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The Camassa-Holm equation

• The Camassa-Holm (CH) equation is

ψt − ψtxx − 2κψx + 3ψψx = 2ψxψxx + ψψxxx ,

• where ψ is deviation from the free surface

• and κ is a dispersion coefficient (may be scaled to 0 or 1).

• Introducing w = ψxx − ψ + κ we may write more concisely

wt + 2ψxw + ψwx = 0.
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The Lax pair

• CH is an integrable system and has many similarities to KdV.

• CH is the compatibility condition for the linear equations

−uxx +
1

4
u = λwu

and

ut −
(

1

2λ
− ψ

)
ux −

1

2
ψxu = 0

(recall w = ψxx − ψ + κ).
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The inverse scattering transform

• κ = 1 (we have also dealt with κ = 0 as have
Eckhardt/Kostenko (2014)).

• The scattering condition: w − 1 is integrable and its first
moment is finite:

• −u′′ + 1
4u = λwu

w(·, 0)
scattering−−−−−−−−−−→ scattering datay y

w(·, t)
inverse scattering←−−−−−−−−−− evolved scattering data

• The transmission coefficient and eigenvalues remain constant.

• The reflection coefficient and norming constants evolve by
multiplying with the exponentials exp(±ikt/λ).
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The case of positive w

• If w > 0 is appropriately smooth this program was
accomplished by Constantin et al. (2003, 2006).

• The condition w > 0 removes the interesting cases (wave
breaking, wave collisions, peakons).
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Left-definite problems

• −(py ′)′ + qy = wf

• p = 1, q ≥ 0 (for simplicity), q,w ∈ L1
loc or measures.

• Issue 1: L2(w) is not a Hilbert space.

• Consider H1 = {y ∈ ACloc : y ′,
√
qy ∈ L2(R)} with scalar

product

〈u, v〉 =

∫ ∞
0

(u′v ′ + quv).

• Issue 2: there is no operator, instead we must consider
relations.

• Issue 3: Perturbations get multiplied by λ.
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Relations

• If E is a linear subspace of H1 ⊕H1 it is called a linear
relation.

• E ∗ = {(u∗, v∗) : ∀(u, v) ∈ E : 〈u∗, v〉 = 〈v∗, u〉} is the adjoint
relation.

• E ∗ is always a closed set.

• E ⊂ F implies F ∗ ⊂ E ∗.

• E = E ∗∗ and E ∗ = E
∗
.

• E is called symmetric if E ⊂ E ∗ and self-adjoint if E = E ∗.
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Application to Sturm-Liouville

• T1 = {(u, f ) ∈ H1 ⊕H1 : −u′′ + qu = wf a.e.} is a closed
linear self-adjoint relation.

• (u, f ), (u, g) ∈ T1 if and only if (0, f − g) ∈ T1.

• H∞ = {g ∈ H1 : (0, g) ∈ T1} = {g ∈ H1 : 0 = wg}.

• H = H1 	H∞

• If suppw = R, then H∞ = {0}, H = H1 and T1 an operator
defined on a dense subset of H1.

• If w = 0, then H∞ = H1, H = {0}.

• T = T1 ∩H ⊕H is a densely defined operator on H.
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Scattering

• Suppose
∫

(q − q0),
∫

(w − 1), and
∫
|x |(q − q0w)(x) are all

finite.

• Jost solutions f±(x , k) ∼ eikx as x tends to ±∞. Here
λ = k2 + q0 and Im(k) ≥ 0.

• High energy asymptotics is crucial and difficult.

• Transmission and reflection coefficients:{
Tf− = R+f+ + f+

Tf+ = R−f− + f−.

• Eigenvalues λn and norming constants ‖f±(·, kn)‖.
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The Jost transform

• λ = k2 + q0 and t = s2 + q0

• û±(k) = 〈u, f±(·, k)〉 where u is compactly supported.

• Extend to all of H1 by continuity.

• The transform space L2
J is determined by

‖û‖2
J =

∫ ∞
q0

(|û+(s)|2 + |û−(s)|2)
|T(s)|
4πst

dt +
∑
n

|û+(kn)|2

‖f+(·, kn)‖2
.

• kerJ = H∞.

• J |H is unitary: 〈u, v〉 = 〈J u,J v〉J .

• The adjoint of J (and the inverse of J |H) is

(J ∗û)(x) = 〈û,F (x , ·)〉J with F (x , ·) = (f+(x , ·), f−(x , ·)).

• u ∈ DT implies (J (Tu))(λ) = λ(J u)(λ), i.e., the Jost
transform diagonalizes T .
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(|û+(s)|2 + |û−(s)|2)
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• û±(k) = 〈u, f±(·, k)〉 where u is compactly supported.

• Extend to all of H1 by continuity.

• The transform space L2
J is determined by

‖û‖2
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‖û‖2
J =

∫ ∞
q0
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(J ∗û)(x) = 〈û,F (x , ·)〉J with F (x , ·) = (f+(x , ·), f−(x , ·)).

• u ∈ DT implies (J (Tu))(λ) = λ(J u)(λ), i.e., the Jost
transform diagonalizes T .



The Jost transform

• λ = k2 + q0 and t = s2 + q0
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Main Theorem

Theorem (BBW (JDE 2012))

Suppose two operators T and T̆ are given and that their scattering
matrices (and hence eigenvalues) and norming constants are
identical.

• There is a Liouville transform Lr ,s ∈ S such that
T ◦ Lr ,s = Lr ,s ◦ T̆ .

• s = τ̆−1 ◦ τ and τ, τ̆ are explicitly given in terms of w and w̆ .

• q̆ ◦ s = r3(−r ′′ + qr)

• w̆ ◦ s = r4w

Conversely, if the coefficients of T and T̆ are related in this way
then scattering data of T and T̆ coincide.
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Liouville transforms

• Suppose s : R→ R is a bijection and r , 1/r are finite almost
everywhere. Then Lr ,s : ŭ 7→ r ŭ ◦ s is a Liouville transform.

• We are interested in the following subset S:
• s is a strictly increasing bijection from R→ R and

continuously differentiable;

• r(x)2s ′(x) = 1.

• r is real, locally absolutely continuous, and strictly positive;

• r ′ is locally absolutely continuous;

• s(x)− x and r(x)− 1 tend to 0 as x tends to ±∞.
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Idea of proof — Outline I

• q0, |T|, eigenvalues and norming constants determine
L2
J = L2

J̆ .

• We need to show that U defined here is a Liouville transform.

H H̆

L2
J

U

J J̆ ∗
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Idea of proof — Outline II

• A Paley-Wiener type theorem relates support properties of u
to growth properties of û.

• If suppu ⊂ [a, b] then û+(k) = o(λf+(a, k)) and
û−(k) = o(λf−(b, k)) (easy).

• If ˘̂u+ = o(λf̆+(ă, k)) and ˘̂u−(k) = o(λf̆−(b̆, k)) then
suppŭ ⊂ [ă, b̆] (hard).

• Choose s(a) = ă (and s(b) = b̆) (high-energy asymptotics).

• r(x) = u(x)/ŭ(s(x))

• Show that Lr ,s ∈ S and that U−1 = Lr ,s .
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û−(k) = o(λf−(b, k)) (easy).
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Back to Camassa-Holm

• If q = q̆ = 1/4 then the only bounded positive solution to

q̆ ◦ s = r3(−r ′′ + qr)

is r = 1.

• s ′ = 1.

• s(x) = x + s∞ (but s∞ = 0) so that

w̆ = w .

• w is uniquely determined from the scattering data.
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Thank you for your attention!


