ON THE INVERSE RESONANCE PROBLEM

Rudi Weikard

University of Alabama at Birmingham

50 Congreso Nacional de la Sociedad Matemática Mexicana

October 25, 2017
I am reporting on joint work with

- Christer Bennewitz (Lund)
- Matthew Bledsoe (Birmingham, AL)
- Malcolm Brown (Cardiff)
- Ian Knowles (UAB)
- Marco Marletta (Cardiff)
- Sergey Naboko (St. Petersburg)
- Roman Shterenberg (UAB)
Introduction and History
“Über eine Frage der Eigenwerttheorie” (1928):

If indeed the spectrum [of eigenvalues] defined the differential equation completely, it would be possible, for instance, to determine practically the structure of a system of atoms from the spectrum, i.e., to solve the problem which is, so to speak, reciprocal to Schrödinger’s problem.
Consider the Schrödinger equation with real potential \(q \)

\[-y'' + qy = \lambda y.\]

\(q \) is a locally integrable function on \([0, b)\) where \(0 < b \leq \infty \).
The Schrödinger equation

• Consider the Schrödinger equation with real potential q

\[-y'' + qy = \lambda y.\]

q is a locally integrable function on $[0, b)$ where $0 < b \leq \infty$.

• Boundary conditions are required at 0 (and possibly at b):
The Schrödinger equation

- Consider the Schrödinger equation with real potential q

\[-y'' + qy = \lambda y.\]

q is a locally integrable function on $[0, b)$ where $0 < b \leq \infty$.
- Boundary conditions are required at 0 (and possibly at b):
 - Dirichlet condition: $y(0) = 0$
 - Neumann condition: $y'(0) = 0$
 - Robin condition: $y(0) \cos \alpha + y'(0) \sin \alpha = 0$
- Unless mentioned otherwise, we assume below a Dirichlet condition at zero.
The Schrödinger equation

• Consider the Schrödinger equation with real potential q

$$-y'' + qy = \lambda y.$$

q is a locally integrable function on $[0, b)$ where $0 < b \leq \infty$.

• Boundary conditions are required at 0 (and possibly at b):
 • Dirichlet condition: $y(0) = 0$
 • Neumann condition: $y'(0) = 0$
The Schrödinger equation

- Consider the Schrödinger equation with real potential q

$$-y'' + qy = \lambda y.$$

q is a locally integrable function on $[0, b)$ where $0 < b \leq \infty$.

- Boundary conditions are required at 0 (and possibly at b):
 - Dirichlet condition: $y(0) = 0$
 - Neumann condition: $y'(0) = 0$
 - Robin condition: $y(0) \cos \alpha + y'(0) \sin \alpha = 0$

- Unless mentioned otherwise, we assume below a Dirichlet condition at zero.
The Schrödinger equation

- Consider the Schrödinger equation with real potential q

\[-y'' + qy = \lambda y.\]

q is a locally integrable function on $[0, b)$ where $0 < b \leq \infty$.

- Boundary conditions are required at 0 (and possibly at b):
 - Dirichlet condition: $y(0) = 0$
 - Neumann condition: $y'(0) = 0$
 - Robin condition: $y(0) \cos \alpha + y'(0) \sin \alpha = 0$

- Unless mentioned otherwise, we assume below a Dirichlet condition at zero.
Ambarzumian and Borg

- Ambarzumian treats only a (very) special case: the Schrödinger equation on a finite interval with continuous q.

- If the Neumann-Neumann eigenvalues are those for potential 0, then q must be 0.

- Borg (1946) showed that, in general, two sets of eigenvalues are needed to identify a potential on an interval uniquely.

- Levinson (1949) and Marchenko (1950) used different sets of data: in addition to one set of (Dirichlet) eigenvalues one needs also either Neumann data of the eigenfunctions or the norming constants of the eigenfunctions.
Ambarzumian and Borg

- Ambarzumian treats only a (very) special case: the Schrödinger equation on a finite interval with continuous q.
- If the Neumann-Neumann eigenvalues are those for potential 0, then q must be 0.
Ambarzumian and Borg

- Ambarzumian treats only a (very) special case: the Schrödinger equation on a finite interval with continuous q.
- If the Neumann-Neumann eigenvalues are those for potential 0, then q must be 0.
- Borg (1946) showed that, in general, two sets of eigenvalues are needed to identify a potential on an interval uniquely.
• Ambarzumian treats only a (very) special case: the Schrödinger equation on a finite interval with continuous q.

• If the Neumann-Neumann eigenvalues are those for potential 0, then q must be 0.

• Borg (1946) showed that, in general, two sets of eigenvalues are needed to identify a potential on an interval uniquely.

• Levinson (1949) and Marchenko (1950) used different sets of data: in addition to one set of (Dirichlet) eigenvalues one needs also either Neumann data of the eigenfunctions or the norming constants of the eigenfunctions.
Inverse spectral theory

- Allow $b = \infty$ and q locally integrable on $[0, b)$.
Inverse spectral theory

- Allow $b = \infty$ and q locally integrable on $[0, b)$.
- Weyl-Titchmarsh solutions: $c(\lambda, \cdot) + m(\lambda)s(\lambda, \cdot)$
Inverse spectral theory

- Allow $b = \infty$ and q locally integrable on $[0, b)$.
- Weyl-Titchmarsh solutions: $c(\lambda, \cdot) + m(\lambda)s(\lambda, \cdot)$
- The Weyl-Titchmarsh m-function has the Herglotz-Nevanlinna property.
Inverse spectral theory

- Allow $b = \infty$ and q locally integrable on $[0, b)$.
- Weyl-Titchmarsh solutions: $c(\lambda, \cdot) + m(\lambda)s(\lambda, \cdot)$
- The Weyl-Titchmarsh m-function has the Herglotz-Nevanlinna property.
- Thus

$$m(\lambda) = A\lambda + B + \int_{\mathbb{R}} \left(\frac{1}{t - \lambda} - \frac{t}{1 + t^2} \right) d\rho(t)$$
Inverse spectral theory

- Allow $b = \infty$ and q locally integrable on $[0, b)$.
- Weyl-Titchmarsh solutions: $c(\lambda, \cdot) + m(\lambda)s(\lambda, \cdot)$
- The Weyl-Titchmarsh m-function has the Herglotz-Nevanlinna property.
- Thus
 \[m(\lambda) = A\lambda + B + \int_{\mathbb{R}} \left(\frac{1}{t - \lambda} - \frac{t}{1 + t^2} \right) d\rho(t) \]
- ρ is called the spectral measure, it is uniquely determined by m.
Inverse spectral theory

- Allow $b = \infty$ and q locally integrable on $[0, b)$.
- Weyl-Titchmarsh solutions: $c(\lambda, \cdot) + m(\lambda)s(\lambda, \cdot)$
- The Weyl-Titchmarsh m-function has the Herglotz-Nevanlinna property.
- Thus
 \[m(\lambda) = A\lambda + B + \int_{\mathbb{R}} \left(\frac{1}{t - \lambda} - \frac{t}{1 + t^2} \right) d\rho(t) \]
- ρ is called the spectral measure, it is uniquely determined by m.
- m determines eigenvalues and continuous spectrum as those points where it seizes to be analytic.
Inverse spectral theory

• Allow \(b = \infty \) and \(q \) locally integrable on \([0, b)\).
• Weyl-Titchmarsh solutions: \(c(\lambda, \cdot) + m(\lambda)s(\lambda, \cdot) \)
• The Weyl-Titchmarsh \(m \)-function has the Herglotz-Nevanlinna property.
• Thus
 \[
 m(\lambda) = A\lambda + B + \int_{\mathbb{R}} \left(\frac{1}{t - \lambda} - \frac{t}{1 + t^2} \right) d\rho(t)
 \]
• \(\rho \) is called the spectral measure, it is uniquely determined by \(m \).
• \(m \) determines eigenvalues and continuous spectrum as those points where it seizes to be analytic.
• Gelfand-Levitan (1951): the spectral function \(\rho \) determines \(q \) uniquely.
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials q and $q_0 = 0$.
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials q and $q_0 = 0$.
- Unperturbed solutions: e^{ikx}, $k^2 = \lambda$, $\text{Im } k \geq 0$
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials q and $q_0 = 0$.
- Unperturbed solutions: e^{ikx}, $k^2 = \lambda$, $\text{Im} \ k \geq 0$
- Scattering condition for half-line $[0, \infty)$: $\int_0^\infty (1 + x)|q(x)|dx < \infty$.
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials q and $q_0 = 0$.
- Unperturbed solutions: e^{ikx}, $k^2 = \lambda$, $\text{Im} \ k \geq 0$
- Scattering condition for half-line $[0, \infty)$: $\int_0^\infty (1 + x)|q(x)| \, dx < \infty$.
- This guarantees finitely many eigenvalues (all negative) and essential spectrum $[0, \infty)$.
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials q and $q_0 = 0$.
- Unperturbed solutions: e^{ikx}, $k^2 = \lambda$, $\text{Im} \, k \geq 0$
- Scattering condition for half-line $[0, \infty)$: $\int_0^\infty (1 + x)|q(x)| \, dx < \infty$.
- This guarantees finitely many eigenvalues (all negative) and essential spectrum $[0, \infty)$.
- Jost solution: $\psi(k, x) = e^{ikx} + \int_x^\infty K(x, t)e^{ikt} \, dt$.

Rudi Weikard (UAB) On the inverse resonance problem June 1, 2017 8 / 32
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials q and $q_0 = 0$.
- Unperturbed solutions: $e^{i k x}$, $k^2 = \lambda$, $\text{Im } k \geq 0$
- Scattering condition for half-line $[0, \infty)$: $\int_0^\infty (1 + x)|q(x)|dx < \infty$.
- This guarantees finitely many eigenvalues (all negative) and essential spectrum $[0, \infty)$.
- Jost solution: $\psi(k, x) = e^{i k x} + \int_x^\infty K(x, t)e^{i k t}dt$.
- For fixed x: $\psi(\cdot, x)$ is analytic in the open upper half plane and continuous in the closed upper half plane.
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials \(q \) and \(q_0 = 0 \).
- Unperturbed solutions: \(e^{ikx}, \ k^2 = \lambda, \ \text{Im} \ k \geq 0 \)
- Scattering condition for half-line \([0, \infty)\): \(\int_0^\infty (1 + x)|q(x)|dx < \infty \).
- This guarantees finitely many eigenvalues (all negative) and essential spectrum \([0, \infty)\).
- Jost solution: \(\psi(k, x) = e^{ikx} + \int_x^\infty K(x, t)e^{ikt}dt \).
- For fixed \(x \): \(\psi(\cdot, x) \) is analytic in the open upper half plane and continuous in the closed upper half plane.
- Jost function: \(\psi(\cdot, 0) \)
Inverse scattering theory

- Scattering is a perturbative process, i.e., one compares solutions for two different potentials q and $q_0 = 0$.
- Unperturbed solutions: e^{ikx}, $k^2 = \lambda$, $\text{Im} \ k \geq 0$
- Scattering condition for half-line $[0, \infty)$: $\int_0^\infty (1 + x)|q(x)|dx < \infty$.
- This guarantees finitely many eigenvalues (all negative) and essential spectrum $[0, \infty)$.
- Jost solution: $\psi(k, x) = e^{ikx} + \int_x^\infty K(x, t)e^{ikt}dt$.
- For fixed x: $\psi(\cdot, x)$ is analytic in the open upper half plane and continuous in the closed upper half plane.
- Jost function: $\psi(\cdot, 0)$
- Marchenko (1955): eigenvalues, norming constants, and scattering phase $(2i\delta(k) = \psi(k, 0)/\psi(k, 0))$ determine q uniquely.
Resonances
Resonances

• If q decays super-exponentially, $\psi(\cdot, x)$ can be analytically continued to the lower half of the k-plane (and m through the continuous spectrum to a second sheet of a Riemann surface).

• Recall: if $\text{Im}(k) > 0$ and $\psi(k, 0) = 0$ then k^2 is an eigenvalue with eigenfunction $\psi(k, \cdot)$.

• If $\text{Im}(k) \leq 0$ and $\psi(k, 0) = 0$ then k^2 is a resonance. In this case $\psi(k, \cdot)$ satisfies the differential equation and the boundary condition at 0 but is not square integrable.

• Both are relevant/visible in spectroscopy.
Resonances

• If q decays super-exponentially, $\psi(\cdot, x)$ can be analytically continued to the lower half of the k-plane (and m through the continuous spectrum to a second sheet of a Riemann surface).

• Recall: if $\text{Im}(k) > 0$ and $\psi(k, 0) = 0$ then k^2 is an eigenvalue with eigenfunction $\psi(k, \cdot)$.

• If $\text{Im}(k) \leq 0$ and $\psi(k, 0) = 0$ then k^2 is a resonance. In this case $\psi(k, \cdot)$ satisfies the differential equation and the boundary condition at 0 but is not square integrable.

• Both are relevant/visible in spectroscopy.
Resonances

• If \(q \) decays super-exponentially, \(\psi(\cdot, x) \) can be analytically continued to the lower half of the \(k \)-plane (and \(m \) through the continuous spectrum to a second sheet of a Riemann surface).

• Recall: if \(\text{Im}(k) > 0 \) and \(\psi(k, 0) = 0 \) then \(k^2 \) is an eigenvalue with eigenfunction \(\psi(k, \cdot) \).

• If \(\text{Im}(k) \leq 0 \) and \(\psi(k, 0) = 0 \) then \(k^2 \) is a resonance. In this case \(\psi(k, \cdot) \) satisfies the differential equation and the boundary condition at 0 but is not square integrable.

• Both are relevant/visible in spectroscopy.
Resonances

- If \(q \) decays super-exponentially, \(\psi(\cdot, x) \) can be analytically continued to the lower half of the \(k \)-plane (and \(m \) through the continuous spectrum to a second sheet of a Riemann surface).
- Recall: if \(\text{Im}(k) > 0 \) and \(\psi(k, 0) = 0 \) then \(k^2 \) is an eigenvalue with eigenfunction \(\psi(k, \cdot) \).
- If \(\text{Im}(k) \leq 0 \) and \(\psi(k, 0) = 0 \) then \(k^2 \) is a resonance. In this case \(\psi(k, \cdot) \) satisfies the differential equation and the boundary condition at 0 but is not square integrable.
- Both are relevant/visible in spectroscopy.
The inverse resonance theorem

Theorem
Suppose that \(q \) is compactly supported. Then the location of all eigenvalues and resonances determines \(q \) uniquely.

- The Jost function extends to an entire function of growth order 1 in \(k \).
- Hadamard's factorization theorem gives \(\psi(\cdot,0) \) up to a factor \(e^{ak+b} \).
- \(a \) and \(b \) are determined from asymptotics as \(k \) tends to \(\infty \) along the positive imaginary axis (\(\psi(k,0) \sim 1 \) independently of \(q \)).
- The claim follows immediately from Marchenko's scattering theorem (norming constants are \(-i \dot{\psi}(k,0)/\psi(-k,0) \), scattering phase is \(\psi(k,0)/(2i\psi(k,0)) \)).
- It appears this went unnoticed for more than 40 years until Korotyaev (2000) and Zworski (2001/1988) pointed it out.
The inverse resonance theorem

Theorem

Suppose that \(q \) is compactly supported. Then the location of all eigenvalues and resonances determines \(q \) uniquely.

- The Jost function extends to an entire function of growth order 1 in \(k \).
The inverse resonance theorem

Theorem

Suppose that \(q \) is compactly supported. Then the location of all eigenvalues and resonances determines \(q \) uniquely.

- The Jost function extends to an entire function of growth order 1 in \(k \).
- Hadamard’s factorization theorem gives \(\psi(\cdot, 0) \) up to a factor \(e^{ak+b} \).
The inverse resonance theorem

Theorem

Suppose that q is compactly supported. Then the location of all eigenvalues and resonances determines q uniquely.

- The Jost function extends to an entire function of growth order 1 in k.
- Hadamard’s factorization theorem gives $\psi(\cdot, 0)$ up to a factor e^{ak+b}.
- a and b are determined from asymptotics as k tends to ∞ along the positive imaginary axis ($\psi(k, 0) \sim 1$ independently of q).
The inverse resonance theorem

Theorem

Suppose that q is compactly supported. Then the location of all eigenvalues and resonances determines q uniquely.

- The Jost function extends to an entire function of growth order 1 in k.
- Hadamard’s factorization theorem gives $\psi(\cdot, 0)$ up to a factor e^{ak+b}.
- a and b are determined from asymptotics as k tends to ∞ along the positive imaginary axis ($\psi(k, 0) \sim 1$ independently of q).
- The claim follows immediately from Marchenko’s scattering theorem (norming constants are $-i\dot{\psi}(k, 0)/\psi(-k, 0)$, scattering phase is $\dot{\psi}(k, 0)/(2i\psi(k, 0))$).
The inverse resonance theorem

Theorem

Suppose that q is compactly supported. Then the location of all eigenvalues and resonances determines q uniquely.

- The Jost function extends to an entire function of growth order 1 in k.
- Hadamard’s factorization theorem gives $\psi(\cdot, 0)$ up to a factor e^{ak+b}.
- a and b are determined from asymptotics as k tends to ∞ along the positive imaginary axis ($\psi(k, 0) \sim 1$ independently of q).
- The claim follows immediately from Marchenko’s scattering theorem (norming constants are $-i\dot{\psi}(k, 0)/\psi(-k, 0)$, scattering phase is $\psi(k, 0)/(2i\psi(k, 0))$).
- It appears this went unnoticed for more than 40 years until Korotyaev (2000) and Zworski (2001/1988) pointed it out.
Asymptotic distribution of resonances

- The uniqueness theorem requires knowledge of ALL eigenvalues and resonances.

- If q is supported on $[0, R]$, absolutely continuous on $[0, R]$, and has a jump discontinuity at R, then the resonances are asymptotic to the curve given by
 \[\text{Im}(z) = -\frac{1}{R} \ln(|\text{Re}(z)|) + \frac{1}{2} R \ln\left(\frac{|q(R)|}{4}\right). \]

- Small changes in R or $q(R)$ produce different asymptotics.

- Large resonances are physically insignificant.

Question: How can we state (and prove) this mathematically?
Asymptotic distribution of resonances

• The uniqueness theorem requires knowledge of ALL eigenvalues and resonances.

• If q is supported on $[0, R]$, absolutely continuous on $[0, R]$, and has a jump discontinuity at R, then the resonances are asymptotic to the curve given by

$$ \text{Im}(z) = -\frac{1}{R} \ln(|\text{Re}(z)|) + \frac{1}{2R} \ln(|q(R)|/4). $$

• Small changes in R or $q(R)$ produce different asymptotics.

• Large resonances are physically insignificant.

• Question: How can we state (and prove) this mathematically?
Asymptotic distribution of resonances

- The uniqueness theorem requires knowledge of ALL eigenvalues and resonances.
- If q is supported on $[0, R]$, absolutely continuous on $[0, R]$, and has a jump discontinuity at R, then the resonances are asymptotic to the curve given by

\[\text{Im}(z) = -\frac{1}{R} \ln(|\text{Re}(z)|) + \frac{1}{2R} \ln(|q(R)|/4). \]

- Small changes in R or $q(R)$ produce different asymptotics.
Asymptotic distribution of resonances

- The uniqueness theorem requires knowledge of ALL eigenvalues and resonances.
- If q is supported on $[0, R]$, absolutely continuous on $[0, R]$, and has a jump discontinuity at R, then the resonances are asymptotic to the curve given by

$$\text{Im}(z) = -\frac{1}{R} \ln(|\text{Re}(z)|) + \frac{1}{2R} \ln(|q(R)|/4).$$

- Small changes in R or $q(R)$ produce different asymptotics.
- **Large resonances are physically insignificant.**
Asymptotic distribution of resonances

- The uniqueness theorem requires knowledge of ALL eigenvalues and resonances.
- If q is supported on $[0, R]$, absolutely continuous on $[0, R]$, and has a jump discontinuity at R, then the resonances are asymptotic to the curve given by

$$\text{Im}(z) = -\frac{1}{R} \ln(|\text{Re}(z)|) + \frac{1}{2R} \ln(|q(R)|/4).$$

- Small changes in R or $q(R)$ produce different asymptotics.
- **Large resonances are physically insignificant.**
- Question: How can we state (and prove) this mathematically?
Recovery from finite data (for compact intervals)

- In practice it is impossible to know infinitely many eigenvalues or to know them precisely.

Hochstadt (1973) first poses the question what can be said when finite data are given.

Rundell-Sacks (1992) give remarkable examples and reasons why one can hope for a reasonable recovery.

Röhrl (2005) and Andrew (2006) have other approaches.
Recovery from finite data (for compact intervals)

- In practice it is impossible to know infinitely many eigenvalues or to know them precisely.
- Hochstadt (1973) first poses the question what can be said when finite data are given.
Recovery from finite data (for compact intervals)

- In practice it is impossible to know infinitely many eigenvalues or to know them precisely.
- Hochstadt (1973) first poses the question what can be said when finite data are given.
- Rundell-Sacks (1992) give remarkable examples and reasons why one can hope for a reasonable recovery.
Recovery from finite data (for compact intervals)

- In practice it is impossible to know infinitely many eigenvalues or to know them precisely.
- Hochstadt (1973) first poses the question what can be said when finite data are given.
- Rundell-Sacks (1992) give remarkable examples and reasons why one can hope for a reasonable recovery.
Recovery from finite data (for compact intervals)

- In practice it is impossible to know infinitely many eigenvalues or to know them precisely.
- Hochstadt (1973) first poses the question what can be said when finite data are given.
- Rundell-Sacks (1992) give remarkable examples and reasons why one can hope for a reasonable recovery.
- Röhrl (2005) and Andrew (2006) have other approaches.
Recovery from finite data (for compact intervals)

- In practice it is impossible to know infinitely many eigenvalues or to know them precisely.
- Hochstadt (1973) first poses the question what can be said when finite data are given.
- Rundell-Sacks (1992) give remarkable examples and reasons why one can hope for a reasonable recovery.
- Röhrl (2005) and Andrew (2006) have other approaches.
-
Results
Stability for the inverse resonance theorem

- \(q, \tilde{q} \) are supported in \([0, 1]\)
Stability for the inverse resonance theorem

• q, \tilde{q} are supported in $[0, 1]$

• $\|q\|_1, \|\tilde{q}\|_1 \leq Q$
Stability for the inverse resonance theorem

• q, \tilde{q} are supported in $[0, 1]$
• $\|q\|_1, \|\tilde{q}\|_1 \leq Q$
• $\|q - \tilde{q}\|_p \leq Q_p$ for some $p \in (1, 2]$
Stability for the inverse resonance theorem

- q, \tilde{q} are supported in $[0, 1]$
- $\|q\|_1, \|\tilde{q}\|_1 \leq Q$
- $\|q - \tilde{q}\|_p \leq Q_p$ for some $p \in (1, 2]$
- Inside a disc of radius R all resonances and eigenvalues of q are ε-close to those of \tilde{q}
Stability for the inverse resonance theorem

• q, \tilde{q} are supported in $[0, 1]$
• $\|q\|_1, \|\tilde{q}\|_1 \leq Q$
• $\|q - \tilde{q}\|_p \leq Q_p$ for some $p \in (1, 2]$
• Inside a disc of radius R all resonances and eigenvalues of q are ε-close to those of \tilde{q}

Then

$$\sup_{x \in [0,1]} \left| \int_x^1 (q - \tilde{q}) dx \right| \leq f(\varepsilon, R)$$

where $f(\varepsilon, R) \to 0$ as $R \to \infty$ but $\varepsilon R^{1/6} \to 0$.
Stability in the case of a compact interval

- Ryabushko (1983): Suppose q_0 and q are real and have zero average. Then

$$\| q - q_0 \|_{L^2} \leq C \left(\| \lambda(q) - \lambda(q_0) \|_{\ell^2} + \| \mu(q) - \mu(q_0) \|_{\ell^2} \right)$$

where C depends on $\| q \|_2$ and $\| q_0 \|_2$.

- McLaughlin (1988) has a similar estimate involving one spectrum and norming constants.

- Marletta and myself (2005) gave an estimate (in terms of N and ε)

$$\left| \left| \int_0^x (q - q_0) \, dt \right| \right| \leq f(\varepsilon, N)$$

where $f(\varepsilon, N) \to 0$ as $N \to \infty$ but $\varepsilon \log N \to 0$ provided that $2N$ eigenvalues are known up to an error ε.

Rudi Weikard (UAB) On the inverse resonance problem June 1, 2017 16 / 32
Stability in the case of a compact interval

- Ryabushko (1983): Suppose q_0 and q are real and have zero average. Then

$$\|q - q_0\|_{L^2} \leq C (\|\lambda(q) - \lambda(q_0)\|_{\ell^2} + \|\mu(q) - \mu(q_0)\|_{\ell^2})$$

where C depends on $\|q\|_2$ and $\|q_0\|_2$.

- McLaughlin (1988) has a similar estimate involving one spectrum and norming constants.
Stability in the case of a compact interval

- Ryabushko (1983): Suppose q_0 and q are real and have zero average. Then

$$\|q - q_0\|_{L^2} \leq C (\|\lambda(q) - \lambda(q_0)\|_{\ell^2} + \|\mu(q) - \mu(q_0)\|_{\ell^2})$$

where C depends on $\|q\|_2$ and $\|q_0\|_2$.

- McLaughlin (1988) has a similar estimate involving one spectrum and norming constants.

- Marletta and myself (2005) gave an estimate (in terms of N and ε) on

$$\left| \int_0^x (q - q_0) dt \right| \leq f(\varepsilon, N)$$

where $f(\varepsilon, N) \to 0$ as $N \to \infty$ but $\varepsilon \log N \to 0$ provided that $2N$ eigenvalues are known up to an error ε.
Comparison of eigenvalues

If k is large, $q(x) = \sin(kx)$, and $\tilde{q}(x) = 0$ then small eigenvalues practically coincide.
Comparison of eigenvalues

If k is large, $q(x) = \sin(kx)$, and $\tilde{q}(x) = 0$ then small eigenvalues practically coincide.
Discrete problems

- Brown, Naboko, W. (Constructive Approximation 2009): Uniqueness for Hermite operators \(\sqrt{\frac{n}{n+1}} y_n + \frac{b}{\sqrt{n+1}} y_{n+1} + \sqrt{\frac{n}{n+1}} y_{n+1} + 1 \).

- Marletta, Naboko, Shterenberg, W. (J. Anal. Math. 2011): Stability for several classes of Jacobi operators: Spectrum is (i) all of \(\mathbb{R} \), (ii) a half-line, or (iii) one finite interval.
Discrete problems

- Brown, Naboko, W. (Constructive Approximation 2009): Uniqueness for Hermite operators ($\sqrt{n}n - 1 + bn + \sqrt{n + 1}y_{n+1}$).
Discrete problems

- Brown, Naboko, W. (Constructive Approximation 2009): Uniqueness for Hermite operators \((\sqrt{ny_{n-1}} + b_n y_n + \sqrt{n+1} y_{n+1})\).

- Marletta, Naboko, Shterenberg, W. (J. Anal. Math. 2011): Stability for several classes of Jacobi operators: Spectrum is (i) all of \(\mathbb{R} \), (ii) a half-line, or (iii) one finite interval.
Discrete problems

- Brown, Naboko, W. (Constructive Approximation 2009): Uniqueness for Hermite operators \((\sqrt{n}y_{n-1} + b_n y_n + \sqrt{n+1} y_{n+1}) \).
Discrete problems

- Brown, Naboko, W. (Constructive Approximation 2009): Uniqueness for Hermite operators \((\sqrt{n}y_{n-1} + b_n y_n + \sqrt{n+1}y_{n+1})\).

- Marletta, Naboko, Shterenberg, W. (J. Anal. Math. 2011): Stability for several classes of Jacobi operators: Spectrum is (i) all of \(\mathbb{R}\), (ii) a half-line, or (iii) one finite interval.
Full line problems

- Bledsoe (IEOT 2012): discrete case
- Eigenvalues and resonances, i.e., the poles of the reflection coefficient, do not yet determine it.
- The zeros of the reflection coefficient are also needed.
Full line problems

- Bledsoe (IEOT 2012): discrete case
- Bledsoe (Inverse Problems 2012): continuous case

Eigenvalues and resonances, i.e., the poles of the reflection coefficient, do not yet determine it. The zeros of the reflection coefficient are also needed.
Full line problems

- Bledsoe (IEOT 2012): discrete case
- Bledsoe (Inverse Problems 2012): continuous case
- Eigenvalues and resonances, i.e., the poles of the reflection coefficient, do not yet determine it.
Full line problems

- Bledsoe (IEOT 2012): discrete case
- Bledsoe (Inverse Problems 2012): continuous case
- Eigenvalues and resonances, i.e., the poles of the reflection coefficient, do not yet determine it.
- The zeros of the reflection coefficient are also needed.
Left-definite operators

- If $q \geq 0$ but no requirement on the sign of w is made one can develop a spectral and scattering theory for

\[-y'' + qy = \lambda wy.\]
Left-definite operators

- If \(q \geq 0 \) but no requirement on the sign of \(w \) is made one can develop a spectral and scattering theory for

\[
-y'' + qy = \lambda wy.
\]

- Underlying Hilbert space: \(\{ y \in AC_{loc} : y', \sqrt{q}y \in L^2 \} \)
Left-definite operators

- If $q \geq 0$ but no requirement on the sign of w is made one can develop a spectral and scattering theory for

$$-y'' + qy = \lambda wy.$$

- Underlying Hilbert space: $\{y \in AC_{\text{loc}} : y', \sqrt{q}y \in L^2 \}$

- Spectral and scattering theory was developed in
 - Bennewitz, Brown, W. (J. Differential Equations 2012) for the full-line case
Left-definite operators

- If \(q \geq 0 \) but no requirement on the sign of \(w \) is made one can develop a spectral and scattering theory for

\[-y'' + qy = \lambda wy.\]

- Underlying Hilbert space: \(\{y \in AC_{\text{loc}} : y', \sqrt{q}y \in L^2\} \)

- Spectral and scattering theory was developed in
 - Bennewitz, Brown, W. (J. Differential Equations 2012) for the full-line case

Outline of the proof
Transformation Operators

The Jost solutions associated with q and \tilde{q} are related by

$$\tilde{\psi}(z, x) = \psi(z, x) + \int_x^{2-x} K(x, t)\psi(z, t)dt$$

where K satisfies the wave equation

We need to estimate $K(x, x) = \frac{1}{2} \int_x^1 (\tilde{q}(s) - q(s))ds$.

Rudi Weikard (UAB) On the inverse resonance problem June 1, 2017 22 / 32
The Jost solutions associated with q and \tilde{q} are related by

$$\tilde{\psi}(z, x) = \psi(z, x) + \int_x^{2-x} K(x, t)\psi(z, t)dt$$

where K satisfies the wave equation

$$K_{xx}(x, t) - K_{tt}(x, t) = (\tilde{q}(x) - q(t))K(x, t)$$

with the boundary conditions:
Transformation Operators

The Jost solutions associated with q and \tilde{q} are related by

$$\tilde{\psi}(z, x) = \psi(z, x) + \int_x^{2-x} K(x, t)\psi(z, t)\,dt$$

where K satisfies the wave equation

$$K_{xx}(x, t) - K_{tt}(x, t) = (\tilde{q}(x) - q(t))K(x, t)$$

with the boundary conditions:

$$K_x - K_t = 0$$

$$K_x + K_t = \frac{1}{2} (q - \tilde{q})$$
Transformation Operators

The Jost solutions associated with q and \tilde{q} are related by

$$\tilde{\psi}(z, x) = \psi(z, x) + \int_x^{2-x} K(x, t)\psi(z, t)dt$$

where K satisfies the wave equation

$$K_{xx}(x, t) - K_{tt}(x, t) = (\tilde{q}(x) - q(t))K(x, t)$$

with the boundary conditions:

We need to estimate

$$K(x, x) = \frac{1}{2} \int_x^1 (\tilde{q}(s) - q(s))ds.$$
The wave equation

\[K = K_x - K_t = 0 \]

\[K_x + K_t = \frac{1}{2} (q - \tilde{q}) \]
The wave equation

\[K = K_x - K_t = 0 \]

\[K_x + K_t = \frac{1}{2} (q - \tilde{q}) \]

\[K = 0 \]
The wave equation may be solved uniquely knowing $K(0, t)$, $0 \leq t \leq 2$ and the fact that $K(x, 2 - x) = 0$.

Iteration:

$$K_0(x, t) = K(0, x + t)$$
The wave equation may be solved uniquely knowing \(K(0, t) \), \(0 \leq t \leq 2 \) and the fact that \(K(x, 2 - x) = 0 \).

Iteration:

\[
K_0(x, t) = K(0, x + t)
\]

\[
K_{n+1}(x, t) = \int_{(t-x)/2}^{(t+x)/2} \int_{(t-x)/2}^{(t+x)/2} \left(q(\alpha + \beta) - \tilde{q}(\alpha - \beta) \right) K_n(\alpha - \beta, \alpha + \beta) d\beta d\alpha
\]

\[
K(x, t) = \sum_{n=0}^{\infty} K_n(x, t)
\]
Solving the wave equation

The wave equation may be solved uniquely knowing $K(0, t)$, $0 \leq t \leq 2$ and the fact that $K(x, 2 - x) = 0$.

Iteration:

$$K_0(x, t) = K(0, x + t)$$

$$K_{n+1}(x, t) = \int_{(t+x)/2}^{1} \int_{(t-x)/2}^{(t+x)/2} (q(\alpha + \beta) - \tilde{q}(\alpha - \beta))K_n(\alpha - \beta, \alpha + \beta)d\beta d\alpha$$

$$K(x, t) = \sum_{n=0}^{\infty} K_n(x, t)$$

We need to estimate $K(0, t)$.

Rudi Weikard (UAB)
On the inverse resonance problem
June 1, 2017
24 / 32
Connecting with Jost functions I

\[0 \]

\[L_q = K_q^{-1} \quad K_{\tilde{q}} \]

\[q \rightarrow K \rightarrow \tilde{q} \]

We need to estimate \((K_{\tilde{q}} - K_q)(0, t)\).
Connecting with Jost functions

0

$L_q = K_q^{-1}$

$K_\tilde{q}$

q \quad K \quad \tilde{q}

\[K(0, t) = (K_\tilde{q} - K_q)(0, t) + \int_0^t (K_\tilde{q} - K_q)(0, s)L_q(s, t)ds \]

We need to estimate $(K_\tilde{q} - K_q)(0, t)$.

Rudi Weikard (UAB)
On the inverse resonance problem
June 1, 2017
We need to estimate \((K\bar{q} - K_q)(0, t)\).
\begin{itemize}
 \item \(\psi(z, 0) = 1 + \int_0^2 K_q(0, t)e^{izt} \, dt \)
 \item \(\tilde{\psi}(z, 0) = 1 + \int_0^2 K_{\tilde{q}}(0, t)e^{izt} \, dt \)
 \item \(\tilde{\psi}(z, 0) - \psi(z, 0) = \int_0^2 (K_{\tilde{q}} - K_q)(0, t)e^{izt} \, dt \)
 \item \((K_{\tilde{q}} - K_q)(0, t) = \frac{1}{2\pi} \int_{\mathbb{R}} (\tilde{\psi} - \psi)(z, 0)e^{-izt} \, dz \)
\end{itemize}

We need to estimate \((\tilde{\psi} - \psi)(z, 0) \).
• \(\psi(z, 0) = 1 + \int_0^2 K_q(0, t)e^{itz} \, dt \)

• \(\tilde{\psi}(z, 0) = 1 + \int_0^2 K_{\tilde{q}}(0, t)e^{itz} \, dt \)
• $\psi(z, 0) = 1 + \int_0^2 K_q(0, t)e^{izt} dt$

• $\tilde{\psi}(z, 0) = 1 + \int_0^2 K_{\tilde{\alpha}}(0, t)e^{izt} dt$

• $\tilde{\psi}(z, 0) - \psi(z, 0) = \int_0^2 (K_{\tilde{\alpha}} - K_q)(0, t)e^{izt} dt$
Connecting with Jost functions II

\[\psi(z, 0) = 1 + \int_0^2 K_q(0, t)e^{izt} dt \]
\[\tilde{\psi}(z, 0) = 1 + \int_0^2 K_{\tilde{q}}(0, t)e^{izt} dt \]
\[\tilde{\psi}(z, 0) - \psi(z, 0) = \int_0^2 (K_{\tilde{q}} - K_q)(0, t)e^{izt} dt \]
\[(K_{\tilde{q}} - K_q)(0, t) = \frac{1}{2\pi} \int_{\mathbb{R}} (\tilde{\psi} - \psi)(z, 0)e^{-izt} dz \]
Connecting with Jost functions II

- \(\psi(z, 0) = 1 + \int_0^2 K_q(0, t)e^{izt} dt \)
- \(\tilde{\psi}(z, 0) = 1 + \int_0^2 K_{\tilde{q}}(0, t)e^{izt} dt \)
- \(\tilde{\psi}(z, 0) - \psi(z, 0) = \int_0^2 (K_{\tilde{q}} - K_q)(0, t)e^{izt} dt \)
- \((K_{\tilde{q}} - K_q)(0, t) = \frac{1}{2\pi} \int_{\mathbb{R}} (\tilde{\psi} - \psi)(z, 0)e^{-izt} dz \)

We need to estimate \((\tilde{\psi} - \psi)(z, 0) \).
Hadamard’s factorization theorem

- If f is entire of growth order at most one, then

$$f(z) = z^{n_0} e^{a+bz} \prod_{n=1}^{\infty} (1 - z/z_n) e^{z/z_n}.$$
Hadamard’s factorization theorem

- If \(f \) is entire of growth order at most one, then
 \[
 f(z) = z^{n_0} e^{a+bz} \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n}\right) e^{z/z_n}.
 \]

- If the first \(N(R) \sim 2eR \) zeros coincide
 \[
 \frac{\psi(z,0)}{\tilde{\psi}(z,0)} = e^{(a-\tilde{a})z+\tilde{b}} \frac{\Pi(R,z)}{\tilde{\Pi}(R,z)}
 \]
 where
 \[
 \Pi(R,z) = \prod_{n=N(R)+1}^{\infty} \left(1 - \frac{z}{z_n}\right) e^{z/z_n}.
 \]
Hadamard’s factorization theorem

• If f is entire of growth order at most one, then

$$f(z) = z^{n_0} e^{a+bz} \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n}\right)e^{z/z_n}.$$

• If the first $N(R) \sim 2eR$ zeros coincide

$$\frac{\psi(z,0)}{\tilde{\psi}(z,0)} = e^{(a-\bar{a})z+b-\bar{b}} \frac{\Pi(R, z)}{\tilde{\Pi}(R, z)}$$

where

$$\Pi(R, z) = \prod_{n=N(R)+1}^{\infty} \left(1 - \frac{z}{z_n}\right)e^{z/z_n}.$$

• $|\Pi(R, z) - 1| \leq C|z|^2/R$ when $2|z| < R.$
Hadamard’s factorization theorem

- If f is entire of growth order at most one, then
 \[f(z) = z^{n_0}e^{a+bz} \prod_{n=1}^{\infty} (1 - z/z_n)e^{z/z_n}. \]

- If the first $N(R) \sim 2eR$ zeros coincide
 \[\frac{\psi(z,0)}{\tilde{\psi}(z,0)} = e^{(a-\tilde{a})z+b-\tilde{b}} \frac{\Pi(R, z)}{\tilde{\Pi}(R, z)} \]
 where
 \[\Pi(R, z) = \prod_{n=N(R)+1}^{\infty} (1 - z/z_n)e^{z/z_n}. \]

- $|\Pi(R, z) - 1| \leq C|z|^2/R$ when $2|z| < R$.

- This provides an estimate for $|z| < R^{1/3}$: $\psi(z,0)/\tilde{\psi}(z,0) \approx 1$ and hence
 \[|\psi(z,0) - \tilde{\psi}(z,0)| \leq CR^{-1/3}. \]
If $|z|$ is small: $E(z) = (1 - z)e^z \approx 1 - z^2$, in fact, $|\log E(z)| \leq 2|z|^2$
If $|z|$ is small: $E(z) = (1 - z)e^z \approx 1 - z^2$, In fact, $|\log E(z)| \leq 2|z|^2$

$$|\Pi(R, z) - 1| \leq |\log \Pi(R, z)| \exp(|\log \Pi(R, z)|)$$
If $|z|$ is small: $E(z) = (1 - z)e^z \approx 1 - z^2$, In fact, $|\log E(z)| \leq 2|z|^2$

$$|\Pi(R, z) - 1| \leq |\log \Pi(R, z)| \exp(|\log \Pi(R, z)|)$$

$$|\log \Pi(R, z)|$$
If $|z|$ is small: $E(z) = (1 - z)e^z \approx 1 - z^2$, in fact, $|\log E(z)| \leq 2|z|^2$

$$|\Pi(R, z) - 1| \leq |\log \Pi(R, z)| \exp(|\log \Pi(R, z)|)$$

$$|\log \Pi(R, z)| \leq \sum_{|z_n| \geq R} |\log E(z/z_n)|$$
If $|z|$ is small: $E(z) = (1 - z)e^z \approx 1 - z^2$, in fact, $|\log E(z)| \leq 2|z|^2$

$$|\Pi(R, z) - 1| \leq |\log \Pi(R, z)| \exp(|\log \Pi(R, z)|)$$

$$|\log \Pi(R, z)| \leq \sum_{|z_n| \geq R} |\log E(z/z_n)| \leq 2|z|^2 \sum_{|z_n| \geq R} |z_n|^{-2}$$
Details

If \(|z|\) is small: \(E(z) = (1 - z)e^z \approx 1 - z^2\), In fact, \(|\log E(z)| \leq 2|z|^2\)

\[|\Pi(R, z) - 1| \leq |\log \Pi(R, z)| \exp(|\log \Pi(R, z)|)\]

\[|\log \Pi(R, z)| \leq \sum_{|z_n| \geq R} |\log E(z/z_n)| \leq 2|z|^2 \sum_{|z_n| \geq R} |z_n|^{-2}\]

\[= 2|z|^2 \int_{R}^{\infty} \frac{dN(t)}{t^2}\]
If $|z|$ is small: $E(z) = (1 - z)e^z \approx 1 - z^2$, in fact, $|\log E(z)| \leq 2|z|^2$

$$|\Pi(R, z) - 1| \leq |\log \Pi(R, z)| \exp(|\log \Pi(R, z)|)$$

$$|\log \Pi(R, z)| \leq \sum_{|z_n| \geq R} |\log E(z/z_n)| \leq 2|z|^2 \sum_{|z_n| \geq R} |z_n|^{-2}$$

$$= 2|z|^2 \int_R^\infty \frac{dN(t)}{t^2} = 4|z|^2 \int_R^\infty \frac{N(t)}{t^3} dt$$
If \(|z|\) is small: \(E(z) = (1 - z)e^z \approx 1 - z^2\), in fact, \(|\log E(z)| \leq 2|z|^2\)

\[|\Pi(R, z) - 1| \leq |\log \Pi(R, z)| \exp(|\log \Pi(R, z)|)\]

\[|\log \Pi(R, z)| \leq \sum |\log E(z/z_n)| \leq 2|z|^2 \sum |z_n|^{-2}\]

\[= 2|z|^2 \int_R^\infty \frac{dN(t)}{t^2} = 4|z|^2 \int_R^\infty \frac{N(t)}{t^3} dt = O(|z|^2/R)\]
Estimate for $|z| \geq R^{1/6}$

- $(K_{\tilde{q}} - K_q)(0, t) = h(t) + \frac{1}{2} \int_{t/2}^{1} (\tilde{q} - q)$ where h, h' is AC on $[0, 2]$.
Estimate for $|z| \geq R^{1/6}$

- $(K\bar{q} - Kq)(0, t) = h(t) + \frac{1}{2} \int_{t/2}^{1} (\bar{q} - q)$ where h, h' is AC on $[0, 2]$.
- Integration by parts in $\tilde{\psi}(z, 0) - \psi(z, 0) = \int_{0}^{2} (K\bar{q} - Kq)(0, t)e^{itz} dt$ gives

 \[\tilde{\psi}(z, 0) - \psi(z, 0) = \frac{i}{z} (K\bar{q} - Kq)(0, 0) - \frac{i}{4z} \hat{G}(z) \]

 where

 \[\hat{G}(z) = \int_{0}^{2} ((\bar{q} - q)(t/2) - 4h'(t))e^{itz} dt. \]
Estimate for $|z| \geq R^{1/6}$

- $(K\tilde{q} - Kq)(0, t) = h(t) + \frac{1}{2} \int_{t/2}^{1} (\tilde{q} - q) \text{ where } h, h' \text{ is AC on } [0, 2].$
- Integration by parts in $\tilde{\psi}(z, 0) - \psi(z, 0) = \int_{0}^{2} (K\tilde{q} - Kq)(0, t)e^{izt} dt$
gives
 $$\tilde{\psi}(z, 0) - \psi(z, 0) = \frac{i}{z}(K\tilde{q} - Kq)(0, 0) - \frac{i}{4z} \hat{G}(z)$$

where
 $$\hat{G}(z) = \int_{0}^{2} ((\tilde{q} - q)(t/2) - 4h'(t))e^{izt} dt.$$

- To deal with the last term one needs the Hausdorff-Young inequality: for $1 < p \leq 2$
 $$\|\hat{G}\|_q \leq \frac{p^{1/(2p)}}{q^{1/(2q)}} \|G\|_p.$$
Estimate for $|z| \geq R^{1/6}$

- $(K\tilde{q} - K_q)(0, t) = h(t) + \frac{1}{2} \int_{t/2}^{1} (\tilde{q} - q)$ where h, h' is AC on $[0, 2]$.
- Integration by parts in $\tilde{\psi}(z, 0) - \psi(z, 0) = \int_{0}^{2} (K\tilde{q} - K_q)(0, t)e^{izt} dt$ gives
 \[\tilde{\psi}(z, 0) - \psi(z, 0) = \frac{i}{z} (K\tilde{q} - K_q)(0, 0) - \frac{i}{4z} \hat{G}(z) \]
 where
 \[\hat{G}(z) = \int_{0}^{2} ((\tilde{q} - q)(t/2) - 4h'(t))e^{izt} dt. \]
- To deal with the last term one needs the Hausdorff-Young inequality: for $1 < p \leq 2$
 \[\| \hat{G} \|_q \leq \frac{p^{1/(2p)}}{q^{1/(2q)}} \| G \|_p. \]
- Here one needs the assumption that $\tilde{q} - q$ be in L^p.
Open problem
Two (or more) spectral bands

Suppose $q(x) = -2\varphi(x + \omega)$. The spectrum of the associated Schrödinger operator has only absolutely continuous spectrum with one gap. All solutions of $-y'' + qy = \lambda y$ are explicitly known. The inverse of the map $\varphi(z) = \lambda$ maps the energy (λ) plane to a parallelogram (the fundamental domain of φ) in a one-to-two fashion. Compactly supported perturbations do not change the essential spectrum but introduce eigenvalues and resonances
Thank you for your attention!