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RÉNYI’S PARKING PROBLEM REVISITED

MATTHEW P. CLAY AND NANDOR J. SIMANYI

Abstract. Rényi’s parking problem (or 1D sequential interval packing problem)
dates back to 1958, when Rényi studied the following random process: Consider an
interval I of length x, and sequentially and randomly pack disjoint unit intervals in
I until the remaining space prevents placing any new segment. The expected value
of the measure of the covered part of I is M(x), so that the ratio M(x)/x is the
expected filling density of the random process. Following recent work by Gargano
et al. [GWML(2005)], we studied the discretized version of the above process by
considering the packing of the 1D discrete lattice interval {1, 2, . . . , n+2k−1} with
disjoint blocks of (k+1) integers but, as opposed to the mentioned [GWML(2005)]
result, our exclusion process is symmetric, hence more natural. Furthermore, we
were able to obtain useful recursion formulas for the expected number of r-gaps
(0 ≤ r ≤ k) between neighboring blocks. We also provided very fast converging
series and extensive computer simulations for these expected numbers, so that the
limiting filling density of the long line segment (as n → ∞) is Rényi’s famous
parking constant, 0.7475979203 . . . .

1. Introduction

Rényi’s Parking Problem (or 1D sequential interval packing problem) dates back
to 1958 when Rényi [R(1958)] studied the probabilistic properties of the following
random process: Consider an interval I of length x >> 1 (x will eventually tend to
infinity), and sequentially and randomly pack disjoint unit intervals in I as long as
the remaining space permits placing any new unit segment in I. At each step of the
packing process the position of the newly placed interval is chosen uniformly from
the available space. Denote the expected value of the measure of the covered part
by M(x), so that the ratio M(x)/x is the expected filling density of the “parking
process”. (The interval I is the street curb, and the packed unit segments are the
parked cars.) Rényi himself proves the following continuous recursion for M(x)

(1.1) M(x) =

{

0 for 0 ≤ x < 1

1 + 2
x−1

∫ x−1

0
M(y)dy for x ≥ 1,
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and from this he deduces the asymptotic mean filling density

(1.2) m = lim
x→∞

M(x)/x =

∫ ∞

0

exp

[

−2

∫ x

0

1− e−y

y
dy

]

dx = 0.7475979203 . . . ,

which number is now known as Rényi’s Parking Constant. Rényi [R(1958)] further
proves the asymptotic formula

(1.3) M(x) = mx+m− 1 +O(x−n)

for every positive integer n, which was further improved by Dvoretzky and Robbins
[DR(1964)] to

(1.4) M(x) = mx+m− 1 +O

[

(

2e

x

)x−3/2
]

.

In that paper Dvoretzky and Robbins also prove that

inf
x≤t≤x+1

M(t) + 1

t+ 1
≤ m ≤ sup

x≤t≤x+1

M(t) + 1

t+ 1
.

The first “discretized” version of the problem, namely the expected density derived
from sequential packings of non-overlapping neighboring pairs of integer points, i.e.,
edges or bonds, selected at random on a long segment of a 1D lattice was first
given by Page [P(1959)]. His results have been confirmed and extended in various
ways by Downton [D(1961)], Mackenzie [M(1962)], Widom [W(1966)], and Solomon
[S(1967)]. This random sequential addition model is pertinent when molecules are
sequentially absorbed, and once absorbed, are fixed. The expected density derived
by non-sequentially packing disjoint, indistinguishable, neighboring pairs of points
on a linear lattice, each configuration being considered equally likely, was first given
by Jackson and Montroll [JM(1958)], and extended to neighboring triplets by Fisher
and Temperly [FT(1960)].

Following a more recent paper by Gargano et al. [GWML(2005)] we studied the
discretized version of the above process by considering the sequential packing of the
1D discrete lattice interval {1, 2, . . . , n + 2k − 1} (n >> 1) with disjoint blocks of
k + 1 consecutive integers but, as opposed to the approach in [GWML(2005)], our
packing process is symmetric, hence more natural. Furthermore, we were able to
obtain useful recursions for the expected number of r-gaps (0 ≤ r ≤ k) between
neighboring blocks (cars). The construction of such a recursion is one of the open
problems listed at the end of [GWML(2005)].

We also provided very fast (faster than any exponential) converging series for the
expected number of r-gaps, and carried out extensive computer simulations for these
expected numbers, indicating that the limiting filling density is indeed Rényi’s famous
parking constant m = 0.7475979203 . . . , also in the discrete parking problem.
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It has to be noted, however, that our approach differs slightly, albeit just in minor
technical terms, from the approach in [GWML(2005)]. Namely, instead of considering
packings with disjoint (k+1)-blocks of consecutive integer lattice points, i.e., with k
consecutive edges or bonds between them, we consider the positions of the centers of
these blocks. The available space for the centers is either the original integer lattice
(when k is even) or the original lattice shifted by 1/2 units (when k is odd), so
that the distance between neighboring centers is always at least k + 1, i.e., the gap
between them contains at least k points. This approach is clearly equivalent to that
of [GWML(2005)].

Finally, in the paper [GWML(2005)] the authors consider the process in which not
only the distances between neighboring centers of blocks are at least k + 1 but, in
addition, each center is distanced at least k+2 from at least one of its two neighbors
(an asymmetric model). At the end of their paper among the open problems they
list the need to study the symmetric model in which we drop the second lower bound
requirement (≥ k+2). This is exactly the kind of model we are investigating in this
paper.

2. The Model

For incoming cars (i.e. centers of (k+1)-blocks of consecutive integers as described
in the introduction) there are n + k − 1 parking slots, labelled as 1, 2, . . . , n+ k − 1
(n, k ≥ 1), in a row that the cars, arriving one-by-one, want to occupy. The drivers
have the desire that the distance between occupied parking slots is at least k + 1,
i.e., the gap between neighboring cars (and also the gap before the first car and after
the last one) contains at least k unoccupied slots. (k being a fixed positive integer.)
When a new car arrives, the driver considers all available slots and occupies one of
them with equal probability. The process lasts as long as the cars can occupy parking
slots.

At the end of the process there will be gaps of sizes k, k + 1, . . . , 2k. For any r,

k ≤ r ≤ 2k, and for any positive integer n let a
(r)
n be the expected number of r-gaps

produced by the above random process.
Since the events Ai (1 ≤ i ≤ n− k− 1) that the first arriving car occupies the slot

i+ k are equally probable, pairwise exclusive, and their union is the sure event, one
immediately gets the recursion formula

(2.1) a(r)n =
2

n− k − 1

n−k−1
∑

i=1

a
(r)
i
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for n ≥ k + 2. Furthermore, the initial conditions

(2.2) a(r)n =

{

1 if n = r − k + 1

0 if 1 ≤ n ≤ k + 1, n 6= r − k + 1

hold true, k ≤ r ≤ 2k.

We take s
(r)
n =

∑n
i=1 a

(r)
i , t

(r)
n =

s
(r)
n

n(n + 2k + 1)
, so that

s(r)n = s
(r)
n−1 +

2

n− k − 1
· s

(r)
n−k−1

and

(2.3) n(n+ 2k + 1)t(r)n = (n− 1)(n+ 2k)t
(r)
n−1 + 2(n+ k)t

(r)
n−k−1

for n ≥ k + 2, k ≤ r ≤ 2k.

For n ≥ 2 define u
(r)
n = t

(r)
n − t

(r)
n−1. From (2.3) elementary calculation yields the

k-step linear recursion

(2.4) u(r)
n =

−2(n+ k)

n(n + 2k + 1)
·

k
∑

i=1

u
(r)
n−i

for n ≥ k + 2. The initial values
{

u
(r)
n

∣

∣ 2 ≤ n ≤ k + 1
}

for the
(

u
(r)
n

)∞

n=2
sequence

are as follows:

(2.5) u(r)
n =











0 if 2 ≤ n ≤ r − k
1

(r−k+1)(r+k+2)
if n = r − k + 1 and r ≥ k + 1

1
n(n+2k+1)

− 1
(n−1)(n+2k)

if r − k + 2 ≤ n ≤ k + 1.

The following formulas are immediate consequences of the definitions of the in-
volved quantities.

(2.6) t(r)n =
s
(r)
1

2k + 2
+

n
∑

i=2

u
(r)
i , n ≥ 1,

where

s
(r)
1 =

{

1 if r = k

0 if k < r ≤ 2k.

(2.7) s(r)n = n(n + 2k + 1)t(r)n , n ≥ 1,
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(2.8) a(r)n = s(r)n − s
(r)
n−1, n ≥ 1,

where s
(r)
0 = 0 by convention.

Corollary 2.9. The limiting densities

(2.10) D(k, r) = (r + 1) lim
n→∞

a
(r)
n

n
= 2(r + 1)t(r)∞

exist for all r, k ≤ r ≤ 2k. Clearly

(2.11)

2k
∑

r=k

D(k, r) = 1.

Proof. According to the previous corollary t
(r)
n = t

(r)
∞ +O(an) with an arbitrarily small

constant a > 0. Therefore

s(r)n = n(n + 2k + 1)[t(r)∞ +O(an)] = n(n + 2k + 1)t(r)∞ +O(an),

and

a(r)n = s(r)n − s
(r)
n−1 = 2(n+ k)t(r)∞ +O(an).

�

3. Fundamental calculations

From 2.4 for n ≥ k + 2 one gets

|u(r)
n | ≤

2(n+ k)

n(n + 2k + 1)
·

k
∑

i=1

|u
(r)
n−i| ≤

2k

n

(

1

k

k
∑

i=1

|u
(r)
n−i|

)

,

so for the non-negative numbers w
(r)
n = |u

(r)
n | (n ≥ 2) one obtains

(3.1) w(r)
n ≤

2k

n

(

1

k

k
∑

i=1

w
(r)
n−i

)

for n ≥ k + 2.
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Lemma 3.2. For n ≥ 2 write n = pk + s with p ≥ 0 and 2 ≤ s ≤ k + 1. We claim

that the inequality

(3.3) |u(r)
n | = w(r)

n ≤
M · 2p

p!

holds true with the constant

M = Mk,r = max
{

w(r)
n

∣

∣ 2 ≤ n ≤ 2k
}

,

depending only on k and r.

Proof. We define the auxiliary sequence
(

w
(r)
n

)′

= w′
n (n ≥ 2) with the following

recursion:

(3.4) w′
n =

{

M for 2 ≤ n ≤ 2k
2
n
·
∑k

i=1w
′
n−i for n ≥ 2k + 1.

Since the expression on the right-hand-side of (3.1) is monotone increasing in its

variables w
(r)
n−i (the coefficients being positive), we immediately get the bounds

(3.5) w(r)
n ≤ w′

n

for n ≥ 2. Also, it is clear from the recursion (3.4) that M > w′
2k+2 > w′

2k+3 >
w′

2k+4 > . . . , so

(3.6) w′
n ≤

2k

n
· w′

n−k

for n ≥ k + 2. By an obvious induction, the inequalities (3.6) above yield

(3.7) w′
n ≤

M(2k)p

n(n− k)(n− 2k) . . . (n− pk + k)
≤

M(2k)p

kpp!
=

M · 2p

p!
,

where n = pk + s with p ≥ 0 and 2 ≤ s ≤ k + 1. �

Corollary 3.8. For the n-th error term

Rn =
∑

i≥n

u
(r)
i = t(r)∞ − t

(r)
n−1

of the absolutely convergent series

(3.9) t(r)∞ = lim
i→∞

t
(r)
i =

s
(r)
1

2k + 2
+

∞
∑

i=2

u
(r)
i

we have the superexponential upper bound

(3.10) |Rn| ≤
Mke2 · 2pn

pn!
,
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where n = pnk + s with 2 ≤ s ≤ k + 1.

Proof.

(3.11)

∣

∣

∣

∣

∣

∑

i≥n

u
(r)
i

∣

∣

∣

∣

∣

≤
∑

i≥n

|u
(r)
i | ≤ M ·

∑

i≥n

2pi

pi!

≤ Mk ·
∑

p≥pn

2p

p!
≤

Mke2 · 2pn

pn!
,

according to the usual upper bound for the pn-th error term of the Taylor expansion
of the exponential function. �

4. Behavior of the Limiting Densities D(k, r)

We conjecture that, for a given k, D(k, r) is decreasing in r, and kD(k, 2k) > 0 is
separated from 0, uniformly in k. Please keep in mind 2.11, indicating that the proper
normalization (to get non-zero limit) of the densities D(k, r) is kD(k, r). As follows,
we present strong numerical evidence for this. Such numerical evidence is certainly
feasible for, according to Corollary 3.8, the partial sums of the series (3.9) converge
faster than any exponential function, therefore all the formulas (2.4), (2.6), (2.7), and
(2.8) converge very fast with error terms that are easy to effectively estimate.

Of particular interest is the limiting cumulative distribution function

(4.1) F (t) = lim
k→∞

[(1+t)k]
∑

r=k

D(k, r),

and the corresponding limiting density function

(4.2) F ′(t) = lim
k→∞

kD(k, [(1 + t)k])

for 0 ≤ t ≤ 1.

To support these conjectures, calculations were conducted for a wide range of k
values, and the results for k = 220 are presented in Figures 1, 2, and 3.
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Figure 1. Plot of the values ofD(k, r) for k = 220 versus a normalized
axis t = (r − k)/k. The maximum value obtained is denoted by the
symbol at t = 0.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

⌊(
1
+
t)
k
⌋

∑

s=
k

D
(k
,s
)

t

Figure 2. Plot of the distribution function

⌊(1+t)k⌋
∑

s=k

D(k, s) for k = 220.
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Figure 3. Plot of the density function kD(k, [(1 + t)k]) for k = 220.
The maximum value is at t = 0 and is marked with the symbol.

The density function kD(k, [(1 + t)k]) exhibits interesting behavior at t = 0. To
demonstrate this, Figure 4 presents data for kD(k, k) spanning many decades of k.
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D
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k

Figure 4. Plot of the growth of kD(k, k) as k is increased. The values
of k used were 2n, where 3 ≤ n ≤ 30.
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The results given in Figure 4 show that kD(k, k) grows at a logarithmic rate with k.
Similarly, we investigate the behavior of kD(k, 2k) in Figure 5.
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100 101 102 103 104 105 106 107 108 109 1010

k
D
(k
,2
k
)

k

Figure 5. Plot of kD(k, 2k) as k is increased. The values of k used
were 2n, where 3 ≤ n ≤ 30.

The results in Figure 5 support the conjecture that the sequence {kD(k, 2k)} con-
verges to a number 0.6304735 . . . in a monotone increasing fashion as k → ∞. Figures
3, 4, and 5 serve as strong numerical evidence for the claim that the limiting density
function F ′(t) of (4.2) continuously decreases from infinity at t = 0 to a positive
constant 0.6304735 . . . . Furthermore, it is worth noting that these pictures are in
pretty good harmony with the results of §4 of [Man(1976)] on the distribution of the
gap lengths.

The number D(k) =
∑2k

r=k

k + 1

r + 1
D(k, r) has a special meaning: It is the limiting

filling density of cars (i. e. (k+1)-blocks) getting a parking slot, as n → ∞. Clearly
k + 1

2k + 1
≤ D(k) ≤ 1.

Particularly interesting is the limiting packing density

D = lim
k→∞

D(k).

Clearly 1/2 ≤ D ≤ 1. The behavior ofD was investigated numerically and the results
are presented in Figure 6. The obtained numerical evidence supports the claim that
D = m = 0.7475979203 . . . is Rényi’s famous parking constant.
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D
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−
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Figure 6. Plot depicting the difference between the calculated values
of D(k) and Rényi’s constant m (to machine precision) versus k. The
values of k used were 2n, where 3 ≤ n ≤ 20.

4.1. Example. Detailed Calculations for k = 1. If we take the case k = r = 1,
(2.4) and (2.5) yield

u
(1)
2 = −

3

20
, u(1)

n =
−2(n + 1)

n(n + 3)
u
(1)
n−1

for n ≥ 3, thus u
(1)
n =

3(n+ 1)(−2)n−1

(n+ 3)!
for n ≥ 2, so

(4.3)

D(1, 1) = 4t(1)∞ = 1 + 12 ·

∞
∑

n=2

(n+ 3− 2)(−2)n−1

(n + 3)!

= 1 + 12 ·

∞
∑

n=2

(−2)n−1

(n+ 2)!
+ 12 ·

∞
∑

n=2

(−2)n

(n+ 3)!

= 1−
3

2

(

∞
∑

n=2

(−2)n+2

(n+ 2)!
+

∞
∑

n=2

(−2)n+3

(n+ 3)!

)

= 1− 3e−2

by obvious analysis technique.
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Consequently, D(1, 2) = 1−D(1, 1) = 3e−2, according to (2.11). Finally, the exact

value of the filling density D(1) is D(1) = D(1, 1) +
2

3
D(1, 2) = 1 − e−2. The filling

density D(1) = 1 − e−2 is in agreement with the filling density (1− e−2)/2 obtained
by Page [P(1959)]. The factor 2 discrepancy is due to the fact that we count each
car with weight k+1 = 2 (the space each car occupies), whereas Page uses weight 1.

Remark. Whoever is interested in repeating the computer calculations, re-generating
the numerical plots, or checking the details in the source code of our programs, can
directly send us an e-mail message. We will be more than happy to provide the code.
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