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Many-body evolutions

I Fix a finite metric graph Λ sufficiently regular (e.g., Λ = ZD
N , and N is

called the system size).

I Algebra of observables: AΛ =
⊗

x∈Λ B(Hx), where Hx ∼ Cd .

I Local observables: AX ⊂ AΛ, for X ⊂ Λ independent of N.

Definition (Many-body evolution)

A continuous (semi)group of completely positive, unital maps γt : AΛ → AΛ

I Closed systems: γt is a unitary evolution and d
dt γt(A) = i [H, γt(A)]

I Open systems: ‖γt‖ 6 1 and d
dt γt(A) = L(γt(A))

In order for γt to be c.p. and unital, L has to satisfy the Lindblad condition.
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Lindblad form

Definition (Lindblad form)

L(A) = i [H,A] +
∑
j

K ∗j AKj −
1

2
{K ∗j Kj ,A}

where H is Hermitian.

Remark

γt will not be an automorphism in general.
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Local evolutions

Definition (Local evolution)

γt is said to be local if L can be written as a sum of local terms

L =
∑
x∈Λ

Lx

where the support of Lx is finite: Lx = Lx ⊗ 1, and Lx : ABx (r) → ABx (r)

and is Lindlad. r is called the range of the interaction.

Definition (Quasi-local evolution)

γt is said to be quasi-local if L can be written as a sum of local terms

L =
∑
x∈Λ

∑
r>0

Lx(r)

where the support of Lx(r) is Bx(r) and ‖Lx(r)‖ 6 f (r). f (r) is the decay
rate and is assumed to be faster than any polynomial.
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Expectation values of local observables

Expectation values

I In closed systems, we are usually interested in the ground states of H

I At times, we are also interested in other eigenstates of H

I They are all steady states of γt : ω ◦ γt = ω

I In open systems, we are usually interested in the case where γt has a
unique steady state ρ∞ and no periodic points: ρ∞ ◦ γt = ρ∞ and
moreover

lim
t→∞

γt(A) = ρ∞(A)1
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General problem

Given one such “interesting state” ρ, how sensitive is the expectation value
of local observables ρ(A) with respect to changes in L?
Can it tolerate local perturbations, i.e. replacing L by L′ = L+ E , where

E =
∑
x∈Λ

Ex

where ‖Ex‖ is small (but ‖E‖ is not)?

∣∣ρ(A)− ρ′(A)
∣∣ 6 kY sup

x
‖Ex‖ , A ∈ AY

where kY is a constant independent of the system size.
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Motivation

1 Quantum phase classification
• The physicists definition of quantum phase is given in terms of

smoothness of expectation values of observables
• Local observables are what is reasonable to expect to be actually

measurable in an experiment
• The mathematicians definition requires the states to be groundstates of

the extremes of a smooth path of gapped local Hamiltonians

2 Noise modelling

3 Using engineered dissipation to prepare interesting quantum states as
fixed points of open system dynamics (entangled states, magic states,
quantum codes, etc.)
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Closed systems

Local observables are stable if H(s) = H + sE is uniformly gapped:

inf
s∈[0,1]

gapH(s) > γ > 0

We reduce the problem to stability of the spectral gap (Frustration-free,
pbc: [Michalakis, Pytel, 2011])

Open systems with unique fixed point

Local observables are stable if γt is fast mixing, i.e. if

tε = inf

{
t > 0 | sup

A
‖γt(A)− ρ∞(A)1‖ 6 ε‖A‖

}
scales sub-linearly with system size [Cubitt, L., Michalakis, Perez-Garcia,
2013]
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Quasi-adiabatic evolution [Hastings 2004]

Let H(s) be a family of uniformly gapped local Hamiltonians. Let P(s) the
projector on the groundstate space of H(s).

Quasi-adiabatic evolution

There exists a unitary U(s) such that

P(s) = U(s)P(0)U(s)∗

and U(s) has a quasi-local structure given by

d

ds
Us = iD(s)U(s), U(0) = 1

with D(s) being quasi-local Hermitian operator (i.e. a time-dependent
Hamiltonian)

Also called spectral flow, since it is not specific of the groundstate.
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L.R. bounds for quasi-adiabatic evolution

Let αs(A) = U(s)∗AU(s) the dual of the spectral flow.

Lemma (Bachmann, Michalakis, Nachtergaele, Sims 2011)

For A ∈ AX , B ∈ AY

‖[αs(A),B]‖ 6 2 ‖A‖ ‖B‖ evs−µ dist(X ,Y )

By denoting 1/ε, where ε = supx ‖Ex‖, we have

H(s) = H + s
E

ε
, s ∈ [0, ε]

in such a way that v , µ are independent of ε.
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Local perturbations pertub locally

Remember that αs was generated by D(s) =
∑

x Dx(s)
For Y ⊂ Λ, let αY

s be the evolution generated by DY (s) =
∑

x∈Y Dx(s)

Lemma

Let A ∈ AX . Let Xr = {x | dist(x ,X ) 6 r} Then∥∥∥αs(A)− αXr
s (A)

∥∥∥ 6 ‖A‖ evsg(r)

with g(r) a fast decaying function.

Remark

αXr
s (A) is supported on Xr .
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Stability

Theorem

For all A ∈ AX it holds that
∣∣∣〈A〉P(0) − 〈A〉P(s)

∣∣∣ 6 δ(s) kX ‖A‖ where δ(s)

grows polynomially in s and 〈A〉P(s) = trAP(s)

Proof.

By using the spectral flow we obtain

〈A〉P(s) = trAP(s) = trAU(s)P(0)U(s)∗

= trU(s)∗AU(s)P(0) = trαs(A)P(0) = 〈αs(A)〉P(0)

and therefore∣∣∣〈A〉P(0) − 〈A〉P(s)

∣∣∣ 6 ‖αs(A)− A‖ 6
∥∥∥αs(A)− αXr

s (A)
∥∥∥+

∥∥∥αXr
s (A)− A

∥∥∥
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Proof. ∣∣∣〈A〉P(0) − 〈A〉P(s)

∣∣∣ 6 ∥∥∥αs(A)− αXr
s (A)

∥∥∥+
∥∥∥αXr

s (A)− A
∥∥∥

We can make the first term arbitrarily small by Lieb-Robison bounds,
choosing r ∼ O(s)
Then

∥∥∥αXr
s (A)− A

∥∥∥ 6

s∫
0

∥∥∥[DXr (τ),A]
∥∥∥ dτ

6
∑
x∈Xr

s∫
0

‖[Dx(τ),A]‖ dτ 6 δ(s) kX ‖A‖
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Open system case

In the closed system case, we used two important facts related to the
spectral flow:

1 αs connects P(0) to P(s) in finite time

2 αs can be localized by L.R. : finite times → finite volumes

For open systems, spectral flow is not available. (Unless somebody has an
idea to prove me wrong...)

But if we have a unique fixed point, then

ηt(A) =
‖γt(A)− ρ∞(A)1‖

‖A‖
→ 0
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Let γt and γ′t be the original and the perturbed evolutions, respectively.
We can apply Duhamel formula:

∥∥γt(A)− γ′t(A)
∥∥ 6

t∫
0

∥∥γ′t−s(A)Eγs(A) ds
∥∥ 6

∑
x

t∫
0

‖Exγs(A)‖ ds

where we have assumed ‖γ′t‖ 6 1.
Let us focus on one fixed x ∈ Λ.
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We can split the integral at a time t0 = t0(x) to be determined later:

1 short times: dissipative version of Lieb-Robinson bounds

t0∫
0

‖Exγs(A)‖ ds 6 ‖Ex‖ ‖A‖
1

µv
eµ(d−vt0)

with d = dist(x , suppA)

2 long times: We use the fact Ex(1) = Lx(1)− L′x(1) = 0

t∫
t0

‖Exγs(A)‖ ds =

t∫
t0

‖Ex [γs(A)− ρ∞(A)1]‖ ds

6 ‖Ex‖
t∫

t0

‖γs(A)− ρ∞(A)1‖ ds 6 ‖Ex‖
∞∫
t0

ηs(A) ds
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By taking t0(x) = 2d(x)/v where d(x) = dist(x , suppA) we have that

∥∥γt(A)− γ′t(A)
∥∥ 6 c ‖A‖ (sup

x
‖Ex‖)

∑
x∈Λ

e−µd(x) +

∞∫
2d(x)/v

ηs(A) ds

Theorem

Let A ∈ AY . If
∫∞
x ηs(A) ds is summable over Λ and is independent of

system size, then ∥∥γt(A)− γ′t(A)
∥∥ 6 kY ‖A‖ sup

x
‖Ex‖
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Rapid mixing

Remember that
tε = inf{t > 0 | sup

A
ηt(A) 6 ε}

Theorem

If tε 6 O(logm |Λ|+ log 1
ε ) for some m > 0, then for each A ∈ AY it holds

that
ηt(A) 6 cAe

−γt
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