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HOMOTOPICAL COMPLEXITY OF 2D BILLIARD ORBITS

LEE M. GOSWICK AND NÁNDOR SIMÁNYI

Abstract. Traditionally, rotation numbers for toroidal billiard flows are defined
as the limiting vectors of average displacements per time on trajectory segments.
Naturally, these creatures live in the (commutative) vector space Rn, if the toroidal
billiard is given on the flat n-torus. The billiard trajectories, being curves, often
getting very close to closed loops, quite naturally define elements of the fundamental
group of the billiard table. The simplest non-trivial fundamental group obtained
this way belongs to the classical Sinai billiard, i.e. the billiard flow on the 2-torus
with a single, strictly convex obstacle (with smooth boundary) removed. This
fundamental group is known to be the group F2 freely generated by two elements,
which is a heavily noncommutative, hyperbolic group in Gromov’s sense. We define
the homotopical rotation number and the homotopical rotation set for this model,
and provide lower and upper estimates for the latter one, along with checking
the validity of classically expected properties, like the density (in the homotopical
rotation set) of the homotopical rotation numbers of periodic orbits.

The natural habitat for these objects is the infinite cone erected upon the Cantor
set Ends(F2) of all “ends” of the hyperbolic group F2. An element of Ends(F2)
describes the direction in (the Cayley graph of) the group F2 in which the consid-
ered trajectory escapes to infinity, whereas the height function t (t ≥ 0) of the cone
gives us the average speed at which this escape takes place.

The main results of this paper claim that the orbits can only escape to infinity at
a speed not exceeding

√
2, and any direction e ∈ Ends(F2) for the escape is feasible

with any prescribed speed s, 0 ≤ s ≤
√
2/2. This means that the radial upper and

lower bounds for the rotation set R are actually pretty close to each other.

1. Introduction

The concept of rotation number finds its origin in the study of the average rotation
around the circle S1 per iteration, as classically defined by H. Poincaré in the 1880’s,
when one iterates an orientation-preserving circle homeomorphism f : S1 → S1. This
is equivalent to studying the average displacement (1/n)(F n(x)− x) (x ∈ R) for the
iterates F n of a lifting F : R → R of f on the universal covering space R of S1. The
study of fine homotopical properties of geodesic lines on negatively curved, closed
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surfaces goes back at least to Morse [Mor24]. As far as we know, the first appearance
of the concept of homological rotation vectors (associated with flows on manifolds)
was the paper of Schwartzman [Sch57], see also Boyland [Boy00] for further references
and a good survey of homotopical invariants associated with geodesic flows. Following
an analogous pattern, in [BMS06] we defined the (still commutative) rotation numbers
of a 2D billiard flow on the billiard table T

2 = R
2 /Z2 with one convex obstacle

(scatterer) O removed. Thus, the billiard table (configuration space) of the model in
[BMS06] was Q = T

2 \ O. Technically speaking, we considered trajectory segments
{x(t)|0 ≤ t ≤ T} ⊂ Q of the billiard flow, lifted them to the universal covering space
R

2 of T2 (not of the configuration space Q), and then systematically studied the
rotation vectors as limiting vectors of the average displacement (1/T )(x̃(T )− x̃(0)) ∈
R

2 of the lifted orbit segments {x̃(t)|0 ≤ t ≤ T} as T → ∞. These rotation vectors
are still “commutative”, for they belong to the vector space R

2.
Despite all the advantages of the homological (or “commutative”) rotation vectors

(i. e. that they belong to a real vector space, and this provides us with useful tools
to construct actual trajectories with prescribed rotational behaviour), in our current
view the “right” lifting of the trajectory segments {x(t)|0 ≤ t ≤ T} ⊂ Q is to lift
these segments to the universal covering space ofQ = T

2\O, not of T2. This, in turn,
causes a profound difference in the nature of the arising rotation “numbers”, primarily
because the fundamental group π1(Q) of the configuration space Q is the highly
complex group F2 freely generated by two generators (see section 2 below or [Mas91]).
After a bounded modification, trajectory segments {x(t)|0 ≤ t ≤ T} ⊂ Q give rise to
closed loops γT in Q, thus defining an element gT = [γT ] in the fundamental group
π1(Q) = F2. The limiting behavior of gT as T → ∞ will be investigated, quite
naturally, from two viewpoints:

(1) The direction “e” is to be determined, in which the element gT escapes to
infinity in the hyperbolic group F2 or, equivalently, in its Cayley graph G, see
section 2 below. All possible directions e form the horizon or the so called
ideal boundary Ends(F2) of the group F2 = π1(Q), see [CP93].

(2) The average speed s = limT→∞(1/T )dist(gT , 1) is to be determined, at which
the element gT escapes to infinity, as T → ∞. These limits (or limits
limTn→∞(1/Tn)dist(gTn

, 1) for sequences of positive reals Tn ր ∞) are non-
negative real numbers.

The natural habitat for the two limit data (s, e) is the infinite cone

C = ([0,∞)× Ends(F2))/({0} × Ends(F2))

erected upon the set Ends(F2), the latter supplied with the usual Cantor space topol-
ogy. Since the homotopical “rotation numbers” (s, e) ∈ C (and the corresponding
homotopical rotation sets) are defined in terms of the noncommutative fundamental
group π1(Q) = F2, these notions will be justifiably called homotopical or noncom-
mutative rotation numbers and sets.
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In accordance with [BMS06], we will focus on systems with a so-called “small
obstacle”, i.e., when the sole obstacle O is contained by some circular disk of radius
less than

√
2/4. Furthermore, again following [BMS06], most of the time we will

restrict our attention to the so-called admissible orbits, see the paragraph right after
the proof of Lemma 2.5 in [BMS06]. The corresponding rotation set will be the
so-called admissible homotopical rotation set AR ⊂ C. The homotopical rotation
set R defined without the restriction of admissibility will be denoted by R. Plainly,
AR ⊂ R and these sets are closed subsets of the cone C.

The main results of this paper are theorems 2.12 and 2.16. The former claims
that the set R is contained in the closed ball B(0,

√
2) of radius

√
2 centered at

the vertex 0 = {0} × Ends(F2) of the cone C. In particular, both sets AR and
R are compact. The latter result claims that the set AR contains the closed ball
B(0,

√
2/2) of C, provided that the radius r0 of the sole circular obstacle is less

than
√
5/10. Thus, these two results provide a pretty detailed description of the

homotopical complexity of billiard orbits: Any direction e ∈ Ends(F2) is feasible for
the trajectory to go to infinity, the speed of escape s cannot be bigger than

√
2,

whereas any speed s, 0 ≤ s ≤
√
2/2, is achievable in any direction e ∈ Ends(F2).

Example 2.15 shows that, in sharp contrast with the expectations and the analogous
results for the commutative rotation numbers in [BMS06], the star-shaped set R is
not contained in the unit ball B(0, 1) of C: it contains some radii of length

√
2, thus

the upper estimate of Theorem 2.12, at least as a direction independent upper bound
for the radial size of R, is actually sharp.

Finally, in the concluding Section 3 we present a corollary (Theorem 3.1) of the
proofs of Section 2 and make a few remarks. The theorem provides an effective
constant as an upper bound for the topological entropy htop(r0) of the billiard flow,
where r0 is the radius of the sole circular obstacle. The upper bound we obtain is
explicit, unlike the one obtained in [BFK98] for the topological entropy of the flow.

Remark 3.6 asserts what is always expected for “decent” dynamical systems re-
garding the relation between homotopical rotation sets and periodic orbits: the ho-
motopical rotation numbers of periodic admissible orbits form a dense subset in AR.

Finally, remarks 3.7–3.9 briefly outline the possibilities of some interesting follow-
up research, namely the investigation and understanding of the homotopical rotation
numbers for 2D toroidal billiards with N round obstacles.

2. Main Results

Lower Estimate for the Homotopical Rotation Set. The configuration space
Q (the billiard table) of our system is the punctured 2D-torus Q = T

2 \ O, where
the removed obstacle O is the open disk of radius r0, 0 < r0 <

√
2/4, centered at

the origin (0, 0). (For simplicity we assume that the obstacle is a round disk, though
this is only an unimportant technical condition, see Remark 3.8 below.) The upper
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bound of
√
2/4 is exactly the condition of having a so-called “small obstacle” in the

sense of [BMS06].
The fundamental group π1(Q) ofQ is classically known to be the group F2 = 〈a, b〉,

freely generated by the elements a and b, see, for example, [Mas91]. Perhaps the
simplest way to see this is to consider a simply connected fundamental domain

Q = {x = (x1, x2) ∈ R
2 |0 ≤ x1, x2 ≤ 1, dist(x,Z2) ≥ r0},(2.1)

where the upper and lower horizontal sides of this domain are identified via the
equivalence relation (x1, 0) ∼ (x1, 1), r0 ≤ x1 ≤ 1− r0, and the left and right vertical
sides are similarly identified via (0, x2) ∼ (1, x2) for r0 ≤ x2 ≤ 1 − r0. The domain

Figure 1.

Q is obtained by identifying the opposite sides A−A and B −B, just as the arrows
indicate. This space is homeomorphic to the topological space that we obtain by
gluing together two copies of a closed strip S1 × [−1, 1] by identifying the rectangle
R1 = [−1/10, 1/10] × [−1, 1] (in the first copy) with the same rectangle R2 = R1

(in the second copy) via the map (x, y) 7→ (y/10, 10x), |x| ≤ 1/10, |y| ≤ 1, see Fig.
2. The space Q is homotopically equivalent to the “bouquet” of two circles, see the
right part of Fig. 2. The fundamental group of the latter space is classically known
to be (see [Mas91]) the group F2 = 〈a, b〉 freely generated by two elements “a” and
“b”, so that “a” corresponds to making a loop along the first circle (in some selected
direction), whereas the generator “b” corresponds to making a similar loop along
the other circle. Clearly, these two generators correspond to the so-called x- and
y-crossings of curves (see Fig. 1). An x-crossing “a” occurs when a smooth curve
γ(t) = (γ1(t), γ2(t)) intersects a line γ1(t) = k (k ∈ Z) with γ̇1(t) > 0, while a y-
crossing “b” takes place when γ(t) = (γ1(t), γ2(t)) intersects a line γ2(t) = k (k ∈ Z)
with γ̇2(t) > 0. The “inverse crossings” a−1 and b−1 occur when the corresponding



HOMOTOPICAL COMPLEXITY OF 2D BILLIARD ORBITS 5

Figure 2.

derivatives are negative. We may assume that all these crossings are transversal.
More precisely, we may restrict our studies to such curves.

Our general goal is to study the large scale behavior of “admissible” billiard orbit
segments π(x(t)) = π((x1(t), x2(t))), 0 ≤ t ≤ T , dist(x(0), (0, 0)) = r0, as T →
∞. Here, “admissibility” is understood in the sense of [BMS06], which means the
following: Denote by k0,k1, . . . ,kn ∈ Z

2 the centers of the obstacles Oki
at whose

boundaries the lifted orbit segment x(t), 0 ≤ t ≤ T , is reflected, listed in time order.
Admissibility means that the following three conditions are satisfied:

(1) k0 = (0, 0),
(2) for any 1 ≤ i ≤ n, only the obstacles Oki−1

and Oki
intersect the convex hull

of these two obstacles,
(3) for any 1 ≤ i ≤ n − 1, the obstacle Oki

is disjoint from the convex hull of
Oki−1

and Oki+1
.

A crucial result of [BMS06], Theorem 2.2 claims the existence of orbits with any

prescribed (finite or infinite) admissible itinerary (kn)
N2

n=N1
.

In this paper we always consider the obstacles to be closed, i.e., containing their
boundaries. Whenever dealing with the so called admissible orbits, we shall restrict
ourselves to studying only

(A) special admissible billiard orbit segments, the so called strongly admissible
orbit segments, for which the above discrete itinerary

(k0,k1, . . . ,kn)

has the additional property that dist(ki−1,ki) ≤
√
2 for i = 1, 2, . . . , n.

We are primarily interested in discovering the asymptotic behavior of the above
segments {π(x(t))|0 ≤ t ≤ T} from the viewpoint of the fundamental group π1(Q), as
T → ∞. The first question that arises here is how to measure the large-scale motion
in π1(Q) that is naturally associated with {π(x(t))|0 ≤ t ≤ T}? In order to answer
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this question, we first consider the so-called Cayley graph G = (V, E) of the group
π1(Q) = F2 determined by the symmetric system of generators A = {a, a−1, b, b−1}.
The vertex set V of the Cayley graph G is, by definition, the underlying set of the
group F2. We say that an oriented edge of type l ∈ A goes from the element w1 ∈ V
to the element w2 ∈ V if w1l = w2. The arising oriented graph consists of pairs of
oppositely oriented edges l, l−1. Other than the these cycles of length 2, there are
no cycles in the Cayley graph G. If we identify the opposite edges, then, obviously,
we obtain a tree in which every vertex has degree 4 (a so-called 4-regular tree). The
graph G is considered a rooted tree with root 1 ∈ V. (The identity element 1 of the
group F2.)

On the set V = F2 a natural way to measure the distance d(x, y) between two
vertices x, y is to use the graph distance, i.e., the length of the shortest path (the only
simple path) connecting x, y. Two facts are immediately clear about this distance
d(·, ·):

(1) d(1, w) = ‖w‖ is the so-called length of the word w, i.e., the overall number
of letters l ∈ A that are needed to express w in its shortest form,

(2) the metric d(·, ·) is left-invariant (for the whole Cayley graph G is invariant
under the left regular action of F2 on V = F2).

Secondly, the correct way to define the direction in which a trajectory in V goes to
infinity is to use the so-called “ends” of the hyperbolic group F2 (see [CP93]). An
end of F2 is an infinite, simple (not self-intersecting) path, i.e., an infinite branch
W = (w0, w1, w2, . . .) where wi ∈ F2, w0 = 1, lk = w−1

k−1wk ∈ A, k = 1, 2, . . ., wk 6= wl

for k 6= l, or, equivalently, l−1
k 6= lk+1 for all k ∈ N. The set of all ends Ends(F2) of

F2 will be denoted by E. The elements W of E (as above) are uniquely determined
by the infinite sequence (l1, l2, . . .) ∈ AN, where l−1

k 6= lk+1 for all k ∈ N. In this
way the set E = Ends(F2) is identified with a closed subset of the product space
AN and inherits from AN its natural product space (a Cantor set) topology. The set
E = Ends(F2) with this topology is also called the horizon, or the ideal boundary of
the group F2.

The large-scale behavior of the projected orbit segment

{π(x(t)) = π(x1(t), x2(t))|0 ≤ t ≤ T} ⊂ Q

will be discovered by understanding

(a) in what direction π(x(T )) goes to ∞, when π(x(T )) is appropriately inter-
preted as an element of F2 = π1(Q),

(b) at what speed π(x(T )) goes to infinity in F2, i.e., how fast the distance
d(1, π(x(T ))) tends to infinity as a function of T .

The natural phase space that incorporates the data of both (a) and (b) is the cone

C = ([0,∞)× E)/({0} × E)(2.2)
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erected upon the base E that can be obtained from the product space [0,∞) × E
by pinching together all points of the form (0, e), e ∈ E. The cone C is clearly an
open and dense subset of the compact metrizable cone C, in which the half open
time interval [0,∞) is replaced by the compact interval [0,∞]. This means that
the topology of the cone C can be induced by some complete separable metric (cf.
Theorem 4.3.23 in [Eng89]), thus C is a so-called Polish space. We will not use any
such actual metric inducing the topology of C, but will only measure the distances
of points from the vertex 0 of C by using the parameter function t.

It is obvious that a subset X of C is compact if and only ifX is closed and bounded,
where boundedness of X means the boundedness of the distance function t on X .

The Homotopical Rotation Set R ⊂ C and the Admissible Homotopi-

cal Rotation Set AR ⊂ C. As we stated above, we shall study the asymptotic
homotopical behavior of the billiard trajectory segments π(x(t)) = π(x1(t), x2(t)),
0 ≤ t ≤ T , x(0) ∈ ∂O(0,0), i.e., d(x(0), (0, 0)) = r0, x(T ) ∈ ∂Okn

, as T → ∞. De-

note by 0 = t0 < t1 < t2 < · · · < tn = T the times when d(x(t),Z2) = r0, and let
x(ti) ∈ ∂Oki

, i = 0, 1, . . . , n, k0 = (0, 0). With this orbit segment (x(0), ẋ(0), n) we
naturally associate an element w = w(x(0), ẋ(0), n) ∈ F2 of the fundamental group
π1(T

2\O) = F2 in the following way: We record the times 0 < τ1 < τ2 < · · · < τk < T
when at least one of the two coordinates x1(τ), x2(τ) is an integer. 2 If x1(τi) ∈ Z

and εi = sgn [(d/dτ) x1(τ)|τ=τi ], then we take wi = aεi , while for x2(τi) ∈ Z and
εi = sgn [(d/dτ) x2(τ)|τ=τi ] we take wi = bεi . The first crossing will be called an
x-crossing aεi, while the second crossing will be called a y-crossing bεi , see also Fig.
1. The word w = w(x(0), ẋ(0), T ) is then defined as the product w = w1w2 . . . wk.
We can now make the following observation:

Observation 2.3. The billiard orbit segment (x(0), ẋ(0), n) = {π(x(t))|0 ≤ t ≤ T}
can be made a closed curve (a loop) in T

2 \ O by adding to it a bounded extension
(beyond T ). This bounded addition will only modify the word w = w1w2 . . . wk =
w(x(0), ẋ(0), n) (defined above) by a bounded right multiplier, but all modifications
have no effect on the asymptotic behavior of w as T → ∞, see Lemma 2.5 below.

Definition 2.4. Let xi = {xi(t)|0 ≤ t ≤ Ti} (i =1, 2, 3, . . . ) be an infinite sequence
of piecewise smooth continuous curves in T

2\O with all transversal x- and y-crossings
and limi→∞ Ti = ∞. We say that the point (t, e) ∈ C of the cone C is the limiting
point of the sequence (xi)

∞
i=1 if

2It follows from the transversality condition (imposed on the piecewise smooth curve x(t), 0 ≤
t ≤ T ) that the set of points to be listed above is discrete and closed, hence finite. Thus, the
above finite listing {τ1, τ2, . . . , τk} can indeed be done. This restriction only discards horizontal
and vertical periodic trajectories with period 2, bouncing back and forth between two neighboring
obstacles at unit distance from each other. All these periodic orbits are trivial: they stay bounded
in the group F2.
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(1) w(xi) → e, as i → ∞, and
(2) limi→∞(1/Ti)‖w(xi)‖ = t.

Lemma 2.5. Let xi = {xi(t)|0 ≤ t ≤ Ti} and yi = {yi(t)|0 ≤ t ≤ T̃i} be two
infinite sequences of piecewise smooth continuous curves fulfilling the conditions of
Definition 2.4, in particular, with limi→∞ Ti = limi→∞ T̃i = ∞. Assume that xi and
yi differ only by a bounded terminal segment, i.e., there exists a bound K > 0 such
that |Ti− T̃i| ≤ K and xi(t) 6= yi(t) imply Ti− t ≤ K. Finally, assume that (t, e) ∈ C
is the limiting point of the sequence (xi)

∞
i=1. Then (t, e) is also the limiting point of

the sequence (yi)
∞
i=1.

Proof. Our boundedness hypothesis implies that there are words wi ∈ F2 and a
constant K1 such that

w(yi) = w(xi)wi(2.6)

‖wi‖ ≤ K1,(2.7)

for i = 1, 2, 3, . . .. The assumed relation w(xi) → e and (2.6)–(2.7) imply that

w(yi) → e, as i → ∞. Similarly, the sequences (‖w(xi)‖−‖w(yi)‖)∞i=1 and (Ti− T̃i)
∞
i=1

are bounded, hence the relation

lim
i→∞

(1/Ti)‖w(xi)‖ = t

implies
lim
i→∞

(1/T̃i)‖w(yi)‖ = t.

�

Definition 2.8. The homotopical rotation set R ⊂ C is defined as all possible
limiting points of sequences of orbit segments xi = {xi(t)|0 ≤ t ≤ Ti} with Ti → ∞.
Similarly, the admissible homotopical rotation set AR ⊂ C is the set of all possible
limiting points of sequences of admissible billiard orbit segments. It is clear that
AR ⊂ R and both are closed subsets of the cone C.

Definition 2.9. For a given forward orbit x = {x(t)|t ≥ 0} the homotopical rotation
set R(x) of x is defined as the set of all possible limiting points (t, e) ∈ C of sequences
of orbit segments xi = {x(t)|0 ≤ t ≤ Ti} (these are initial segments of x) with
limi→∞ Ti = ∞. Plainly, R(x) is a closed subset of the cone C. Theorem 2.12 below
will ensure that R(x) is a non-empty, compact set. In the case |R(x)| = 1, i.e., when
R(x) is a singleton, the sole element of R(x) will be called the homotopical rotation
number of the forward orbit x.

Remark 2.10. For the definition of admissible billiard orbits, please see the above
definition in this section or the definition of admissibility immediately preceding
Theorem 2.2 in [BMS06]. Also, please compare the definition of R and AR here with
the analogous definitions at the beginning of section 3 of [BMS06].
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Remark 2.11. We also note that any symbolic admissible itinerary (k0, k1, . . .) (finite
or infinite) can actually be realized by a genuine billiard orbit. Please see Theorem
2.2 in [BMS06].

The first result of this paper is a uniform upper bound for the radial size of the
full homotopical rotation set R.

Theorem 2.12. The homotopical rotation set R is contained in the closed ball
B(0,

√
2) centered at the vertex 0 of the cone C with radius

√
2. In particular, the

set R is compact.

Proof. Throughout this proof we will be dealing exclusively with orbit segments
x(t) = (x1(t), x2(t)) (0 ≤ t ≤ T ) lifted to the covering space

Q̃ =
{

x ∈ R
2
∣

∣ dist(x,Z2) ≥ r0
}

of the configuration space Q. The trivial, periodic orbits bouncing back and forth
horizontally (vertically) between two neighboring obstacles (i. e. two obstacles with
their centers at unit distance from each other) will be excluded from our considera-
tions.

First of all, we make a simple observation:

Lemma 2.13. Let τ1 and τ2 (0 ≤ τ1 < τ2 ≤ T ) be the time moments of two consec-
utive x-crossings of the orbit segment x(t) = (x1(t), x2(t)) (0 ≤ t ≤ T ). We claim
that

∫ τ2

τ1

|ẋ1(t)| dt ≥ 1.

Proof. Without loss of generality we may assume that ẋ1(τ1) > 0. Let x1(τ1) = k ∈ Z.
Then x1(τ2) = k + 1 or x1(τ2) = k. In the former case we are done, so we assume
that x1(τ1) = k = x1(τ2). Clearly, in this case ẋ1(τ2) < 0. In order for the particle
to change its positive horizontal momentum ẋ1(τ1) to the negative value of ẋ1(τ2),
it is necessary for the particle to cross the median x1 = k + 1/2 of the vertical strip
k ≤ x1 ≤ k + 1, for any collision on the left side of this strip can only increase the
horizontal momentum. This observation yields the claimed lower estimate. �

Remark 2.14. The counterpart of the lemma providing a similar lower estimate
∫ τ2

τ1

|ẋ2(t)| dt ≥ 1

between two consecutive y-crossings is also true, obviously.

Denote by N the overall number of x- and y-crossings (counted without the sign) on
the considered orbit segment

{

x(t) = (x1(t), x2(t))
∣

∣ 0 ≤ t ≤ T
}

. The above lemma
gives us the upper estimate

N ≤
∫ T

0

(|ẋ1(t)|+ |ẋ2(t)|) dt+ 2
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for the number N . Since |ẋ1(t)| + |ẋ2(t)| ≤
√
2, we get that N ≤

√
2T + 2, that is,

N/T ≤
√
2 + 2/T , and this proves the theorem. �

Example 2.15. The upper bound
√
2 for the radial size of R cannot be improved

uniformly for all directions e ∈ Ends(F2), as the following example shows: The
“smallness” condition r0 <

√
2/4 precisely means that the corridor (strip)

S0 =
{

x = (x1, x2) ∈ R
2
∣

∣

√
2r0 ≤ x2 − x1 ≤ 1−

√
2r0

}

is free of obstacles in the covering space

Q̃ =
{

x ∈ R
2
∣

∣ dist(x,Z2) ≥ r0
}

.

In this corridor S0, for any natural number n we construct the periodic orbit (periodic
after projecting it into Q)

{

x(n)(t) =
(

x
(n)
1 (t), x

(n)
2 (t)

)

∣

∣ t ∈ R

}

that has consecutive reflections at the points

(. . . , P−1, Q−1, P0, Q0, P1, Q1, . . . )

(written in time order), where

Pk = v0 + k(2n+ 1, 2n+ 1),

Qk = −v0 + (n, n+ 1) + k(2n+ 1, 2n+ 1)

(k ∈ Z) with v0 =
(

−r0/
√
2, r0/

√
2
)

. The period length Tn of of x(n) is

Tn = 2 ||(n, n + 1)− 2v0| | = 2
(

2n2 + 2n+ 1 + 4r20 − 2
√
2r0

)1/2

= 2
√
2n +O(1),

whereas this periodic orbit makes exactly 2n+1 x-crossings a and 2n+1 y-crossings
b during one period. Thus, the word length

∣

∣|w
({

x(n)(t)
∣

∣ 0 ≤ t ≤ Tn

})
∣

∣ |
is equal to 4n+ 2, therefore

∣

∣|w
({

x(n)(t)
∣

∣ 0 ≤ t ≤ Tn

})
∣

∣ |
Tn

=
4n+ 2

2
√
2n +O(1)

,

and this quantity tends to
√
2, as n → ∞.

The main result of this paper is an effective lower bound for the set AR and,
consequently, for the full rotation set R:

Theorem 2.16. Assume that the radius r0 of the sole obstacle is less than
√
5/10.

We claim that the admissible rotation set AR contains the closed ball B(0,
√
2/2) ⊂ C

of radius
√
2/2 centered at the vertex 0 of the cone C.
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Proof. The proof of this lemma will be subdivided into a few lemmas and observa-
tions. First of all, we observe

Observation 2.17. The imposed condition r0 <
√
5/10 is equivalent to requiring that

the circular scatterer O(0,0) does not intersect the convex hull of the scatterers O(−1,−1)

and O(0,1). Therefore, under our condition of r0 <
√
5/10 the following statements

hold true:

(i) Every integer vector k ∈ Z
2 of length 1 or

√
2 is a vertex of the admissibil-

ity graph G (please see the first paragraph after the proof of Lemma 2.5 in
[BMS06]), i. e. the passage k is admissible;

(ii) If k and l are two distinct integer vectors with norms 1 or
√
2, then there is

an oriented edge k → l in the admissibility graph G, that is, in an admissible
itinerary a passage l is permitted to follow a passage k.

The above statements are easily checked by an elementary inspection.
At the core of the proof (of the theorem) is

Lemma 2.18. Suppose that n ≥ 0 is an integer and k0,k1, . . . ,kn+2 (∈ Z
2) are

centers of obstacles that are consecutively visited by the segment S [0,T ]x of a strongly
admissible orbit S(−∞,∞)x, so that they are having the following properties:

(1) The passage vectors li = ki+1 − ki are equal to (1, (−1)i+1) for i = 1, . . . , n;
(2) The “initial connector” passage vector l0 = k1−k0 is either (1, 0), or (0,−1);
(3) The “terminal connector” ln+1 = kn+2 − kn+1 is either (1, 0), or (0, (−1)n);
(4) If l0 = (0,−1), then the passage vector l−1 (directly preceding l0 in the

itinerary of x) has positive first coordinate and, if ln+1 = (0, (−1)n), then
the passage vector ln+2 has positive first coordinate;

(5) S0x = x0 = x corresponds to the collision at Ok0
, while xT = STx corresponds

to the collision at Okn+2
.

(Note that, by admissibility, l0 = ln+1 = (1, 0) is not permitted in the case n = 0.)
We claim that the orbit segment S [0,T ]x makes n + 1 x-crossings “a” and no y-

crossings at all, with the only (possible) exception that the initial connector l0 = (1, 0)
(if it is (1, 0)) may make a y-crossing b, just as the terminal connector ln+1 = (1, 0)
may make a y-crossing b (when n is odd), or ln+1 = (1, 0) may make a y-crossing b−1

(when n is even).

Proof. The lemma is proved by an elementary inspection, see also Figure 3 below. �

Remark 2.19. An admissible orbit segment S [0,T ]x (described in the lemma above)
will be called an “an+1-passage” with the connectors l0 and ln+1, where the first
connector is called the “initial connector”, while the latter one is called the “ter-
minal connector”. Observe that in this an+1-passage S [0,T ]x the x-crossings “a” are
in a natural, one-to-one correspondence with the reflections at the boundaries of
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Figure 3.

Ok1
, . . . ,Okn+1

, respectively. These reflections will be called the “eigenreflections” of

the an+1-passage S [0,T ]x. The two reflections at the boundaries of Ok0
and Okn+2

will
not be considered as eigenreflections of this an+1-passage: The first one of them will
actually be the last eigenreflection of a bm-passage (m 6= 0) directly preceding the
considered an+1-passage, while the second one will be the first eigenreflection of the
bp-passage (p 6= 0) directly following the an+1-passage S [0,T ]x. The shared passage
vectors l0 and ln+1 will serve as connectors between the neighboring a- and b-passages.
All passage vectors li, used in this construction, have length 1 or

√
2. We will say

that the sequence of passage vectors σ = (l0, l1, . . . , ln+1) is the symbolic code of the
considered an+1-passage S [0,T ]x.

Remark 2.20. Clearly, similar statements are true on am-passages (m < 0) and bm-
passages (m 6= 0). Also, in its current form of the lemma on an+1-passages, the first
non-connector passage vector l1 = (1, 1) could have been (1,−1), by appropriately
reflecting all other passage vectors about the x-axis.

Remark 2.21. A few words are due here about the possible “exceptional” b or b−1

crossings of the initial and/or terminal connectors, mentioned at the end of the claim
of the lemma: If the initial connector l0 = (1, 0) happens to make an “exceptional”
y-crossing b, then this crossing will be counted as the last y-crossing of the bm-
passage (m > 0) preceding the considered an+1-passage. Similar statement can be
said (mutatis mutandis) about a possible “exceptional” y-crossing (b or b−1) of the
terminal connector ln+1 = (1, 0).

Remark 2.22. If n > 0, then there are exactly 8 different combinatorial possibilities
for the symbolic code σ = (l0, l1, . . . , ln+1) of an an+1-passage: The x coordinates of
the connectors l0 and ln+1 can be 0 or 1 independently, whereas l1 can be (1, 1) or
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(1,−1), also independently chosen from l0 and ln+1. However, for n = 0 there are
only 6 possibilities for σ = (l0, l1):

(1) l0 = (0, 1), l1 = (0,−1);
(2) l0 = (0,−1), l1 = (0, 1);
(3) l0 = (1, 0), l1 = (0, 1);
(4) l0 = (1, 0), l1 = (0,−1);
(5) l0 = (0, 1), l1 = (1, 0);
(6) l0 = (0,−1), l1 = (1, 0).

Consider an arbitrary element w∞ =
∏∞

i=1 a
nibmi (an infinite word) of the set

Ends(F2). For any natural number N we want to construct a finite, admissible orbit

segment S [0,TN ]xN = x(N), the associated word w(x(N)) of which is
∏N

i=1 a
nibmi := wN ,

such that

lim sup
N→∞

||wN ||
TN

≥
√
2

2
.

By symmetry, we may assume that the considered word w∞ begins with a power of
“a” (as the notations above indicate), and that n1 > 0. We shall use Lemma 2.18
by successively concatenating the ani- and bmi -passages (i = 1, . . . , N) to obtain the
admissible orbit segment x(N) = S [0,TN ]xN with the associated word

w(x(N)) = wN =

N
∏

i=1

anibmi .

This will be achieved by constructing first the symbolic, admissible itinerary of x(N)

containing only passage vectors lj = kj+1 − kj ∈ Z
2 of length 1 and

√
2.

For simplicity (and by symmetry) we assume that n1 > 0. First we construct
the symbolic itinerary (l0, . . . , ln1

) of an an1-passage by taking l0 = (1, 0), lj =
(1, (−1)j+1) for j = 1, 2, . . . , n1 − 1. The terminal connector ln1

will be carefully
chosen, depending on the parity of n1 and the sign of the integer m1. By symmetry
we may assume that ln1−1 = (1, −1), i. e. that n1 is an odd number. In the construc-
tion of the terminal connector ln1

and the symbolic itinerary (ln1
, ln1+1, . . . , ln1+|m1|)

of the subsequent bm1-passage we will distinguish between two, essentially different
cases.

Case I. m1 > 0. In this case we take ln1
= (0, 1) and, furthermore, lj = ((−1)j , 1)

for j = n1 + 1, n1 + 2, . . . , n1 + |m1| − 1. The terminal connector ln1+|m1| of this
bm1-passage will be carefully chosen by a coupling process (similar to the one that we
are just describing here) to couple the bm1-passage with the subsequent an2-passage.

Case II. m1 < 0. In this case we take ln1
= (1, 0), lj = ((−1)j+1, −1) for j =

n1 + 1, n1 + 2, . . . , n1 + |m1| − 1. Again, the terminal connector ln1+|m1| of this b
m1-

passage will be carefully chosen by a coupling process to couple the bm1-passage with
the subsequent an2-passage.
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It is clear that the above process can be continued (by changing whatever needs to
be changed, according to the apparent mirror symmetries of the system) to couple
together the subsequent an1-, bm1-, an2-, bm2-,. . . , anN -, and bmN -passages. In this way
we obtain the admissible symbolic itinerary (l0, l1, . . . , l||wN ||) of a potential admissible

orbit segment x(N) with the associated word

w(x(N)) = wN =
N
∏

i=1

anibmi .

The existence of such an admissible orbit segment x(N) is guaranteed by Theorem
2.2 of [BMS06], using an orbit length minimizing principle in the construction. This
means that a required orbit segment x(N) can be obtained by minimizing the length
of all piecewise linear curves (broken lines) P0P1 . . . PL+1 (L = ||wN || =

∑N
i=1(|ni| +

|mi|)) for which the corner points Pj belong to the obstacle (the closed disk) Okj

(j = 0, 1, . . . , L + 1) with kj =
∑j−1

i=0 li. Clearly, the length TN of the arising orbit
segment x(N) is less than the length of the broken line connecting the consecutive
centers kj (0 ≤ j ≤ L + 1) of the affected obstacles, and this latter number is
∑L

j=0 ||lj|| ≤
√
2(L+ 1). Thus, we get that

||wN ||
TN

>
L√

2(L+ 1)
,

and this proves Theorem 2.16.
We note that if a point (t, e) turns out to be a limiting point of a sequence of

admissible orbit segments with passage vectors of length 1 or
√
2, then any other

point (t1, e) ∈ C with 0 ≤ t1 ≤ t is also such a limiting point. Indeed, by inserting the
necessary amount of “idle sequences” αα−1αα−1 · · · in the itinerary, we can decrease
the ratios ‖w(σ)‖/T (σ) (and their limits) as we wish. This finishes the proof of the
theorem. �

An immediate consequence of the last argument is

Corollary 2.23. The set AR is star-shaped from the view point (0, 0) ∈ C, i.e.,
(t, e) ∈ AR and 0 ≤ t1 ≤ t imply that (t1, e) ∈ AR.

The concluding result of this section shows that the lower estimate
√
2/2 for the

radial size of AR is actually sharp, at least in some directions w∞ ∈ Ends(F2) and
in the small obstacle limit r0 → 0.

Proposition 2.24. Consider the direction

w∞ = aba−1b−1aba−1b−1 · · · ∈ Ends(F2),
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i. e. the “infinite power” of the commutator element [a, b] = aba−1b−1. We claim
that the radial size

σ = σ(r0, w∞) = sup
{

t ∈ R+

∣

∣ (t, w∞) ∈ R
}

of the full rotation set R in the direction of w∞ has the limiting value
√
2/2, as

r0 → 0. In particular, similar statement holds true for the radial size of the smaller,
admissible rotation set AR in the same direction. Thus, the lower estimate

√
2/2 for

the radial size of AR (of R) in this direction cannot be improved in the small obstacle
limit r0 → 0. We recall that, according to Theorem 2.16 above, σ(r0, e) ≥

√
2/2 for

all r0 and all e ∈ Ends(F2).

Proof. Consider an infinite sequence (xn)
∞
n=1 of orbit segments

xn =
{

xn(t)
∣

∣ 0 ≤ t ≤ Tn

}

with Tn ր ∞, w(xn) = (aba−1b−1)kn , kn ր ∞, and

lim
n→∞

4kn
Tn

= σ(r0, w∞).

We may assume that the relevant x-crossings “a” of xn (relevant in the sense that
their symbol a remains in the associated word w(xn) after all possible shortenings)
take place between the obstacles at (0, 0) and (0,−1), the relevant y-crossings “b”
occur between the obstacles at (0, 0) and (1, 0), the relevant x-crossings “a−1” happen
between the obstacles at (0, 0) and (0, 1) and, finally, the relevant y-crossings “b−1”
take place between the obstacles at (0, 0) and (−1, 0), i. e. xn circles around the
central obstacle O(0,0) counterclockwise. The proof of the inequality

lim sup
r0→0

σ(r0, w∞) ≤
√
2

2

will be based on the following, elementary geometric observation:

Lemma 2.25. Let N be a natural number and

Γ =
{

γ(t)
∣

∣ 0 ≤ t ≤ T
}

be a piecewise linear curve (a broken line) in R
2 parametrized with the arc length,

enjoying the following properties:

(1) every vertex (corner) of Γ is an integer point;
(2) (0, 0) 6∈ Γ;
(3) Γ winds around the origin at least N times, i. e.

∫ T

0

ω̇(t)dt ≥ 2πN,

where ω(t) is the angular polar coordinate of γ(t).
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We claim that T ≥ 4
√
2N , and the equation holds if and only if Γ connects the lattice

points (1, 0), (0, 1), (−1, 0), and (0,−1) in this cyclic order.

Since the proof of this result is a simple, elementary geometric argument (though
with a little bit tedious investigation of a few cases), we omit it, and immediately
turn to the proof of the proposition.

For n = 1, 2, . . . we define a broken line Γn, fulfilling all conditions of the previous
lemma with N = kn, by

(a) considering all centers c1, c2, . . . , cm (ci ∈ Z
2) of the obstacles visited by xn in

the time order xn visits them;
(b) dropping the possible appearances of the origin from the above sequence

c1, c2, . . . , cm;
(c) constructing Γn by connecting the lattice points c1, c2, . . . , cm (in this order)

and, by adding a bounded extension to Γn if necessary, ensuring that Γn winds
around the origin at least kn times.

Observe that the length |AB| of any billiard orbit segment, connecting two consec-
utive collisions, is always between d− 2r0 and d, where d is the distance between the
centers of the obstacles affected by the collisions. Therefore, by the previous lemma
we get the following inequality for the length Tn of xn:

Tn

1− 2r0
+ C ≥ 4

√
2kn

with some constant C > 0. This inequality implies

σ(r0, w∞) = lim
n→∞

4kn
Tn

≤
√
2

2(1− 2r0)
,

thus

lim sup
r0→0

σ(r0, w∞) ≤
√
2

2
,

as claimed by the proposition. �

3. Corollaries and Concluding Remarks

The first corollary listed in this section is a byproduct of the proof of Theorem
2.12. It provides a positive constant as the upper estimate for the topological entropy
htop(r0) of our considered 2D billiard flow with one obstacle.

Theorem 3.1. For the topological entropy htop(r0) of the billiard flow studied in this
paper we have the following upper estimate

htop(r0) ≤ 6
√
2 ln 2 = 5.8815488 . . .
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Remark 3.2. The above corollary should be compared to (and explained in the frame-
work of) some earlier results by Burago-Ferleger-Kononenko. In [BFK98], the authors
also enumerate all possible homotopical-combinatorial types of trajectories, and they
prove the existence of a limit

0 < lim
r0→0

htop(r0) = c0 < ∞.

along with the lower estimate ln 3 ≤ c0 and an implicit upper bound in terms of the
similar entropy limit for the 3D Lorentz gas. In Theorem 3.1 we obtained a concrete
upper bound for c0.

Proof of 3.1. We subdivide the periodic billiard table Q (the configuration space)
into five pairwise disjoint domains D1,D±

2 ,D±
3 with piecewise linear boundaries as

depicted in the figure below. The domainsD+
k (k = 2, 3) consist of all points (x1, x2) ∈

Q for which the fractional part {xk−1} of xk−1 satisfies the inequality {xk−1} ≤ ε0 (for
some fixed, small ε0 > 0), the domains D−

k (k = 2, 3) consist of all points (x1, x2) ∈ Q
for which {xk−1} ≥ 1 − ε0, while D1 is the closure Q \ (D−

2 ∪ D+
2 ∪ D−

3 ∪ D+
3 ) of the

set Q\ (D−
2 ∪D+

2 ∪D−
3 ∪D+

3 ). The union Q = D1∪D−
2 ∪D+

2 ∪D−
3 ∪D+

3 is an almost

Figure 4.

disjoint one: these domains only intersect at their piecewise linear boundaries. Thus,
from the dynamical viewpoint Q = D1 ∪ D−

2 ∪ D+
2 ∪ D−

3 ∪ D+
3 is a partition Π.

We claim that Π is a generating partition, meaning that the supremum (the coars-
est common refinement)

∧∞
n=−∞ S−nǫ0(Π) of the partitions S−nǫ0(Π) is the trivial
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partition into the singletons, modulo the zeroe-measured sets. Indeed, if two phase
points x = (q1, v1) and y = (q2, v2) (q1, q2 ∈ Q, vi ∈ R

2, ‖vi‖ = 1) share the same
symbolic future itineraries (recorded at nǫ0 moments of time) with respect to the
partition Π, then, as an elementary inspection shows, Sτy and x belong to the same
local stable curve, where τ ∈ R is a time-synchronizing constant. Similar results
apply to the shared symbolic itineraries in the past and the unstable curves. These
facts imply that x = Sτy (with some τ ∈ R), whenever x and y share identical
Π-itineraries in both time directions, i.e. x = y for a typical pair (x, y), so Π is a
generating partition.

For any time T > 0 (T will eventually go to infinity) denote by N(T ) the number
of all possible Π-itineraries of trajectory segments S [0,T ]x, x ∈ M. It follows from
the generating property of Π that

htop = lim
T→∞

1

T
lnN(T ).(3.3)

It is clear that any orbit segment {x(t)|0 ≤ t ≤ T} alternates between the domains

D1 and D∗ = Q \ D1. Consider an orbit segment x =
{

x(t)
∣

∣ 0 ≤ t ≤ T
}

lifted to the

covering space Q̃ ofQ. Let τ1 be a time when x leaves the domainD+
2 (D−

2 ), and τ2 be
the time when x re-enters the same domain D+

2 (D−
2 ) the next time, 0 ≤ τ1 < τ2 ≤ T .

The proof of the lemma following Theorem 2.12 shows that
∫ τ2

τ1

|ẋ1(t)| dt ≥ 1− ε0.

Therefore, the number of times the orbit segment x visits the domain D+
2 (D−

2 ) is at
most

1

1− ε0
·
∫ T

0

|ẋ1(t)| dt+ 1.

Applying this upper estimate to D+
2 and D−

2 , then the analogous upper estimates for
the number of visits to D±

3 , and, finally, taking the sum of the arising four estimates,
we get that the total number of visits by x to the four domains D±

2 , D
±
3 is at most

2

1− ε0
·
∫ T

0

(|ẋ1(t)|+ |ẋ2(t)|) dt+ 4 ≤ 2
√
2T

1− ε0
+ 4.

Since x alternates between D1 and the union of the other four domains, the total
number of times x visits D1 is at most

f(T, ε0) :=
2
√
2T

1− ε0
+ 5.

After entering any of the domains D±
2 , D±

3 , the orbit segment σ has two sides of this
domain (i. e. two combinatorial possibilities) to exit it, whereas, after entering the
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domain D1, it has four sides of D1 to leave it. This argument immediately yields the
upper estimate

N(T ) ≤ 8f(T, ε0)(3.4)

for the number N(T ) of all possible symbolic types of orbit segments of length T . In
light of (3.3), the above inequality proves the upper estimate of Theorem 3.1, once
we take the natural logarithm of (3.4), take the limit as T → ∞, and, finally, the
limit as ε0 → 0. �

Corollary 3.5 (Corollary of Theorem 2.16). For the topological entropy htop(r0) of
the billiard flow (with one circular obstacle of radius r0 inside T

2) we have the lower
estimate

htop(r0) ≥
ln 3√
2
≈ 0.776836199 . . .

Proof. (A sketch.) Theorem 2.16 says that the words w ({x(t)| 0 ≤ t ≤ T}) corre-
sponding to all orbits {x(t)| 0 ≤ t ≤ T} of length T fill in the ball of radius T/

√
2 in

the Cayley graph of the group F2. Hence the number of different homotopy types of

these orbits {x(t)| 0 ≤ t ≤ T} is at least const · 3T/
√
2. Take the natural logarithm of

this lower estimate, divide by T , and pass to the limit as T → ∞ to get the claim of
the corollary. �

Let xT0
= {x(t)| 0 ≤ t ≤ T0} be a periodic orbit with period T0, and w0 = w (xT0

) ∈
F2(a, b) the symbolic word corresponding to it. Finally, let w∞ = w0w0w0 · · · ∈
Ends(F2) be the infinite power of w0. It is clear that the homotopical rotation number
(t, e) = (t, w∞) ∈ C of the full (periodic) orbit x exists, i. e.

t = lim
T→∞

‖w ({x(t)| 0 ≤ t ≤ T})‖
T

=
||w0||
T0

,

e = w∞ = lim
T→∞

w ({x(t)| 0 ≤ t ≤ T}) .
Note that t = 0 if and only if w0 = 1. In this case the directional component
e = w∞ ∈ Ends(F2) of the rotation number is undefined.

Remark 3.6. We observe that in Definition 2.8 of the admissible homotopical rotation
set AR ⊂ C we can select the approximating orbit segments xi = {xi(τ)|0 ≤ τ ≤ Ti}
to be periodic with period Ti (see Theorem 2.2 of [BMS06]). Thus, the homotopical
rotation numbers (t, e) ∈ C

e = lim
T→∞

w({x(τ)|0 ≤ τ ≤ T}) ∈ Ends(F2),

t = lim
T→∞

‖w({x(τ)|0 ≤ τ ≤ T})‖
T

,

corresponding to admissible periodic orbits {x(τ)|τ ∈ R} form a dense subset in AR.
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Remark 3.7. The problem of defining and thoroughly studying the analogous homo-
topical rotation numbers in the case of N round obstacles in T

2 (N ≥ 2) is much
more complex than the case N = 1. Indeed, the fundamental group G = π1(Q) turns
out to be the group FN+1 freely generated by N + 1 elements a1, a2, . . . , aN+1 (see
[Mas91]). The complexity of the problem is partially explained by the following fact:
the “abelianized” version G/G′ (where G′ = [G,G] is the commutator subgroup of
G) is isomorphic to Z

N+1. In the case N = 1 the group Z
N+1 = Z

2 coincides with
the lattice group of periodicity of the billiard system, and this coincidence establishes
a strong connection between the newly introduced homotopical (non-commutative)
rotation number (t, e) ∈ C of a trajectory {x(τ)|τ ∈ R},

e = lim
T→∞

w({x(τ)|0 ≤ τ ≤ T}) = lim
T→∞

wT

t = lim
T→∞

‖w({x(τ)|0 ≤ τ ≤ T})‖
T

= lim
T→∞

‖wT‖
T

and the traditional (commutative) rotation vector ρ of the same trajectory as follows:

ρ = lim
T→∞

1

T
π(wT ) ∈ R

2,

where π : G → G/G′ = Z
2 is the natural projection. Clearly, there is no such

straightforward correspondence between the two types of rotation numbers (vectors)
in the case N ≥ 2.

Remark 3.8. If one carefully studies all the proofs and arguments of this paper, it
becomes obvious that the round shape of the sole obstacle O was essentially not used.
Thus, all the above results carry over to any other billiard table model on T

2 with a
single strictly convex obstacle with smooth boundary ∂O, provided that O is small
in the sense of [BMS06], i.e., O is contained in a disk of radius r0, r0 <

√
2/4. (And

r0 <
√
5/10 for Theorem 2.16.)

Remark 3.9. One can ask similar questions (regarding the noncommutative rotation
numbers/sets) for toroidal billiards in the configuration space Q, where

Q = T
d \

N
⋃

i=1

Oi,

with d ≥ 3 and N mutually disjoint, compact, strictly convex obstacles Oi with
smooth boundaries. Such a space Q is, obviously, homotopically equivalent to the
d-torus T

d with N points removed from it (a “punctured torus”); however, due to
the assumption d ≥ 3, the fundamental group π1(Q) of such a space is naturally
isomorphic to π1(T

d) ∼= Z
d, for the homotopical deformations of loops can always

avoid the removed N points. Thus, for such a system the homotopical rotation
numbers and sets coincide with the usual commutative notions, studied in [BMS06].
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