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Abstract
We consider the billiard flow of elastically colliding hard balls on the flat ν-torus
(ν � 2), and prove that no singularity manifold can even locally coincide with a
manifold describing future non-hyperbolicity of the trajectories. As a corollary,
we obtain the ergodicity (actually the Bernoulli mixing property) of all such
systems, i.e. the verification of the Boltzmann–Sinai ergodic hypothesis.

Mathematics Subject Classification: 37D50, 34D05

1. Introduction

In this paper we prove the Boltzmann–Sinai ergodic hypothesis for hard ball systems on the
ν-torus R

ν/Z
ν (ν � 2) without any assumed hypothesis or exceptional model.

This introduction is, to a large extent, an edited version of some paragraphs of the
introductory sections 1 and 2 of my paper [Sim(2009)]. For a more detailed introduction
into the topic of hard ball systems, please see these two sections of [Sim(2009)].

In a loose form, as attributed to L Boltzmann back in the 1880s, the Boltzmann hypothesis
asserts that gases of hard balls are ergodic. In a precise form, which is due to Sinai
in [Sin(1963)], it states that the gas of N � 2 identical hard balls (of ‘not too big’ radius)
on a torus T

ν = R
ν/Z

ν , ν � 2, (a ν-dimensional box with periodic boundary conditions) is
ergodic, provided that certain necessary reductions have been made. The latter means that one
fixes the total energy, sets the total momentum to zero, and restricts the center of mass to a
certain discrete lattice within the torus. The assumption of a not too big radius is necessary to
have the interior of the arising configuration space connected.

Sinai himself pioneered rigorous mathematical studies of hard ball gases by proving the
hyperbolicity and ergodicity for the case N = 2 and ν = 2 in his seminal paper [Sin(1970)],
where he laid down the foundations of the modern theory of chaotic billiards. The proofs there
were further polished and clarified in [B-S(1973)]. Then Chernov and Sinai extended these
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results to (N = 2, ν � 2), as well as proved a general theorem on ‘local’ ergodicity applicable
to systems of N > 2 balls [S-Ch(1987)]; the latter became instrumental in the subsequent
studies. The case N > 2 is substantially more difficult than that of N = 2 because, while
the system of two balls reduces to a billiard with strictly convex (spherical) boundary, which
guarantees strong hyperbolicity, the gases of N > 2 balls reduce to billiards with convex,
but not strictly convex, boundary (the latter is a finite union of cylinders)—and those are
characterized by a weak hyperbolicity.

Further development has been due mostly to Krámli, Szász, and the present author. We
proved the hyperbolicity and ergodicity for N = 3 balls in any dimension [K-S-Sz(1991)]
by exploiting the ‘local’ ergodic theorem of Chernov and Sinai [S-Ch(1987)], and carefully
analysing all possible degeneracies in the dynamics to obtain ‘global’ ergodicity. We extended
our results to N = 4 balls in dimension ν � 3 next year [K-S-Sz(1992)], and then I proved the
ergodicity whenever N � ν in [Sim(1992)-I, Sim(1992)-II]. At that point the existing methods
could no longer handle any new cases, because the analysis of the degeneracies became overly
complicated. It was clear that further progress should involve novel ideas.

A big step forward was made by D Szász and myself, when we used the methods
of algebraic geometry in [S-Sz(1999)]. We assumed that the balls had arbitrary masses
m1, . . . , mN (but the same radius r). By taking the limit mN → 0, we were able to reduce
the dynamics of N balls to the motion of N − 1 balls, thus utilizing a natural induction on N .
Then algebro-geometric methods allowed us to effectively analyse all possible degeneracies,
but only for typical (generic) (N + 1)-tuples of ‘external’ parameters (m1, . . . , mN, r); the
latter needed to avoid some exceptional submanifolds of codimension one, which remained
unknown. This approach led to a proof of full hyperbolicity (but not yet ergodicity) for all
N � 2 and ν � 2, and for generic (m1, . . . , mN, r), see [S-Sz(1999)]. Later I simplified the
arguments and made them more ‘dynamical’, which allowed me to obtain full hyperbolicity
for hard balls with any set of external geometric parameters (m1, . . . , mN, r) [Sim(2002)].
The reason why the masses mi are considered geometric parameters is that they determine the
relevant Riemannian metric

||dq||2 =
N∑

i=1

mi ||dqi ||2

of the system. Thus, the complete hyperbolicity has been fully established for all systems of
hard balls on tori.

To upgrade the complete hyperbolicity to ergodicity, one needs to refine the analysis of
the mentioned degeneracies. For hyperbolicity, it was enough that the degeneracies made
a subset of codimension �1 in the phase space. For ergodicity, one has to show that its
codimension is �2, or find some other ways to prove that the (possibly) arising codimension-
one manifolds of non-sufficiency are not capable of separating distinct ergodic components.
In the paper [Sim(2003)] I took the first step in the direction of proving that the codimension
of exceptional manifolds is at least two: I proved that the systems of N � 2 balls on a
two-dimensional torus are ergodic for typical (generic) (N + 1)-tuples of external parameters
(m1, . . . , mN, r). The proof again involves some algebro-geometric techniques, thus the result
is restricted to generic parameters (m1, . . . , mN ; r). But there was a good reason to believe
that systems in ν � 3 dimensions would be somewhat easier to handle, at least that was indeed
the case in earlier studies.

As the next step, in the paper [Sim(2004)] I was able to further improve the algebro-
geometric methods of [S-Sz(1999)], and proved that for any N � 2, ν � 2, and for almost every
selection (m1, . . . , mN ; r) of the external geometric parameters the corresponding system of
N hard balls on T

ν is (completely hyperbolic and) ergodic.
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Finally, in the paper [Sim(2009)] I managed to prove the Boltzmann–Sinai ergodic
hypothesis in full generality (i.e. without exceptional models), by assuming that the so called
Chernov–Sinai ansatz is true for these models.

Remark 1.1. The Chernov–Sinai Ansatz states that for almost every singular phase point
x ∈ SR+

0 (with respect to the hypersurface measure of SR+
0) the forward orbit S(0,∞)x is

sufficient (geometrically hyperbolic). This is the utmost important global geometric hypothesis
of the theorem on local ergodicity of [S-Ch(1987)], see also condition 3.1 in [K-S-Sz(1990)].

The only missing piece of the whole puzzle is to prove that no open piece of a singularity
manifold can precisely coincide with a codimension-one manifold describing the trajectories
with a non-sufficient forward orbit segment corresponding to a fixed symbolic collision
sequence. This is exactly what we prove in our theorem below.

2. Formulation and proof of the theorem

Let U0 ⊂ M \ ∂M be an open ball, T > 0, and assume that

(a) ST (U0) ∩ ∂M = ∅,
(b) ST is smooth on U0.

Next we assume that there is a codimension-one, smooth submanifold J ⊂ U0 with the
property that for every x ∈ U0 the trajectory segment S[0,T ]x is geometrically hyperbolic
(sufficient) if and only if x �∈ J . (J is a so called non-hyperbolicity or degeneracy
manifold.) Denote the common symbolic collision sequence of the orbits S[0,T ]x (x ∈ U0)
by � = (e1, e2, . . . , en), listed in the increasing time order, and let the corresponding
advances be αi = α(ei), i = 1, 2, . . . , n. Let ti = t (ei) be the time of the ith collision,
0 < t1 < t2 < . . . < tn < T .

Finally, we assume that for every phase point x ∈ U0 the first reflection Sτ(x)x in the
past on the orbit of x is a singular reflection (i.e. Sτ(x)x ∈ SR+

0) if and only if x belongs to a
codimension-one, smooth submanifold K of U0. For the definition of the manifold of singular
reflections SR+

0 see, for instance, the end of section 1 in [Sim(2009)].

Theorem 2.1. Using all the assumtions and notations above, the submanifolds J and K of U0

do not coincide.

The rest of this section is devoted to the proof of this theorem. It will be a proof by
contradiction, so from now on we assume that J = K , and the proof will be subdivided into
several lemmas and propositions.

First of all, we assume that the center x0 of the open ball U0 belongs to the exceptional set
J . During the indirect proof of the theorem, smaller and smaller open balls U0 will be selected
to guarantee a regular (smooth and homogeneous) behavior. We note that this can be done,
thanks to the algebraic nature of the dynamics.

Observe that the sufficiency of the orbit segments S[0,T ]x (x ∈ U0\J ) immediately implies
that the collision graph G = ({1, 2, . . . , N}, {e1, e2, . . . , en}) is connected on the vertex set
V = {1, 2, . . . , N}. Therefore, according to lemma 2.13 of [Sim(1992)-II], the linear map

� : N0
(
S[0,T ]x

) → R
n

defined by (�(w))i = αi(w) (i = 1, 2, . . . , n) is a linear embedding for every x ∈ U0.
Here N0(S

[0,T ]x) denotes the neutral linear space of the trajectory segment S[0,T ]x, see
definition 2.5 of [Sim(2009)]. The image �(N0(S

[0,T ]x)) will be denoted by N 0(S
[0,T ]x).

The sufficiency (geometric hyperbolicity) of a trajectory segment S[0,T ]x means that the
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dimension of the neutral linear space N0(S
[0,T ]x) takes the minimum possible value 1, see

definition 2.7 in [Sim(2009)]. Moreover, let 1 = k(1) < k(2) < . . . < k(N − 1) < n be
the uniquely defined indices with the property that for every l (1 � l � N − 1) the collision
graph (V, {e1, e2, . . . , ek(l)}) has exactly N − l connected components, whereas the number
of components of (V, {e1, e2, . . . , ek(l)−1}) is N − l + 1.

We shall call the edges (collisions) ek(1), . . . , ek(N−1) essential.
For every non-essential edge em = {i(m), j (m)} (1 � i(m) < j (m) � N ) we express

the relative displacement

�q−
i(m)(tm) − �q−

j (m)(tm) = αm

[
v−

i(m)(tm) − v−
j (m)(tm)

]
as a linear combination of relative velocities of earlier collisions e1, e2, . . . , em−1 (with
coefficients made up from some masses and advances) precisely as described by the CPF,
see proposition 2.19 in [S-Sz(1999)]:

αm

[
v−

i(m)(tm) − v−
j (m)(tm)

]
=

m−1∑
k=1

αk�
(m)
k (2.2)

(1 � m � n, em is not essential), where each �
(m)
k is a linear combination of the relative

velocities v−
i(k) − v−

j (k) and v+
i(k) − v+

j (k), and the coefficients in these linear combinations are
fractional linear expressions of the masses mi(k) and mj(k), see the CPF as proposition 2.19
in [S-Sz(1999)]. We observe that the solution set of the system of all equations (2.2) (taken for
all m with a non-essential edge em) is precisely the linear space �(N0(S

[0,T ]x)) = N 0(S
[0,T ]x),

having the same dimension as the neutral space N0(S
[0,T ]x), x ∈ U0.

As follows, we are presenting an indirect proof (a proof by contradiction) by assuming
that the non-hyperbolicity manifold J coincides with a past-singularity so that no collision
takes place between the mentioned singularity and J . (Otherwise those collisions between the
singularity and J could be added to the symbolic sequence � = (e1, e2, . . . , en)) as an initial
segment.)

Throughout the proof we shall assume that the masses of the elastically interacting balls
are equal: m1 = m2 = . . . = mN . As a matter of fact, this assumption is not a serious
restriction of generality: it is merely a technical-notational assumption, and the reader can
easily re-write the present proof to cover the general case of arbitrary masses. We denote by
d = ν(N − 1) the dimension of the configuration space Q.

Following the ideas and notations of section 3 of [S-Sz(2000)], we introduce the following
notions and notations.

With every collision ek = (i(k), j (k)) (1 � k � n, 1 � i(k) < j (k) � N ) we associate
the real projective space P ∼= RP(ν − 1) of all orthogonal reflections of the common tangent
space

Z = T Q = TqQ =
{

(δq1, . . . , δqN) ∈ (Rν)N
∣∣ N∑

i=1

δqi = 0

}
∼= R

d (2.3)

across all possible tangent hyperlanes H of the cylinder Cek
corresponding to the collision ek .

In this way we obtain a map

� : Sd−1 ×
n∏

k=1

Pk → Sd−1 (2.4)

which assignes to every (n + 1)-tuple

(V0; g1, g2, . . . , gn) ∈ Sd−1 ×
n∏

k=1

Pk
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the image velocity Vn = V0g1g2 . . . gn of V0 under the composite action g1g2 . . . gn. (Here, by
convention, the composition is carried out from the left to the right, and Sd−1 denotes the unit
sphere of Z in 2.3.) The space Mn = Sd−1 × ∏n

k=1 Pk is called the phase space of the virtual
velocity process (V0, V1, . . . , Vn), where Vk = V0g1g2 . . . gk . Clearly, the velocity process
(V0, V1, . . . , Vn) uniquely determines the sequence of reflections g1, g2, . . . , gn. For any
x ∈ Mn orx ∈ U0 we denote the velocityVk byVk(x). Similarly, v+

i(k)−v+
j (k) denotes the relative

velocity of the colliding particles i(k) and j (k) right after the collision ek = (i(k), j (k))

(1 � i(k) < j (k) � N ), and the definition of the pre-collision relative velocity v−
i(k) − v−

j (k) is
analogous, k = 1, 2, . . . , n. Thus we get a natural projection


 : U0 → Mn (2.5)

by taking 
(x) = (V0(x); g1(x), . . . , gn(x)) for x = (q(x), v(x)) ∈ U0, where
V0(x) = v(x).

What is coming up is a local analysis in a small, open ball neighbourhood B0 ⊂ Mn of
the base point (V0(x0); g1(x0), . . . , gn(x0)). We begin with a useful definition.

Definition 2.6. The projections Rk : Z → R
ν (k = 1, 2, . . . , n) are defined by the equation

Rk(δq) = δqi(k) − δqj(k)

for δq ∈ Z , where Z is the tangent space of Q in (2.3).

The Connecting Path Formula (2.2) together with the results of [S-Sz(2000)] and
[Sim(2002)] yield the following results.

Proposition 2.7. For any integer m, 2 � m � n, the neutral space

Nt1+0(V0; g1, g2, . . . , gm) = N1(V0; g1, g2, . . . , gm)

is determined by the directions of all relative velocities v−
i(l)−v−

j (l), v
+
i(l)−v+

j (l) (2 � l � m−1),
and by the directions of v+

i(1) −v+
j (1) and v−

i(m) −v−
j (m). This property will be called the direction

determination principle (DDP). As a consequence, all the neutral spaces

Nk = Nk(V0; g1, g2, . . . , gm) = Ntk+0(V0; g1, g2, . . . , gm)

(0 � k � m) are determined by the relative velocities listed above and by v−
i(1) − v−

j (1),
v+

i(m) −v+
j (m). We note that the neutral spaces Nk are connected to each other via the equations

Nl = Nk ·gk+1 · . . . ·gl for k < l, and the reflection gs is (locally) determined by the directions
of the relative velocities v−

i(s) − v−
j (s) and v+

i(s) − v+
j (s), 1 � s � m.

Proof. Observe that for any tangent vector δq = (δq1, . . . , δqN) ∈ Z the relation
δq ∈ N1(V0; g1, . . . , gm) holds true if and only if for every k, 2 � k � m, the vector
Rk(δq · g2 · g3 · . . . · gk−1) is parallel to the relative velocity vector v−

i(k) − v−
j (k), and R1(δq) is

parallel to v+
i(1) − v+

j (1). �

Proposition 2.8. Use the notions and notations of the previous proposition, except that here
we allow the values 0 and 1 for the number of collisions m. We claim that for fixed directions of
all relative velocities v−

i(k) − v−
j (k) and v+

i(k) − v+
j (k) (k = 1, 2, . . . , m) and for a given reference

time ts + 0 (0 � s � m, t0 = 0) all possible space and velocity variations δq and δv are
precisely the elements of the neutral space Ns(V0; g1, g2, . . . , gm).

Proof. Induction on m. The statement is obviously true for m = 0, since in this case
N0(V0; g1, g2, . . . , gm) = Z , the tangent space of the configuration space.
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Assume now that m � 1 and the claim is true for all smaller numbers of collisions. Clearly
it is enough to prove the proposition for the case s = m−1. The fixed directions of v−

i(k) −v−
j (k)

and v+
i(k) − v+

j (k) for k = 1, 2, . . . , m − 1 mean that the possible values of either δq or δv are
precisely the elements of the neutral space Nm−1(V0; g1, g2, . . . , gm−1). If, in addition, we
also fix the direction of v−

i(m)−v−
j (m), then this leaves for us the space Nm−1(V0; g1, g2, . . . , gm)

as the set of all available values for δv. Furthermore, by also fixing the direction of v+
i(m)−v+

j (m)

(i.e. also fixing the reflection gm) restricts the space of available values for δq to the neutral
space Nm−1(V0; g1, g2, . . . , gm). �

Proposition 2.9. For every m, 1 � m � n, the generic (⇐⇒minimal) dimension (both in
measure-theoretical and topological senses) of the neutral spaces

N0(V0; g1, . . . , gm)

on the phase space Mm is equal to the generic (⇐⇒minimal) value of

dimN0(V0(x); g1(x), g2(x), . . . , gm(x))

for all x ∈ U0. (key lemma 3.19 in [Sim(2002)].)

The value of this typical dimension will be denoted by �(e1, e2, . . . , em). Plainly, it only
depends on the symbolic sequence (e1, e2, . . . , em).

The value of dimN0(V0(x); g1(x), . . . , gm(x)) for typical x ∈ J (either in measure-
theoretical or in topological sense) will be denoted by �J (e1, e2, . . . , em). By selecting the
open balls B0 and U0 (B0 ⊂ Mn, U0 ⊂ M , U0 = 
−1(B0)) small enough we may (and shall)
assume that for every integer m, 1 � m � n,

dimN0 (V0(y); g1(y), . . . , gm(y)) = �(e1, e2, . . . , em) ∀y ∈ B0 \ J̃ , (2.10)

dimN0 (V0(y); g1(y), . . . , gm(y)) = �J (e1, e2, . . . , em) ∀y ∈ J̃ , (2.11)

where J̃ ⊂ B0 is an analytic submanifold of B0 with J = 
−1(J̃ ).

Proposition 2.12. (A corollary of the proof of key lemma 3.19 of [Sim(2002)].) Let 1 � m � n,
and N ∗ ⊂ Z be a given subspace with N ∗ ∩ {Vm(x)

∣∣ x ∈ U0} �= ∅. We claim that the typical
(i.e. minimal) value of

dim
[
N ∗ ∩ Nm(Vm; gm+1, gm+2, . . . , gn)

]
for Vm ∈ N ∗ and gk ∈ Pk (m + 1 � k � n) is equal to the typical (i.e. minimal) value of

dim
[
N ∗ ∩ Nm(Vm(x); gm+1(x), gm+2(x), . . . , gn(x))

]
for x ∈ U0 with Vm(x) ∈ N ∗.

Proof. The proof of this statement can be obtained from the proof of Key lemma 3.19
of [Sim(2002)], hence it is omitted. �

Now it is time to bring up the definition of the ‘critical index’ n0.

Definition 2.13. The ‘critical index’ n0 is the unique positive integer n0, 1 � n0 � n, with the
property that for any x ∈ U0

(i) the directions of the relative velocities v−
i(k)(x) − v−

j (k)(x), v+
i(k)(x) − v+

j (k)(x), k =
1, 2, . . . , n0, determine in Mn if 
(x) ∈ J̃ , whereas

(ii) the directions of the relative velocities v−
i(k)(x) − v−

j (k)(x), v+
i(k)(x) − v+

j (k)(x), k =
1, 2, . . . , n0 − 1, do not determine yet in Mn if 
(x) ∈ J̃ .
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The precise meaning of the notions above is the following: the manifolds Wn0 = Wn0(x) ⊂ U0

that are defined by fixing the directions of all the relative velocities listed in (i) (which form
a smooth foliation of the local neighbourhood U0 if U0 is chosen small enough) are either
subsets of J or they are disjoint from it, whereas the manifolds Wn0−1 = Wn0−1(x) that are
defined by fixing the directions of all the relative velocities listed in (ii) (which also form a
smooth foliation of the local neighbourhood U0 for small enough U0) are transversal to J .

Apply proposition 2.12 to m = n0,

N ∗ = Nm

(
V0(x); g1(x), g2(x), . . . , gn0(x)

)
(x ∈ U0) to realize that the directions of the relative velocities listed above in (i) also determine
if the phase point (V0; g1, g2, . . . , gn) ∈ Mn belongs to J̃ or not. In the free velocity process
(V0; g1, g2, . . . , gn) ∈ Mn there is absolutely no constraint on the velocities, other than that
each gk is an orthogonal reflection across a hyperplane determined by ek = (i(k), j (k)).
Because of this, the only way that the relative velocities listed above in (i) determine the status
of (V0; g1, . . . , gn) ∈ J̃ is that a minor M (determinant of a square submatrix) of the system
(2.2) with maximum column index n0 vanishes. Observe that the n0-th column of the system
of CPFs (2.2), i.e. the coefficients of the unknown αn0 in (2.2), depend on the pair of velocities

r(x) =
(
v−

i(n0)
(x) − v−

j (n0)
(x), v+

i(n0)
(x) − v+

j (n0)
(x)

)
linearly (they are certain linear combinations of some coordinates of the two components of
r(x)), hence the minor M also depends linearly on r(x), and (V0; g1, . . . , gn) ∈ J̃ means
that the solution set of (2.2) is atypically big. Using these two observations and the DDP of
proposition 2.7 we obtain a useful description of the membership relation x ∈ J as follows.

Proposition 2.14. For any x ∈ U0 the relation x ∈ J holds true if and only if the pair of
relative velocities

r(x) :=
(
v−

i(n0)
(x) − v−

j (n0)
(x), v+

i(n0)
(x) − v+

j (n0)
(x)

)
∈ R

ν × R
ν = R

2ν (2.15)

belongs to a hyperplane H(x) ⊂ R
2ν depending analytically on the directions

dir(v−
i(k)(x) − v−

j (k)(x)), dir(v+
i(k)(x) − v+

j (k)(x))

of the indicated relative velocities for k = 1, 2, . . . , n0 − 1.

In order to make the mechanism discussed in proposition 2.14 more transparent, below
we provide the reader with a brief analysis of the special example � = (e1, e2, e3) with
e1 = (1, 2), e2 = (1, 3), and e3 = (2, 3). Since the relevant observation times for this
sequence are t1 and t2 separating the first two and the second and third collisions, respectively,
in this example we will consequently denote the velocities and space perturbations observed
at time t1 with a superscript −, whereas the velocities and space perturbations observed at
time t2 will be distinguished by a superscript +. (This is somewhat in contrast with the earlier
notations, but here they come rather handy.)

The neutrality equations with respect to e1 and e2, along with the preservation of the center
of mass are

α1(v
−
1 − v−

2 ) = δq−
1 − δq−

2 ,

α2(v
−
1 − v−

3 ) = δq−
1 − δq−

3 ,

δq−
1 + δq−

2 + δq−
3 = 0.

From these equations we immediately get

δq−
1 = 1

3α1(v
−
1 − v−

2 ) + 1
3α2(v

−
1 − v−

3 ),
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δq−
2 = − 2

3α1(v
−
1 − v−

2 ) + 1
3α2(v

−
1 − v−

3 ),

δq−
3 = 1

3α1(v
−
1 − v−

2 ) − 2
3α2(v

−
1 − v−

3 ).

Using the transformation equations through e2 and the neutrality with respect to this collision

δq+
2 = δq−

2 ,

δq−
1 + δq−

3 = δq+
1 + δq+

3 ,

(δq+
1 − δq+

3 ) − (δq−
1 − δq−

3 ) = α2
[
(v+

1 − v+
3 ) − (v−

1 − v−
3 )

]
one easily expresses the quantity δq+

2 − δq+
3 as follows:

δq+
2 − δq+

3 = −α1(v
−
1 − v−

2 ) + 1
2α2

[
(v−

1 − v−
3 ) + (v+

1 − v+
3 )

]
.

Note that the linear coordinates α1 and α2 independently parametrize the two-dimensional
neutral space N0(x; e1, e2). From the last equation we see that the non-hyperbolicity x ∈ J

holds true precisely when the vectors v−
1 − v−

2 and (v−
1 − v−

3 ) + (v+
1 − v+

3 ) are parellel. This
parallelity condition defines a subspace H for the vector r(x) = (v−

1 − v−
3 , v+

1 − v+
3 ) with

codimension ν − 1, which codimension is 1 exactly when ν = 2. (In the case ν � 3 there is
nothing to prove; the codimension is already big enough.)

The next result tells us that the collision en0 decreases the dimension of the neutral space.

Lemma 2.16.

�(e1, e2, . . . , en0) < �(e1, e2, . . . , en0−1).

Proof. Proof by contradiction: assume that �(e1, . . . , en0) = �(e1, . . . , en0−1). This
assumption means that the actual CPF of (2.2) (in which m = n0) can be dropped from
the whole system without affecting the solution set. Furthermore, by making the standard
reduction αn0 = 0 for the advance αn0 (which can be done by modifying the solution by adding
to it a solution with all advances equal, and this chops off the dimension of the solution set by 1)
we can completely drop the n0th column from the system of CPFs (2.2). This shows that the
two relative velocity components of r(x) in (2.15) have no effect on the solution set in question,
and this contradicts to the properties (i)–(ii) of the critical index n0 listed in definition 2.13. �

The upcoming lemma tells us that the critical collision en0 does not distinguish between
the points of J and of U0 \ J .

Lemma 2.17.

�(e1, e2, . . . , en0) = �J (e1, e2, . . . , en0).

Proof. Again a proof by contradiction: assume that �(e1, . . . , en0) < �J (e1, . . . , en0).
According to proposition 2.7, the neutral space

Nn0−1
(
V0(x); g1(x), . . . , gn0−1(x)

)
is determined by the directions of the relative velocities v−

i(l)(x)−v−
j (l)(x) and v+

i(l)(x)−v+
j (l)(x)

for l = 1, 2, . . . , n0 − 1, whereas, according to (ii) of definition 2.13, these relative velocities
do not determine whether x ∈ J . On the other hand, the projection

Rn0

[
Nn0−1

(
V0(x); g1(x), . . . , gn0−1(x)

)]
of this neutral space onto δqi(n0) − δqj(n0) determines if x ∈ J is true or not. To see this we
note that, due to the assumption �(e1, . . . , en0) < �J (e1, . . . , en0), for the points x ∈ U0 \ J

the dimension of

Rn0

[
Nn0−1

(
V0(x); g1(x), g2(x), . . . , gn0−1(x)

)]



Singularities and non-hyperbolic manifolds do not coincide 1711

(which is

dim
[
Nn0−1

(
V0(x); g1(x), . . . , gn0−1(x)

)] − dim
[
Nn0

(
V0(x); g1(x), . . . , gn0(x)

)]
+ 1)

is larger than the similar dimension for the points x ∈ J . This, in turn, means that the directions
of the relative velocities v−

i(l)(x)−v−
j (l)(x) and v+

i(l)(x)−v+
j (l)(x) (l = 1, 2, . . . , n0−1) determine

if x ∈ J is true or not, thus violating property (ii) of n0 listed in definition 2.13. �

3. Finishing the proof of the theorem

First we present the closing part of the proof by assuming that ν = 2. We remind the reader
that the entire proof of the theorem is a proof by contradiction, so the coincidence (in a
neighbourhood U0) of J and the past-singularity K is assumed all along. Right after that we
present the proof for the case ν � 3, which is just slightly more difficult technically than the
case ν = 2. Thus, for now we assume that ν = 2.

Consider an arbitrary point y0 ∈ J . Let τ < 0 be the unique number such that

(1) Sτ y0 = y∗ ∈ SR+
0 ,

(2) S(τ,0)y0 ∩ ∂M = ∅.

Here SR+
0 denotes the set of all singular reflections given with their outgoing (post-singularity)

velocity.
Select and fix a vector w0, w0 ⊥ v(y∗), such that

w0 ∈ N0
(
V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)
) \ N0

(
V0(y

∗); g1(y
∗), . . . , gn0(y

∗)
)
. (3.1)

This is possible, due to lemmas 2.16–2.17. Next we consider a smooth curve γ0(s), |s| < ε0,
γ0(0) = y∗, γ0(s) ∈ SR+

0 , as follows:

Case A. If the singularity at y∗ is a double collision (a corner of the configuration space)

(1) v(γ0(s)) = v(y∗)+s·w0

||v(y∗)+s·w0|| ,
(2) q(γ0(s)) = q(γ0(0)) = q(y∗)

for |s| < ε0.

Case B. If the singularity at y∗ is a tangency

(1) v(γ0(s)) = v(y∗)+s·w0

||v(y∗)+s·w0|| ,
(2) q(γ0(s)) = q(y∗) + α · w0 + β · v(γ0(s)))

(|s| < ε0) so that the relation γ0(s) ∈ SR+
0 still holds true. We note that the orders of

magnitude of the correction parameters α and β are α = O(s2), β = O(s), as a simple
geometric observation shows.

Fix a time t∗, tn0−1(y
∗) < t∗ < tn0(y

∗), and investigate the image St∗(γ0(s)) = γ ∗(s) of
the curve γ0 under the t∗-iterate of the billiard flow. More precisely, let us focus our attention
on the projection(
qi(n0)(γ

∗(s)) − qj(n0)(γ
∗(s)), vi(n0)(γ

∗(s)) − vj(n0)(γ
∗(s))

) = (q(s), v(s)) ∈ R
2 × R

2,

(3.2)

and on the lines

L(s) := {
q(s) + t · v(s)

∣∣ t ∈ R
} ⊂ R

2. (3.3)

The following proposition directly follows from the definition (3.1) of w0 and from the
definition of the curve γ0 ⊂ SR+

0 .
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Proposition 3.4. The lines L(s) rotate about a point A of R
2 in Case A, whereas they are

tangential to a given ellipse of R
2 in case B.

Remark 3.5. We should note here that there is an exceptional subcase of case B when the
ellipse also degenerates to a point, just like in case A. This is the situation when the singularity
at y∗ is a tangency but the projection R0(w0) is parallel to the outgoing relative velocity
v+

i(0) − v+
j (0) of the two particles i(0) and j (0) colliding tangentially at time zero. However,

this degeneracy of the ellipse does not cause any problem in the proof, for it is treated as the
degeneracy in case A.

We also note that in all of the cases above the directions of the lines L(s) are properly
changing at a non-zero rate, thanks to our choice of w0 with

w0 �∈ N0
(
V0(y

∗); g1(y
∗), . . . , gn0(y

∗)
)
.

We remind the reader that, according to proposition 2.14, the vectors

r(γ0(s)) = (
v(s), v+(s)

)
belong to a given hyperplane H(γ0(0)) = H(y∗) of R

4 not depending on the parameter s.
Here

v+(s) := v+
i(n0)

(γ0(s)) − v+
j (n0)

(γ0(s)) (3.6)

denotes the outgoing (i(n0), j (n0)) relative velocity right after the collision en0 =
(i(n0), j (n0)). The reason why the hyperplanes H(γ0(s)) are independent of s is the following:
Both the space and velocity perturbations q(γ0(s))−q(γ0(0)) and v(γ0(s))−v(γ0(0)) belong to
the neutral space N0(V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)) and, furthermore, they are proportional
to each other. One proves by a standard ‘continuous induction’ that these properties remain true
all the way until time t∗, thus the (incoming and outgoing) relative velocities of the collisions
g1, g2, . . . , gn0−1 are independent of the perturbation parameter s.

The proof of the theorem will be complete as soon as we prove our

Proposition 3.7. Let C1 ⊂ R
2 be an ellipse, possibly degenerated to a single point, C2 ⊂ R

2

be a circle, so that none of C1 or C2 is lying inside the other one, i.e. they have at least two
common tangent lines. Suppose that L(s), |s| < ε0, is a smooth family of oriented lines in R

2

with the direction vector v(s) satisfying the following conditions:

(i) L(s) is tangent to C1 at the point of contact A(s), and at A(s) the direction vector v(s)

agrees with a given orientation of C1 (if C1 is not a point),
(ii) L(s) intersects C2 in two points, out of which the one whose position vector makes the

smaller inner product with v(s) is denoted by B(s),
(iii) d

ds
α(v(s)) > 0 for all s, |s| < ε0.

Here α(v(s)) denotes the direction angle of the vector v(s). Finally, let v+(s) be the mirror
image of v(s) under the orthogonal reflection across the tangent line of the circle C2 at the
point B(s).

We claim that there is no hyperplane H ⊂ R
2 ×R

2 containing all the points (v(s), v+(s))

for |s| < ε0.

Proof. A simple geometric inspection. We can assume, without restricting generality, that
‖v(s)‖ = 1. We prove the proposition in the case when C1 and C2 have at least two
common, non-parallel tangent lines. The proof for the exceptional case, when this hypothesis
is not satisfied, can be done with some modifications, which we will show below right after
completing the proof by using the hypothesis.
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First of all, we can assume that the lines L(s) depend on the parameter s analytically.
Then one can analytically extend the family of lines L(s) to an interval of parameters
I = [a, b] ⊃ (−ε0, ε0) by preserving all properties (i)–(iii) above so that L(a) and L(b) are
non-parallel and tangent to the circle C2. If there was a hyperplane H ⊂ R

2 × R
2 containing

all points (v(s), v+(s)) for |s| < ε0 then, by the reason of analyticity, the same containment
(v(s), v+(s)) ∈ H would be true for all s, a � s � b. Now we have that

(v(a), v(a)) ∈ H,

(v(b), v(b)) ∈ H,

so H contains the diagonal {(x, x)
∣∣ x ∈ R

2} and, consequently, the difference vectors x − y

for all (x, y) ∈ H are parallel to each other. But this is impossible, for the difference vectors
v+(s) − v(s) can obviously rotate as s varies in the parameter interval.

Finally, we show how to proceed in the case when v(a) and v(b) are parallel, i.e.
v(b) = −v(a). We assume, contrary to the claim of the proposition, that there exists a
hyperplane H ⊂ R

2 × R
2 containing all vectors (v(s), v+(s)), s ∈ I . We take the limit

lim
s→a+

(s − a)−1/2
[
(v(s), v+(s)) − (v(a), v+(a))

] = (0, ξ) ∈ H,

where ξ ∈ R
2, ξ �= 0, ξ ⊥ v(a). This shows that for every s ∈ I the vector

η(s) = v(s) − 〈v+(s), v(a)〉 · v(a)

has the property that (η(s), 0) ∈ H . The vectors η(s) (s ∈ I ) must be mutually parallel,
otherwise the three-dimensional subspace H of R

2 × R
2 would be equal to R

2 × 〈ξ〉, which
would mean that all outgoing vectors v+(s) are parallel to ξ , but this is clearly not the case.

Denote the common line containing all the vectors η(s) by L. Clearly L is not parallel to
the vector v(a). We claim that L ⊥ v(a). Indeed, the vectors v(s), s ∈ I , fill out one half of
the unit circle, thus in the case L �⊥ v(a) there would be a parameter value s, a < s < b, such
that dist(v(s), η(s)) > 1, which is impossible, for

dist(v(s), η(s)) = ∣∣〈v+(s), v(a)〉∣∣ � 1.

The fact L ⊥ v(a), however, implies that 〈v+(s) − v(s), v(a)〉 = 0 for all s ∈ I , which is
clearly a contradiction, since the non-zero difference vectors v+(s) − v(s) are parallel to the
rotating collision normal. �

Finally, we complete the proof of the theorem in the (somewhat more difficult) case ν � 3,
as follows.

We consider an arbitrary phase point y0 ∈ J , select the time τ < 0 and, correspondingly,
the phase point y∗ = Sτy0 just as before. Furthermore, the selection of a suitable tangent
vector w0 of (3.1), the construction of the smooth curve γ0(s) ∈ SR+

0 (|s| < ε0), the selection
of the separating time t∗, the construction of the vectors

(q(s), v(s)) ∈ R
ν × R

ν

of (3.2) and the construction of the lines

L(s) := {
q(s) + t · v(s)

∣∣ t ∈ R
} ⊂ R

ν

of (3.3) are similar to what we did above in the case ν = 2, but now we have to exercise more
care in the selection of the neutral tangent vector w0 of (3.1), see below.

Suppose, for a moment, that we have already chosen a suitable tangent vector

w0 ∈ N0
(
V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)
) \ N0

(
V0(y

∗); g1(y
∗), . . . , gn0(y

∗)
)

of (3.1).
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The counterpart of proposition 3.4 is

Proposition 3.8. All the lines L(s) (|s| < ε0) lie in the same two-dimensional affine subspace
P = P(y∗, w0) of R

ν . These lines rotate about a point A of P in Case A, whereas they are
tangential to a given ellipse C1 of P in case B.

Remark 3.9. We note that here remark 3.5 again applies.

Consider the smallest linear subspace S = S(y∗, w0) ⊂ R
ν of R

ν containing the
affine plane P . Clearly the dimension of S is 3 or 2. By algebraic reasons there are two
possibilities: Either the space S = S(y∗, w0) is three-dimensional for a typical pair (y∗, w0)

(y∗ = Sτy0 ∈ SR+
0 , y0 ∈ U0, w0 ∈ N0(V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)), w0 ⊥ v(y0)), and in
this situation we can assume that dimS(y∗, w0) = 3 always in our local analysis by choosing
a small enough open set U0, or dimS(y∗, w0) = 2 for all such considered pairs. The next
lemma shows that the latter case is actually impossible.

Lemma 3.10. It is not possible that dimS(y∗, w0) = 2 for every y∗ ∈ SR+
0 (y∗ = Sτy0,

y0 ∈ U0) and for every

w0 ∈ N0
(
V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)
) \ N0

(
V0(y

∗); g1(y
∗), . . . , gn0(y

∗)
)
,

w0 ⊥ v(y∗).

Proof. By way of contradiction, assume that dimS(y∗, w0) = 2 is always the case. This
means that the velocities of the phase points y∗ can be rotated along the curves γ0(s) ⊂ SR+

0
in such a way that we obtain an n0th collision with a collision normal vector parallel to the
relative velocity of the colliding particles i(n0) and j (n0). (A so called ‘head-on collision’.) It
is clear that the foliation of the manifold SR+

0 into the curves γ0(s) can be chosen to be smooth.
Furthermore, in order to reach a head-on collision from a given phase point y∗ ∈ SR+

0 ∩ U0

via the curve γ0(s) (with γ0(0) = y∗) it may be necessary to leave the small-sized local
neighbourhood U0 in which we are working. During the perturbation along the curve γ0(s) the
times tk = t (ek) of the collisions ek (k = 1, 2, . . . , n0 − 1) also change, and this could change
the symbolic collision structure of the considered orbit segments. To avoid this problem,
during the considered perturbations along the curves γ0(s) we delete all hard core potentials
of unduly arising new collisions, i.e. we allow two particles to freely overlap each other if they
would produce a collision not in the prescribed symbolic sequence (e1, e2, . . . , en0−1). (A so
called phantom dynamics.)

The above mean that the phase points y∗ ∈ SR+
0 with head-on collisions en0 form a

codimension-one submanifold inside SR+
0 . However, this is impossible, since the singularity

manifold SR+
0 can be smoothly foliated by convex, local orthogonal manifolds, see section 4

in [K-S-Sz(1990)], and this shows that the codimension in SR+
0 of the set of phase points y∗

with a head-on collision en0 is ν − 1, which is now at least 2, a contradiction. �
Therefore, we may and we shall assume that the phase point y∗ = Sτy0 ∈ SR+

0 is
chosen (and fixed) in such a way that for the typical selection of w0 in (3.1) it is true that
dimS(y∗, w0) = 3.

It is clear that the vector

r(γ0(s)) = (
v(s), v+(s)

)
varies in the five-dimensional linear subspace

P ′ × S ⊂ R
ν × R

ν

of R
2ν , where P ′ = P ′(y∗, w0) is the two-dimensional linear subspace of R

ν parallel to P .
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Let us focus on the hyperplane H(γ0(s)) = H(y∗) of R
2ν , defined as before. For the

proof of the fact H(γ0(s)) = H(γ0(0)) please see the paragraph containing (3.6). The fact
that the velocities V0(x), V1(x), . . . , Vn0−1(x) do not determine if the relation x ∈ J is true or
not, has the following consequence.

Proposition 3.11. For every singular phase point y∗ the neutral vector w0 of 3.1 can be chosen
in such a way that the hyperplane H(γ0(s)) = H(y∗) does not contain the subspace P ′ × S,
i.e. dim[(P ′ × S) ∩ H(y∗)] = 4.

Remark 3.12. The propery dim[(P ′ ×S)∩H(y∗)] = 4 is an open property and the system in
which it is defined is algebraic, so either this property holds on an open set with full measure
inside the singularity manifold (and then we can assume that it holds for every singular phase
point in the local neighbourhood U0 that is chosen suitably small), or this property holds
nowhere on the singularity manifold. In the indirect proof below we will assume the latter.

Proof. A proof by contradiction. Assume that for every singular phase point y∗ (in U0) and
for every choice

w0 ∈ N0
(
V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)
) \ N0

(
V0(y

∗); g1(y
∗), . . . , gn0(y

∗)
)

the set containment

P ′(w0) × S(w0) ⊂ H = H(y∗) ⊂ R
ν × R

ν

is true. (The phase point y∗ = Sτy0 is now fixed.) This means that⋃
w0∈N0

P ′(w0) × {0} ⊂ H, (3.13)

and ⋃
w0∈N0

{0} × S(w0) ⊂ H, (3.14)

where N0 = N0(V0(y
∗); g1(y

∗), . . . , gn0−1(y
∗)). Here is now the key observation: If

we fix the manifold Wn0−1(y
∗), that is, all the directions of all the relative velocities

v−
i(k) − v−

j (k) and v+
i(k) − v+

j (k) (1 � k � n0 − 1) for a phase point y∗ ∈ U0 and let all the
other data vary then, according to propositions 2.7 and 2.8, we also fix the neutral space
N0 = N0(V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)), and at any time t∗ between tn0−1 and tn0 the
data δq and δv vary in the neutral space Nn0−1(V0(y

∗); g1(y
∗), . . . , gn0−1(y

∗)), which is
also determined by the manifold Wn0−1(y

∗), see again proposition 2.7. Therefore, the set
containment relations (3.13)–(3.14) mean that

Rn0

[
Nn0−1

(
V0(x); g1(x), . . . , gn0−1(x)

)]
×span

{
qi(n0) − qj(n0), Rn0

[
Nn0−1

(
V0(x); g1(x), . . . , gn0−1(x)

)]} ⊂ H. (3.15)

for any phase point x ∈ U0 ∩ Wn0−1(y
∗). We note here that not only the first factor of the

Cartesian product of (3.15) is constant on Wn0−1(y
∗), but the second one, as well. The reason

for this is that on Wn0−1(y
∗) the possible variations of the vector qi(n0) − qj(n0) belong to the

space Rn0 [Nn0−1(V0(y
∗); g1(y

∗), . . . , gn0−1(y
∗))], see proposition 2.8.

The last set containment means that for any x ∈ U0 ∩ Wn0−1(y
∗) it is true that

r(x) ∈ H(x) = H(y∗), so x ∈ J for all such x, according to proposition 2.14. However, this
contradicts to the fact that for the phase points y ∈ U0 the manifolds Wn0−1(y) are transversal
to J , see definition 2.13. �

Our proof of the theorem will be completed as soon as we prove the following counterpart
of proposition 3.7.
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Proposition 3.16. Let P ′ be a two-dimensional linear subspace of the Euclidean space R
3,

P = P ′ + x0 a coset of P ′ not containing 0, C2 ⊂ R
3 be the unit sphere of R

3, C1 ⊂ P be an
ellipse in P , possibly degenerated to a single point. Assume that the unit sphere C2 intersects
the affine plane P in a circle C and none of C1 and C lies completely inside the other one.
Suppose that L(s), |s| < ε0, is a smooth family of oriented lines in P with the direction vector
v(s) satisfying the following conditions:

(i) L(s) is tangent to C1 at the point of contact A(s), and at A(s) the direction vector v(s)

agrees with a given orientation of C1 (if C1 is not a point),
(ii) L(s) intersects C in two points, out of which the one whose position vector makes the

smaller inner product with v(s) is denoted by B(s),
(iii) d

ds
α(v(s)) > 0 for all s, |s| < ε0.

Here α(v(s)) denotes the direction angle of the vector v(s). Finally, let v+(s) be the mirror
image of v(s) under the orthogonal reflection across the tangent plane of the unit sphere C2

at the point B(s).
We claim that there is no (four-dimensional) hyperplane H ⊂ P ′ × R

3 containing all the
points (v(s), v+(s)) for |s| < ε0.

Remark 3.17. In the proposition above the space R
3 plays the role of the space S of

proposition 3.11.

Proof. Very similar to the proof of proposition 3.7. We assume again that C1 and C2

possess at least two non-parallel tangent lines. (Otherwise the argument discussing the
parallelity case v(b) = −v(a) in the proof of proposition 3.7 applies here with obvious
modifications, which are left to the reader.) We can also assume that the lines L(s) depend on
the parameter s analytically, and this analytic family of lines L(s) ⊂ P is already extended
to a parameter interval I = [a, b] ⊃ (−ε0, ε0) by keeping the properties (i)–(iii) above, so
that L(a) and L(b) are non-parallel and tangent to the circle C = P ∩ C2. Suppose there is
a hyperplane H in the five-dimensional space P ′ × R

3 containing all the points (v(s), v+(s))

for |s| < ε0. By reasons of analyticity, the same membership relation (v(s), v+(s)) ∈ H

is true for all s ∈ I . The relations (v(a), v(a)) ∈ H , (v(b), v(b)) ∈ H imply that
H contains the diagonal {(v, v)

∣∣ v ∈ P ′}, which diagonal is the kernel of the linear map
� : H → R

3, �(v1, v2) = v1 − v2. Therefore, since dimH = 4 by our assumption, we get
that dim�(H) � 2. However, for the points (v(s), v+(s)), a < s < b, the lines spanned by
the vectors v(s) − v+(s) fill out a (nonempty) open part of a circular cone of R

3, which cannot
be the part of any subspace with dimension � 2, so the proposition and our non-coincidence
theorem are now proved. �

4. Proof of the Boltzmann–Sinai Ergodic hypothesis for all hard ball systems

Proof. We carry out an induction on the number N of elastically interacting balls. For N = 2
this is the classic result of Sinai and Chernov [S-Ch(1987)]. Suppose that N > 2 and the result
(ergodicity, the Chernov–Sinai ansatz, and complete hyperbolicity, implying the Bernoulli
mixing property, see [C-H(1996)] and [O-W(1998)]) has been proved for all systems of hard
balls (of equal masses) on the flat ν-torus T

ν with the number of balls less than N . According
to theorem 6.1 of [Sim(1992)-I], for almost every singular phase point x ∈ SR+

0 the forward
orbit S(0,∞)x of x

(1) contains no singularity, and
(2) contains infinitely many connected collision graphs following each other in time.
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By corollary 3.26 of [Sim(2002)] such forward orbits S(0,∞)x are sufficient (geometrically
hyperbolic), unless the phase point x belongs to a countable family J1, J2, . . . of exceptional,
codimension-one, smooth, non-hyperbolicity manifolds studied right here in this paper. By our
Theorem, all these exceptional manifolds Jk intersect SR+

0 in zero-measured subsets of SR+
0 ,

and this proves the Chernov–Sinai Ansatz for our current system with N balls. Finally, the
Theorem of [Sim(2009)] gives us that the considered N -ball system is also ergodic, completely
hyperbolic, hence Bernoulli mixing. �
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