Apply dephasing procedure: ρ2 = ρ. Since ρ2

is a convex mixture of pure Gaussian states, ρ = |ψ〉 〈ψ| is Gaussian.

For m = 3, after block-diagonalization,
|ψ〉 〈ψ| = αI + βPall +

∑
k γk c2k−1c2k +

∑
i<j<k<l ηijkl ci cj ck cl . Note that

Pall |ψ〉 〈ψ| = ± |ψ〉 〈ψ| for even pure states. Apply dephasing procedure: ρ3 = ρ is a
convex mixture of pure Gaussian states. So |ψ〉 〈ψ| is Gaussian.
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A convex-Gaussian state is
ρ =

∑
i

piσi ,

where σi are pure Gaussian states, pi ≥ 0 and
∑

i pi = 1.

Proposition
[1] For any even state ρ ∈ C2m there exists ε > 0 such that ρε = ερ+ (1− ε)I/2m is
convex-Gaussian.

Define

Λ =
2m∑
i=1

ci ⊗ ci ∈ C2m ⊗ C2m.

The operator Λ is invariant under U ⊗ U for any FLO transformation.

Check: for any FLO U with R ∈ SO(2m) we have

U ⊗ U Λ U∗ ⊗ U∗ =
2m∑
i=1

Uci U∗ ⊗ Uci U∗

=
∑
i,j,k

Rijcj
⊗ Rik ck

=
∑

j

cj ⊗ cj .

Here we used that
∑

i Rij Rik =
∑

i rT
ji Rik = (RT R)jk = δjk .
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Gaussian-symmetric states

Lemma
[2] (Bravyi). An even state ρ ∈ C2m is Gaussian iff [Λ, ρ⊗ ρ] = 0.

‖Λ(ρ⊗ ρ)Λ‖1 =
2m∑

a,b=1

Tr[(ca ⊗ ca)(ρ⊗ ρ)(cb ⊗ cb)]

=
2m∑
a=1

Tr(caρca ⊗ caρca) +
∑
a 6=b

(Trcaρcb)2

= 2m −
∑
a 6=b

(Tr i cacbρ)2

= 2m −
∑
a,b

(Mab)2 = 2m −
∑

a

(
−
∑

b

MabMba

)
= 2m −

∑
a

∑
b

MT
abMba = 2m − Tr MT M.

For a pure state we have MT M = I, so Λ(ρ⊗ ρ) = 0. For a mixed Gaussian state or
non-Gaussian state MT M < I, so ‖Λ(ρ⊗ ρ)Λ‖1 > 0.

Corollary
[1] For an even state ρ ∈ C2m, Λ(ρ⊗ ρ) = 0 iff ρ is a pure Gaussian state.
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For every Gaussian state ψ, the state |ψ,ψ〉 is contained in the null space of Λ.
Define a ’FLO twirl’

S(ρ) =

∫
FLO

dU U ⊗ UρU∗ ⊗ U∗.

Lemma
[1], [4] (Terhal, V.)
The projector onto the null-space of Λ is ΠΛ=0 =

(2m
m

)
S(|0, 0〉 〈0, 0|). Thus the states |ψ,ψ〉

where ψ is Gaussian span the null space of Λ.

Proof.
To show that Π =

(2m
m

)
S(|0, 0〉 〈0, 0|), we need to show that for any X ,

Tr(X Π) =
(2m

m

)
Tr
(

XS(|0, 0〉 〈0, 0|)
)
.

Need only to consider S(X) instead of X .
The invariant subspace of S is spanned by I ⊗ I,Λ, ...,Λ2m operators. [4]
For any i 6= 0 we have

Tr Λi ΠΛ=0 = 0 and Tr ΛiS(|0, 0〉 〈0, 0|) = TrS(Λi ) |0, 0〉 〈0, 0| = 0.
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Overall prefactor:

Λ =
∑2m

i=1 ci ⊗ ci , each term ci ⊗ ci has eigenvalue µi = ±1.
Then eigenvalues of Λ are

∑2m
i=1 µi with the projector onto the eigenstates

P~µ =
1

22m

2m∏
i=1

(I + µi ci ⊗ ci ).

The null space is spanned by
(2m

m

)
eigenvectors P~µ such that

∑2m
i=1 µi = 0. Therefore

Tr Π =
(2m

m

)
.

Thus states |ψ,ψ〉 with ψ Gaussian span the null space of Λ.
Q.E.D.

The null space of Λ is called Gaussian symmetric subspace.

Lemma
[4] If a state τ is such that

‖Λ(τ ⊗ τ)Λ‖1 ≤ ε,

then there exists a Gaussian state |ψ〉 close to τ , i.e. such that

‖τ − |ψ〉 〈ψ| ‖1 ≤ ε′ =

√
2m(1−

√
1− ε).
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Proof
Let Mτ be a correlation matrix of state τ .

Mτ = R
m⊕

j=1

(
0 λj
−λj 0

)
RT .

Then

‖Λτ ⊗ τΛ‖1 = 2m − Tr MT
τ Mτ = 2m −

∑
j

λ2
j ≤ ε.

So
∑

j λ
2
j ≥ 2m − ε. Since every λ2

j ≤ 1, for every j , λ2
j ≥ 1− ε.

A pure Gaussian state |ψ〉 is

Mψ = R
m⊕

j=1

(
0 βj
−βj 0

)
RT ,

such that βj = signλj .

Consider the fidelity
F (τ, |ψ〉) = 〈ψ| τ |ψ〉 .

Apply a dephasing procedure to τ . Since the correlation matrix Mτ stays invariant, the
fidelity F (τ, |ψ〉) stays the same.
After dephasing the state has the form

τm =:
∑

k

pk |φk 〉 〈φk | ,

where |φk 〉 〈φk | = 1
2m
∏m

j=1(I + iβk
j c2j−1c2j ) and |φ0〉 〈φ0| := |ψ〉 〈ψ|.
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Then F (τ, |ψ〉) = p0 and so

‖τ − |ψ〉 〈ψ| ‖1 ≤ 2
√

1− p0.

For every j = 1, ...,m we have

λj = Mτ (2j − 1, 2j) = Tr(ic2j−1c2jτm) =
∑

k

βk
j pk .

Note that
λj = 1− 2

∑
k :βk

j =−1

pk = 2
∑

k :βk
j =1

pk − 1.

For every j = 1, ...,m we have 1− ε ≤ λ2
j ≤ 1. Consider two possible cases:

1 If
√

1− ε ≤ λj ≤ 1, we have
∑
βk

j =−1 pk ≤ 1
2 (1−

√
1− ε). Note that p0 is not in the

sum, since β0
j = 1.

2 If −
√

1− ε ≥ λj ≥ −1, we have
∑
βk

j =1 pk ≤ 1
2 (1−

√
1− ε). Note that p0 is not in the

sum, since β0
j = −1.

Summing all inequalities (for every j) we obtain
∑m

j=1
∑

k :βk
j =− signλj

pk ≤ m
2 (1−

√
1− ε).

There is no p0 in the sum and the only pk absent in the sum is p0, so

1− p0 =
∑
k 6=0

pk ≤
m
2

(1−
√

1− ε),

therefore

‖τ − |ψ〉 〈ψ| ‖1 ≤ 2
√

1− p0 ≤
√

2m(1−
√

1− ε).
Q.E.D.
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1− ε ≥ λj ≥ −1, we have
∑
βk

j =1 pk ≤ 1
2 (1−

√
1− ε). Note that p0 is not in the

sum, since β0
j = −1.

Summing all inequalities (for every j) we obtain
∑m

j=1
∑

k :βk
j =− signλj

pk ≤ m
2 (1−

√
1− ε).

There is no p0 in the sum and the only pk absent in the sum is p0, so

1− p0 =
∑
k 6=0

pk ≤
m
2

(1−
√

1− ε),

therefore

‖τ − |ψ〉 〈ψ| ‖1 ≤ 2
√

1− p0 ≤
√

2m(1−
√

1− ε).
Q.E.D.



Finding convex-Gaussian states
Let ρ =

∑
i piσi with σi pure Gaussian. Then there exists a symmetric extension

ρext =
∑

i piσ
⊗n
i ∈ C⊗n

2m , which is annihilated by Λk,l and Tr2,..,nρext = ρ.

Program. Input: ρ ∈ C2m and an integer n ≥ 2.

Question: Is there a ρext ∈ C⊗n
2m s.t.

Trρext = 1
ρext ≥ 0
Tr2,...,nρext = ρ

Λk,lρext = 0, ∀k 6= l

Output: Yes, then provide ρext , or No.

Since the null space of Λk,l is spanned by |ψ,ψ〉k,l where |ψ〉 is Gaussian, the intersection
of all null-spaces of Λk,l is spanned by vectors |ψ〉⊗n.

The program can be done in the standard form of semi-definite program:

minimize cT x

subject to F0 +
∑

i

xi Fi ≥ 0

Ax = b,

here x ∈ Rd , c ∈ Rd is a given vector, {Fi}i=0,...,d are given symmetric matrices and
A ∈ Rp×d with rank(A) = p and b ∈ Rp are given.
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Since the null space of Λk,l is spanned by |ψ,ψ〉k,l where |ψ〉 is Gaussian, the intersection
of all null-spaces of Λk,l is spanned by vectors |ψ〉⊗n.

Theorem
[1] If an even state ρ ∈ C2m has an n-Gaussian-symmetric extension for all n, then ρ is
convex-Gaussian, in other words, there exists a sequence of convex-Gaussian states
ω1, ω2, ... ∈ C2m s.t.

lim
n→∞

‖ρ− ωn‖1 = 0.



Theorem
[4] Suppose that an even state ρ ∈ C2m has an extension to n number of parties, where n is
sufficiently large. Then there exists a convex-Gaussian state σ(n) such that

‖ρ− σ(n)‖1 ≤ ε(n) := 4
2m

n
+

√
2m
(

1−
√

1− 4‖Λ‖2
1

2m

n

)
.

Denote G the set of convex-Gaussian states and Gn 3 ρ iff
∃ρn

ext ∈ C
⊗n
2m . Then

G1 ⊃ G2 ⊃ ... ⊃ G and lim
n→∞

Gn = G.

Proof
Denote ρn := ρext to n parties. The state ρn is symmetric, therefore use
quantum de Finetti theorem:

Theorem
[3] (Christandl, König, Mitchison, Renner).
Let |Ψ〉 be a symmetric state on n parties and let ζk = Trk+1,...,n |Ψ〉 〈Ψ|. Then there exists
a probability distribution {αj} and states {τj} such that

‖ζk −
∑

j

αj τj ⊗ τj‖1 ≤ ε



Therefore there exists αj ≥ 0,
∑

j αj = 1, and states τj ∈ C2m, s.t.

‖ρn
1,2 −

∑
j

αj τj ⊗ τj‖1 ≤ ε̃ = 4
2m

n
.

Applying Λ1,2 we obtain

‖Λ‖2
1ε̃ =: ε̂ ≥ ‖Λ

∑
j

αj τj (n)⊗ τj (n)Λ‖1 =
∑

j

αj‖Λ τj (n)⊗ τj (n) Λ‖1.

Therefore for every j = 1, ...m we obtain

‖Λτj (n)⊗ τj (n)Λ‖1 ≤ ε.

For every j the state τj (n) is ε′-close to a pure Gaussian state
∣∣ψj (n)

〉
. Therefore the state ρ

is close to the convex-Gaussian state:

‖ρ−
∑

j

αj
∣∣ψj (n)

〉 〈
ψj (n)

∣∣ ‖1 ≤ ‖ρ−
∑

j

αjτj (n)‖1 +
∑

j

αj‖τj (n)−
∣∣ψj (n)

〉 〈
ψj (n)

∣∣ ‖1

≤ ε̃+ ε′.

Q.E.D.



Complementary criterion
Separability criteria

LetH = HA⊗HB be a finite dimensional Hilbert space. De-
note S the set of separable operators, i.e. the conical com-
bination of all pure product states {|ψA〉 〈ψA| ⊗ |ψB〉 〈ψB |}.

ρAB ∈ SN iff ∃ρABN ∈ B(HABN ) s.t.

1. ρABN ≥ 0

2. TrBN−1 (ρABN ) = ρAB
3. ρABN is Bose symmetric in HN

B , i.e. ρABN (1l⊗ PN
sym) = ρABN .

The sequence {SN}∞N=1 converges to S from outside [5] (Doherty et al.):

lim
N→∞

SN = S.

Define sets S̃N as:

S̃N = {
N

N + d
ρAB +

1
N + d

ρA ⊗ IB : ρAB ∈ SN}.

The sequence {S̃N}∞N=1 converges to S from inside [6]
(Navascues et al.)

S̃1 ⊂ S̃2 ⊂ ... ⊂ S, with lim
N→∞

SN = S.
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Program. Given a state ρAB ∈ B(H) determine whether it is separable.

1. Check whether ρAB ∈ Sk . If ”NO”, then ρ is entangled. Done.
If ”YES”, then go to 2.

2. Check whether ρAB ∈ S̃k . If ”YES”, then it is separable. Done.
If ”NO”, repeat steps for k = k + 1.

We have that

G1 ⊃ G2 ⊃ ... ⊃ G.

Define G̃n = {εnρ+ (1− εn)I/2m : ρ ∈ Gn} ⊂ G.
Problem. Show that

lim
n→∞

G̃n = G.

Proposition
[1] For any even state ρ ∈ C2m there exists ε > 0 such that ρε = ερ+ (1− ε)I/2m is
convex-Gaussian.

I.e. need to show that
εn → 1 as n→∞, for ρn ∈ Gn.



Program. Given a state ρAB ∈ B(H) determine whether it is separable.

1. Check whether ρAB ∈ Sk . If ”NO”, then ρ is entangled. Done.
If ”YES”, then go to 2.

2. Check whether ρAB ∈ S̃k . If ”YES”, then it is separable. Done.
If ”NO”, repeat steps for k = k + 1.

We have that

G1 ⊃ G2 ⊃ ... ⊃ G.

Define G̃n = {εnρ+ (1− εn)I/2m : ρ ∈ Gn} ⊂ G.
Problem. Show that

lim
n→∞

G̃n = G.

Proposition
[1] For any even state ρ ∈ C2m there exists ε > 0 such that ρε = ερ+ (1− ε)I/2m is
convex-Gaussian.

I.e. need to show that
εn → 1 as n→∞, for ρn ∈ Gn.



Extension to C2mn
The isomorphism J between C2mn and C⊗n

2m is the following:

J(cj ) = I ⊗ ...⊗ cj ⊗ Pall ⊗ ...⊗ Pall , for 2m(k − 1) + 1 ≤ j ≤ 2mk ,

where cj stands on the k -th component and Pall acts on each C2m.
J is the isomorphism since J(XY ) = J(X)J(Y ).

For n = 2, for any state
µ =

∑
k

αk Z 1
k Z 2

k ∈ C4m,

where Z 1 acts on c1, ..., c2m and Z 2 acts on c2m+1, ..., c4m. Applying J this state gets
mapped to:

J(µ) =
∑

k

αk Z 1
k ⊗ Pεk

all Z
2
k ∈ C2m ⊗ C2m,

where εk = 0, if Z 1
k is even and εk = 1, if Z 1

k is odd.
Any state

σ =
∑

k

βk Z 1
k ⊗ Z 2

k ∈ C2m ⊗ C2m

gets mapped onto a state

J−1(σ) =
∑

k

βK Z 1
k Pεk

all Z
2
k ∈ C4m,

where Pεk
all acts on c2m+1...c4m.
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The operator Λk,l is equivalent to Γ acting on C2mn: for any 1 ≤ k 6= l ≤ n,

Γk,l =
2m∑
j=1

(−1)m−j c2m(k−1)+j c2m(l−1)+1...ĉ2m(l−1)+j ...c2ml .

For an even state ρ =
∑

j αj Z 1
j ∈ C2m the extension ρext ∈ C2mn has the following form

ρext = 2−m(n−1)ρ+ Corr .

Every term in the correlations Corr =
∑

j βj Z 1
j ...Z

n
j acts nontrivially on the last (n − 1)

spaces spanned by c2m+1 ... c2mn. Here Z k acts on the space spanned by
c2m(k−1)+1 ... c2mk .
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