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The Camassa-Holm equation

The Camassa-Holm (CH) equation is

Ut — Yixx — 269x + 3y = 205 Psx + Vxxxs

where 1) is deviation from the free surface

and k is a dispersion coefficient (may be scaled to 0 or 1).

Introducing w = ¥, — ¥ + kK we may write more concisely

we + 290w + Ywy = 0.
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The Lax pair

e CH is an integrable system and has many similarities to KdV.
e CH is the compatibility condition for the linear equations
— Uy + Zu = Awu

and ) .
Uy — <2)\—¢> Ux—§¢xuzo
(recall w = ¢y — ¥ + K).
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The inverse scattering transform

e k=1 (we have also dealt with x = 0 as have
Eckhardt/Kostenko (2014)).

e The scattering condition: w — 1 is integrable and its first
moment is finite:

o —u"+ %u = \wu

scattering

w(-,0) scattering data

! l

inverse scattering
W( K t)

e The transmission coefficient and eigenvalues remain constant.

evolved scattering data

e The reflection coefficient and norming constants evolve by
multiplying with the exponentials exp(%ikt/\).
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The case of positive w

e If w > 0 is appropriately smooth this program was
accomplished by Constantin et al. (2003, 2006).

e The condition w > 0 removes the interesting cases (wave
breaking, wave collisions, peakons).
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o —(p) +ay =wf
e p=1, g >0 (for simplicity), g, w € L{ . or measures.
e Issue 1: L?(w) is not a Hilbert space.

o Consider H1 = {y € ACioc : y',/qy € L*(R)} with scalar
product

(u, v) = /Ooo(u’vf+ quv).

e Issue 2: there is no operator, instead we must consider
relations.

e Issue 3: Perturbations get multiplied by .
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Relations

o If E is a linear subspace of H1 @ Hj it is called a linear
relation.

o E¥ ={(u*,v*):Y(u,v) € E:(u*,v)=(v* u)} is the adjoint
relation.

e E£* is always a closed set.

E C F implies F* C E*.

*

e E=FE*and E*=E .

E is called symmetric if E C E* and self-adjoint if E = E*.
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Application to Sturm-Liouville

Ti={(u,f) e Hi®Hy1: —u" + qu=wf a.e.} is a closed
linear self-adjoint relation.

(u,f),(u,g) € Ty if and only if (0,f —g) € T;.

Hoo ={g€H1:(0,g) € Th} ={g € H1:0=wg}

H:Hl@Hoo

If suppw = R, then Hoo = {0}, H = H; and T; an operator
defined on a dense subset of ;.

If w=0, then Hoo = Hi1, H = {0}.

T =TiNH®H is a densely defined operator on H.
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Scattering

Suppose [(g — qo), [(w —1), and [ |x|(g — qow)(x) are all
finite.

ikx a5 x tends to +oo. Here

Jost solutions fi.(x, k) ~ e
A = k?+ qo and Im(k) > 0.

High energy asymptotics is crucial and difficult.

e Transmission and reflection coefficients:

TF =R f +Fy
T =R_f +f.

Eigenvalues A\, and norming constants ||f.(-, kn)||-
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The Jost transform
e A=k>+qgopand t =52+ qo
o G1(k) = (u, fL(-, k)) where u is compactly supported.
e Extend to all of Hy by continuity.
e The transform space L?7 is determined by

Gl — > 2, (A |04 (k
|| ||j—/q (184 (s) + a_(s) DM ||2'

0

o kerJ = Hoo.
o Jlw is unitary: (u,v) =(Ju,Jv)g
e The adjoint of 7 (and the inverse of J|y) is

(TF0)(x) = (a4, F(x,-)) g with  F(x,-) = (fr(x,-), f~(x,-)).

e u € D7 implies (J(Tu))(A) = M T u)(N), i.e., the Jost
transform diagonalizes T.
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Main Theorem

Theorem (BBW (JDE 2012))

Suppose two operators T and T are given and that their scattering
matrices (and hence eigenvalues) and norming constants are
identical.

e There is a Liouville transform L, s € S such that
ToL,s=LrsoT.

1

e s=T7""orT and T,T are explicitly given in terms of w and w.

o Jos=r3(—r"+qr)

e Wos=r*w

Conversely, if the coefficients of T and T are related in this way
then scattering data of T and T coincide.
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Liouville transforms

e Suppose s : R — R is a bijection and r, 1/r are finite almost
everywhere. Then L, : i — riios is a Liouville transform.

e We are interested in the following subset S:

e s is a strictly increasing bijection from R — R and
continuously differentiable;

o r(x)%'(x) = 1.
e ris real, locally absolutely continuous, and strictly positive;
o r'is locally absolutely continuous;

e s(x) —x and r(x) — 1 tend to 0 as x tends to *o0.
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|dea of proof — Outline |

* qo, |%|, eigenvalues and norming constants determine
L2 _ L2
J T ST

e We need to show that ¢/ defined here is a Liouville transform.
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A Paley-Wiener type theorem relates support properties of u
to growth properties of .

e If suppu C [a, b] then i, (k) = o(Af(a, k)) and
0_(k) = o(Af—(b, k)) (easy).

o If fiy = o(Af (&, k)) and i_(k) = o(Af-(b, k)) then
suppii C [, b] (hard).

Choose s(a) = § (and s(b) = b) (high-energy asymptotics).
r(x) = u(x)/i(s(x))
Show that £, s € S and that U= Lrs.
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Back to Camassa-Holm

e If g = § = 1/4 then the only bounded positive solution to

v

os=r3(—r"+qr)

* 5(x) = x + sx (but s, = 0) so that
W= w.

e w is uniquely determined from the scattering data.



Thank you for your attention!



