Stability for the inverse resonance problem for the CMV operator

Rudi Weikard

University of Alabama at Birmingham

OTAMP 2014

July 11, 2014
I am reporting on joint work with

- Roman Shterenberg (UAB) and
- Maxim Zinchenko (New Mexico).
Inverse resonance problems

- Brown and Eastham (1997 – 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.
- Brown, Knowles, Naboko and myself have some contributions to uniqueness (Schrödinger problems with zero or algebro-geometric backgrounds, Jacobi problems with zero background).
- Iantchenko and Korotyaev (2011) have results for Jacobi problems with periodic background).
- Stability of the recovered potential for finite noisy resonance data for the Schrödinger equation (with Marletta, Naboko, Shterenberg; Bledsoe).
Inverse resonance problems

- Brown and Eastham (1997 – 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.

Inverse resonance problems

- Brown and Eastham (1997 – 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.

- Brown, Knowles, Naboko and myself have some contributions to uniqueness (Schrödinger problems with zero or algebro-geometric backgrounds, Jacobi problems with zero background).
Inverse resonance problems

• Brown and Eastham (1997 – 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.

• Brown, Knowles, Naboko and myself have some contributions to uniqueness (Schrödinger problems with zero or algebro-geometric backgrounds, Jacobi problems with zero background).

• Iantchenko and Korotyaev (2011) have results for Jacobi problems with periodic background).
Inverse resonance problems

- Brown and Eastham (1997 – 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.

- Brown, Knowles, Naboko and myself have some contributions to uniqueness (Schrödinger problems with zero or algebro-geometric backgrounds, Jacobi problems with zero background).

- Iantchenko and Korotyaev (2011) have results for Jacobi problems with periodic background).

- Stability of the recovered potential for finite noisy resonance data for the Schrödinger equation (with Marletta, Naboko, Shterenbergs; Bledsoe).
Orthogonal polynomials on the real line

• Let μ be a probability measure on \mathbb{R} all of whose moments are finite.

• By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).

• It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_n p_n(t) + a_n p_{n+1}(t) = tp_n(t)$$

where the $a_n \neq 0$.

• Thus, choosing the p_n as a basis, multiplication by t is represented by a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.

• Multiplication by t is a self-adjoint operator.

• Spectral theory for Jacobi matrices allows to investigate the polynomials.
Orthogonal polynomials on the real line

- Let μ be a probability measure on \mathbb{R} all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).
Orthogonal polynomials on the real line

- Let μ be a probability measure on \mathbb{R} all of whose moments are finite.

- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).

- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_n p_n(t) + a_n p_{n+1}(t) = tp_n(t)$$

where the $a_n \neq 0$.

Orthogonal polynomials on the real line

- Let μ be a probability measure on \mathbb{R} all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).
- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_np_n(t) + a_np_{n+1}(t) = tp_n(t)$$

where the $a_n \neq 0$.

- Thus, choosing the p_n as a basis, multiplication by t is represented by a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.
Orthogonal polynomials on the real line

- Let μ be a probability measure on \mathbb{R} all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).
- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_n p_n(t) + a_n p_{n+1}(t) = tp_n(t)$$

where the $a_n \neq 0$.
- Thus, choosing the p_n as a basis, multiplication by t is represented by a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.
- Multiplication by t is a self-adjoint operator.
Orthogonal polynomials on the real line

- Let μ be a probability measure on \mathbb{R} all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).
- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_np_n(t) + a_np_{n+1}(t) = tp_n(t)$$

where the $a_n \neq 0$.
- Thus, choosing the p_n as a basis, multiplication by t is represented by a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.
- Multiplication by t is a self-adjoint operator.
- Spectral theory for Jacobi matrices allows to investigate the polynomials.
Orthogonal polynomials on the unit circle

- Given a probability measure on the unit circle one can construct again orthogonal polynomials.
Orthogonal polynomials on the unit circle

- Given a probability measure on the unit circle one can construct again orthogonal polynomials.

- Interest in these polynomials was triggered during the 1990s by applications in digital signal processing.
Orthogonal polynomials on the unit circle

- Given a probability measure on the unit circle one can construct again orthogonal polynomials.

- Interest in these polynomials was triggered during the 1990s by applications in digital signal processing.

- In 2005 B. Simon published a monumental 2-volume work on these matters (which has by now at least 322 citations according to MathSciNet).
Orthogonal polynomials on the unit circle

- Given a probability measure on the unit circle one can construct again orthogonal polynomials.

- Interest in these polynomials was triggered during the 1990s by applications in digital signal processing.

- In 2005 B. Simon published a monumental 2-volume work on these matters (which has by now at least 322 citations according to MathSciNet).

- The representation of multiplication by the independent variable (using the orthogonal polynomials as a basis) leads only to a Hessenberg matrix.
Cantero, Moral, and Velázquez (CMV)

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in \(\mathbb{C}[z, 1/z] \).
- Apply Gram-Schmidt to \((1, 1/z, z, 1/z^2, z^2, \ldots)\) to produce orthonormal Laurent polynomials \(f_n \) (OLPs) instead of the standard OPs \(p_n \).
- In terms of this basis multiplication by \(z \) is represented by a five-diagonal matrix.
- Multiplication by \(z \) is now a unitary operator denoted by \(U \).
- The OLPs and the OPs are in a simple relationship:
 \[
 f_{2n}(z) = z^{-n}p_{2n}(z), \quad f_{2n+1}(z) = z^n p_{2n+1}(1/z).
 \]
- Starting from \((1, z, 1/z, z^2, 1/z^2, \ldots)\) the OLPs are
 \[
 g_n(z) = f_n(1/z) := f_n(1/z).
 \]
In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in $\mathbb{C}[z, 1/z]$.

Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n.

Starting from $(1, z, 1/z, z^2, 1/z^2, ...)$ the OLPs are $g_n(z) = f_n(z)$.
Cantero, Moral, and Velázquez (CMV)

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in $\mathbb{C}[z, 1/z]$.

- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n.

- In terms of this basis multiplication by z is represented by a five-diagonal matrix.
Cantero, Moral, and Velázquez (CMV)

• In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in $\mathbb{C}[z, 1/z]$.

• Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n.

• In terms of this basis multiplication by z is represented by a five-diagonal matrix.

• Multiplication by z is now a unitary operator denoted by U.
Cantero, Moral, and Velázquez (CMV)

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in $\mathbb{C}[z, 1/z]$.

- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n.

- In terms of this basis multiplication by z is represented by a five-diagonal matrix.

- Multiplication by z is now a unitary operator denoted by U.

- The OLPs and the OPs are in a simple relationship:
 \[f_{2n}(z) = z^{-n}p_{2n}(z), \quad f_{2n+1}(z) = z^{n}p_{2n+1}(1/z). \]
Cantero, Moral, and Velázquez (CMV)

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in $\mathbb{C}[z, 1/z]$.

- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, \ldots)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n.

- In terms of this basis multiplication by z is represented by a five-diagonal matrix.

- Multiplication by z is now a unitary operator denoted by U.

- The OLPs and the OPs are in a simple relationship:

 $$f_{2n}(z) = z^{-n}p_{2n}(z), \quad f_{2n+1}(z) = z^{n}p_{2n+1}(1/z).$$

- Starting from $(1, z, 1/z, z^2, 1/z^2, \ldots)$ the OLPs are

 $$g_n(z) = f_{n,*}(z) := \overline{f_n(1/z)}.$$
The 5-term recurrence

- Instead of a Jacobi matrix CMV obtained the matrix

\[
U = \begin{pmatrix}
-\alpha_1 & \rho_1 & 0 & & \\
-\rho_1 \alpha_2 & -\overline{\alpha_1} \alpha_2 & -\rho_2 \alpha_3 & \rho_2 \rho_3 & 0 \\
\rho_1 \rho_2 & \overline{\alpha_1} \rho_2 & -\overline{\alpha_2} \alpha_3 & \overline{\alpha_2} \rho_3 & 0 \\
0 & -\rho_3 \alpha_4 & -\overline{\alpha_3} \alpha_4 & -\rho_4 \alpha_5 & \rho_4 \rho_5 \\
\rho_3 \rho_4 & \overline{\alpha_3} \rho_4 & -\overline{\alpha_4} \alpha_5 & \overline{\alpha_4} \rho_5 & 0 \\
0 & & & & & \cdots \\
& & & & & \cdots \\
& & & & & \cdots
\end{pmatrix}
\]

where \(\alpha_n \in \mathbb{D}, \rho_n = \sqrt{1 - |\alpha_n|^2} \).
The 5-term recurrence

• Instead of a Jacobi matrix CMV obtained the matrix

\[
U = \begin{pmatrix}
-\alpha_1 & \rho_1 & 0 & 0 & 0 \\
-\rho_1 \alpha_2 & -\overline{\alpha}_1 \alpha_2 & -\rho_2 \alpha_3 & \rho_2 \rho_3 & 0 \\
\rho_1 \rho_2 & \overline{\alpha}_1 \rho_2 & -\overline{\alpha}_2 \alpha_3 & \overline{\alpha}_2 \rho_3 & 0 \\
0 & -\rho_3 \alpha_4 & -\overline{\alpha}_3 \alpha_4 & -\rho_4 \alpha_5 & \rho_4 \rho_5 \\
\rho_3 \rho_4 & \overline{\alpha}_3 \rho_4 & -\overline{\alpha}_4 \alpha_5 & \overline{\alpha}_4 \rho_5 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

where \(\alpha_n \in \mathbb{D}, \rho_n = \sqrt{1 - |\alpha_n|^2}. \)

• The \(\alpha_n \) are called Verblunsky coefficients.
The 5-term recurrence

• Instead of a Jacobi matrix CMV obtained the matrix

\[U = \begin{pmatrix}
-\alpha_1 & \rho_1 & 0 & \cdots & 0 \\
-\rho_1\alpha_2 & -\alpha_1\alpha_2 & -\rho_2\alpha_3 & \cdots & 0 \\
\rho_1\rho_2 & -\overline{\alpha}_1\rho_2 & -\overline{\alpha}_2\alpha_3 & \cdots & 0 \\
0 & -\rho_3\alpha_4 & -\overline{\alpha}_3\alpha_4 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix} \]

where \(\alpha_n \in \mathbb{D}, \rho_n = \sqrt{1 - |\alpha_n|^2}. \)

• The \(\alpha_n \) are called Verblunsky coefficients.

• We may think of \(U \) as a unitary operator in \(\ell^2(\mathbb{N}_0) \) or as mapping any sequence of complex numbers to another.
Factorization of U

Every CMV matrix admits the following factorization

$$U = VW = \begin{pmatrix}
1 & -\alpha_2 & \rho_2 \\
-\alpha_2 & \rho_2 & \bar{\alpha}_2 \\
\rho_2 & \bar{\alpha}_2 & -\alpha_4 & \rho_4 \\
-\alpha_4 & \rho_4 & \bar{\alpha}_4 & \ddots \\
\rho_4 & \bar{\alpha}_4 & \ddots & \ddots
\end{pmatrix} \begin{pmatrix}
-\alpha_1 & \rho_1 \\
\rho_1 & \bar{\alpha}_1 \\
-\alpha_3 & \rho_3 \\
\rho_3 & \bar{\alpha}_3 & \ddots
\end{pmatrix}.$$
CMV recursion

- Despite U being 5-diagonal we have a second order problem.
CMV recursion

- Despite U being 5-diagonal we have a second order problem.
- Let $\beta_k = \alpha_k$ or $\beta_k = \bar{\alpha}_k$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and

 $$T(z, k) = \frac{1}{\rho_k} \begin{pmatrix} \beta_k & \zeta_k \\ 1/\zeta_k & \beta_k \end{pmatrix}.$$
CMV recursion

- Despite U being 5-diagonal we have a second order problem.
- Let $\beta_k = \alpha_k$ or $\beta_k = \overline{\alpha_k}$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and
 \[T(z, k) = \frac{1}{\rho_k} \begin{pmatrix} \beta_k & \zeta_k \\ 1/\zeta_k & \beta_k \end{pmatrix}. \]
- Then [Gesztesy, Zinchenko 2006]
 \[\begin{pmatrix} u \\ v \end{pmatrix}(k) = T(k) \begin{pmatrix} u \\ v \end{pmatrix}(k - 1), \quad k \in \mathbb{N} \]
 if and only if
 \[Wu = zv \quad \text{and} \quad Vv = u + (v(z, 0) - u(z, 0))\delta_0. \]
CMV recursion

- Despite U being 5-diagonal we have a second order problem.

- Let $\beta_k = \alpha_k$ or $\beta_k = \bar{\alpha}_k$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and

$$T(z, k) = \frac{1}{\rho_k} \begin{pmatrix} \beta_k & \zeta_k \\ 1/\zeta_k & \beta_k \end{pmatrix}.$$

- Then [Gesztesy, Zinchenko 2006]

$$\begin{pmatrix} u \\ v \end{pmatrix}(k) = T(k) \begin{pmatrix} u \\ v \end{pmatrix}(k - 1), \quad k \in \mathbb{N}$$

if and only if

$$Wu = zv \quad \text{and} \quad Vv = u + (v(z, 0) - u(z, 0))\delta_0.$$

- Consequently $(U - z)u = z(v(z, 0) - u(z, 0))\delta_0$ (not necessarily in the operator sense).
CMV recursion

- Despite U being 5-diagonal we have a second order problem.

- Let $\beta_k = \alpha_k$ or $\beta_k = \bar{\alpha}_k$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and

 $$T(z, k) = \frac{1}{\rho_k} \begin{pmatrix} \beta_k & \zeta_k \\ 1/\zeta_k & \bar{\beta}_k \end{pmatrix}.$$

- Then [Gesztesy, Zinchenko 2006]

 $$\begin{pmatrix} u \\ v \end{pmatrix}(k) = T(k) \begin{pmatrix} u \\ v \end{pmatrix}(k - 1), \quad k \in \mathbb{N}$$

 if and only if

 $$Wu = zv \quad \text{and} \quad Vv = u + (v(z, 0) - u(z, 0))\delta_0.$$

- Consequently $(U - z)u = z(v(z, 0) - u(z, 0))\delta_0$ (not necessarily in the operator sense).

- In particular $Uu = zu$ if $v(z, 0) = u(z, 0)$.
Initial value problems

- For $z \neq 0$ introduce the solutions $\vartheta(z, \cdot)$ and $\varphi(z, \cdot)$ of

$$
\begin{pmatrix}
u
\end{pmatrix}(k) = \begin{pmatrix}
u
\end{pmatrix}(k - 1)
$$

with initial conditions $(-1, 1)^\top$ and $(1, 1)^\top$, respectively.
Initial value problems

- For $z \neq 0$ introduce the solutions $\vartheta(z, \cdot)$ and $\varphi(z, \cdot)$ of

$$
\begin{pmatrix}
u
\end{pmatrix}(k) = T(k) \begin{pmatrix}
u
\end{pmatrix}(k - 1)
$$

with initial conditions $(-1, 1)^\top$ and $(1, 1)^\top$, respectively.

- Note that

$$
\varphi(z, k) = \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \varphi(1/\bar{z}, k) \quad \text{and} \quad \vartheta(z, k) = -\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \vartheta(1/\bar{z}, k).
$$
Initial value problems

• For $z \neq 0$ introduce the solutions $\vartheta(z, \cdot)$ and $\varphi(z, \cdot)$ of

$$
\begin{pmatrix} u \\ v \end{pmatrix}(k) = T(k) \begin{pmatrix} u \\ v \end{pmatrix}(k - 1)
$$

with initial conditions $(-1, 1)^\top$ and $(1, 1)^\top$, respectively.

• Note that

$$
\varphi(z, k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \varphi(1/\bar{z}, k) \quad \text{and} \quad \vartheta(z, k) = - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \vartheta(1/\bar{z}, k).
$$

• Also, if $\begin{pmatrix} u \\ v \end{pmatrix} = \varphi$, we have $v(z, 0) = u(z, 0)$ and hence $Uu = zu$.
Weyl-Titchmarsh solutions

- Define, for $|z| \neq 1$,

$$u(z, \cdot) = 2z(U - z)^{-1}\delta_0 \in \ell^2(\mathbb{N}_0) \quad \text{and} \quad v(z, \cdot) = \frac{1}{z}\mathcal{W}u \in \ell^2(\mathbb{N}_0).$$
Weyl-Titchmarsh solutions

- Define, for $|z| \neq 1$,

\[
 u(z, \cdot) = 2z(U - z)^{-1} \delta_0 \in \ell^2(\mathbb{N}_0) \quad \text{and} \quad v(z, \cdot) = \frac{1}{z} Wu \in \ell^2(\mathbb{N}_0).
\]

- Then $(u, v)^\perp$ satisfies the CMV recursion and

\[
 \begin{pmatrix} u \\ v \end{pmatrix}(k) = \vartheta(k) + m(z) \varphi(k) =: \omega(k)
\]

when $m(z) = 1 + u(z, 0)$; this is the Weyl-Titchmarsh solution.
Weyl-Titchmarsh solutions

• Define, for $|z| \neq 1$,

$$u(z, \cdot) = 2z(U - z)^{-1}\delta_0 \in \ell^2(\mathbb{N}_0) \quad \text{and} \quad v(z, \cdot) = \frac{1}{z}Wu \in \ell^2(\mathbb{N}_0).$$

• Then $(u, v)^\perp$ satisfies the CMV recursion and

$$\begin{pmatrix} u \\ v \end{pmatrix}(k) = \vartheta(k) + m(z)\varphi(k) =: \omega(k)$$

when $m(z) = 1 + u(z, 0)$; this is the Weyl-Titchmarsh solution.

• It follows that

$$m(z) = 1 + u(z, 0) = \langle \delta_0, (U + z)(U - z)^{-1}\delta_0 \rangle$$

is a Caratheodory function with representation

$$m(z) = \oint_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta).$$
Caratheodory and Schur functions

• An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if $f(0) = 1$ and $\text{Re}(f) > 0$.

• An analytic function $g : \mathbb{D} \to \mathbb{C}$ is called a Schur function, if $|g| < 1$.

• If f is Caratheodory and g is Schur, then $(f - 1)/(f + 1)$ is Schur and $(1 + g)/(1 - g)$ is Caratheodory.

• Note also that, by Schwarz’s lemma, $z \mapsto g(z)/z$ is a Schur function, if g is a Schur function and $g(0) = 0$.

• The Möbius transform $z \mapsto S(w, z) = (z + w)/(1 + wz)$ maps \mathbb{D} to itself, if $|w| < 1$.

• If g is a Schur function with $g(0) = -w$ and $|w| < 1$ then $z \mapsto 1/z S(w, g(z))$ is a Schur function.
Caratheodory and Schur functions

- An analytic function $f: \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if $f(0) = 1$ and $\text{Re}(f) > 0$.

- An analytic function $g: \mathbb{D} \to \mathbb{C}$ is called a Schur function, if $|g| < 1$.

- If f is Caratheodory and g is Schur, then $(f - 1)/(f + 1)$ is Schur and $(1 + g)/(1 - g)$ is Caratheodory.

- Note also that, by Schwarz's lemma, $z \mapsto g(z)/z$ is a Schur function, if g is a Schur function and $g(0) = 0$.

- The Möbius transform $z \mapsto S(w, z) = (z + w)/(1 + wz)$ maps \mathbb{D} to itself, if $|w| < 1$.

- If g is a Schur function with $g(0) = -w$ and $|w| < 1$ then $z \mapsto 1/z S(w, g(z))$ is a Schur function.
Caratheodory and Schur functions

- An analytic function \(f : \mathbb{D} \to \mathbb{C} \) is called a Caratheodory function, if \(f(0) = 1 \) and \(\text{Re}(f) > 0 \).

- An analytic function \(g : \mathbb{D} \to \mathbb{C} \) is called a Schur function, if \(|g| < 1 \).

- If \(f \) is Caratheodory and \(g \) is Schur, then \((f - 1)/(f + 1) \) is Schur and \((1 + g)/(1 - g) \) is Caratheodory.
Caratheodory and Schur functions

- An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if $f(0) = 1$ and $\text{Re}(f) > 0$.
- An analytic function $g : \mathbb{D} \to \mathbb{C}$ is called a Schur function, if $|g| < 1$.
- If f is Caratheodory and g is Schur, then $(f - 1)/(f + 1)$ is Schur and $(1 + g)/(1 - g)$ is Caratheodory.
- Note also that, by Schwarz’s lemma, $z \mapsto g(z)/z$ is a Schur function, if g is a Schur function and $g(0) = 0$.
Caratheodory and Schur functions

• An analytic function \(f : \mathbb{D} \to \mathbb{C} \) is called a Caratheodory function, if \(f(0) = 1 \) and \(\text{Re}(f) > 0 \).

• An analytic function \(g : \mathbb{D} \to \mathbb{C} \) is called a Schur function, if \(|g| < 1 \).

• If \(f \) is Caratheodory and \(g \) is Schur, then \((f - 1)/(f + 1) \) is Schur and \((1 + g)/(1 - g) \) is Caratheodory.

• Note also that, by Schwarz’s lemma, \(z \mapsto g(z)/z \) is a Schur function, if \(g \) is a Schur function and \(g(0) = 0 \).

• The Möbius transform \(z \mapsto S(w, z) = (z + \overline{w})/(1 + wz) \) maps \(\mathbb{D} \) to itself, if \(|w| < 1 \).
Caratheodory and Schur functions

- An analytic function \(f : \mathbb{D} \rightarrow \mathbb{C} \) is called a Caratheodory function, if \(f(0) = 1 \) and \(\text{Re}(f) > 0 \).

- An analytic function \(g : \mathbb{D} \rightarrow \mathbb{C} \) is called a Schur function, if \(|g| < 1 \).

- If \(f \) is Caratheodory and \(g \) is Schur, then \((f - 1)/(f + 1) \) is Schur and \((1 + g)/(1 - g) \) is Caratheodory.

- Note also that, by Schwarz’s lemma, \(z \mapsto g(z)/z \) is a Schur function, if \(g \) is a Schur function and \(g(0) = 0 \).

- The Möbius transform \(z \mapsto S(w, z) = (z + \overline{w})/(1 + wz) \) maps \(\mathbb{D} \) to itself, if \(|w| < 1 \).

- If \(g \) is a Schur function with \(g(0) = -\overline{w} \) and \(|w| < 1 \) then
 \[
 z \mapsto \frac{1}{z} S(w, g(z))
 \]
 is a Schur function.
The Schur algorithm I

- Define

\[\Phi_{2k}(z) = \frac{1}{z} \frac{\omega_1(z, 2k)}{\omega_2(z, 2k)} \quad \text{and} \quad \Phi_{2k+1}(z) = \frac{\omega_2(z, 2k + 1)}{\omega_1(z, 2k + 1)} \]
The Schur algorithm I

- Define

\[\Phi_{2k}(z) = \frac{1}{z} \frac{\omega_1(z, 2k)}{\omega_2(z, 2k)} \quad \text{and} \quad \Phi_{2k+1}(z) = \frac{\omega_2(z, 2k+1)}{\omega_1(z, 2k+1)} \]

- Initial conditions: \(\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1} \).
The Schur algorithm I

- Define
 \[\Phi_{2k}(z) = \frac{1}{z} \frac{\omega_1(z, 2k)}{\omega_2(z, 2k)} \quad \text{and} \quad \Phi_{2k+1}(z) = \frac{\omega_2(z, 2k+1)}{\omega_1(z, 2k+1)} \]

- Initial conditions: \(\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1} \).

- CMV recursion: \(\Phi_k(z) = \frac{1}{z} S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z} \frac{\Phi_{k-1}(z)+\overline{\alpha_k}}{1+\alpha_k \Phi_{k-1}(z)} \).
The Schur algorithm I

• Define

\[\Phi_{2k}(z) = \frac{1}{z} \frac{\omega_1(z, 2k)}{\omega_2(z, 2k)} \quad \text{and} \quad \Phi_{2k+1}(z) = \frac{\omega_2(z, 2k+1)}{\omega_1(z, 2k+1)} \]

• Initial conditions: \(\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1} \).

• CMV recursion: \(\Phi_k(z) = \frac{1}{z} S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z} \frac{\Phi_{k-1}(z)+\bar{\alpha}_k}{1+\alpha_k \Phi_{k-1}(z)} \).

• Using the Neumann series

\[m(z) = \langle \delta_0, (U+z)(U-z)^{-1}\delta_0 \rangle = 1 + 2 \sum_{n=1}^{\infty} \langle \delta_0, U^{-n}\delta_0 \rangle = 1 - 2\alpha_1 z + \ldots \]
The Schur algorithm I

- Define
 \[\Phi_{2k}(z) = \frac{1}{z} \frac{\omega_1(z, 2k)}{\omega_2(z, 2k)} \quad \text{and} \quad \Phi_{2k+1}(z) = \frac{\omega_2(z, 2k + 1)}{\omega_1(z, 2k + 1)} \]

- Initial conditions: \(\Phi_0(z) = \frac{1}{z} \frac{m(z) - 1}{m(z) + 1} \).

- CMV recursion: \(\Phi_k(z) = \frac{1}{z} S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z} \frac{\Phi_{k-1}(z) + \overline{\alpha_k}}{1 + \alpha_k \Phi_{k-1}(z)} \).

- Using the Neumann series
 \[m(z) = \langle \delta_0, (U+z)(U-z)^{-1}\delta_0 \rangle = 1 + 2 \sum_{n=1}^{\infty} \langle \delta_0, U^{-n}\delta_0 \rangle = 1 - 2\alpha_1 z + ... \]

- \(m(0) = 1 \) implies \(\Phi_0 \) is a Schur function, \(m'(0) = -2\overline{\alpha_1} \) implies \(\Phi_0(0) = -\overline{\alpha_1} \in \mathbb{D} \).
The Schur algorithm I

- Define
 \[\Phi_{2k}(z) = \frac{1}{z} \frac{\omega_1(z, 2k)}{\omega_2(z, 2k)} \quad \text{and} \quad \Phi_{2k+1}(z) = \frac{\omega_2(z, 2k + 1)}{\omega_1(z, 2k + 1)} \]

- Initial conditions: \(\Phi_0(z) = \frac{1}{z} \frac{m(z) - 1}{m(z) + 1} \).

- CMV recursion: \(\Phi_k(z) = \frac{1}{z} S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z} \frac{\Phi_{k-1}(z) + \alpha_k}{1 + \alpha_k \Phi_{k-1}(z)} \).

- Using the Neumann series
 \[m(z) = \langle \delta_0, (U + z)(U - z)^{-1} \delta_0 \rangle = 1 + 2 \sum_{n=1}^{\infty} \langle \delta_0, U^{-n} \delta_0 \rangle = 1 - 2 \alpha_1 z + \ldots \]

- \(m(0) = 1 \) implies \(\Phi_0 \) is a Schur function, \(m'(0) = -2 \alpha_1 \) implies \(\Phi_0(0) = -\overline{\alpha_1} \in \mathbb{D} \).

- Hence \(\Phi_1 \) is a Schur function and knowledge about \(m''(0) \) gives \(\Phi_1(0) = -\overline{\alpha_2} \in \mathbb{D} \).
The Schur algorithm II

- Deleting 2 rows and 2 columns from the matrix U gives a similar problem whose Weyl-Titchmarsh function is a multiple of the original one truncated by the first two elements.

$\Phi_2(0) = -\alpha_3$ and $\Phi_3(0) = -\alpha_4$

Conclusion: The Φ_k are Schur functions with $\Phi_k(0) = -\alpha_{k+1}$ for $k \in \mathbb{D}$.
• Deleting 2 rows and 2 columns from the matrix U gives a similar problem whose Weyl-Titchmarsh function is a multiple of the original one truncated by the first two elements.

• Thus Φ_2 and Φ_3 are Schur functions with $\Phi_2(0) = -\overline{\alpha_3}$ and $\Phi_3(0) = -\overline{\alpha_4}$
• Deleting 2 rows and 2 columns from the matrix U gives a similar problem whose Weyl-Titchmarsh function is a multiple of the original one truncated by the first two elements.

• Thus Φ_2 and Φ_3 are Schur functions with $\Phi_2(0) = -\overline{\alpha_3}$ and $\Phi_3(0) = -\overline{\alpha_4}$

• Conclusion: The Φ_k are Schur functions with $\Phi_k(0) = -\overline{\alpha_{k+1}} \in \mathbb{D}$
• Assume

$$|\alpha_k| \leq \eta e^{-k\gamma}$$

for some $\eta > 0$ and $\gamma > 1$.
Jost solutions I

- Assume

\[|\alpha_k| \leq \eta e^{-k\gamma} \]

for some \(\eta > 0 \) and \(\gamma > 1 \).

- The Volterra equation [W., Zinchenko 2010]

\[
F(z, k) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sum_{n=k+1}^{\infty} \begin{pmatrix} 0 & \alpha_n \zeta_n \\ -\alpha_n z^{n-k-1} \zeta_{k+1} & 0 \end{pmatrix} F(z, n), \quad k \in \mathbb{N}_0
\]

has a unique solution for any \(z \in \mathbb{C} \).
Jost solutions I

- Assume
 \[|\alpha_k| \leq \eta e^{-k^\gamma} \]
 for some \(\eta > 0 \) and \(\gamma > 1 \).

- The Volterra equation [W., Zinchenko 2010]

 \[
 F(z, k) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sum_{n=k+1}^{\infty} \begin{pmatrix} 0 & \alpha_n \zeta_n \\ \frac{\alpha_n z^{n-k-1} \zeta_k}{\zeta_{k+1}} & 0 \end{pmatrix} F(z, n), \quad k \in \mathbb{N}_0
 \]

 has a unique solution for any \(z \in \mathbb{C} \).

- Either component of \(F(\cdot, k) \) is entire of growth order 0.

Rudi Weikard (UAB) Stability for CMV July 11, 2014 15 / 24
Jost solutions I

- Assume
 \[|\alpha_k| \leq \eta e^{-k\gamma} \]
 for some \(\eta > 0 \) and \(\gamma > 1 \).

- The Volterra equation [W., Zinchenko 2010]
 \[
 F(z, k) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sum_{n=k+1}^{\infty} \begin{pmatrix} 0 & \alpha_n \zeta_n \\ \alpha_n z^{n-k-1} \zeta_{k+1} & 0 \end{pmatrix} F(z, n), \quad k \in \mathbb{N}_0
 \]
 has a unique solution for any \(z \in \mathbb{C} \).

- Either component of \(F(\cdot, k) \) is entire of growth order 0.

- Then
 \[
 \nu(z, k) = 2z^{[k/2]} \left(\prod_{j=k+1}^{\infty} \rho_j^{-1} \right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{k+1} F(z, k)
 \]
 satisfies the CMV recursion.
Jost solutions II

• $|z| < 1$.

• $\nu(z, \cdot)$ is in $\ell^2(N)$; it is then called the Jost solution for CMV.

• ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m \varphi$.

• Define the Jost function ψ_0 by $\nu = \psi_0(\vartheta + m \varphi)$.

• Since ψ_0 and $m \psi_0$ are constant multiples of $(1, -1) \cdot F(z, 0)$ and $(1, 1) \cdot F(z, 0)$, respectively, both of these are entire.

• m has a meromorphic extension to all of \mathbb{C} (denoted by M).

• ψ_0 cannot have zeros in \mathbb{D}. Those outside are called resonances.
Jost solutions II

- $|z| < 1$.

- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.
Jost solutions II

- $|z| < 1$.
- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.
- ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

$$\nu = \psi_0(\vartheta + m\varphi).$$
Jost solutions II

• $|z| < 1$.

• $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.

• ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

\[\nu = \psi_0(\vartheta + m\varphi). \]

• Since ψ_0 and $m\psi_0$ are constant multiples of $(1, -1) \cdot F(z, 0)$ and $(1, 1) \cdot F(z, 0)$, respectively, both of these are entire.
Jost solutions II

- $|z| < 1$.

- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.

- ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

 $$\nu = \psi_0(\vartheta + m\varphi).$$

- Since ψ_0 and $m\psi_0$ are constant multiples of $(1, -1) \cdot F(z, 0)$ and $(1, 1) \cdot F(z, 0)$, respectively, both of these are entire.

- m has a meromorphic extension to all of \mathbb{C} (denoted by M).
Jost solutions II

• $|z| < 1$.

• $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.

• ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

$$\nu = \psi_0(\vartheta + m\varphi).$$

• Since ψ_0 and $m\psi_0$ are constant multiples of $(1, -1) \cdot F(z, 0)$ and $(1, 1) \cdot F(z, 0)$, respectively, both of these are entire.

• m has a meromorphic extension to all of \mathbb{C} (denoted by M).

• ψ_0 cannot have zeros in \mathbb{D}. Those outside are called resonances.
Jost solutions III

- For the sequence $\tilde{\nu}(z, k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \nu(1/\bar{z}, k)$ is also a solution of the CMV recursion (and square integrable for $|z| > 1$).
Jost solutions III

- For the sequence $\tilde{\nu}(z, k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\nu(1/\bar{z}, k)}$ is also a solution of the CMV recursion (and square integrable for $|z| > 1$).

- $\det T(z, k) = -1 \Rightarrow \det(\nu(z, 2k), \tilde{\nu}(z, 2k))$ is independent of k.
• For the sequence $\tilde{\nu}(z, k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \nu(1/\bar{z}, k)$ is also a solution of the CMV recursion (and square integrable for $|z| > 1$).

• $\det T(z, k) = -1 \Rightarrow \det(\nu(z, 2k), \tilde{\nu}(z, 2k))$ is independent of k.

• From asymptotics

\[
\det(\nu(z, 2k), \tilde{\nu}(z, 2k)) \approx \det \begin{pmatrix} 0 & 2z^{-k} \\ 2z^k & 0 \end{pmatrix} = -4.
\]
Jost solutions III

- For the sequence $\tilde{\nu}(z, k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\nu(1/\bar{z}, k)}$ is also a solution of the CMV recursion (and square integrable for $|z| > 1$).

- $\det T(z, k) = -1 \Rightarrow \det(\nu(z, 2k), \tilde{\nu}(z, 2k))$ is independent of k.

- From asymptotics

$$\det(\nu(z, 2k), \tilde{\nu}(z, 2k)) \approx \det \begin{pmatrix} 0 & 2z^{-k} \\ 2z^k & 0 \end{pmatrix} = -4.$$

- But

$$\det(\nu(z, 0), \tilde{\nu}(z, 0)) = \psi_0(z)\overline{\psi_0(1/\bar{z})} \det \begin{pmatrix} M(z) - 1 & \overline{M(1/\bar{z})} - 1 \\ M(z) + 1 & \overline{M(1/\bar{z})} + 1 \end{pmatrix}$$

$$= 2\psi_0(z)\overline{\psi_0(1/\bar{z})}(M(z) - \overline{M(1/\bar{z})}).$$
Recall 4 = 2\psi_0(z)\bar{\psi}_0(1/z)(M(z) - \overline{M(1/z)}).
• Recall $4 = 2\psi_0(z)\bar{\psi}_0(1/\bar{z})(M(z) - \bar{M}(1/\bar{z}))$.

• For $|z| = 1$, i.e., $z = 1/\bar{z}$ this gives

$$1 = |\psi_0(z)|^2 \text{Re}(M(z)).$$
• Recall $4 = 2\psi_0(z)\overline{\psi_0(1/\bar{z})}(M(z) - \overline{M(1/\bar{z})})$.

• For $|z| = 1$, i.e., $z = 1/\bar{z}$ this gives

$$1 = |\psi_0(z)|^2 \text{Re}(M(z)).$$

• An analytic function in the unit disk is (up to an additive constant) determined by its real part on the unit circle.

$$m(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \text{Re}(M(e^{it})) dt.$$
• Recall $4 = 2\psi_0(z)\overline{\psi_0(1/z)}(M(z) - \overline{M(1/z)})$.

• For $|z| = 1$, i.e., $z = 1/\overline{z}$ this gives

$$1 = |\psi_0(z)|^2 \text{Re}(M(z)).$$

• An analytic function in the unit disk is (up to an additive constant) determined by its real part on the unit circle.

$$m(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \frac{1}{|\psi_0(e^{it})|^2} \, dt.$$
The inverse resonance problem

Theorem

The location of the resonances (accounting for multiplicities) determine the Verblunsky coefficients uniquely.
Sketch of proof

- The Verblunsky coefficients are given by the Schur functions as
 \[\alpha_{k+1} = -\Phi_k(0). \]
Sketch of proof

• The Verblunsky coefficients are given by the Schur functions as
 \[\alpha_{k+1} = -\Phi_k(0). \]

• The Schur functions are determined recursively from \(\Phi_0 \) and hence from \(m \).
Sketch of proof

- The Verblunsky coefficients are given by the Schur functions as
 \[\alpha_{k+1} = -\Phi_k(0). \]

- The Schur functions are determined recursively from \(\Phi_0 \) and hence from \(m \).

- \(m \) is determined by \(|\psi_0(e^{it})| \).
Sketch of proof

- The Verblunsky coefficients are given by the Schur functions as
 \[\alpha_{k+1} = -\Phi_k(0). \]

- The Schur functions are determined recursively from \(\Phi_0 \) and hence from \(m \).

- \(m \) is determined by \(|\psi_0(e^{it})| \).

- \(\psi_0(z) = \psi_0(0) \prod_{k=1}^{\infty} (1 - z/z_k) \) where the \(z_k \) are the resonances.
Sketch of proof

- The Verblunsky coefficients are given by the Schur functions as
 \[\alpha_{k+1} = -\Phi_k(0). \]
- The Schur functions are determined recursively from \(\Phi_0 \) and hence from \(m \).
- \(m \) is determined by \(|\psi_0(e^{it})| \).
- \(\psi_0(z) = \psi_0(0) \prod_{k=1}^{\infty} (1 - z/z_k) \) where the \(z_k \) are the resonances.
- \(|\psi_0(0)| \) is determined since

 \[1 = m(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{|\psi_0(e^{it})|^2} \, dt. \]
Zinchenko’s improvements

- Growth order: \(\rho(\psi) = \inf\{\tau > 0 : |\psi(z)| \leq e^{\tau|z|} \text{ eventually} \} \)

- Decay rate: \(\delta(\alpha) = \sup\{\tau : |\alpha_k| \leq e^{-\tau k \log(k)} \text{ eventually} \} \)

- Our condition on \(\alpha \) gives \(\delta(\alpha) = \infty \)

- Theorem [Zinchenko 2014]: \(\delta(\alpha) > 0 \iff \psi_0 \) has entire extension and \(\rho(\psi_0) = \frac{1}{\delta(\alpha)} \)

- Theorem [Zinchenko 2014]: If \(\psi_0 \) is entire, of finite growth order and without zeros in \(\mathbb{D} \), then it is the Jost function of a unique CMV operator.
Zinchenko’s improvements

- Growth order: \(\rho(\psi) = \inf\{\tau > 0 : |\psi(z)| \leq e^{|z|^{\tau}} \text{ eventually}\} \)
- Decay rate: \(\delta(\alpha) = \sup\{\tau : |\alpha_k| \leq e^{-\tau k \log(k)} \text{ eventually}\} \)

Theorem [Zinchenko 2014]: \(\delta(\alpha) > 0 \iff \psi_0 \) has entire extension and \(\rho(\psi_0) = 1/\delta(\alpha) \)

Theorem [Zinchenko 2014]: If \(\psi_0 \) is entire, of finite growth order and without zeros in \(\mathbb{D} \), then it is the Jost function of a unique CMV operator.
Zinchenko’s improvements

- Growth order: \(\rho(\psi) = \inf\{\tau > 0 : |\psi(z)| \leq e^{|z|^\tau} \text{ eventually} \} \)

- Decay rate: \(\delta(\alpha) = \sup\{\tau : |\alpha_k| \leq e^{-\tau k \log(k)} \text{ eventually} \} \)

- Our condition on \(\alpha \) gives \(\delta(\alpha) = \infty \)
Zinchenko’s improvements

- Growth order: $\rho(\psi) = \inf\{\tau > 0 : |\psi(z)| \leq e^{\lambda z^\tau} \text{ eventually}\}$

- Decay rate: $\delta(\alpha) = \sup\{\tau : |\alpha_k| \leq e^{-\tau k \log(k)} \text{ eventually}\}$

- Our condition on α gives $\delta(\alpha) = \infty$

- Theorem [Zinchenko 2014]:

 $$\delta(\alpha) > 0 \iff \psi_0 \text{ has entire extension and } \rho(\psi_0) = 1/\delta(\alpha)$$
Zinchenko’s improvements

- Growth order: \(\rho(\psi) = \inf\{\tau > 0 : |\psi(z)| \leq e^{|z|\tau} \text{ eventually} \} \)

- Decay rate: \(\delta(\alpha) = \sup\{\tau : |\alpha_k| \leq e^{-\tau k \log(k)} \text{ eventually} \} \)

- Our condition on \(\alpha \) gives \(\delta(\alpha) = \infty \)

- Theorem [Zinchenko 2014]:
 \[\delta(\alpha) > 0 \Leftrightarrow \psi_0 \text{ has entire extension and } \rho(\psi_0) = 1/\delta(\alpha) \]

- Theorem [Zinchenko 2014]:
 If \(\psi_0 \) is entire, of finite growth order and without zeros in \(\overline{\mathbb{D}} \), then it is the Jost function of a unique CMV operator.
Distribution of resonances

- Assume $|\alpha_k| \leq \eta e^{-k\gamma}$ for some $\eta > 0$ and $\gamma > 1$ and
 $\prod_{j=1}^{\infty}(1 - |\alpha_j|) \geq 1/Q$ for some $Q > 1$.

Distribution of resonances

- Assume $|\alpha_k| \leq \eta e^{-k\gamma}$ for some $\eta > 0$ and $\gamma > 1$ and
 $\prod_{j=1}^{\infty} (1 - |\alpha_j|) \geq 1/Q$ for some $Q > 1$.

- From Jensen’s formula

\[
N(r) \leq A_1 + \frac{(4 \log r)^p}{2}
\]

where $p = \gamma/(\gamma - 1)$ and A_1 depends only on Q, η, and γ.

Rudi Weikard (UAB) Stability for CMV July 11, 2014 22 / 24
Distribution of resonances

- Assume $|\alpha_k| \leq \eta e^{-k\gamma}$ for some $\eta > 0$ and $\gamma > 1$ and $\prod_{j=1}^{\infty} (1 - |\alpha_j|) \geq 1/Q$ for some $Q > 1$.

- From Jensen’s formula

$$N(r) \leq A_1 + \frac{(4 \log r)^p}{2}$$

where $p = \gamma/(\gamma - 1)$ and A_1 depends only on Q, η, and γ.

- This implies

$$\sum_{|z_n| > R} \frac{1}{|z_n|} = \int_R^\infty \frac{dN(t)}{t} \leq \frac{A_1}{R} + \frac{4^p}{2} \Gamma(p + 1, \log R).$$
Distribution of resonances

• Assume $|\alpha_k| \leq \eta e^{-k\gamma}$ for some $\eta > 0$ and $\gamma > 1$ and
 $\prod_{j=1}^{\infty} (1 - |\alpha_j|) \geq 1/Q$ for some $Q > 1$.

• From Jensen’s formula
 \[
 N(r) \leq A_1 + \frac{(4 \log r)^p}{2}
 \]
 where $p = \gamma / (\gamma - 1)$ and A_1 depends only on Q, η, and γ.

• This implies
 \[
 \sum_{|z_n| > R} \frac{1}{|z_n|} = \int_{R}^{\infty} \frac{dN(t)}{t} \leq \frac{A_1}{R} + \frac{4p}{2} \Gamma(p + 1, \log R).
 \]

• Asymptotics of $\Gamma(p + 1, \cdot)$ give
 \[
 \sum_{|z_n| > R} \frac{1}{|z_n|} \leq A_2 \frac{\left(\log R\right)^p}{R}
 \]
 where A_2 depends only on Q, η, and γ.
Suppose α and $\tilde{\alpha}$ are two sequences of Verblunsky coefficients with super-exponential decay as before. Assume that the resonances in some ball of radius R, if there are any, are respectively ε-close. Then there is a constant A_0, depending only on γ, η, and Q, such that

$$|\alpha_n - \tilde{\alpha}_n| \leq A_0 \left(\varepsilon + \frac{\log R}{R} \right)^{1/\log(6eQ^2)}$$

for all $n \in \mathbb{N}$.
Sketch of proof

• \(|\alpha_k - \tilde{\alpha}_k| \leq |\Phi_{k-1}(0) - \tilde{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1 \) by the mean value theorem \((\|f\|_p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi))\).
Sketch of proof

• $|\alpha_k - \tilde{\alpha}_k| \leq |\Phi_{k-1}(0) - \tilde{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1$ by the mean value theorem ($\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)$).

• $\|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1 \leq 6Q^2\|\Phi_{k-2} - \tilde{\Phi}_{k-2}\|_1$ by the Schur algorithm.
Sketch of proof

- $|\alpha_k - \bar{\alpha}_k| \leq |\Phi_{k-1}(0) - \bar{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} - \bar{\Phi}_{k-1}\|_1$ by the mean value theorem ($\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)$).

- $\|\Phi_{k-1} - \bar{\Phi}_{k-1}\|_1 \leq 6Q^2\|\Phi_{k-2} - \bar{\Phi}_{k-2}\|_1$ by the Schur algorithm.

- $\Phi_0(z) - \bar{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \bar{M}(z)}{(1+M(z))(1+\bar{M}(z))}$.
Sketch of proof

• $|\alpha_k - \tilde{\alpha}_k| \leq |\Phi_{k-1}(0) - \tilde{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1$ by the mean value theorem ($\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt / (2\pi)$).

• $\|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1 \leq 6Q^2\|\Phi_{k-2} - \tilde{\Phi}_{k-2}\|_1$ by the Schur algorithm.

• $\Phi_0(z) - \tilde{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \tilde{M}(z)}{(1 + M(z))(1 + \tilde{M}(z))}$.

• $|1 + M(z)| \geq \text{Re}(1 + M(z)) \geq 1$.
Sketch of proof

• $|\alpha_k - \tilde{\alpha}_k| \leq |\Phi_{k-1}(0) - \tilde{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1$ by the mean value theorem ($\|f\|_p = \int_{-\pi}^{\pi} |f|^p dt / (2\pi)$).

• $\|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1 \leq 6Q^2 \|\Phi_{k-2} - \tilde{\Phi}_{k-2}\|_1$ by the Schur algorithm.

• $\Phi_0(z) - \tilde{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \tilde{M}(z)}{(1+M(z))(1+\tilde{M}(z))}$.

• $|1 + M(z)| \geq \text{Re}(1 + M(z)) \geq 1$.

• If $|\text{Re } f(0)| = |\text{Im } f(0)|$ then $\text{Re } f$ and $\text{Im } f$ have the same 2-norm.
Sketch of proof

- $|\alpha_k - \tilde{\alpha}_k| \leq |\Phi_{k-1}(0) - \tilde{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1$ by the mean value theorem ($\|f\|_p = \frac{\int_{-\pi}^{\pi} |f|^p dt}{(2\pi)}$).

- $\|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1 \leq 6Q^2\|\Phi_{k-2} - \tilde{\Phi}_{k-2}\|_1$ by the Schur algorithm.

- $\Phi_0(z) - \tilde{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \tilde{M}(z)}{(1+M(z))(1+\tilde{M}(z))}$.

- $|1 + M(z)| \geq \text{Re}(1 + M(z)) \geq 1$.

- If $|\text{Re } f(0)| = |\text{Im } f(0)|$ then $\text{Re } f$ and $\text{Im } f$ have the same 2-norm.

- We need to estimate $\|\text{Re } M - \text{Re } \tilde{M}\|_2 = \|\psi_0|^{-2} - |	ilde{\psi}_0|^{-2}\|_2$.
Sketch of proof

• \(|\alpha_k - \tilde{\alpha}_k| \leq |\Phi_{k-1}(0) - \tilde{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1\) by the mean value theorem (\(\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt / (2\pi)\)).

• \(\|\Phi_{k-1} - \tilde{\Phi}_{k-1}\|_1 \leq 6Q^2\|\Phi_{k-2} - \tilde{\Phi}_{k-2}\|_1\) by the Schur algorithm.

• \(\Phi_0(z) - \tilde{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \tilde{M}(z)}{(1 + M(z))(1 + \tilde{M}(z))}\).

• \(|1 + M(z)| \geq \text{Re}(1 + M(z)) \geq 1\).

• If \(|\text{Re} f(0)| = |\text{Im} f(0)|\) then \(\text{Re} f\) and \(\text{Im} f\) have the same 2-norm.

• We need to estimate \(\|\text{Re} M - \text{Re} \tilde{M}\|_2 = \||\psi_0|^{-2} - |\tilde{\psi}_0|^{-2}\|_2\).

• Hence we need to compare

\[
\psi_0(z) = \psi_0(0) \prod_{n=1}^{\infty} (1 - z/z_n) \quad \text{and} \quad \tilde{\psi}_0(z) = \tilde{\psi}_0(0) \prod_{n=1}^{\infty} (1 - z/\tilde{z}_n).
\]