
Stability for the inverse resonance problem
for the CMV operator

Rudi Weikard

University of Alabama at Birmingham

2017 Joint Mathematics Meeting

January 6, 2017

Rudi Weikard (UAB) Stability for CMV January 6, 2017 1 / 16



I am reporting on joint work with

• Roman Shterenberg (UAB) and

• Maxim Zinchenko (New Mexico).
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The CMV operator

Given a sequence k 7→ αk ∈ D (the unit disk) let ρk =
√

1− |αk |2 and

U = VW =


1
−α2 ρ2
ρ2 α2 −α4 ρ4

ρ4 α4
. . .



−α1 ρ1
ρ1 α1 −α3 ρ3

ρ3 α3
. . .

 .

• Cantero, Moral, and Velázquez introduced these in 2003 in
connection with orthogonal polynomials on the unit circle.

• The αk are called Schur parameters or Verblunsky coefficients.

• U is called a CMV matrix. It is 5-diagonal and maps CN0 to itself.

• The restrictions of U, V , and W to `2(N0) are unitary operators.
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CMV recursion

• For z 6= 0 Gesztesy and Zinchenko (2006) introduced invertible
2× 2-matrices T (z , k) and the recurrence relation(

u(k)

v(k)

)
= T (z , k)

(
u(k − 1)

v(k − 1)

)
, k ∈ N. (1)

• The T (z , k) involve αk , z and 1/z .

• Points in the unit disk are connected with those outside since

T (1/z , k) =

(
0 1
1 0

)
T (z , k)

(
0 1
1 0

)
.

• The solutions of (1) with initial conditions (−1, 1)> and (1, 1)> are
called ϑ(z , ·) and ϕ(z , ·), respectively.
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Connection with the CMV matrix

• Recall U = VW .

• (u, v)> satisfies the recurrence relation (1) if and only if

Wu = zv and Vv = u + (v(z , 0)− u(z , 0))δ0.

• Consequently (U − z)u = z(v(z , 0)− u(z , 0))δ0.

• In particular Uu = zu if v(z , 0) = u(z , 0).

• Thus, if (u, v)> = ϕ, we have v(z , 0) = u(z , 0) = 1 and hence
Uu = zu.
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Weyl-Titchmarsh solutions
• Define, for |z | 6= 1,

u(z , ·) = 2z(U − z)−1δ0 ∈ `2(N0) and v(z , ·) =
1

z
Wu ∈ `2(N0).

• If z 6= 0, then (u, v)⊥ satisfies the CMV recursion and(
u

v

)
(k) = ϑ(k) + m(z)ϕ(k) =: ω(k)

when m(z) = 1 + u(z , 0); this is the Weyl-Titchmarsh solution.

• It follows that

m(z) = 1 + u(z , 0) = 〈δ0, (U + z)(U − z)−1δ0〉

and hence m|D is a Caratheodory function (m(0) = 1, Re(m) > 0)
with representation

m(z) =

∮
∂D

ζ + z

ζ − z
dµ(ζ)

where µ is a positive measure on ∂D.
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The Fourier transform

• Given a finitely supported f ∈ CN0 let (F f )(z) =
∑∞

n=0 f (n)ϕ1(z , n)
whenever z ∈ ∂D.

• F f ∈ L2(µ).

• 〈f , g〉`2(N0) = 〈F f ,Fg〉L2(µ).

• In particular, 〈ϕ1(·, n), ϕ1(·,m)〉L2(µ) = δn,m, i.e., the ϕ1(·, n) are
orthonormal Laurent polynomials which one may also obtain from
applying Gram-Schmidt to the sequence (1, z , 1/z , z2, 1/z2, ...).

• The action of U transforms to multiplication by the independent
variable, i.e., F ◦ U ◦ F−1 = id.
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More about the m-function

• The Verblunsky coefficients are determined from m via the Schur
algorithm (Clark, Gesztesy, and Zinchenko, 2008).

• m(z) = −m(1/z)

• The measure µ is determined by the jump of the real part of m across
the unit circle by a variant of the Stieltjes inversion formula.

• In general m cannot be continued analytically across (all of) the unit
circle.

• Even if one can continue, the continuation may be different from the
m-function on the other side.
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Jost solutions I

• Assume
|αk | ≤ ηe−k

γ

for some η > 0 and γ > 1.

• The Volterra equation [W., Zinchenko 2010]

F (z , k) =

(
1

0

)
−

∞∑
n=k+1

(
0 αnζn

αnz
n−k−1ζk+1 0

)
F (z , n), k ∈ N0

has a unique solution for any z ∈ C.

• Either component of F (·, k) is entire of growth order 0.

• Then

ν(z , k) = 2zdk/2e( ∞∏
j=k+1

ρ−1
j

)(0 1
1 0

)k+1

F (z , k)

satisfies the CMV recursion.
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Jost solutions II

• Suppose |z | < 1.

• ν(z , ·) is in `2(N0); it is then called the Jost solution for CMV.

• ν must be a multiple of the Weyl-Titchmarsh solution ϑ+ mϕ.
Define the Jost function ψ0 by

ν = ψ0(ϑ+ mϕ).

• ψ0 and mψ0 are constant multiples of (1,−1) · F (z , 0) and
(1, 1) · F (z , 0), respectively. Both of these are entire.

• m has a meromorphic extension to all of C (denoted by M).

• ψ0 cannot have zeros in D. Those outside are called resonances.
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• m has a meromorphic extension to all of C (denoted by M).

• ψ0 cannot have zeros in D. Those outside are called resonances.
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Jost solutions III

• For the sequence ν̃(z , k) =

(
0 1
1 0

)
ν(1/z , k) is also a solution of the

CMV recursion (and square integrable for |z | > 1).

• detT (z , k) = −1⇒ det(ν(z , 2k), ν̃(z , 2k)) is independent of k.

• From asymptotics as k →∞

det(ν(z , 2k), ν̃(z , 2k)) ≈ det

(
0 2z−k

2zk 0

)
= −4.

• For |z | = 1, i.e., z = 1/z this gives

1 = |ψ0(z)|2 Re(M(z)).

• An analytic function in the unit disk is (up to an additive constant)
determined by its real part on the unit circle.
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The inverse resonance problem

Theorem (W., Zinchenko (2010))

The location of the resonances (accounting for multiplicities) determine
the Verblunsky coefficients uniquely.
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Sketch of proof

• The Verblunsky coefficients are given by the Schur functions (monic
orthogonal polynomials) as αk+1 = −Φk(0).

• The Schur functions are determined recursively from Φ0 and hence
from m.

• m is determined by |ψ0(eit)|, t ∈ [−π, π].

• ψ0(z) = ψ0(0)
∏∞

k=1(1− z/zk) where the zk are the resonances.

• |ψ0(0)| is determined since

m(z) =
1

2π

∫ π

−π

eit + z

eit − z
Re(M(eit))dt,

m(0) = 1, and Re(M(eit)) = 1/|ψ0(eit)|2.
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Stability

Theorem (Shterenberg, W., Zinchenko (2013))

Suppose α and ᾰ are two sequences of Verblunsky coefficients with
super-exponential decay as before and that

∏∞
j=1(1− |αj |) ≥ 1/Q.

Assume that the resonances in some ball of radius R, if there are any, are
respectively ε-close. Then there is a constant A0, depending only on γ, η,
and Q, such that

|αn − ᾰn| ≤ A0

(
ε+

(logR)γ/(γ−1)

R

)1/ log(6eQ2)

for all n ∈ N.
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Sketch of proof

• |αk − ᾰk | ≤ |Φk−1(0)− Φ̆k−1(0)| ≤ ‖Φk−1 − Φ̆k−1‖1 by the mean
value theorem (‖f ‖pp =

∫ π
−π |f |

pdt/(2π)).

• ‖Φk−1 − Φ̆k−1‖1 ≤ 6Q2‖Φk−2 − Φ̆k−2‖1 by the Schur algorithm.

• Φ0(z)− Φ̆0(z) = 2
z

M(z)−M̆(z)

(1+M(z))(1+M̆(z))
.

• |1 + M(z)| ≥ Re(1 + M(z)) ≥ 1.

• If |Re f (0)| = | Im f (0)| then Re f and Im f have the same 2-norm.

• We need to estimate ‖ReM − Re M̆‖2 = ‖|ψ0|−2 − |ψ̆0|−2‖2.

• Hence we need to compare

ψ0(z) = ψ0(0)
∞∏
n=1

(1− z/zn) and ψ̆0(z) = ψ̆0(0)
∞∏
n=1

(1− z/z̆n).
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Thank you for your attention!
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