Solving the Camassa-Holm Equation by Inverse Scattering

Rudi Weikard

University of Alabama at Birmingham (UAB)

AMS Meeting in Memphis, Tenn.

17. October 2015

I am reporting on joint work with:

- Christer Bennewitz (Lund)
- Malcolm Brown (Cardiff)

• The Camassa-Holm (CH) equation is

$$\psi_t - \psi_{txx} - 2\kappa\psi_x + 3\psi\psi_x = 2\psi_x\psi_{xx} + \psi\psi_{xxx},$$

• The Camassa-Holm (CH) equation is

$$\psi_t - \psi_{txx} - 2\kappa\psi_x + 3\psi\psi_x = 2\psi_x\psi_{xx} + \psi\psi_{xxx},$$

ullet where ψ is deviation from the free surface

• The Camassa-Holm (CH) equation is

$$\psi_t - \psi_{txx} - 2\kappa\psi_x + 3\psi\psi_x = 2\psi_x\psi_{xx} + \psi\psi_{xxx},$$

- ullet where ψ is deviation from the free surface
- and κ is a dispersion coefficient (may be scaled to 0 or 1).

• The Camassa-Holm (CH) equation is

$$\psi_t - \psi_{txx} - 2\kappa\psi_x + 3\psi\psi_x = 2\psi_x\psi_{xx} + \psi\psi_{xxx},$$

- ullet where ψ is deviation from the free surface
- and κ is a dispersion coefficient (may be scaled to 0 or 1).
- Introducing $\mathbf{w} = \psi_{\mathsf{x}\mathsf{x}} \psi + \kappa$ we may write more concisely

$$w_t + 2\psi_x w + \psi w_x = 0.$$

The Lax pair

• CH is an integrable system and has many similarities to KdV.

The Lax pair

- CH is an integrable system and has many similarities to KdV.
- CH is the compatibility condition for the linear equations

$$-u_{xx} + \frac{1}{4}u = \lambda wu$$

and

$$u_t - \left(\frac{1}{2\lambda} - \psi\right)u_{\mathsf{x}} - \frac{1}{2}\psi_{\mathsf{x}}u = 0$$

(recall
$$w = \psi_{xx} - \psi + \kappa$$
).

• $\kappa=1$ (we have also dealt with $\kappa=0$ as have Eckhardt/Kostenko (2014)).

- $\kappa=1$ (we have also dealt with $\kappa=0$ as have Eckhardt/Kostenko (2014)).
- The scattering condition: w-1 is integrable and its first moment is finite:

- $\kappa = 1$ (we have also dealt with $\kappa = 0$ as have Eckhardt/Kostenko (2014)).
- The scattering condition: w-1 is integrable and its first moment is finite:

•
$$-u'' + \frac{1}{4}u = \lambda wu$$

$$w(\cdot,0) \xrightarrow{scattering} \text{ scattering data}$$

$$\downarrow \qquad \qquad \downarrow$$

$$w(\cdot,t) \xleftarrow{inverse\ scattering} \text{ evolved scattering data}$$

- $\kappa = 1$ (we have also dealt with $\kappa = 0$ as have Eckhardt/Kostenko (2014)).
- The scattering condition: w-1 is integrable and its first moment is finite:

• The transmission coefficient and eigenvalues remain constant.

- $\kappa = 1$ (we have also dealt with $\kappa = 0$ as have Eckhardt/Kostenko (2014)).
- The scattering condition: w-1 is integrable and its first moment is finite:

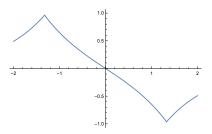
- The transmission coefficient and eigenvalues remain constant.
- The reflection coefficient and norming constants evolve by multiplying with the exponentials $\exp(\pm ikt/\lambda)$.

The case of positive w

• If w > 0 is appropriately smooth this program was accomplished by Constantin et al. (2003, 2006).

The case of positive w

- If w > 0 is appropriately smooth this program was accomplished by Constantin et al. (2003, 2006).
- The condition w > 0 removes the interesting cases (wave breaking, wave collisions, peakons).



$$\bullet \ -(py')' + qy = wf$$

- $\bullet -(py')' + qy = wf$
- p = 1, $q \ge 0$ (for simplicity), $q, w \in L^1_{loc}$ or measures.

- $\bullet -(py')' + qy = wf$
- p = 1, $q \ge 0$ (for simplicity), $q, w \in L^1_{loc}$ or measures.
- Issue 1: $L^2(w)$ is not a Hilbert space.

- $\bullet -(py')' + qy = wf$
- p=1, $q\geq 0$ (for simplicity), $q,w\in L^1_{\mathrm{loc}}$ or measures.
- Issue 1: $L^2(w)$ is not a Hilbert space.
 - Consider $\mathcal{H}_1=\{y\in\mathrm{AC}_{\mathrm{loc}}:y',\sqrt{q}y\in L^2(\mathbb{R})\}$ with scalar product

$$\langle u,v\rangle=\int_0^\infty (u'\overline{v'}+qu\overline{v}).$$

- $\bullet -(py')' + qy = wf$
- p=1, $q\geq 0$ (for simplicity), $q,w\in L^1_{\mathrm{loc}}$ or measures.
- Issue 1: $L^2(w)$ is not a Hilbert space.
 - Consider $\mathcal{H}_1=\{y\in\mathrm{AC}_{\mathrm{loc}}:y',\sqrt{q}y\in L^2(\mathbb{R})\}$ with scalar product

$$\langle u, v \rangle = \int_0^\infty (u' \overline{v'} + q u \overline{v}).$$

 Issue 2: there is no operator, instead we must consider relations.

- $\bullet \ -(py')' + qy = wf$
- p=1, $q\geq 0$ (for simplicity), $q,w\in L^1_{\mathrm{loc}}$ or measures.
- Issue 1: $L^2(w)$ is not a Hilbert space.
 - Consider $\mathcal{H}_1=\{y\in\mathrm{AC}_{\mathrm{loc}}:y',\sqrt{q}y\in L^2(\mathbb{R})\}$ with scalar product

$$\langle u, v \rangle = \int_0^\infty (u' \overline{v'} + q u \overline{v}).$$

- Issue 2: there is no operator, instead we must consider relations.
- Issue 3: Perturbations get multiplied by λ .

• If E is a linear subspace of $\mathcal{H}_1 \oplus \mathcal{H}_1$ it is called a linear relation.

- If E is a linear subspace of $\mathcal{H}_1 \oplus \mathcal{H}_1$ it is called a linear relation.
- $E^* = \{(u^*, v^*) : \forall (u, v) \in E : \langle u^*, v \rangle = \langle v^*, u \rangle \}$ is the adjoint relation.

- If E is a linear subspace of $\mathcal{H}_1 \oplus \mathcal{H}_1$ it is called a linear relation.
- $E^* = \{(u^*, v^*) : \forall (u, v) \in E : \langle u^*, v \rangle = \langle v^*, u \rangle \}$ is the adjoint relation.
- E* is always a closed set.

- If E is a linear subspace of $\mathcal{H}_1 \oplus \mathcal{H}_1$ it is called a linear relation.
- $E^* = \{(u^*, v^*) : \forall (u, v) \in E : \langle u^*, v \rangle = \langle v^*, u \rangle \}$ is the adjoint relation.
- E* is always a closed set.
- $E \subset F$ implies $F^* \subset E^*$.

- If E is a linear subspace of $\mathcal{H}_1 \oplus \mathcal{H}_1$ it is called a linear relation.
- $E^* = \{(u^*, v^*) : \forall (u, v) \in E : \langle u^*, v \rangle = \langle v^*, u \rangle \}$ is the adjoint relation.
- E* is always a closed set.
- $E \subset F$ implies $F^* \subset E^*$.
- $\overline{E} = E^{**}$ and $E^* = \overline{E}^*$.

- If E is a linear subspace of $\mathcal{H}_1 \oplus \mathcal{H}_1$ it is called a linear relation.
- $E^* = \{(u^*, v^*) : \forall (u, v) \in E : \langle u^*, v \rangle = \langle v^*, u \rangle \}$ is the adjoint relation.
- E* is always a closed set.
- $E \subset F$ implies $F^* \subset E^*$.
- $\overline{E} = E^{**}$ and $E^* = \overline{E}^*$.
- E is called symmetric if $E \subset E^*$ and self-adjoint if $E = E^*$.

• $T_1 = \{(u, f) \in \mathcal{H}_1 \oplus \mathcal{H}_1 : -u'' + qu = wf \text{ a.e.}\}$ is a closed linear self-adjoint relation.

- $T_1 = \{(u, f) \in \mathcal{H}_1 \oplus \mathcal{H}_1 : -u'' + qu = wf \text{ a.e.}\}$ is a closed linear self-adjoint relation.
- $(u, f), (u, g) \in T_1$ if and only if $(0, f g) \in T_1$.

- $T_1 = \{(u, f) \in \mathcal{H}_1 \oplus \mathcal{H}_1 : -u'' + qu = wf \text{ a.e.}\}$ is a closed linear self-adjoint relation.
- $(u, f), (u, g) \in T_1$ if and only if $(0, f g) \in T_1$.
- $\mathcal{H}_{\infty} = \{g \in \mathcal{H}_1 : (0,g) \in \mathcal{T}_1\} = \{g \in \mathcal{H}_1 : 0 = wg\}.$

- $T_1 = \{(u, f) \in \mathcal{H}_1 \oplus \mathcal{H}_1 : -u'' + qu = wf \text{ a.e.}\}$ is a closed linear self-adjoint relation.
- $(u, f), (u, g) \in T_1$ if and only if $(0, f g) \in T_1$.
- $\bullet \ \, \mathcal{H}_{\infty} = \{g \in \mathcal{H}_1 : (0,g) \in \mathcal{T}_1\} = \{g \in \mathcal{H}_1 : 0 = wg\}.$
- $\bullet \ \mathcal{H}=\mathcal{H}_1\ominus\mathcal{H}_\infty$

- $T_1 = \{(u, f) \in \mathcal{H}_1 \oplus \mathcal{H}_1 : -u'' + qu = wf \text{ a.e.}\}$ is a closed linear self-adjoint relation.
- $(u, f), (u, g) \in T_1$ if and only if $(0, f g) \in T_1$.
- $\mathcal{H}_{\infty} = \{g \in \mathcal{H}_1 : (0,g) \in T_1\} = \{g \in \mathcal{H}_1 : 0 = wg\}.$
- $\mathcal{H} = \mathcal{H}_1 \ominus \mathcal{H}_{\infty}$
- If $\operatorname{supp} w = \mathbb{R}$, then $\mathcal{H}_{\infty} = \{0\}$, $\mathcal{H} = \mathcal{H}_1$ and \mathcal{T}_1 an operator defined on a dense subset of \mathcal{H}_1 .

- $T_1 = \{(u, f) \in \mathcal{H}_1 \oplus \mathcal{H}_1 : -u'' + qu = wf \text{ a.e.}\}$ is a closed linear self-adjoint relation.
- $(u, f), (u, g) \in T_1$ if and only if $(0, f g) \in T_1$.
- $\mathcal{H}_{\infty} = \{g \in \mathcal{H}_1 : (0,g) \in T_1\} = \{g \in \mathcal{H}_1 : 0 = wg\}.$
- $\mathcal{H} = \mathcal{H}_1 \ominus \mathcal{H}_{\infty}$
- If $\operatorname{supp} w = \mathbb{R}$, then $\mathcal{H}_{\infty} = \{0\}$, $\mathcal{H} = \mathcal{H}_1$ and \mathcal{T}_1 an operator defined on a dense subset of \mathcal{H}_1 .
- If w=0, then $\mathcal{H}_{\infty}=\mathcal{H}_{1}$, $\mathcal{H}=\{0\}$.

- $T_1 = \{(u, f) \in \mathcal{H}_1 \oplus \mathcal{H}_1 : -u'' + qu = wf \text{ a.e.}\}$ is a closed linear self-adjoint relation.
- $(u, f), (u, g) \in T_1$ if and only if $(0, f g) \in T_1$.
- $\mathcal{H}_{\infty} = \{g \in \mathcal{H}_1 : (0,g) \in T_1\} = \{g \in \mathcal{H}_1 : 0 = wg\}.$
- $\mathcal{H} = \mathcal{H}_1 \ominus \mathcal{H}_{\infty}$
- If $\operatorname{supp} w = \mathbb{R}$, then $\mathcal{H}_{\infty} = \{0\}$, $\mathcal{H} = \mathcal{H}_1$ and \mathcal{T}_1 an operator defined on a dense subset of \mathcal{H}_1 .
- If w = 0, then $\mathcal{H}_{\infty} = \mathcal{H}_1$, $\mathcal{H} = \{0\}$.
- $T = T_1 \cap \mathcal{H} \oplus \mathcal{H}$ is a densely defined operator on \mathcal{H} .

Scattering

• Suppose $\int (q-q_0)$, $\int (w-1)$, and $\int |x|(q-q_0w)(x)$ are all finite.

Scattering

- Suppose $\int (q-q_0)$, $\int (w-1)$, and $\int |x|(q-q_0w)(x)$ are all finite.
- Jost solutions $f_{\pm}(x,k) \sim e^{ikx}$ as x tends to $\pm \infty$. Here $\lambda = k^2 + q_0$ and $\text{Im}(k) \geq 0$.

Scattering

- Suppose $\int (q-q_0)$, $\int (w-1)$, and $\int |x|(q-q_0w)(x)$ are all finite.
- Jost solutions $f_{\pm}(x,k) \sim e^{ikx}$ as x tends to $\pm \infty$. Here $\lambda = k^2 + q_0$ and $\text{Im}(k) \geq 0$.
- High energy asymptotics is crucial and difficult.

Scattering

- Suppose $\int (q-q_0)$, $\int (w-1)$, and $\int |x|(q-q_0w)(x)$ are all finite.
- Jost solutions $f_{\pm}(x,k) \sim e^{ikx}$ as x tends to $\pm \infty$. Here $\lambda = k^2 + q_0$ and $\text{Im}(k) \geq 0$.
- · High energy asymptotics is crucial and difficult.
- Transmission and reflection coefficients:

$$\begin{cases} \mathfrak{T}f_{-} = \mathfrak{R}_{+}f_{+} + \overline{f_{+}} \\ \mathfrak{T}f_{+} = \mathfrak{R}_{-}f_{-} + \overline{f_{-}}. \end{cases}$$

Scattering

- Suppose $\int (q-q_0)$, $\int (w-1)$, and $\int |x|(q-q_0w)(x)$ are all finite.
- Jost solutions $f_{\pm}(x,k) \sim e^{ikx}$ as x tends to $\pm \infty$. Here $\lambda = k^2 + q_0$ and $\text{Im}(k) \geq 0$.
- High energy asymptotics is crucial and difficult.
- Transmission and reflection coefficients:

$$\begin{cases} \mathfrak{T}f_{-} = \mathfrak{R}_{+}f_{+} + \overline{f_{+}} \\ \mathfrak{T}f_{+} = \mathfrak{R}_{-}f_{-} + \overline{f_{-}}. \end{cases}$$

• Eigenvalues λ_n and norming constants $||f_{\pm}(\cdot, k_n)||$.

•
$$\lambda = k^2 + q_0$$
 and $t = s^2 + q_0$

- $\lambda = k^2 + q_0$ and $t = s^2 + q_0$
- $\hat{u}_{\pm}(k) = \langle u, \overline{f_{\pm}(\cdot, k)} \rangle$ where u is compactly supported.

- $\lambda = k^2 + q_0$ and $t = s^2 + q_0$
- $\hat{u}_{\pm}(k) = \langle u, \overline{f_{\pm}(\cdot, k)} \rangle$ where u is compactly supported.
- Extend to all of \mathcal{H}_1 by continuity.

- $\lambda = k^2 + q_0$ and $t = s^2 + q_0$
- $\hat{u}_{\pm}(k) = \langle u, \overline{f_{\pm}(\cdot, k)} \rangle$ where u is compactly supported.
- Extend to all of \mathcal{H}_1 by continuity.
- The transform space $L^2_{\mathcal{J}}$ is determined by

$$\|\hat{u}\|_{\mathcal{J}}^{2} = \int_{q_{0}}^{\infty} (|\hat{u}_{+}(s)|^{2} + |\hat{u}_{-}(s)|^{2}) \frac{|\mathfrak{T}(s)|}{4\pi st} dt + \sum_{n} \frac{|\hat{u}_{+}(k_{n})|^{2}}{\|f_{+}(\cdot, k_{n})\|^{2}}.$$

- $\lambda = k^2 + q_0$ and $t = s^2 + q_0$
- $\hat{u}_{\pm}(k) = \langle u, \overline{f_{\pm}(\cdot, k)} \rangle$ where u is compactly supported.
- Extend to all of \mathcal{H}_1 by continuity.
- The transform space $L^2_{\mathcal{J}}$ is determined by

$$\|\hat{u}\|_{\mathcal{J}}^{2} = \int_{q_{0}}^{\infty} (|\hat{u}_{+}(s)|^{2} + |\hat{u}_{-}(s)|^{2}) \frac{|\mathfrak{T}(s)|}{4\pi st} dt + \sum_{n} \frac{|\hat{u}_{+}(k_{n})|^{2}}{\|f_{+}(\cdot, k_{n})\|^{2}}.$$

• $\ker \mathcal{J} = \mathcal{H}_{\infty}$.

- $\lambda = k^2 + q_0$ and $t = s^2 + q_0$
- $\hat{u}_{\pm}(k) = \langle u, \overline{f_{\pm}(\cdot, k)} \rangle$ where u is compactly supported.
- Extend to all of \mathcal{H}_1 by continuity.
- ullet The transform space $\mathcal{L}^2_{\mathcal{J}}$ is determined by

$$\|\hat{u}\|_{\mathcal{J}}^{2} = \int_{q_{0}}^{\infty} (|\hat{u}_{+}(s)|^{2} + |\hat{u}_{-}(s)|^{2}) \frac{|\mathfrak{T}(s)|}{4\pi st} dt + \sum_{n} \frac{|\hat{u}_{+}(k_{n})|^{2}}{\|f_{+}(\cdot, k_{n})\|^{2}}.$$

- $\ker \mathcal{J} = \mathcal{H}_{\infty}$.
- $\mathcal{J}|_{\mathcal{H}}$ is unitary: $\langle u, v \rangle = \langle \mathcal{J}u, \mathcal{J}v \rangle_{\mathcal{J}}$.

- $\lambda = k^2 + q_0$ and $t = s^2 + q_0$
- $\hat{u}_{\pm}(k) = \langle u, \overline{f_{\pm}(\cdot, k)} \rangle$ where u is compactly supported.
- Extend to all of \mathcal{H}_1 by continuity.
- The transform space $L^2_{\mathcal{J}}$ is determined by

$$\|\hat{u}\|_{\mathcal{J}}^{2} = \int_{q_{0}}^{\infty} (|\hat{u}_{+}(s)|^{2} + |\hat{u}_{-}(s)|^{2}) \frac{|\mathfrak{T}(s)|}{4\pi st} dt + \sum_{n} \frac{|\hat{u}_{+}(k_{n})|^{2}}{\|f_{+}(\cdot, k_{n})\|^{2}}.$$

- $\ker \mathcal{J} = \mathcal{H}_{\infty}$.
- $\mathcal{J}|_{\mathcal{H}}$ is unitary: $\langle u, v \rangle = \langle \mathcal{J}u, \mathcal{J}v \rangle_{\mathcal{J}}$.
- ullet The adjoint of ${\mathcal J}$ (and the inverse of ${\mathcal J}|_{\mathcal H}$) is

$$(\mathcal{J}^*\hat{u})(x) = \langle \hat{u}, F(x, \cdot) \rangle_{\mathcal{J}}$$
 with $F(x, \cdot) = (f_+(x, \cdot), f_-(x, \cdot))$.

- $\lambda = k^2 + q_0$ and $t = s^2 + q_0$
- $\hat{u}_{\pm}(k) = \langle u, \overline{f_{\pm}(\cdot, k)} \rangle$ where u is compactly supported.
- Extend to all of \mathcal{H}_1 by continuity.
- The transform space $L^2_{\mathcal{J}}$ is determined by

$$\|\hat{u}\|_{\mathcal{J}}^{2} = \int_{q_{0}}^{\infty} (|\hat{u}_{+}(s)|^{2} + |\hat{u}_{-}(s)|^{2}) \frac{|\mathfrak{T}(s)|}{4\pi st} dt + \sum_{n} \frac{|\hat{u}_{+}(k_{n})|^{2}}{\|f_{+}(\cdot, k_{n})\|^{2}}.$$

- $\ker \mathcal{J} = \mathcal{H}_{\infty}$.
- $\mathcal{J}|_{\mathcal{H}}$ is unitary: $\langle u, v \rangle = \langle \mathcal{J}u, \mathcal{J}v \rangle_{\mathcal{J}}$.
- The adjoint of \mathcal{J} (and the inverse of $\mathcal{J}|_{\mathcal{H}}$) is $(\mathcal{J}^*\hat{u})(x) = \langle \hat{u}, F(x, \cdot) \rangle_{\mathcal{J}} \quad \text{with} \quad F(x, \cdot) = (f_+(x, \cdot), f_-(x, \cdot)).$
- $u \in D_T$ implies $(\mathcal{J}(Tu))(\lambda) = \lambda(\mathcal{J}u)(\lambda)$, i.e., the Jost transform diagonalizes T.

Theorem (BBW (JDE 2012))

Suppose two operators T and \check{T} are given and that their scattering matrices (and hence eigenvalues) and norming constants are identical.

• There is a Liouville transform $\mathcal{L}_{r,s} \in \mathcal{S}$ such that $T \circ \mathcal{L}_{r,s} = \mathcal{L}_{r,s} \circ \breve{T}$.

Theorem (BBW (JDE 2012))

Suppose two operators T and \check{T} are given and that their scattering matrices (and hence eigenvalues) and norming constants are identical.

- There is a Liouville transform $\mathcal{L}_{r,s} \in \mathcal{S}$ such that $T \circ \mathcal{L}_{r,s} = \mathcal{L}_{r,s} \circ \breve{T}$.
- $s = \breve{\tau}^{-1} \circ \tau$ and $\tau, \breve{\tau}$ are explicitly given in terms of w and \breve{w} .

Theorem (BBW (JDE 2012))

Suppose two operators T and \check{T} are given and that their scattering matrices (and hence eigenvalues) and norming constants are identical.

- There is a Liouville transform $\mathcal{L}_{r,s} \in \mathcal{S}$ such that $T \circ \mathcal{L}_{r,s} = \mathcal{L}_{r,s} \circ \breve{T}$.
- $s = \breve{\tau}^{-1} \circ \tau$ and $\tau, \breve{\tau}$ are explicitly given in terms of w and \breve{w} .
- $\ddot{q} \circ s = r^3(-r'' + qr)$

Theorem (BBW (JDE 2012))

Suppose two operators T and \check{T} are given and that their scattering matrices (and hence eigenvalues) and norming constants are identical.

- There is a Liouville transform $\mathcal{L}_{r,s} \in \mathcal{S}$ such that $T \circ \mathcal{L}_{r,s} = \mathcal{L}_{r,s} \circ \breve{T}$.
- $s = \breve{\tau}^{-1} \circ \tau$ and $\tau, \breve{\tau}$ are explicitly given in terms of w and \breve{w} .
- $\ddot{q} \circ s = r^3(-r'' + qr)$
- $\breve{w} \circ s = r^4 w$

Theorem (BBW (JDE 2012))

Suppose two operators T and \check{T} are given and that their scattering matrices (and hence eigenvalues) and norming constants are identical.

- There is a Liouville transform $\mathcal{L}_{r,s} \in \mathcal{S}$ such that $T \circ \mathcal{L}_{r,s} = \mathcal{L}_{r,s} \circ \breve{T}$.
- $s = \breve{\tau}^{-1} \circ \tau$ and $\tau, \breve{\tau}$ are explicitly given in terms of w and \breve{w} .
- $\ddot{q} \circ s = r^3(-r'' + qr)$
- $\breve{w} \circ s = r^4 w$

Conversely, if the coefficients of T and \check{T} are related in this way then scattering data of T and \check{T} coincide.

• Suppose $s: \mathbb{R} \to \mathbb{R}$ is a bijection and r, 1/r are finite almost everywhere. Then $\mathcal{L}_{r,s}: \breve{u} \mapsto r\breve{u} \circ s$ is a Liouville transform.

- Suppose $s : \mathbb{R} \to \mathbb{R}$ is a bijection and r, 1/r are finite almost everywhere. Then $\mathcal{L}_{r,s} : \breve{u} \mapsto r\breve{u} \circ s$ is a Liouville transform.
- We are interested in the following subset S:

- Suppose $s : \mathbb{R} \to \mathbb{R}$ is a bijection and r, 1/r are finite almost everywhere. Then $\mathcal{L}_{r,s} : \breve{u} \mapsto r\breve{u} \circ s$ is a Liouville transform.
- We are interested in the following subset S:
 - s is a strictly increasing bijection from $\mathbb{R} \to \mathbb{R}$ and continuously differentiable;

- Suppose $s : \mathbb{R} \to \mathbb{R}$ is a bijection and r, 1/r are finite almost everywhere. Then $\mathcal{L}_{r,s} : \breve{u} \mapsto r\breve{u} \circ s$ is a Liouville transform.
- We are interested in the following subset S:
 - s is a strictly increasing bijection from $\mathbb{R} \to \mathbb{R}$ and continuously differentiable;
 - $r(x)^2 s'(x) = 1$.

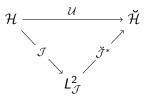
- Suppose $s : \mathbb{R} \to \mathbb{R}$ is a bijection and r, 1/r are finite almost everywhere. Then $\mathcal{L}_{r,s} : \breve{u} \mapsto r\breve{u} \circ s$ is a Liouville transform.
- We are interested in the following subset S:
 - s is a strictly increasing bijection from $\mathbb{R} \to \mathbb{R}$ and continuously differentiable;
 - $r(x)^2 s'(x) = 1$.
 - r is real, locally absolutely continuous, and strictly positive;

- Suppose $s: \mathbb{R} \to \mathbb{R}$ is a bijection and r, 1/r are finite almost everywhere. Then $\mathcal{L}_{r,s}: \breve{u} \mapsto r\breve{u} \circ s$ is a Liouville transform.
- We are interested in the following subset S:
 - s is a strictly increasing bijection from $\mathbb{R} \to \mathbb{R}$ and continuously differentiable;
 - $r(x)^2 s'(x) = 1$.
 - r is real, locally absolutely continuous, and strictly positive;
 - r' is locally absolutely continuous;

- Suppose $s : \mathbb{R} \to \mathbb{R}$ is a bijection and r, 1/r are finite almost everywhere. Then $\mathcal{L}_{r,s} : \breve{u} \mapsto r\breve{u} \circ s$ is a Liouville transform.
- We are interested in the following subset S:
 - s is a strictly increasing bijection from $\mathbb{R} \to \mathbb{R}$ and continuously differentiable;
 - $r(x)^2 s'(x) = 1$.
 - r is real, locally absolutely continuous, and strictly positive;
 - r' is locally absolutely continuous;
 - s(x) x and r(x) 1 tend to 0 as x tends to $\pm \infty$.

• q_0 , $|\mathfrak{T}|$, eigenvalues and norming constants determine $L^2_{\mathcal{J}}=L^2_{\widetilde{\mathcal{J}}}.$

- q_0 , $|\mathfrak{T}|$, eigenvalues and norming constants determine $L^2_{\mathcal{J}}=L^2_{\breve{\mathcal{T}}}.$
- ullet We need to show that ${\cal U}$ defined here is a Liouville transform.



• A Paley-Wiener type theorem relates support properties of u to growth properties of \hat{u} .

- A Paley-Wiener type theorem relates support properties of u to growth properties of \hat{u} .
 - If $\operatorname{supp} u \subset [a, b]$ then $\hat{u}_+(k) = o(\lambda f_+(a, k))$ and $\hat{u}_-(k) = o(\lambda f_-(b, k))$ (easy).

- A Paley-Wiener type theorem relates support properties of u to growth properties of \hat{u} .
 - If $\operatorname{supp} u \subset [a, b]$ then $\hat{u}_+(k) = o(\lambda f_+(a, k))$ and $\hat{u}_-(k) = o(\lambda f_-(b, k))$ (easy).
 - If $\check{u}_+ = o(\lambda \check{f}_+(\check{a}, k))$ and $\check{u}_-(k) = o(\lambda \check{f}_-(\check{b}, k))$ then $\operatorname{supp} \check{u} \subset [\check{a}, \check{b}]$ (hard).

- A Paley-Wiener type theorem relates support properties of u to growth properties of \hat{u} .
 - If $\operatorname{supp} u \subset [a, b]$ then $\hat{u}_+(k) = o(\lambda f_+(a, k))$ and $\hat{u}_-(k) = o(\lambda f_-(b, k))$ (easy).
 - If $\tilde{u}_+ = o(\lambda \check{f}_+(\check{a}, k))$ and $\tilde{u}_-(k) = o(\lambda \check{f}_-(\check{b}, k))$ then $\operatorname{supp} \check{u} \subset [\check{a}, \check{b}]$ (hard).
- Choose $s(a) = \breve{a}$ (and $s(b) = \breve{b}$) (high-energy asymptotics).

- A Paley-Wiener type theorem relates support properties of u to growth properties of \hat{u} .
 - If $\operatorname{supp} u \subset [a, b]$ then $\hat{u}_+(k) = o(\lambda f_+(a, k))$ and $\hat{u}_-(k) = o(\lambda f_-(b, k))$ (easy).
 - If $\tilde{u}_+ = o(\lambda \check{f}_+(\check{a}, k))$ and $\tilde{u}_-(k) = o(\lambda \check{f}_-(\check{b}, k))$ then $\operatorname{supp} \check{u} \subset [\check{a}, \check{b}]$ (hard).
- Choose $s(a) = \breve{a}$ (and $s(b) = \breve{b}$) (high-energy asymptotics).
- $r(x) = u(x)/\breve{u}(s(x))$

- A Paley-Wiener type theorem relates support properties of u to growth properties of \hat{u} .
 - If $\operatorname{supp} u \subset [a, b]$ then $\hat{u}_+(k) = o(\lambda f_+(a, k))$ and $\hat{u}_-(k) = o(\lambda f_-(b, k))$ (easy).
 - If $\tilde{u}_+ = o(\lambda \check{f}_+(\check{a}, k))$ and $\tilde{u}_-(k) = o(\lambda \check{f}_-(\check{b}, k))$ then $\operatorname{supp} \check{u} \subset [\check{a}, \check{b}]$ (hard).
- Choose $s(a) = \breve{a}$ (and $s(b) = \breve{b}$) (high-energy asymptotics).
- $r(x) = u(x)/\breve{u}(s(x))$
- Show that $\mathcal{L}_{r,s} \in \mathcal{S}$ and that $\mathcal{U}^{-1} = \mathcal{L}_{r,s}$.

• If $q = \breve{q} = 1/4$ then the only bounded positive solution to

$$\breve{q}\circ s=r^3(-r''+qr)$$

is r = 1.

• If $q = \breve{q} = 1/4$ then the only bounded positive solution to

$$\breve{q}\circ s=r^3(-r''+qr)$$

is r = 1.

• s' = 1.

• If $q = \breve{q} = 1/4$ then the only bounded positive solution to

$$\breve{q}\circ s=r^3(-r''+qr)$$

is r = 1.

- s' = 1.
- $s(x) = x + s_{\infty}$ (but $s_{\infty} = 0$) so that

$$\breve{w} = w$$
.

• If $q = \breve{q} = 1/4$ then the only bounded positive solution to

$$\breve{q}\circ s=r^3(-r''+qr)$$

is r = 1.

- s' = 1.
- $s(x) = x + s_{\infty}$ (but $s_{\infty} = 0$) so that

$$\breve{w} = w$$
.

• w is uniquely determined from the scattering data.

Thank you for your attention!