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I am reporting on joint work with

• Roman Shterenberg (UAB) and

• Maxim Zinchenko (New Mexico).
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Inverse resonance problems

• Brown and Eastham (1997 – 2000) found that the points of spectral
concentration indicate the presence of resonances in the vicinity.

• Korotyaev (2000) and Zworski (2001/1988) pointed out that
resonances determine potentials of a Schrödinger equation uniquely.

• Brown, Knowles, Naboko and myself have some contributions to
uniqueness (Schrödinger problems with zero or algebro-geometric
backgrounds, Jacobi problems with zero background).

• Iantchenko and Korotyaev (2011) have results for Jacobi problems
with periodic background).

• Stability of the recovered potential for finite noisy resonance data for
the Schrödinger equation (with Marletta, Naboko, Shterenberg;
Bledsoe).
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Orthogonal polynomials on the real line

• Let µ be a probability measure on R all of whose moments are finite.

• By Gram-Schmidt this gives rise to a sequence of orthonormal
polynomials pn (unique with positive leading coefficient).

• It is well known (and easy to see) that they satisfy a three-term
recurrence:

an−1pn−1(t) + bnpn(t) + anpn+1(t) = tpn(t)

where the an 6= 0.

• Thus, choosing the pn as a basis, multiplication by t is represented by
a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.

• Multiplication by t is a self-adjoint operator.

• Spectral theory for Jacobi matrices allows to investigate the
polynomials.
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Orthogonal polynomials on the unit circle

• Given a probability measure on the unit circle one can construct again
orthogonal polynomials.

• Interest in these polynomials was triggered during the 1990s by
applications in digital signal processing.

• In 2005 B. Simon published a monumental 2-volume work on these
matters (which has by now at least 322 citations according to
MathSciNet).

• The representation of multiplication by the independent variable
(using the orthogonal polynomials as a basis) leads only to a
Hessenberg matrix.
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Cantero, Moral, and Velázquez (CMV)
• In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials

in C[z , 1/z ].

• Apply Gram-Schmidt to (1, 1/z , z , 1/z2, z2, ...) to produce
orthonormal Laurent polynomials fn (OLPs) instead of the standard
OPs pn.

• In terms of this basis multiplication by z is represented by a
five-diagonal matrix.

• Multiplication by z is now a unitary operator denoted by U.

• The OLPs and the OPs are in a simple relationship:

f2n(z) = z−np2n(z), f2n+1(z) = znp2n+1(1/z).

• Starting from (1, z , 1/z , z2, 1/z2, ...) the OLPs are

gn(z) = fn,∗(z) := fn(1/z).
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The 5-term recurrence

• Instead of a Jacobi matrix CMV obtained the matrix

U =



−α1 ρ1 0
−ρ1α2 −α1α2 −ρ2α3 ρ2ρ3 0
ρ1ρ2 α1ρ2 −α2α3 α2ρ3 0

0 −ρ3α4 −α3α4 −ρ4α5 ρ4ρ5

ρ3ρ4 α3ρ4 −α4α5 α4ρ5 0

0 . . .
. . .

. . .
. . .

. . .


where αn ∈ D, ρn =

√
1− |αn|2.

• The αn are called Verblunsky coefficients.

• We may think of U as a unitary operator in `2(N0) or as mapping any
sequence of complex numbers to another.
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Factorization of U

Every CMV matrix admits the following factorization

U = VW =



1
−α2 ρ2

ρ2 α2

−α4 ρ4

ρ4 α4

. . .





−α1 ρ1

ρ1 α1

−α3 ρ3

ρ3 α3

. . .


.
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CMV recursion

• Despite U being 5-diagonal we have a second order problem.

• Let βk = αk or βk = αk and ζk = z or ζk = 1 depending on whether
k is odd or even and

T (z , k) =
1

ρk

(
βk ζk

1/ζk βk

)
.

• Then [Gesztesy, Zinchenko 2006](
u

v

)
(k) = T (k)

(
u

v

)
(k − 1), k ∈ N

if and only if

Wu = zv and Vv = u + (v(z , 0)− u(z , 0))δ0.

• Consequently (U − z)u = z(v(z , 0)− u(z , 0))δ0 (not necessarily in
the operator sense).

• In particular Uu = zu if v(z , 0) = u(z , 0).
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Initial value problems

• For z 6= 0 introduce the solutions ϑ(z , ·) and ϕ(z , ·) of(
u

v

)
(k) = T (k)

(
u

v

)
(k − 1)

with initial conditions (−1, 1)> and (1, 1)>, respectively.

• Note that

ϕ(z , k) =

(
0 1
1 0

)
ϕ(1/z , k) and ϑ(z , k) = −

(
0 1
1 0

)
ϑ(1/z , k).

• Also, if

(
u

v

)
= ϕ, we have v(z , 0) = u(z , 0) and hence Uu = zu.
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Weyl-Titchmarsh solutions

• Define, for |z | 6= 1,

u(z , ·) = 2z(U − z)−1δ0 ∈ `2(N0) and v(z , ·) =
1

z
Wu ∈ `2(N0).

• Then (u, v)⊥ satisfies the CMV recursion and(
u

v

)
(k) = ϑ(k) + m(z)ϕ(k) =: ω(k)

when m(z) = 1 + u(z , 0); this is the Weyl-Titchmarsh solution.

• It follows that

m(z) = 1 + u(z , 0) = 〈δ0, (U + z)(U − z)−1δ0〉

is a Caratheodory function with representation

m(z) =

∮
∂D

ζ + z

ζ − z
dµ(ζ).
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ζ + z

ζ − z
dµ(ζ).
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Caratheodory and Schur functions

• An analytic function f : D→ C is called a Caratheodory function, if
f (0) = 1 and Re(f ) > 0.

• An analytic function g : D→ C is called a Schur function, if |g | < 1.

• If f is Caratheodory and g is Schur, then (f − 1)/(f + 1) is Schur and
(1 + g)/(1− g) is Caratheodory.

• Note also that, by Schwarz’s lemma, z 7→ g(z)/z is a Schur function,
if g is a Schur function and g(0) = 0.

• The Möbius transform z 7→ S(w , z) = (z + w)/(1 + wz) maps D to
itself, if |w | < 1.

• If g is a Schur function with g(0) = −w and |w | < 1 then

z 7→ 1

z
S(w , g(z))

is a Schur function.
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The Schur algorithm I

• Define

Φ2k(z) =
1

z

ω1(z , 2k)

ω2(z , 2k)
and Φ2k+1(z) =

ω2(z , 2k + 1)

ω1(z , 2k + 1)

• Initial conditions: Φ0(z) = 1
z
m(z)−1
m(z)+1 .

• CMV recursion: Φk(z) = 1
z S(αk ,Φk−1(z)) = 1

z
Φk−1(z)+αk

1+αkΦk−1(z) .

• Using the Neumann series

m(z) = 〈δ0, (U+z)(U−z)−1δ0〉 = 1+2
∞∑
n=1

〈δ0,U
−nδ0〉 = 1−2α1z+...

• m(0) = 1 implies Φ0 is a Schur function, m′(0) = −2α1 implies
Φ0(0) = −α1 ∈ D.

• Hence Φ1 is a Schur function and knowledge about m′′(0) gives
Φ1(0) = −α2 ∈ D.
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The Schur algorithm II

• Deleting 2 rows and 2 columns from the matrix U gives a similar
problem whose Weyl-Titchmarsh function is a multiple of the original
one truncated by the first two elements.

• Thus Φ2 and Φ3 are Schur functions with Φ2(0) = −α3 and
Φ3(0) = −α4

• Conclusion: The Φk are Schur functions with Φk(0) = −αk+1 ∈ D
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Jost solutions I

• Assume
|αk | ≤ ηe−k

γ

for some η > 0 and γ > 1.

• The Volterra equation [W., Zinchenko 2010]

F (z , k) =

(
1

0

)
−

∞∑
n=k+1

(
0 αnζn

αnzn−k−1ζk+1 0

)
F (z , n), k ∈ N0

has a unique solution for any z ∈ C.

• Either component of F (·, k) is entire of growth order 0.

• Then

ν(z , k) = 2zdk/2e( ∞∏
j=k+1

ρ−1
j

)(0 1
1 0

)k+1

F (z , k)

satisfies the CMV recursion.
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Jost solutions II

• |z | < 1.

• ν(z , ·) is in `2(N0); it is then called the Jost solution for CMV.

• ν must be a multiple of the Weyl-Titchmarsh solution ϑ+ mϕ.
Define the Jost function ψ0 by

ν = ψ0(ϑ+ mϕ).

• Since ψ0 and mψ0 are constant multiples of (1,−1) · F (z , 0) and
(1, 1) · F (z , 0), respectively, both of these are entire.

• m has a meromorphic extension to all of C (denoted by M).

• ψ0 cannot have zeros in D. Those outside are called resonances.
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Jost solutions III

• For the sequence ν̃(z , k) =

(
0 1
1 0

)
ν(1/z , k) is also a solution of the

CMV recursion (and square integrable for |z | > 1).

• det T (z , k) = −1⇒ det(ν(z , 2k), ν̃(z , 2k)) is independent of k.

• From asymptotics

det(ν(z , 2k), ν̃(z , 2k)) ≈ det

(
0 2z−k

2zk 0

)
= −4.

• But

det(ν(z , 0), ν̃(z , 0)) = ψ0(z)ψ0(1/z) det

(
M(z)− 1 M(1/z)− 1

M(z) + 1 M(1/z) + 1

)
= 2ψ0(z)ψ0(1/z)(M(z)−M(1/z)).
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Jost solutions IV

• Recall 4 = 2ψ0(z)ψ0(1/z)(M(z)−M(1/z)).

• For |z | = 1, i.e., z = 1/z this gives

1 = |ψ0(z)|2 Re(M(z)).

• An analytic function in the unit disk is (up to an additive constant)
determined by its real part on the unit circle.
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2π

∫ π

−π

eit + z

eit − z
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• For |z | = 1, i.e., z = 1/z this gives

1 = |ψ0(z)|2 Re(M(z)).

• An analytic function in the unit disk is (up to an additive constant)
determined by its real part on the unit circle.
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2π

∫ π
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eit + z

eit − z
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|ψ0(eit)|2
dt.
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The inverse resonance problem

Theorem
The location of the resonances (accounting for multiplicities) determine
the Verblunsky coefficients uniquely.
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Sketch of proof

• The Verblunsky coefficients are given by the Schur functions as
αk+1 = −Φk(0).

• The Schur functions are determined recursively from Φ0 and hence
from m.

• m is determined by |ψ0(eit)|.

• ψ0(z) = ψ0(0)
∏∞

k=1(1− z/zk) where the zk are the resonances.

• |ψ0(0)| is determined since

1 = m(0) =
1

2π

∫ π

−π

1

|ψ0(eit)|2
dt.
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Zinchenko’s improvements

• Growth order: ρ(ψ) = inf{τ > 0 : |ψ(z)| ≤ e|z|
τ

eventually}

• Decay rate: δ(α) = sup{τ : |αk | ≤ e−τk log(k) eventually}

• Our condition on α gives δ(α) =∞

• Theorem [Zinchenko 2014]:

δ(α) > 0⇔ ψ0 has entire extension and ρ(ψ0) = 1/δ(α)

• Theorem [Zinchenko 2014]:
If ψ0 is entire, of finite growth order and without zeros in D, then it is
the Jost function of a unique CMV operator.
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Distribution of resonances
• Assume |αk | ≤ ηe−k

γ
for some η > 0 and γ > 1 and∏∞

j=1(1− |αj |) ≥ 1/Q for some Q > 1.

• From Jensen’s formula

N(r) ≤ A1 +
(4 log r)p

2

where p = γ/(γ − 1) and A1 depends only on Q, η, and γ.

• This implies∑
|zn|>R

1

|zn|
=

∫ ∞
R

dN(t)

t
≤ A1

R
+

4p

2
Γ(p + 1, log R).

• Asymptotics of Γ(p + 1, ·) give∑
|zn|>R

1

|zn|
≤ A2

(log R)p

R

where A2 depends only on Q, η, and γ.
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Stability

Suppose α and ᾰ are two sequences of Verblunsky coefficients with
super-exponential decay as before. Assume that the resonances in some
ball of radius R, if there are any, are respectively ε-close. Then there is a
constant A0, depending only on γ, η, and Q, such that

|αn − ᾰn| ≤ A0

(
ε+

(log R)p

R

)1/ log(6eQ2)

for all n ∈ N.
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Sketch of proof

• |αk − ᾰk | ≤ |Φk−1(0)− Φ̆k−1(0)| ≤ ‖Φk−1 − Φ̆k−1‖1 by the mean
value theorem (‖f ‖pp =

∫ π
−π |f |

pdt/(2π)).

• ‖Φk−1 − Φ̆k−1‖1 ≤ 6Q2‖Φk−2 − Φ̆k−2‖1 by the Schur algorithm.

• Φ0(z)− Φ̆0(z) = 2
z

M(z)−M̆(z)

(1+M(z))(1+M̆(z))
.

• |1 + M(z)| ≥ Re(1 + M(z)) ≥ 1.

• If |Re f (0)| = | Im f (0)| then Re f and Im f have the same 2-norm.

• We need to estimate ‖Re M − Re M̆‖2 = ‖|ψ0|−2 − |ψ̆0|−2‖2.

• Hence we need to compare

ψ0(z) = ψ0(0)
∞∏
n=1

(1− z/zn) and ψ̆0(z) = ψ̆0(0)
∞∏
n=1

(1− z/z̆n).
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