Finiteness of Bound States of General N-Body Operators

W.D. Evans, R.T. Lewis¹, and Y. Saitō¹

Consider the \((N+1)\)-body Schrödinger operator of atomic type,

\[P_N = \sum_{j=1}^{N} (-\Delta_i - \frac{Z}{|x^i|}) + \sum_{1 \leq i < j \leq N} \frac{1}{|x^i - x^j|}. \]

This is the Hamiltonian of an atom with an infinitely heavy nucleus of charge \(Z\) and \(N\) electrons of charge 1 and mass \(1/2\). Here \(x^i \in \mathbb{R}^3\) is the coordinate of the \(i\)th electron and \(\Delta_i\) denotes the Laplacian in \(\mathbb{R}^3\) with respect to the variable \(x^i\). For the operator \(P_N\) the next theorem gives a classic result. (For the appropriate references we refer the reader to the extensive reference list in [4].)

Theorem 1. (Zhizlin (1960, 1969, 1971), Uchiyama (1969) and others) The operator \(P_N\) given by (1) has at most a finite number of bound states if and only if \(Z \leq N - 1\).

In this paper we work towards a theory for general \(N\)-body operators which would include the results in Theorem 1 for atoms as well as results for molecules. A portion of this task has been accomplished in [2] for general atomic-type operators of the form

\[P = -\sum_{i=1}^{N} (2m_i)^{-1} \Delta_i + \sum_{i=1}^{N} v_{oi}(x^i) + \sum_{1 \leq i < j \leq N} v_{ij}(x^i - x^j) \]

where \(m_i\) is the mass of the \(i\)th electron. As in [2] we proceed from the foundation laid by Agmon[1]. Define

\[H = -\sum_{i,j=1}^{n} \partial_i a^{ij} \partial_j + q(x), \quad x \in \mathbb{R}^n \]

¹ Supported by the U.S. National Science Foundation, NSF DMS-8719027
where H satisfies the following (3)(i)-(iv):

(i) Each a_{ij} is a bounded, continuous, real-valued function on \mathbb{R}^n.
(ii) The matrix $A(x) = [a_{ij}(x)]$ is symmetric and its smallest eigenvalue $\mu(x)$ is a positive continuous function on \mathbb{R}^n.

(3)

(iii) $q \in L^1(\mathbb{R}^n)_{\text{loc}}$.
(iv) $q_- = \max(-q, 0) \in M_{\text{loc}}(\mathbb{R}^n)$, where $M(\mathbb{R}^n) = M_0(\mathbb{R}^n)$ is the Sturmian class of functions.

The sesquilinear form which gives rise to H is

(4) $\rho[\varphi, \psi] = \int_{\mathbb{R}^n} \{ \langle \nabla_A \varphi, \nabla_A \psi \rangle + q \varphi \bar{\psi} \} \, dx$ \quad ($\varphi, \psi \in C^\infty_0(\mathbb{R}^n)$),

where $\rho[\varphi] := \rho[\varphi, \varphi]$ and

(5) $\langle \nabla_A \varphi, \nabla_A \psi \rangle = \sum_{i,j=1}^n a_{ij} \nabla \varphi \nabla \bar{\psi}$.

Define

(6) $\Lambda(H) = \inf \{ \rho[\varphi] : \varphi \in C^\infty_0(\mathbb{R}^n), \|\varphi\| = 1 \}$.

If $\Lambda(H) > -\infty$, the sesquilinear form $\rho[\varphi, \psi]$ on $C^\infty_0(\mathbb{R}^n) \times C^\infty_0(\mathbb{R}^n)$ is proved to be a densely defined symmetric form which is bounded below and closable in $L^2(\mathbb{R}^n)$ - see Agmon[1] and [2].

Henceforth, let H denote the self-adjoint operator in $L^2(\mathbb{R}^n)$ associated with the form $\rho[\varphi, \psi]$. Then, the least point of the essential spectrum of H is given by

(7) $\Sigma(H) = \sup_{K: \text{compact}} \left[\inf \{ \rho[\varphi] : \varphi \in C^\infty_0(\mathbb{R}^n - K), \|\varphi\| = 1 \} \right]$.

Agmon [1] gave an interesting, alternative expression for $\Sigma(P)$ which is related to the celebrated HVZ Theorem of quantum physics - see the references in Sigal[3] or [4].

Let $B(0; R) := \{ x \in \mathbb{R}^n : \|x\| < R \}$ and $S^{n-1} := \{ x \in \mathbb{R}^n : \|x\| = 1 \}$. For $\omega \in S^{n-1}, \delta \in (0, \pi)$, and $R > 0$ define the truncated cone

$$\Gamma(\omega, \delta, R) = \{ x \in \mathbb{R}^n : < x, \omega > > |x| \cos \delta, |x| > R \}.$$

Let

$$\Sigma(\omega, \delta, R) = \inf \{ \rho[\varphi] : \varphi \in C^\infty_0(\Gamma(\omega, \delta, R)), \|\varphi\| = 1 \}$$

and

$$K(\omega : H) = \lim_{\delta \to 0} \lim_{R \to \infty} \Sigma(\omega, \delta, R).$$
Theorem 2. (Agmon[1], Lemma 2.7) $K(\cdot : H)$ is lower semicontinuous on S^{n-1} and

$$\Sigma(H) = \min\{K(\omega : H) : \omega \in S^{n-1}\}.$$

Let

$$M := \{\omega \in S^{n-1} : K(\cdot : H) \text{ assumes its minimum at } \omega\}.$$

Note that M is a closed subset of S^{n-1} since $K(\omega : H)$ is lower semicontinuous on S^{n-1}. For M we define the truncated conical region

$$\Gamma(M : R) := \{x \in \mathbb{R}^n : x = t\omega \text{ for } \omega \in M \text{ and } t > R\}.$$

Let $d_M(x) := \text{dist}(x : M)$. The first part of our main hypothesis is given by

$${\mathcal{H}}(1) : \text{Let } M \text{ be a proper subset of } S^{n-1} \text{ which is the finite union of closed sets } \{M_i\}_{i=1}^k. \text{ Suppose that each } d_{M_i} \text{ is } C^1 \text{ in a neighborhood of } M_i.$$

When H is a generalized N-body operator, Agmon shows that $K(\omega : H) \leq 0$. In that special case, $M = S^{n-1}$ implies that $K(\omega : H) \equiv 0$. For 3-body operators this may result in a rather pathological case called the Efimov effect - see [4] and the references contained therein.

An important ingredient in our proof is the introduction of a certain partition of unity $\{J_0, J_1, J_2\}$ satisfying the properties given in Lemma 3 below. To this end we first define

$$M_{\delta} := \{\omega \in S^{n-1} : \text{dist}(\omega : M) < \delta\}.$$

We associate with M_{δ} the truncated conical region $\Gamma(M_{\delta} : R)$ defined as above.

In the following, $\text{supp} J_i$ denotes the support of J_i.

Lemma 3. There is a partition of unity $\{J_0, J_1, J_2\}$ satisfying

(i) $0 \leq J_i \leq 1$ for each i and each $x \in \mathbb{R}^n$;
(ii) $\sum_{i=0}^2 J_i^2(x) \equiv 1$ for $x \in \mathbb{R}^n$;
(iii) each $J_i(x)$ is Lipschitz in \mathbb{R}^n;
(iv) $\text{supp } J_0 \subset B(0; 1)$;
(v) $\text{supp } J_1 \subset \Gamma(M_{\delta} : \frac{\delta}{2})$;
(vi) $\text{supp } J_2 \subset \mathbb{R}^n \setminus (\Gamma(M_{\delta}/2 : 0) \cup B(0; \frac{1}{2}))$;
(vii) J_1 and J_2 are homogeneous of degree zero in $\mathbb{R}^n \setminus B(0; 1)$; and
(viii) for any $\epsilon > 0$ there exists $C_\epsilon > 0$ such that

$$|\nabla J_1(x)|^2 + |\nabla J_2(x)|^2 \leq (\epsilon J_1(x))^2 + C_\epsilon J_2(x)^2 |x|^{-2}$$
for all \(x \in \mathbb{R}^n \setminus B(0; 1) \).

Proof. For the basic ideas of the proof we refer the reader to either [2] or Sigal[3].

As the next lemma illustrates, this partition of unity allows us to separate the essential “parts” of the form \(\rho \). This lemma gives the IMS localization formula[4] for \(H \).

Lemma 4. For any open set \(\Omega \subset \mathbb{R}^n \) and any \(\phi \in C_0^\infty (\mathbb{R}^n) \)

\[
\int_{\Omega} \left[|\nabla_A \phi|^2 + q|\phi|^2 \right] \, dx = \sum_{i=0}^{2} \int_{\Omega} \left[|\nabla_A (J_i \phi)|^2 + q|J_i \phi|^2 - |\nabla_A J_i|^2 |\phi|^2 \right] \, dx.
\]

Proof. An elementary calculation shows that

\[
|\nabla_A (J_i \phi)|^2 = J_i^2 |\nabla_A \phi|^2 + |\nabla_A J_i|^2 |\phi|^2 + \frac{1}{2} < \nabla_A J_i^2, \nabla_A \phi|^2 >
\]

on using the fact that the matrix \(A(x) \) is symmetric. Since \(\sum_{i=0}^{2} J_i^2 (x) \equiv 1 \), the identity follows.

Let \(D \) be a bounded open subset of \(\mathbb{R}^n \), which contains the unit ball \(B(0; 1) \), and for which

the embedding \(H^1(D) \hookrightarrow L^2(D) \) is compact.

This is the well-known Rellich property and is satisfied if \(D \) has a continuous boundary.

As a consequence of Lemma 4,

\[
\rho[\phi] = \int_{D} \left[|\nabla_A \phi|^2 + q|\phi|^2 \right] \, dx
\]

\[
+ \sum_{i=1}^{2} \int_{\mathbb{R}^n \setminus D} \left[|\nabla_A (J_i \phi)|^2 + q|J_i \phi|^2 - |\nabla_A J_i|^2 |\phi|^2 \right] \, dx.
\]

The finiteness of bound states of \(H \), or equivalently the finiteness of eigenvalues of \(H \) below \(\Sigma(H) \), depends upon the behavior of \(q \) in the truncated conical regions \(\Gamma(M_\delta : R) \) for \(R \) arbitrarily large. Roughly speaking, we need a certain degree of positivity of the “part” of the potential \(q \) which does not determine \(\Sigma(H) \). The next part of our basic hypothesis can be interpreted in such a manner.
The “part” of the form described in $H(2)$ is the “essential” part mentioned above that determines the finiteness or infiniteness of bound states. The term $-\frac{\epsilon_1}{|x|^2}$ arises from the error approximation associated with the partition of unity given in part (viii) of Lemma 3. At times it is helpful to replace $H(2)$ by the following two hypotheses:

$H(2a)$: There exists $\epsilon_1 > 0$ and a function σ defined on ∂D such that

$$\int_{\mathbb{R}^n \setminus D} [||\nabla_A (J_1 \phi)||^2 + (q - \frac{\epsilon_1}{|x|^2})|J_1 \phi|^2] dx \geq \Sigma(H) \int_{\mathbb{R}^n \setminus D} |J_1 \phi|^2 dx + \int_{\partial D} \sigma|J_1 \phi|^2 ds$$

for all $\phi \in C_0^\infty(\mathbb{R}^n)$.

$H(2b)$: For some $\epsilon_2 \in (0, 1)$ and $C_{\epsilon_2} > 0$

$$\int_{\partial D} \sigma|J_1 \phi|^2 dx \geq -\epsilon_2 \int_{D} |\nabla_A \phi|^2 dx - C_{\epsilon_2} \int_{D} |\phi|^2 dx$$

for all $\phi \in C_0^\infty(\mathbb{R}^n)$.

Hypothesis $H(2b)$ holds if $\sigma_- \in L^\gamma(\partial D)$ for $\gamma = n - 1$ when $n > 2$ and $\gamma \in (1, \infty]$ when $n = 2$.

The final part of our hypothesis assures us that the remainder of the form is under control. First, it is helpful to define the weight

$$w(x) := \begin{cases} 1 & \text{for } x \in D \\ J_2(x) & \text{for } x \notin D. \end{cases}$$

Now, we introduce the notation

$$\int_{\mathbb{R}^n} |\nabla_A w\phi|^2 dx := \int_{D} |\nabla_A \phi|^2 dx + \int_{\mathbb{R}^n \setminus D} |\nabla_A J_2 \phi|^2 dx,$$

for all $\phi \in C_0^\infty(\mathbb{R}^n)$. Note that $\nabla_A (w\phi)$ is not defined on ∂D.
\(\mathcal{H}(3) \): Given \(\epsilon_3 \) there exists \(C_{\epsilon_3} > 0 \) such that
\[
\int_{\mathbb{R}^n} q|w\phi|^2 \, dx \leq \epsilon_3 \int_{\mathbb{R}^n} |\nabla_A (w\phi)|^2 \, dx + C_{\epsilon_3} \int_{\mathbb{R}^n} |w\phi|^2 \, dx
\]
for all \(\phi \in C_0^\infty (\mathbb{R}^n) \).

This last part of the hypothesis is satisfied by the N-body potentials briefly mentioned above.

Now, we state our main theorem. Due to space limitations, we cannot give a full proof here. We will give a sketch of the main ideas of the proof.

Theorem 5. If (3)(i)-(iv) and \(\mathcal{H}(1), \mathcal{H}(2), \& \mathcal{H}(3) \) hold, then \(H \) has only a finite number of bound states.

Proof (Sketch). If we interpret \(\mathcal{H}(2) \) in terms of operators, then we might expect that
\[
H \geq J_1(x)\Sigma(H)J_1(x) + H_r
\]
for some “remainder” operator \(H_r \). The sesquilinear form for such an operator is defined for \(C_0^\infty (D \cup \text{supp}J_2) \)-functions. This form is much like \(\rho \) with some additional error terms. Part \(\mathcal{H}(3) \) of the hypothesis is a key ingredient in the proof of the fact that this form is closeable. Now, \(H_r \) arises as the operator associated with this form. A result like Theorem 2 applies to \(H_r \). Part \(\mathcal{H}(3) \) of the hypothesis assures that \(\Sigma(H_r) > \Sigma(H) \). It follows that \(H_r \) can have only a finite number of eigenvalues below \(\Sigma(H) \). Finally, we show that the number of eigenvalues of \(H \) below \(\Sigma(H) \) can be no more than the number of eigenvalues of \(H_r \) below \(\Sigma(H) \), which completes the proof.

A version of Theorem 5 with a more restrictive hypothesis was used in [2] to establish results for atomic-type operators (2). There it was assumed that \(K(\cdot : P) \) assumes its minimum at no more than a finite number of points. That assumption excluded the consideration of molecules and an atom with a nucleus which was not assumed to be infinitely heavy. In these latter cases it is common to first remove the motion of the center of mass via a Jacobi coordinate change restricting the operator to “configuration space” \(X \) - see [4]. In \(X \) we can think of the motion of the center of mass as being held fixed at the origin. Now, letting \(H \) be the Hamiltonian in \(L^2(X) \cong L^2(\mathbb{R}^{3(N-1)}) \), then \(K(\cdot : H) \) assumes its minimum on curves in \(S^{3N-4} \) or on their intersections. These curves correspond to \(x = (x^1, x^2, \ldots, x^{N-1}) \in S^{3N-4} \) where \(x^i = x^j \) for distinct \(i \) and \(j \). Theorem 5 now allows us to consider these other cases.
References

