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only one full measure connected ergodic component for the flow and the theorem
is proved.
In the talk a brief historical introduction on the conjecture and the main ideas

of this proof and of the proof of the Main Lemma were given.
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Introduction to Hyperbolic Billiards

Nándor Simányi

Semi-dispersing billiards are defined as follows: We take a C2-smooth, con-
nected, Riemannian manifold M without boundary and with a positive injectiv-
ity radius ρ, and we remove from M finitely many compact, geodesically convex
subsets Bi ⊂ M (the so-called scatterers, i = 1, · · · , n) that have C1-smooth
boundaries ∂Bi. The billiard table (confiuration space) is the set

B = M \

n�

i=1

Int(Bi).

We assume that B is compact. The billiard flow (M, {Φt}µ) describes the
uniform motion (with unit speed) of a point particle in B along geodesic lines,
enduring elastic reflections when hitting a boundary component ∂Bi of B. If a
trajectory ever hits an intersection Bi∩Bj (i �= j), then such a trajectory is simply
undefined. We always assume that all sectional curvatures κ of M are bounded
above by a real number K.

It has been very well known since the early studies of mathematical billiards by
Ya. G. Sinai in the 1960s [S63], [S70], that obtaining upper bounds (in particular,
finiteness) for the number of collisions in terms of the length of trajectory segments
plays a pivotal role in studying the fine ergodic and statistical properties of such
systems. Such bounds are especially useful in effectively estimating the topological
entropy of hard ball systems, as Burago, Ferleger and Kononenko showed in 1998,
[BFK98].

Our goal is to review the main results in this area of research by also giving
the audience a glimps into the intricate geometric tools developed to tackle such
problems. We will be discussing the geometric aspects (of the proofs) of the results
below.

One of the early results is due to L. N. Vaserstein [V79] and G. Galperin [G81].
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Theorem. If a natural non-degeneracy condition (see below) holds true for the
semi-dispersing billiard flow (M, {Φt}, µ), then in any trajectory the number of
collisions during any finite time interval is finite.

Definition. The billiard table B (of a semi-dispersing billiard) is non-degenerate
in an open subset U of M with the constant C > 0 if for every non-empty subset
I ⊂ {1, 2, · · · , n} and for every y ∈ (U ∩B) \

�
j∈I Bj

(1) max

�
dist(y,Bk)

dist (y, ∩j∈IBj)

�
�
�
�
�
k ∈ I

�

≥ C,

whenever
�

j∈I Bj �= ∅. (We note that this is a local geometric property.)

Definition. B is non-degenerate in an open domain U ofM if there exist constants
δ > 0, C > 0 such that B is non-degenerate with the constant C in any δ-ball of
U .

In 1998 Burago, Ferleger, and Kononenko [BFK98] proved the following crucial
result.

Theorem. Assume B is non-degenerate in an open neighborhood U ⊂ M of a
point x ∈ ∂B. Then there exists a neighborhood Ux of x (in M) and a number
Px > 0 such that every billiard trajectory entering Ux leaves it after making at
most Px collisions.

As an immediate corollary, we get that
Corollary. For every nondegenerate semi-dispersing billiard there exists a con-
stant P > 0 such that every trajectory of the billiard flow makes no more than
P · (t+ 1) collisions during any time interval of length t.

For open ball systems in the euclidean space Rk, the same authors also proved
in [BFK98] the following theorem.
Theorem. The number of collisions of N elastic balls in R

k is not larger than
�

32 ·

�
mmax

mmin

·
rmax

rmin

·N3/2

�N2

.

Heremmax (mmin) denotes the maximum (minimum) mass of the particles, whereas
rmax (rmin) is the maximum (minimum) value of the radii.
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