Stability for the inverse resonance problem for the CMV operator

Rudi Weikard

University of Alabama at Birmingham

OTAMP 2014

July 11, 2014

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 1 / 24

I am reporting on joint work with

- Roman Shterenberg (UAB) and
- Maxim Zinchenko (New Mexico).

イロト 不得 とくき とくき とうき

 Brown and Eastham (1997 – 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.

July 11, 2014 3 / 24

- Brown and Eastham (1997 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.
- Korotyaev (2000) and Zworski (2001/1988) pointed out that resonances determine potentials of a Schrödinger equation uniquely.

- Brown and Eastham (1997 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.
- Korotyaev (2000) and Zworski (2001/1988) pointed out that resonances determine potentials of a Schrödinger equation uniquely.
- Brown, Knowles, Naboko and myself have some contributions to uniqueness (Schrödinger problems with zero or algebro-geometric backgrounds, Jacobi problems with zero background).

- Brown and Eastham (1997 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.
- Korotyaev (2000) and Zworski (2001/1988) pointed out that resonances determine potentials of a Schrödinger equation uniquely.
- Brown, Knowles, Naboko and myself have some contributions to uniqueness (Schrödinger problems with zero or algebro-geometric backgrounds, Jacobi problems with zero background).
- Iantchenko and Korotyaev (2011) have results for Jacobi problems with periodic background).

- Brown and Eastham (1997 2000) found that the points of spectral concentration indicate the presence of resonances in the vicinity.
- Korotyaev (2000) and Zworski (2001/1988) pointed out that resonances determine potentials of a Schrödinger equation uniquely.
- Brown, Knowles, Naboko and myself have some contributions to uniqueness (Schrödinger problems with zero or algebro-geometric backgrounds, Jacobi problems with zero background).
- Iantchenko and Korotyaev (2011) have results for Jacobi problems with periodic background).
- Stability of the recovered potential for finite noisy resonance data for the Schrödinger equation (with Marletta, Naboko, Shterenberg; Bledsoe).

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 3 / 24

• Let μ be a probability measure on $\mathbb R$ all of whose moments are finite.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬ⊙

- Let μ be a probability measure on $\mathbb R$ all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials *p_n* (unique with positive leading coefficient).

- Let μ be a probability measure on $\mathbb R$ all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials *p_n* (unique with positive leading coefficient).
- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_np_n(t) + a_np_{n+1}(t) = tp_n(t)$$

where the $a_n \neq 0$.

- Let μ be a probability measure on $\mathbb R$ all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials *p_n* (unique with positive leading coefficient).
- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_n p_n(t) + a_n p_{n+1}(t) = t p_n(t)$$

where the $a_n \neq 0$.

• Thus, choosing the p_n as a basis, multiplication by t is represented by a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.

July 11, 2014 4 / 24

イロト 不得 トイヨト イヨト ヨー つくつ

- Let μ be a probability measure on $\mathbb R$ all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).
- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_n p_n(t) + a_n p_{n+1}(t) = t p_n(t)$$

where the $a_n \neq 0$.

- Thus, choosing the p_n as a basis, multiplication by t is represented by a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.
- Multiplication by t is a self-adjoint operator.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 4 / 24

イロト 不得 トイヨト イヨト ヨー つくつ

- Let μ be a probability measure on $\mathbb R$ all of whose moments are finite.
- By Gram-Schmidt this gives rise to a sequence of orthonormal polynomials p_n (unique with positive leading coefficient).
- It is well known (and easy to see) that they satisfy a three-term recurrence:

$$a_{n-1}p_{n-1}(t) + b_n p_n(t) + a_n p_{n+1}(t) = t p_n(t)$$

where the $a_n \neq 0$.

- Thus, choosing the p_n as a basis, multiplication by t is represented by a three-diagonal semi-infinite matrix, i.e., a Jacobi matrix.
- Multiplication by t is a self-adjoint operator.
- Spectral theory for Jacobi matrices allows to investigate the polynomials.

Rudi Weikard (UAB)

Stability for CMV

• Given a probability measure on the unit circle one can construct again orthogonal polynomials.

- Given a probability measure on the unit circle one can construct again orthogonal polynomials.
- Interest in these polynomials was triggered during the 1990s by applications in digital signal processing.

- Given a probability measure on the unit circle one can construct again orthogonal polynomials.
- Interest in these polynomials was triggered during the 1990s by applications in digital signal processing.
- In 2005 B. Simon published a monumental 2-volume work on these matters (which has by now at least 322 citations according to MathSciNet).

イロト 不得下 イヨト イヨト

- Given a probability measure on the unit circle one can construct again orthogonal polynomials.
- Interest in these polynomials was triggered during the 1990s by applications in digital signal processing.
- In 2005 B. Simon published a monumental 2-volume work on these matters (which has by now at least 322 citations according to MathSciNet).
- The representation of multiplication by the independent variable (using the orthogonal polynomials as a basis) leads only to a Hessenberg matrix.

 In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in ℂ[z, 1/z].

(日) (四) (三) (三) (三)

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in ℂ[z, 1/z].
- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n .

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in ℂ[z, 1/z].
- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n .
- In terms of this basis multiplication by z is represented by a five-diagonal matrix.

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in ℂ[z, 1/z].
- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n .
- In terms of this basis multiplication by z is represented by a five-diagonal matrix.
- Multiplication by z is now a unitary operator denoted by U.

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in ℂ[z, 1/z].
- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n .
- In terms of this basis multiplication by z is represented by a five-diagonal matrix.
- Multiplication by z is now a unitary operator denoted by U.
- The OLPs and the OPs are in a simple relationship:

$$f_{2n}(z) = z^{-n}p_{2n}(z), \quad f_{2n+1}(z) = z^n \overline{p_{2n+1}(1/\overline{z})}.$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 6 / 24

- In 2003 CMV suggested to use Laurent polynomials, i.e., polynomials in ℂ[z, 1/z].
- Apply Gram-Schmidt to $(1, 1/z, z, 1/z^2, z^2, ...)$ to produce orthonormal Laurent polynomials f_n (OLPs) instead of the standard OPs p_n .
- In terms of this basis multiplication by z is represented by a five-diagonal matrix.
- Multiplication by z is now a unitary operator denoted by U.
- The OLPs and the OPs are in a simple relationship:

$$f_{2n}(z) = z^{-n}p_{2n}(z), \quad f_{2n+1}(z) = z^n \overline{p_{2n+1}(1/\overline{z})}.$$

- Starting from $(1, z, 1/z, z^2, 1/z^2, ...)$ the OLPs are

$$g_n(z) = f_{n,*}(z) := \overline{f_n(1/\overline{z})}.$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 6 / 24

The 5-term recurrence

Instead of a Jacobi matrix CMV obtained the matrix

where $\alpha_n \in \mathbb{D}$, $\rho_n = \sqrt{1 - |\alpha_n|^2}$.

The 5-term recurrence

Instead of a Jacobi matrix CMV obtained the matrix

$$U = \begin{pmatrix} -\alpha_1 & \rho_1 & 0 & & \\ -\rho_1\alpha_2 & -\overline{\alpha}_1\alpha_2 & -\rho_2\alpha_3 & \rho_2\rho_3 & 0 \\ \rho_1\rho_2 & \overline{\alpha}_1\rho_2 & -\overline{\alpha}_2\alpha_3 & \overline{\alpha}_2\rho_3 & 0 \\ & 0 & -\rho_3\alpha_4 & -\overline{\alpha}_3\alpha_4 & -\rho_4\alpha_5 & \rho_4\rho_5 \\ & & \rho_3\rho_4 & \overline{\alpha}_3\rho_4 & -\overline{\alpha}_4\alpha_5 & \overline{\alpha}_4\rho_5 & 0 \\ 0 & & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

where $\alpha_n \in \mathbb{D}$, $\rho_n = \sqrt{1 - |\alpha_n|^2}$.

• The α_n are called Verblunsky coefficients.

Stability for CMV

The 5-term recurrence

· Instead of a Jacobi matrix CMV obtained the matrix

$$U = \begin{pmatrix} -\alpha_{1} & \rho_{1} & 0 & & \\ -\rho_{1}\alpha_{2} & -\overline{\alpha}_{1}\alpha_{2} & -\rho_{2}\alpha_{3} & \rho_{2}\rho_{3} & 0 \\ \rho_{1}\rho_{2} & \overline{\alpha}_{1}\rho_{2} & -\overline{\alpha}_{2}\alpha_{3} & \overline{\alpha}_{2}\rho_{3} & 0 \\ & 0 & -\rho_{3}\alpha_{4} & -\overline{\alpha}_{3}\alpha_{4} & -\rho_{4}\alpha_{5} & \rho_{4}\rho_{5} \\ & & \rho_{3}\rho_{4} & \overline{\alpha}_{3}\rho_{4} & -\overline{\alpha}_{4}\alpha_{5} & \overline{\alpha}_{4}\rho_{5} & 0 \\ & & & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

where $\alpha_n \in \mathbb{D}$, $\rho_n = \sqrt{1 - |\alpha_n|^2}$.

- The α_n are called Verblunsky coefficients.
- We may think of U as a unitary operator in $\ell^2(\mathbb{N}_0)$ or as mapping any sequence of complex numbers to another.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 7 / 24

イロト イポト イヨト イヨト

= 900

Factorization of U

Every CMV matrix admits the following factorization

$$U = VW = \begin{pmatrix} 1 & & & & \\ & -\alpha_2 & \rho_2 & & & \\ & \rho_2 & \overline{\alpha}_2 & & & \\ & & & -\alpha_4 & \rho_4 & & \\ & & & & \rho_4 & \overline{\alpha}_4 & & \\ & & & & & \ddots \end{pmatrix} \begin{pmatrix} -\alpha_1 & \rho_1 & & & \\ & \rho_1 & \overline{\alpha}_1 & & & \\ & & & & -\alpha_3 & \rho_3 & & \\ & & & & & \rho_3 & \overline{\alpha}_3 & & \\ & & & & & & \ddots \end{pmatrix}$$

▶ < 토 ▶ 토 ∽ ९. July 11, 2014 8 / 24

・ロト ・四ト ・ヨト ・ヨト

· . .

• Despite U being 5-diagonal we have a second order problem.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬ⊙

- Despite U being 5-diagonal we have a second order problem.
- Let $\beta_k = \alpha_k$ or $\beta_k = \overline{\alpha}_k$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and

$$T(z,k) = rac{1}{
ho_k} \begin{pmatrix} eta_k & \zeta_k \\ 1/\zeta_k & \overline{eta}_k \end{pmatrix}.$$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

- Despite U being 5-diagonal we have a second order problem.
- Let $\beta_k = \alpha_k$ or $\beta_k = \overline{\alpha}_k$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and

$$T(z,k) = rac{1}{
ho_k} egin{pmatrix} eta_k & eta_k \ 1/\zeta_k & eta_k \end{pmatrix}.$$

• Then [Gesztesy, Zinchenko 2006]

$$\binom{u}{v}(k) = T(k)\binom{u}{v}(k-1), \quad k \in \mathbb{N}$$

if and only if

$$Wu = zv$$
 and $Vv = u + (v(z,0) - u(z,0))\delta_0.$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 9 / 24

- Despite U being 5-diagonal we have a second order problem.
- Let $\beta_k = \alpha_k$ or $\beta_k = \overline{\alpha}_k$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and

$$T(z,k) = rac{1}{
ho_k} egin{pmatrix} eta_k & eta_k \ 1/\zeta_k & eta_k \end{pmatrix}.$$

• Then [Gesztesy, Zinchenko 2006]

$$\binom{u}{v}(k) = T(k)\binom{u}{v}(k-1), \quad k \in \mathbb{N}$$

if and only if

$$Wu = zv$$
 and $Vv = u + (v(z,0) - u(z,0))\delta_0$.

• Consequently $(U - z)u = z(v(z, 0) - u(z, 0))\delta_0$ (not necessarily in the operator sense).

Rudi Weikard (UAB)

July 11, 2014 9 / 24

- Despite U being 5-diagonal we have a second order problem.
- Let $\beta_k = \alpha_k$ or $\beta_k = \overline{\alpha}_k$ and $\zeta_k = z$ or $\zeta_k = 1$ depending on whether k is odd or even and

$$T(z,k) = rac{1}{
ho_k} egin{pmatrix} eta_k & eta_k \ 1/\zeta_k & eta_k \end{pmatrix}.$$

• Then [Gesztesy, Zinchenko 2006]

$$\binom{u}{v}(k) = T(k)\binom{u}{v}(k-1), \quad k \in \mathbb{N}$$

if and only if

$$Wu = zv$$
 and $Vv = u + (v(z,0) - u(z,0))\delta_0$.

- Consequently $(U z)u = z(v(z, 0) u(z, 0))\delta_0$ (not necessarily in the operator sense).
- In particular Uu = zu if v(z, 0) = u(z, 0).

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 9 / 24

Initial value problems

• For $z \neq 0$ introduce the solutions $\vartheta(z, \cdot)$ and $\varphi(z, \cdot)$ of

$$\binom{u}{v}(k) = T(k)\binom{u}{v}(k-1)$$

with initial conditions $(-1,1)^{ op}$ and $(1,1)^{ op}$, respectively.

Initial value problems

• For $z \neq 0$ introduce the solutions $\vartheta(z, \cdot)$ and $\varphi(z, \cdot)$ of

$$\binom{u}{v}(k) = T(k)\binom{u}{v}(k-1)$$

with initial conditions $(-1,1)^{ op}$ and $(1,1)^{ op}$, respectively.

Note that

$$arphi(z,k) = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \overline{arphi(1/\overline{z},k)} ext{ and } artheta(z,k) = -egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \overline{artheta(1/\overline{z},k)}.$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 10 / 24

Initial value problems

• For $z \neq 0$ introduce the solutions $\vartheta(z, \cdot)$ and $\varphi(z, \cdot)$ of

$$\binom{u}{v}(k) = T(k)\binom{u}{v}(k-1)$$

with initial conditions $(-1,1)^{ op}$ and $(1,1)^{ op}$, respectively.

Note that

$$\varphi(z,k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\varphi(1/\overline{z},k)} \text{ and } \vartheta(z,k) = -\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\vartheta(1/\overline{z},k)}.$$

• Also, if $\begin{pmatrix} u \\ v \end{pmatrix} = \varphi$, we have $v(z,0) = u(z,0)$ and hence $Uu = zu$.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 10 / 24

Weyl-Titchmarsh solutions

• Define, for $|z| \neq 1$,

$$u(z,\cdot)=2z(U-z)^{-1}\delta_0\in\ell^2(\mathbb{N}_0) \quad ext{and} \quad v(z,\cdot)=rac{1}{z}Wu\in\ell^2(\mathbb{N}_0).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬ⊙

-1
Weyl-Titchmarsh solutions

• Define, for $|z| \neq 1$,

$$u(z,\cdot)=2z(U-z)^{-1}\delta_0\in\ell^2(\mathbb{N}_0) \quad ext{and} \quad v(z,\cdot)=rac{1}{z}Wu\in\ell^2(\mathbb{N}_0).$$

-1

• Then $(u, v)^{\perp}$ satisfies the CMV recursion and

$$\binom{u}{v}(k) = \vartheta(k) + m(z)\varphi(k) =: \omega(k)$$

when m(z) = 1 + u(z, 0); this is the Weyl-Titchmarsh solution.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weyl-Titchmarsh solutions

• Define, for $|z| \neq 1$,

$$u(z,\cdot)=2z(U-z)^{-1}\delta_0\in\ell^2(\mathbb{N}_0) \quad ext{and} \quad v(z,\cdot)=rac{1}{z}\mathcal{W}u\in\ell^2(\mathbb{N}_0).$$

• Then $(u, v)^{\perp}$ satisfies the CMV recursion and

$$\binom{u}{v}(k) = \vartheta(k) + m(z)\varphi(k) =: \omega(k)$$

when m(z) = 1 + u(z, 0); this is the Weyl-Titchmarsh solution.

It follows that

$$m(z) = 1 + u(z,0) = \langle \delta_0, (U+z)(U-z)^{-1}\delta_0 \rangle$$

is a Caratheodory function with representation

$$m(z) = \oint_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta).$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 11 / 24

イロト イ理ト イヨト イヨト ニヨー のくの

-1

• An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if f(0) = 1 and Re(f) > 0.

イロト 不得下 イヨト イヨト 二日

- An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if f(0) = 1 and Re(f) > 0.
- An analytic function $g:\mathbb{D}
 ightarrow\mathbb{C}$ is called a Schur function, if |g|<1.

イロト イポト イヨト イヨト 二日

- An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if f(0) = 1 and Re(f) > 0.
- An analytic function $g:\mathbb{D}\to\mathbb{C}$ is called a Schur function, if |g|<1.
- If f is Caratheodory and g is Schur, then (f-1)/(f+1) is Schur and (1+g)/(1-g) is Caratheodory.

- An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if f(0) = 1 and Re(f) > 0.
- An analytic function $g:\mathbb{D}
 ightarrow \mathbb{C}$ is called a Schur function, if |g| < 1.
- If f is Caratheodory and g is Schur, then (f-1)/(f+1) is Schur and (1+g)/(1-g) is Caratheodory.
- Note also that, by Schwarz's lemma, $z \mapsto g(z)/z$ is a Schur function, if g is a Schur function and g(0) = 0.

- An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if f(0) = 1 and Re(f) > 0.
- An analytic function $g:\mathbb{D}\to\mathbb{C}$ is called a Schur function, if |g|<1.
- If f is Caratheodory and g is Schur, then (f-1)/(f+1) is Schur and (1+g)/(1-g) is Caratheodory.
- Note also that, by Schwarz's lemma, $z \mapsto g(z)/z$ is a Schur function, if g is a Schur function and g(0) = 0.
- The Möbius transform $z \mapsto S(w,z) = (z + \overline{w})/(1 + wz)$ maps $\mathbb D$ to itself, if |w| < 1.

- An analytic function $f : \mathbb{D} \to \mathbb{C}$ is called a Caratheodory function, if f(0) = 1 and Re(f) > 0.
- An analytic function $g:\mathbb{D}
 ightarrow \mathbb{C}$ is called a Schur function, if |g| < 1.
- If f is Caratheodory and g is Schur, then (f-1)/(f+1) is Schur and (1+g)/(1-g) is Caratheodory.
- Note also that, by Schwarz's lemma, $z \mapsto g(z)/z$ is a Schur function, if g is a Schur function and g(0) = 0.
- The Möbius transform $z\mapsto S(w,z)=(z+\overline{w})/(1+wz)$ maps $\mathbb D$ to itself, if |w|<1.
- If g is a Schur function with $g(0) = -\overline{w}$ and |w| < 1 then

$$z\mapsto \frac{1}{z}S(w,g(z))$$

is a Schur function.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 12 / 24

• Define

$$\Phi_{2k}(z) = rac{1}{z} rac{\omega_1(z,2k)}{\omega_2(z,2k)}$$
 and $\Phi_{2k+1}(z) = rac{\omega_2(z,2k+1)}{\omega_1(z,2k+1)}$

July 11, 2014 13 / 24

(日) (四) (三) (三) (三)

• Define

$$\Phi_{2k}(z) = rac{1}{z} rac{\omega_1(z,2k)}{\omega_2(z,2k)}$$
 and $\Phi_{2k+1}(z) = rac{\omega_2(z,2k+1)}{\omega_1(z,2k+1)}$

• Initial conditions: $\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1}$.

July 11, 2014 13 / 24

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト 一 回 - つへで

• Define

$$\Phi_{2k}(z) = rac{1}{z} rac{\omega_1(z,2k)}{\omega_2(z,2k)}$$
 and $\Phi_{2k+1}(z) = rac{\omega_2(z,2k+1)}{\omega_1(z,2k+1)}$

• Initial conditions: $\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1}$.

• CMV recursion: $\Phi_k(z) = \frac{1}{z}S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z}\frac{\Phi_{k-1}(z) + \overline{\alpha_k}}{1 + \alpha_k \Phi_{k-1}(z)}$.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Define

$$\Phi_{2k}(z) = rac{1}{z} rac{\omega_1(z,2k)}{\omega_2(z,2k)}$$
 and $\Phi_{2k+1}(z) = rac{\omega_2(z,2k+1)}{\omega_1(z,2k+1)}$

• Initial conditions: $\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1}$.

- CMV recursion: $\Phi_k(z) = \frac{1}{z}S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z}\frac{\Phi_{k-1}(z) + \overline{\alpha_k}}{1 + \alpha_k \Phi_{k-1}(z)}$.
- Using the Neumann series

$$m(z) = \langle \delta_0, (U+z)(U-z)^{-1}\delta_0 \rangle = 1 + 2\sum_{n=1}^{\infty} \langle \delta_0, U^{-n}\delta_0 \rangle = 1 - 2\overline{\alpha_1}z + \dots$$

Stability for CMV

July 11, 2014 13 / 24

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define

$$\Phi_{2k}(z) = rac{1}{z} rac{\omega_1(z,2k)}{\omega_2(z,2k)}$$
 and $\Phi_{2k+1}(z) = rac{\omega_2(z,2k+1)}{\omega_1(z,2k+1)}$

• Initial conditions: $\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1}$.

- CMV recursion: $\Phi_k(z) = \frac{1}{z}S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z}\frac{\Phi_{k-1}(z)+\overline{\alpha_k}}{1+\alpha_k\Phi_{k-1}(z)}$.
- Using the Neumann series

$$m(z) = \langle \delta_0, (U+z)(U-z)^{-1}\delta_0 \rangle = 1 + 2\sum_{n=1}^{\infty} \langle \delta_0, U^{-n}\delta_0 \rangle = 1 - 2\overline{\alpha_1}z + \dots$$

• m(0) = 1 implies Φ_0 is a Schur function, $m'(0) = -2\overline{\alpha_1}$ implies $\Phi_0(0) = -\overline{\alpha_1} \in \mathbb{D}$.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 13 / 24

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define

$$\Phi_{2k}(z) = rac{1}{z} rac{\omega_1(z,2k)}{\omega_2(z,2k)}$$
 and $\Phi_{2k+1}(z) = rac{\omega_2(z,2k+1)}{\omega_1(z,2k+1)}$

• Initial conditions: $\Phi_0(z) = \frac{1}{z} \frac{m(z)-1}{m(z)+1}$.

- CMV recursion: $\Phi_k(z) = \frac{1}{z}S(\alpha_k, \Phi_{k-1}(z)) = \frac{1}{z}\frac{\Phi_{k-1}(z)+\overline{\alpha_k}}{1+\alpha_k\Phi_{k-1}(z)}$.
- Using the Neumann series

$$m(z) = \langle \delta_0, (U+z)(U-z)^{-1}\delta_0 \rangle = 1 + 2\sum_{n=1}^{\infty} \langle \delta_0, U^{-n}\delta_0 \rangle = 1 - 2\overline{\alpha_1}z + \dots$$

- m(0) = 1 implies Φ_0 is a Schur function, $m'(0) = -2\overline{\alpha_1}$ implies $\Phi_0(0) = -\overline{\alpha_1} \in \mathbb{D}$.
- Hence Φ_1 is a Schur function and knowledge about m''(0) gives $\Phi_1(0) = -\overline{\alpha_2} \in \mathbb{D}.$

Rudi Weikard (UAB)

July 11, 2014 13 / 24

• Deleting 2 rows and 2 columns from the matrix *U* gives a similar problem whose Weyl-Titchmarsh function is a multiple of the original one truncated by the first two elements.

イロト イポト イヨト イヨト 二日

- Deleting 2 rows and 2 columns from the matrix *U* gives a similar problem whose Weyl-Titchmarsh function is a multiple of the original one truncated by the first two elements.
- Thus Φ_2 and Φ_3 are Schur functions with $\Phi_2(0)=-\overline{\alpha_3}$ and $\Phi_3(0)=-\overline{\alpha_4}$

- Deleting 2 rows and 2 columns from the matrix *U* gives a similar problem whose Weyl-Titchmarsh function is a multiple of the original one truncated by the first two elements.
- Thus Φ_2 and Φ_3 are Schur functions with $\Phi_2(0)=-\overline{\alpha_3}$ and $\Phi_3(0)=-\overline{\alpha_4}$
- Conclusion: The Φ_k are Schur functions with $\Phi_k(0) = -\overline{lpha_{k+1}} \in \mathbb{D}$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 14 / 24

• Assume

$$|\alpha_k| \le \eta \mathrm{e}^{-k^{\gamma}}$$

for some $\eta > 0$ and $\gamma > 1$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬ⊙

• Assume

$$|\alpha_k| \le \eta \mathrm{e}^{-k^{\gamma}}$$

for some $\eta > 0$ and $\gamma > 1$.

• The Volterra equation [W., Zinchenko 2010]

$$F(z,k) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sum_{n=k+1}^{\infty} \begin{pmatrix} 0 & \alpha_n \zeta_n \\ \overline{\alpha_n} z^{n-k-1} \zeta_{k+1} & 0 \end{pmatrix} F(z,n), \quad k \in \mathbb{N}_0$$

has a unique solution for any $z \in \mathbb{C}$.

• Assume

$$|\alpha_k| \le \eta \mathrm{e}^{-k^{\gamma}}$$

for some $\eta > 0$ and $\gamma > 1$.

• The Volterra equation [W., Zinchenko 2010]

$$F(z,k) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sum_{n=k+1}^{\infty} \begin{pmatrix} 0 & \alpha_n \zeta_n \\ \overline{\alpha_n} z^{n-k-1} \zeta_{k+1} & 0 \end{pmatrix} F(z,n), \quad k \in \mathbb{N}_0$$

has a unique solution for any $z \in \mathbb{C}$.

• Either component of $F(\cdot, k)$ is entire of growth order 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Assume

$$|\alpha_k| \le \eta \mathrm{e}^{-k^{\gamma}}$$

for some $\eta > 0$ and $\gamma > 1$.

• The Volterra equation [W., Zinchenko 2010]

$$F(z,k) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sum_{n=k+1}^{\infty} \begin{pmatrix} 0 & \alpha_n \zeta_n \\ \overline{\alpha_n} z^{n-k-1} \zeta_{k+1} & 0 \end{pmatrix} F(z,n), \quad k \in \mathbb{N}_0$$

has a unique solution for any $z \in \mathbb{C}$.

• Either component of $F(\cdot, k)$ is entire of growth order 0.

$$\nu(z,k) = 2z^{\lceil k/2 \rceil} \left(\prod_{j=k+1}^{\infty} \rho_j^{-1}\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{k+1} F(z,k)$$

satisfies the CMV recursion.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 15 / 24

E 990

イロト イポト イヨト イヨト

• |z| < 1.

July 11, 2014 16 / 24

- |z| < 1.
- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト 一 回 - つへで

- |z| < 1.
- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.
- ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

$$\nu = \psi_0(\vartheta + m\varphi).$$

- |z| < 1.
- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.
- ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

$$\nu = \psi_0(\vartheta + m\varphi).$$

• Since ψ_0 and $m\psi_0$ are constant multiples of $(1, -1) \cdot F(z, 0)$ and $(1, 1) \cdot F(z, 0)$, respectively, both of these are entire.

- |z| < 1.
- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.
- ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

$$\nu = \psi_0(\vartheta + m\varphi).$$

- Since ψ_0 and $m\psi_0$ are constant multiples of $(1, -1) \cdot F(z, 0)$ and $(1, 1) \cdot F(z, 0)$, respectively, both of these are entire.
- *m* has a meromorphic extension to all of \mathbb{C} (denoted by *M*).

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 16 / 24

- |z| < 1.
- $\nu(z, \cdot)$ is in $\ell^2(\mathbb{N}_0)$; it is then called the Jost solution for CMV.
- ν must be a multiple of the Weyl-Titchmarsh solution $\vartheta + m\varphi$. Define the Jost function ψ_0 by

$$\nu = \psi_0(\vartheta + m\varphi).$$

- Since ψ_0 and $m\psi_0$ are constant multiples of $(1, -1) \cdot F(z, 0)$ and $(1, 1) \cdot F(z, 0)$, respectively, both of these are entire.
- *m* has a meromorphic extension to all of \mathbb{C} (denoted by *M*).
- ψ_0 cannot have zeros in \mathbb{D} . Those outside are called resonances.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 16 / 24

• For the sequence $\tilde{\nu}(z,k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\nu(1/\overline{z},k)}$ is also a solution of the CMV recursion (and square integrable for |z| > 1).

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ののの

- For the sequence $\tilde{\nu}(z,k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\nu(1/\overline{z},k)}$ is also a solution of the CMV recursion (and square integrable for |z| > 1).
- det $T(z,k) = -1 \Rightarrow \det(\nu(z,2k),\tilde{\nu}(z,2k))$ is independent of k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- For the sequence $\tilde{\nu}(z,k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\nu(1/\overline{z},k)}$ is also a solution of the CMV recursion (and square integrable for |z| > 1).
- det $T(z,k) = -1 \Rightarrow \det(\nu(z,2k),\tilde{\nu}(z,2k))$ is independent of k.
- From asymptotics

$$\det(
u(z,2k), ilde{
u}(z,2k))pprox \detegin{pmatrix} 0 & 2z^{-k} \ 2z^k & 0 \end{pmatrix}=-4.$$

- For the sequence $\tilde{\nu}(z,k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \overline{\nu(1/\overline{z},k)}$ is also a solution of the CMV recursion (and square integrable for |z| > 1).
- det $T(z,k) = -1 \Rightarrow \det(\nu(z,2k),\tilde{\nu}(z,2k))$ is independent of k.
- From asymptotics

$$\det(
u(z,2k), ilde{
u}(z,2k))pprox \detigg(egin{array}{cc} 0 & 2z^{-k} \ 2z^k & 0 \ \end{array}igg) = -4.$$

But

$$det(\nu(z,0),\tilde{\nu}(z,0)) = \psi_0(z)\overline{\psi_0(1/\overline{z})}det\begin{pmatrix} M(z)-1 & \overline{M(1/\overline{z})}-1\\ M(z)+1 & \overline{M(1/\overline{z})}+1 \end{pmatrix}$$
$$= 2\psi_0(z)\overline{\psi_0(1/\overline{z})}(M(z)-\overline{M(1/\overline{z})}).$$

Rudi Weikard (UAB)

July 11, 2014 17 / 24

• Recall $4 = 2\psi_0(z)\overline{\psi_0(1/\overline{z})}(M(z) - \overline{M(1/\overline{z})}).$

July 11, 2014 18 / 24

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬ⊙

• Recall
$$4 = 2\psi_0(z)\overline{\psi_0(1/\overline{z})}(M(z) - \overline{M(1/\overline{z})}).$$

• For
$$|z| = 1$$
, i.e., $z = 1/\overline{z}$ this gives

$$1 = |\psi_0(z)|^2 \operatorname{Re}(M(z)).$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 18 / 24

• Recall $4 = 2\psi_0(z)\overline{\psi_0(1/\overline{z})}(M(z) - \overline{M(1/\overline{z})}).$

• For
$$|z| = 1$$
, i.e., $z = 1/\overline{z}$ this gives

$$1 = |\psi_0(z)|^2 \operatorname{Re}(M(z)).$$

• An analytic function in the unit disk is (up to an additive constant) determined by its real part on the unit circle.

$$m(z) = rac{1}{2\pi} \int_{-\pi}^{\pi} rac{\mathrm{e}^{it}+z}{\mathrm{e}^{it}-z} \operatorname{Re}(M(\mathrm{e}^{it})) dt.$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 18 / 24

イロト 不得下 イヨト イヨト 二日

• Recall
$$4 = 2\psi_0(z)\overline{\psi_0(1/\overline{z})}(M(z) - \overline{M(1/\overline{z})}).$$

• For
$$|z| = 1$$
, i.e., $z = 1/\overline{z}$ this gives

$$1 = |\psi_0(z)|^2 \operatorname{Re}(M(z)).$$

• An analytic function in the unit disk is (up to an additive constant) determined by its real part on the unit circle.

$$m(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\mathrm{e}^{it} + z}{\mathrm{e}^{it} - z} \frac{1}{|\psi_0(\mathrm{e}^{it})|^2} dt.$$

Rudi Weikard (UAB)

Stability for CMV

টা ব ≣া আ ছি প ৫৫ July 11, 2014 18 / 24

イロト イポト イヨト イヨト

The inverse resonance problem

Theorem

The location of the resonances (accounting for multiplicities) determine the Verblunsky coefficients uniquely.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 19 / 24

イロト イポト イヨト イヨト
• The Verblunsky coefficients are given by the Schur functions as $\alpha_{k+1} = -\overline{\Phi_k(0)}$.

July 11, 2014 20 / 24

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト 一 回 - つへで

- The Verblunsky coefficients are given by the Schur functions as $\alpha_{k+1} = -\overline{\Phi_k(0)}$.
- The Schur functions are determined recursively from Φ_0 and hence from m.

イロト 不得下 イヨト イヨト 二日

- The Verblunsky coefficients are given by the Schur functions as $\alpha_{k+1} = -\overline{\Phi_k(0)}$.
- The Schur functions are determined recursively from Φ_0 and hence from m.
- *m* is determined by $|\psi_0(e^{it})|$.

- The Verblunsky coefficients are given by the Schur functions as $\alpha_{k+1} = -\overline{\Phi_k(0)}$.
- The Schur functions are determined recursively from Φ_0 and hence from *m*.
- *m* is determined by $|\psi_0(e^{it})|$.
- $\psi_0(z) = \psi_0(0) \prod_{k=1}^{\infty} (1 z/z_k)$ where the z_k are the resonances.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The Verblunsky coefficients are given by the Schur functions as $\alpha_{k+1} = -\overline{\Phi_k(0)}$.
- The Schur functions are determined recursively from Φ_0 and hence from m.
- *m* is determined by $|\psi_0(e^{it})|$.
- $\psi_0(z) = \psi_0(0) \prod_{k=1}^{\infty} (1 z/z_k)$ where the z_k are the resonances.
- $|\psi_0(0)|$ is determined since

$$1 = m(0) = rac{1}{2\pi} \int_{-\pi}^{\pi} rac{1}{|\psi_0(\mathrm{e}^{it})|^2} dt.$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 20 / 24

• Growth order: $\rho(\psi) = \inf\{\tau > 0 : |\psi(z)| \le e^{|z|^{\tau}}$ eventually}

July 11, 2014 21 / 24

- Growth order: $ho(\psi) = \inf\{\tau > 0 : |\psi(z)| \le e^{|z|^{ au}}$ eventually}
- Decay rate: $\delta(\alpha) = \sup\{\tau : |\alpha_k| \le e^{-\tau k \log(k)} \text{ eventually}\}$

- Growth order: $ho(\psi) = \inf\{\tau > 0 : |\psi(z)| \le e^{|z|^{ au}}$ eventually}
- Decay rate: $\delta(\alpha) = \sup\{\tau : |\alpha_k| \le e^{-\tau k \log(k)} \text{ eventually}\}$
- Our condition on α gives $\delta(\alpha) = \infty$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Growth order: $ho(\psi) = \inf\{\tau > 0 : |\psi(z)| \le e^{|z|^{ au}}$ eventually}
- Decay rate: $\delta(\alpha) = \sup\{\tau : |\alpha_k| \le e^{-\tau k \log(k)} \text{ eventually}\}$
- Our condition on α gives $\delta(\alpha) = \infty$
- Theorem [Zinchenko 2014]:

 $\delta(lpha) > 0 \Leftrightarrow \psi_0$ has entire extension and $ho(\psi_0) = 1/\delta(lpha)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Growth order: $ho(\psi) = \inf\{\tau > 0 : |\psi(z)| \le e^{|z|^{ au}}$ eventually}
- Decay rate: $\delta(\alpha) = \sup\{\tau : |\alpha_k| \le e^{-\tau k \log(k)} \text{ eventually}\}$
- Our condition on α gives $\delta(\alpha) = \infty$
- Theorem [Zinchenko 2014]:

 $\delta(lpha) > 0 \Leftrightarrow \psi_0$ has entire extension and $ho(\psi_0) = 1/\delta(lpha)$

• Theorem [Zinchenko 2014]: If ψ_0 is entire, of finite growth order and without zeros in $\overline{\mathbb{D}}$, then it is the Jost function of a unique CMV operator.

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 21 / 24

• Assume $|\alpha_k| \leq \eta e^{-k^{\gamma}}$ for some $\eta > 0$ and $\gamma > 1$ and $\prod_{i=1}^{\infty} (1 - |\alpha_i|) \geq 1/Q$ for some Q > 1.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ - のの⊙

- Assume $|\alpha_k| \leq \eta e^{-k^{\gamma}}$ for some $\eta > 0$ and $\gamma > 1$ and $\prod_{j=1}^{\infty} (1 |\alpha_j|) \geq 1/Q$ for some Q > 1.
- From Jensen's formula

$$N(r) \leq A_1 + \frac{(4\log r)^p}{2}$$

where $p = \gamma/(\gamma - 1)$ and A_1 depends only on Q, η , and γ .

- Assume $|\alpha_k| \leq \eta e^{-k^{\gamma}}$ for some $\eta > 0$ and $\gamma > 1$ and $\prod_{j=1}^{\infty} (1 |\alpha_j|) \geq 1/Q$ for some Q > 1.
- From Jensen's formula

$$N(r) \leq A_1 + \frac{(4\log r)^p}{2}$$

where $p = \gamma/(\gamma - 1)$ and A_1 depends only on Q, η , and γ .

• This implies

$$\sum_{|z_n|>R} \frac{1}{|z_n|} = \int_R^\infty \frac{dN(t)}{t} \le \frac{A_1}{R} + \frac{4^p}{2} \Gamma(p+1, \log R).$$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 22 / 24

- Assume $|\alpha_k| \leq \eta e^{-k^{\gamma}}$ for some $\eta > 0$ and $\gamma > 1$ and $\prod_{j=1}^{\infty} (1 |\alpha_j|) \geq 1/Q$ for some Q > 1.
- From Jensen's formula

$$N(r) \leq A_1 + \frac{(4\log r)^p}{2}$$

where $p = \gamma/(\gamma - 1)$ and A_1 depends only on Q, η , and γ .

• This implies

$$\sum_{|z_n|>R}\frac{1}{|z_n|}=\int_R^\infty\frac{dN(t)}{t}\leq \frac{A_1}{R}+\frac{4^p}{2}\Gamma(p+1,\log R).$$

• Asymptotics of $\Gamma(p+1, \cdot)$ give

$$\sum_{|z_n|>R} \frac{1}{|z_n|} \le A_2 \frac{(\log R)^p}{R}$$

where A_2 depends only on Q, η , and γ .

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 22 / 24

オロト オポト オヨト オヨト ヨー ろくつ

Stability

Suppose α and $\check{\alpha}$ are two sequences of Verblunsky coefficients with super-exponential decay as before. Assume that the resonances in some ball of radius R, if there are any, are respectively ε -close. Then there is a constant A_0 , depending only on γ , η , and Q, such that

$$|\alpha_n - \breve{\alpha}_n| \le A_0 \left(\varepsilon + \frac{(\log R)^p}{R}\right)^{1/\log(6\mathbb{Q}^2)}$$

for all $n \in \mathbb{N}$.

• $|\alpha_k - \breve{\alpha}_k| \leq |\Phi_{k-1}(0) - \breve{\Phi}_{k-1}(0)| \leq ||\Phi_{k-1} - \breve{\Phi}_{k-1}||_1$ by the mean value theorem $(||f||_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)).$

July 11, 2014 24 / 24

- $|\alpha_k \breve{\alpha}_k| \leq |\Phi_{k-1}(0) \breve{\Phi}_{k-1}(0)| \leq ||\Phi_{k-1} \breve{\Phi}_{k-1}||_1$ by the mean value theorem $(||f||_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)).$
- $\|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1 \le 6Q^2 \|\Phi_{k-2} \breve{\Phi}_{k-2}\|_1$ by the Schur algorithm.

- $|\alpha_k \breve{\alpha}_k| \leq |\Phi_{k-1}(0) \breve{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1$ by the mean value theorem $(\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)).$
- $\|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1 \le 6Q^2 \|\Phi_{k-2} \breve{\Phi}_{k-2}\|_1$ by the Schur algorithm.

•
$$\Phi_0(z) - \check{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \check{M}(z)}{(1+M(z))(1+\check{M}(z))}$$

- $|\alpha_k \breve{\alpha}_k| \leq |\Phi_{k-1}(0) \breve{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1$ by the mean value theorem $(\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)).$
- $\|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1 \le 6Q^2 \|\Phi_{k-2} \breve{\Phi}_{k-2}\|_1$ by the Schur algorithm.

•
$$\Phi_0(z) - \breve{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \breve{M}(z)}{(1+M(z))(1+\breve{M}(z))}$$

•
$$|1 + M(z)| \ge \text{Re}(1 + M(z)) \ge 1$$

- $|\alpha_k \breve{\alpha}_k| \leq |\Phi_{k-1}(0) \breve{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1$ by the mean value theorem $(\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)).$
- $\|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1 \le 6Q^2 \|\Phi_{k-2} \breve{\Phi}_{k-2}\|_1$ by the Schur algorithm.

•
$$\Phi_0(z) - \breve{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \breve{M}(z)}{(1 + M(z))(1 + \breve{M}(z))}$$

•
$$|1 + M(z)| \ge \text{Re}(1 + M(z)) \ge 1$$
.

• If $|\operatorname{Re} f(0)| = |\operatorname{Im} f(0)|$ then $\operatorname{Re} f$ and $\operatorname{Im} f$ have the same 2-norm.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $|\alpha_k \breve{\alpha}_k| \leq |\Phi_{k-1}(0) \breve{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1$ by the mean value theorem $(\|f\|_p^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)).$
- $\|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1 \le 6Q^2 \|\Phi_{k-2} \breve{\Phi}_{k-2}\|_1$ by the Schur algorithm.

•
$$\Phi_0(z) - \breve{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \breve{M}(z)}{(1 + M(z))(1 + \breve{M}(z))}$$

•
$$|1 + M(z)| \ge \operatorname{Re}(1 + M(z)) \ge 1.$$

- If $|\operatorname{Re} f(0)| = |\operatorname{Im} f(0)|$ then $\operatorname{Re} f$ and $\operatorname{Im} f$ have the same 2-norm.
- We need to estimate $\|\operatorname{Re} M \operatorname{Re} \check{M}\|_2 = \||\psi_0|^{-2} |\check{\psi}_0|^{-2}\|_2.$

July 11, 2014 24 / 24

イロト 不得 トイヨト イヨト ヨー つくつ

- $|\alpha_k \breve{\alpha}_k| \leq |\Phi_{k-1}(0) \breve{\Phi}_{k-1}(0)| \leq \|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1$ by the mean value theorem $(\|f\|_{\rho}^p = \int_{-\pi}^{\pi} |f|^p dt/(2\pi)).$
- $\|\Phi_{k-1} \breve{\Phi}_{k-1}\|_1 \le 6Q^2 \|\Phi_{k-2} \breve{\Phi}_{k-2}\|_1$ by the Schur algorithm.

•
$$\Phi_0(z) - \breve{\Phi}_0(z) = \frac{2}{z} \frac{M(z) - \breve{M}(z)}{(1 + M(z))(1 + \breve{M}(z))}$$

•
$$|1 + M(z)| \ge \operatorname{Re}(1 + M(z)) \ge 1.$$

- If $|\operatorname{Re} f(0)| = |\operatorname{Im} f(0)|$ then $\operatorname{Re} f$ and $\operatorname{Im} f$ have the same 2-norm.
- We need to estimate $\|\operatorname{Re} M \operatorname{Re} \check{M}\|_2 = \||\psi_0|^{-2} |\check{\psi}_0|^{-2}\|_2.$
- Hence we need to compare

$$\psi_0(z) = \psi_0(0) \prod_{n=1}^{\infty} (1 - z/z_n)$$
 and $\breve{\psi}_0(z) = \breve{\psi}_0(0) \prod_{n=1}^{\infty} (1 - z/\breve{z}_n).$

Rudi Weikard (UAB)

Stability for CMV

July 11, 2014 24 / 24