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CHAPTER 1

The Language of Mathematics

1.1. Propositional Calculus and Laws of Inference

1.1.1 Statements. A sentence (in the grammatical sense) for which it is (in principle)
possible to determine whether it is true or false will be called a statement. Thus “Paris is
the capital of France.” and “Two plus three is six.” are statements. “How are you?”, “Let’s
see.”, and “2 + x2 = 11.” are not. “True”, denoted by T, and “false”, denoted by F, are
called truth values.
1.1.2 Connectives. Statements may be combined to obtain other statements: the com-

bination is achieved using so called conjunctions like ‘and’, ‘or’, or ‘but’. In logic and
mathematics one uses the following conjunctions and calls them connectives:

• The conjunction ‘and’; symbol ∧.
• The disjunction ‘or’ (in the sense of ‘p or q or both.’); symbol ∨.
• The conditional ’if-then’; symbol →.
• The biconditional ‘if and only if’; symbol ↔.

The precise definitions of these connectives are given in the truth table below by stating
what the truth value of such a combined statement is given the truth values of its parts. In
the following p and q denote given statements.

p q p and q p or q p or q but not both If p then q p if and only if q
T T T T F T T
T F F T T F F
F T F T T T F
F F F F F T T

Just as in arithmetic the use of parentheses might be necessary in order to indicate
priorities in performing various operations when more complicated statements are formed
symbolically.

Instead of the phrase ‘If p then q.’ one uses also ‘q if p.’ and ‘p only if q.”.
Together with the statement p → q one often considers also its converse q → p and its

contrapositive −q → −p.
1.1.3 Negation. Another way to manipulate a statement is to form its negation. The

negation of p is called ‘Not p.’ and is denoted by −p. The statement −p is true if p is false
and false if p is true.
1.1.4 Tautologies. A combined statement is called a tautology if it is always true no

matter what the truth values of its parts are. The most primitive examples of tautologies
are p ∨ (−p) which is called the law of the excluded middle and −(p ∧ −p) which is called
the law of non-contradiction.

A statement p is said to imply a statement q logically, if p → q is a tautology. This is
denoted by p⇒ q. For instance, p ∧ (p→ q)⇒ q. This can be seen from a truth table.
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2 1. THE LANGUAGE OF MATHEMATICS

Two statements p and q are called logically equivalent if p↔ q is a tautology. We write
then p⇔ q. Note that a logical equivalence is a logical implication both ways. The following
examples are important:

• p→ q ⇔ q ∨ −p,
• p→ q ⇔ −q → −p,
• “Either p or q but not both.” ⇔ (p ∧ −q) ∨ (−p ∧ q).

The second example, in particular, shows that a statement and its contrapositive are logically
equivalent. Note, however, that a statement and its converse are not logically equivalent.

In mathematics (as well as in many other aspects of life) one wants to draw conclusions
from certain pieces of information. The information is given in terms of statements which are
taken for granted. They are called premises. The conclusion is another statement which we
will always accept provided we accept the premises. Drawing a conclusion is (by definition)
allowed if the conclusion is logically implied (in the above sense) by the premises. Thus
the tautologies are our rules for drawing conclusions. For example, if we know (or take for
granted) the truths of the statements “If it rains in Birmingham then Vulcan will get wet.”
and “On May 35 it rained in Birmingham all day.” then we may conclude that “On May
35 Vulcan got wet.”.
1.1.5 Laws of logic. In the following we list the most important logical implications and

equivalences together with their names in logic. Note, however, that the list is not complete
and that any tautology may be used to draw conclusions.

Law of detachment p ∧ (p→ q)⇒ q
Modus tollens −q ∧ (p→ q)⇒ −p
Law of disjunctive syllogism −p ∧ (p ∨ q)⇒ q
Law of hypothetical syllogism (p→ q) ∧ (q → r)⇒ p→ r
Law of simplification p ∧ q ⇒ p
Law of addition p⇒ p ∨ q
Law of absurdity p→ (q ∧ −q)⇒ −p
Law of conditionalizing q ⇒ p→ q
Law of double negation p⇔ −(−p)
Law of contraposition p→ q ⇔ −q → −p
Law of ex- and importation (p ∧ q)→ r ⇔ p→ (q → r)
Law of the conditional p→ q ⇔ q ∨ −p
Law of the biconditional p↔ q ⇔ (p→ q) ∧ (q → p)⇔ (p ∧ q) ∨ (−p ∧ −q)
De Morgan’s laws −(p ∧ q)⇔ −p ∨ −q and −(p ∨ q)⇔ −p ∧ −q
Commutative laws p ∧ q ⇔ q ∧ p and p ∨ q ⇔ q ∨ p
Associative laws (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) and (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r)
Distributive laws p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r) and

p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r)

1.1.6 A scheme for proofs. We will now introduce a very formal scheme for the proof
of a statement from a number of premises. While later on we will not actually employ the
scheme we will always employ its spirit. A proof according to this scheme consists of a list
of lines. Each line has four entries: a number to enumerate it, a statement, a list of premises
on which the statement depends, and an explanation. Lines are added to the list of lines by
one of the following rules:

Rule P: Add a premise. (Put the current line number in the list of premises and
write Premise as explanation.)
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Rule L: Add a statement which is logically implied by a preceding statement. (Copy
the list of premises from that statement and state as explanation which logical
implication was used.)

Rule C: Add the conjunction of previous statements. (For the new list of premises
put the union of the lists of premises of the appropriate previous statements. As
explanation write which lines have been combined.)

Rule CP: If statement S is in the list depending on the premises P1, ..., Pn and R,
then statement R→ S may be added as depending on the premises P1, ..., Pn.

Consider the following example involving the statements
n=“Napoleon expels Snowball from the farm.”,
w=“There will be a windmill.”,
f=“There will be a higher food production.”
Suppose the following scenario. If Napoleon expels Snowball from the farm, then there will
be no higher food production. Resources are spent on a higher food production or a windmill.
We also know for a fact that no windmill was built. We want to prove that Napoleon did
not expel Snowball from the farm. The proof can be done in the following way:

(1) n→ −f {1} premise
(2) f ∨ w {2} premise
(3) w ∨ f {2} from (2) by commutative law
(4) −w {4} premise
(5) −w ∧ (w ∨ f) {2,4} from (3) and (4) by Rule C
(6) f {2,4} from (5) by law of disjunctive syllogism
(7) −(−f) {2,4} from (6) by law of double negation
(8) −(−f) ∧ (n→ −f) {1,2,4} from (1) and (7) by Rule C
(9) −n {1,2,4} from (8) by modus tollens

Using premises 1,2, and 4 we have logically deduced that Napoleon did not expel Snowball.
As another example suppose we want to deduce s→ −m from the premises −s∨ ` and

m→ −`. We might proceed in the following way:

(1) s {1} premise
(2) −(−s) {1} from (1) by law of double negation
(3) −s ∨ ` {3} premise
(4) −(−s) ∧ (−s ∨ `) {1,3} from (2) and (3) by Rule C
(5) ` {1,3} from (4) by law of disjunctive syllogism
(6) −(−`) {1,3} from (5) by law of double negation
(7) m→ −` {7} premise
(8) −(−`) ∧ (m→ −`) {1,3,7} from (6) and (7) by Rule C
(9) −m {1,3,7} from (8) by modus tollens
(10) s→ −m {3,7} from (9) by Rule CP

1.1.7 Obtaining logical implications by proofs. Suppose a line in a proof is of the
form

(n) p→ s {} ...

where p can, of course, be of the form p1∧...∧pk. Since the statement p→ s does not depend
on any premises (as indicated by {} in the third column) it is a tautology and therefore we
have shown that s is logically implied by p or, symbolically, p⇒ s. For instance the law of
conditionalizing may be proved using a truth table but also in the following way:

(1) q {1} premise
(2) q ∨ −p {1} from (1) by law of addition
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(3) p→ q {1} from (2) by logical equivalence of q ∨ −p and p→ q
(4) q → (p→ q) {} from (3) by Rule CP

Thus q ⇒ p→ q.
1.1.8 Inconsistent premises and proof by contradiction. Even if conclusions are

drawn in a logically sound manner conclusions need not be true. Their truth still hinges on
the truth of the premises. In particular, it may be possible to conclude both a statement
and its negation from some set of premises. In this case the premises are called inconsistent.
This is used in the method of proof called proof by contradiction. If one wants to conclude
the statement s from the premise p one may be able to proceed in the following way:

(1) p {1} premise
(2) −s {2} premise
...
(n) r {1,2} ...
(n+1) −r {1,2} ...
(n+2) r ∧ −r {1,2} from (n) and (n+1) by Rule C
(n+3) −s→ (r ∧ −r) {1} from (n+2) by Rule CP
(n+4) −(−s) {1} from (n+3) by law absurdity
(n+5) s {1} from (n+4) by law of double negation

The last line says that statement s has been logically deduced from the premise p.

1.2. Predicate Logic and Basic Set Theory

1.2.1 Predicates. So far the internal structure of statements did not enter our consid-
erations. We now observe that in a statement something (the predicate) is said about
something else (the subject) as in the statements “London is a city.” and “Rome is the cap-
ital of France.” Note here that the predicate “is the capital of France” has again an internal
structure. We will distinguish one-place predicates like “is a city”, two-place predicates like
“is the capital of” and, generally, n-place predicates. If P is such an n-place predicate and
x1, ..., xn are individual objects taking those n places, then we will denote the correspond-
ing the statement by P (x1, ..., xn). For example, if P is the three-place predicate “ is
between and ” then P (5, 3, 9) stands for the statement “5 is between 3 and 9.”

Note also that, if P is an n-place predicate and x2, ..., xn are individual objects, then we
may still think of P ( , x2, ..., xn) as a one-place predicate and of P ( , x2, ..., xk−1, ,
xk+1, ..., xn) as a two-place predicate etc.
1.2.2 Variables, constants, singular sentences, and formulas. A variable is a symbol

meant to represent something unspecified. For instance, in the sentence “x2 + 16 = 25.” x
represents a number but we do not specify which one. Consequently this sentence is not a
statement. A constant, by contrast, represents a fixed object, e.g., “London” and “five” are
constants. A sentence of the form P (x1, ..., xn), where P is an n-place predicate and x1, ...,
xn are variables or constants is called a singular sentence. A sentence containing variables
which becomes a statement after replacing the variables by constants is called a formula.
1.2.3 Sets and elements. Variables used in formulas are typically of one certain kind

or another, e.g., they might represent numbers in one case or cities in another. It is often
necessary to indicate precisely what is allowed to take the place of a variable. In order to do
this set theory was invented. The present treatment of set theory is not rigorous. It is just
supposed to enable us to deal with sets on a intuitive level. See 1.3.9 for a famous example
of what might go wrong.
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While the terms ‘set’ and ‘element’ will not be formally defined we think of a set (or
collection) as a single entity which collects a variety of other entities, the elements (or
members) of the set. A little more precisely, we assume that a set determines its elements
and vice versa. We will use the following phrases: “x is an element (or a member) of (the
set or collection) A”, “x belongs to A”, or A contains x” and this relationship is denoted
by x ∈ A. Otherwise, if x does not belong to A, we write x 6∈ A.
1.2.4 Basic notation. There are essentially two ways to specify a set. Firstly, one can list

all the elements of a set. One uses braces which include the list to indicate that the set rather
than the elements is the object under consideration, e.g., {a, b, c} is the set containing the
letters a, b, and c. It is also customary to express a set by listing its first few elements and
indicating the presence of more by a number of dots when it is specified in some other way
which objects are contained in the set. For instance, the set of squares of natural numbers
might be denoted (somewhat imprecisely) by {1, 4, 9, 16, ...}.

Secondly, a set might collect elements which all share a certain property or certain
properties. Let P be a property and let P (x) stand for “x has the property P”, e.g., if P is
the property “is a city” then P (London) stands for “London is a city.”. Then we denote by
{x : P (x)} the set of all objects which have the property P . For instance, {x : x is a city.}
denotes the set of all cities.
1.2.5 Quantifiers. The sentence “x2 + 16 = 25.” can be made into a statement by

replacing the variable x by a constant (number). However, there are two more possibilities:
we can consider the statements “For all x we have that x2 + 16 = 25.” and “There is an
x such that x2 + 16 = 25.” the first of which is false and the second of which is true. The
phrase “For all x” is called a universal quantifier and is denoted by ∀x :. The phrase “There
exists x such that ” is called an existential quantifier and is denoted by ∃x :. Thus the
previous two statements are denoted by ∀x : x2 + 16 = 25 and ∃x : x2 + 16 = 25.

When we say “For all x ...” it is to be understood that we agreed first on a set of which
x has to be a member. This set is sometimes called the domain of discourse. For instance
in “∀x : x2 + 16 = 25” the domain of discourse could be the set of all real numbers, in “All
atoms have nuclei.” the domain of discourse is the set of atoms. It is often useful (or even
necessary) to explicitly state what the domain of discourse is. If the domain of discourse is
called A the quantifiers are given as ∀x ∈ A : and ∃x ∈ A :.

Let P be a predicate and x a variable. Then x may be replaced by any other variable
in both ∃x : Px and ∀x : Px without changing the content of the sentence provided the new
variable is not used in P . We call this procedure renaming a variable.
1.2.6 Negation of quantified statements. Let F (x) be a formula involving the variable
x. Then

∀x : F (x)⇔ −(∃x : −F (x)),

∃x : F (x)⇔ −(∀x : −F (x)).

1.2.7 Scope of a quantifier, bound and free variables. The formula to which a
quantifier is applied is called the scope of the quantifier. An occurrence of a variable is called
bound if it is in a quantifier or in the scope of a quantifier using this variable. Otherwise
the occurrence of the variable is called free. Consider, for instance, the formulas

(∃x : Px) ∧Qy and ∃x : Px→ Qy

where P and Q are predicates and x and y are variables. Here the two occurrences of x
are bound while the occurrences of y are free. A variable in a formula is called bound (free)
if there is a bound (free) occurrence of it. By renaming bound occurrences of variables
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appropriately we can achieve that a variable is never both bound and free in the same
formula and this will be assumed in the sequel.

Note that a formula which does not contain any free variables is a statement.
1.2.8 Rules of inference in predicate logic. In the proof scheme in 1.1.6 each line was

either a premise or a statement derived from previous lines using a tautology. We now give
four more rules by which a line may be added to the scheme. In particular we will allow
formulas to be added to the scheme even as premises. In the following let F (x) be a formula
involving freely the constant or variable x and perhaps other constants or variables. The
formula or statement F (y) is obtained from F (x) by replacing every occurrence of x by y.
The domain of discourse is denoted by A.

(1) Universal Specification (US) From ∀x ∈ A : F (x) we may infer F (y) where y
is any variable or a constant from the domain of discourse. In particular, we may
infer F (x). The list of premises remains unchanged. For example, if we have a
line containing “All philosophers are Greek.” we may add a line “Kant is Greek.”
since Kant is a member of the domain of discourse, i.e., the set of philosophers.

(2) Existential Generalization (EG) If a is a constant we may infer ∃x ∈ A : F̃ (x)

from F (a) where F̃ (x) is obtained by replacing some (may be all) of the occurrences
of a in F (a) by x. The list of premises remains unchanged. For example, suppose
the domain of discourse is the set of all cities and we have a line saying “London
is the capital of England and London is a city in Europe.” we may add any or all
of the following lines to our proof:
• “There is a city which is the capital of England and there is a city in Europe.”
• “London is the capital of England and there is a city in Europe.”
• “There is a city which is the capital of England and London is a city in

Europe.”
(3) Existential Specification (ES) From ∃x ∈ A : F (x) we may infer F (y) where

y is a certain constant not previously used (a name we give to the thing we know
exists). The list of premises remains unchanged. For example, let the domain of
discourse be the set of senators in the U.S. Senate. Given the statement “There is
a woman from Alaska in the Senate.” we may infer “Ms. Y . is in the Senate.” if
we have not used before the name Y for anything else.

(4) Universal Generalization (UG) From F (y) we may infer ∀y ∈ A : F (y) pro-
vided that each of the following three conditions is satisfied.
• y is a variable.
• If y is free in a premise P (y) listed in the line containing F (y), then A must

be chosen such that ∀y ∈ A : P (y) becomes true.
• y does not appear together with any constant introduced by an application

of ES in the same singular sentence which is a part of a F (y).
The typical use of universal generalization is given by the following example: let
F , G, and H be predicates.

(1) ∀x : Fx→ Gx {1} premise
(2) ∀x : Gx→ Hx {2} premise
(3) Fy → Gy {1} from (1) by US
(4) Gy → Hy {2} from (2) by US
(5) (Fy → Gy) ∧ (Gy → Hy) {1,2} from (3) and (4) by C
(6) Fy → Hy {1,2} from (5) by law of hypothetical syllogism
(7) ∀y : Fy → Hy {1,2} from (6) by UG
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However, universal generalization ought not to be too universal as shown in the
following examples. Obviously, generalizing on a constant is wrong.

(1) π < 4 {1} premise
(2) ∀y : y < 4 {1} from (1) by a false UG

The next example shows that we have to watch for free variables in premises.

(1) n is even. {1} premise
(2) n2 is even. {1} from (1) by the laws of arithmetic
(3) ∀n : n2 is even. {1} from (2) by a false UG

The final example emphasizes that we have to be careful after using existential
specification.

(1) ∀y : ∃x : y < x {1} premise
(2) ∃x : y < x {1} from (1) by US
(3) y < X {1} from (2) by ES
(4) ∀y : y < X {1} from (3) by a false UG
(5) ∃x : ∀y : y < x {1} from (4) by EG

Note, though, that generalizing on x in the line

(n) x is even ∧ (a < b) {...} ...

may be allowed even if, say, a was introduced by ES.

1.2.9 Axioms. In a given mathematical theory some statements are taken for granted.
Such statements are called axioms. The axioms, in fact, characterize the theory. Changing
an axiom means to consider a different theory. Euclidean geometry, for instance, relies on
five axioms. One of them is the axiom of parallels. After trying for centuries to infer the
parallel axiom from the other axioms mathematicians of the nineteenth century developed
non-Euclidean geometries in which the parallel axiom is replaced by something else.
1.2.10 Definitions. A mathematical definition specifies the meaning of a word or phrase

leaving no ambiguity. It may be considered an abbreviation. For instance, the sentence “A
prime number is a natural number larger than one such that if it divides a product of two
natural numbers it divides one of the factors.” defines the word prime number. Note that
we can not assign a truth value to this sentence. However, after having made the definition
we treat the statement “p is a prime number if and only if p is a natural number larger than
one which divides a product of two natural numbers only if it divides one of the factors.”
as always true, i.e., as a tautology. Therefore we may use it to obtain new lines in a proof
just as we use the laws of logic. For instance, we may obtain from a line containing the
statement “p is a prime number.” another line containing the statement “p is larger than
one.” by the laws of detachment and simplification.
1.2.11 Theorems. A theorem is a true statement of a mathematical theory. It is usually

of the form p → q, i.e., the statement p → q is inferred from the axioms which act as
premises. For example the theorem “If n is even, then n2 is divisible by four.” is of this
form. Sometimes, when a statement hinges only on the axioms, the theorem could simply
be an atomic (containing no connectives) statement, e.g., “2 is a prime number.” is a true
statement assuming the validity of the axioms of arithmetic.
1.2.12 References. For further study you might want to consider a textbook. The fol-

lowing is a very incomplete list.

[1] Howard Kahane, Logic and Philosophy: A Modern Introduction, Wadsworth Publ.
Co., Belmont, California

[2] Patrick Suppes, Introduction to Logic, van Nostrand, Princeton, 1957.
[3] Albert E. Blumberg, Logic. A First Course, Alfred E. Knopf, New York, 1976.
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1.3. Further Topics in Set Theory

1.3.1 Equality. Two sets A and B are defined to be equal (denoted by A = B) if they
contain the same elements. For example,

{1, 4, 9, 16, ...} = {x : x is the square of a natural number}.

In particular, the sets A = {a} and B = {a, a} are equal, i.e., A = B.
1.3.2 The empty set. There is one set called the empty set which contains no element at

all. It is denoted by {}. It is introduced in order to be able to express some things more
conveniently. For instance, {x ∈ R : x2 + px+ q = 0} = {} if p2 − 4q < 0.
1.3.3 Subsets. If every element of a set A is also contained in the set B then we say that
A is a subset of B or that B includes A. This is denoted by A ⊂ B, i.e.,

A ⊂ B ⇔ ∀x : (x ∈ A→ x ∈ B).

Note that A ⊂ B is different from A ∈ B. In the latter case A is an element of B while
in the former case the elements of A are also elements of B. In particular, A ⊂ B allows
A = B. If A is a subset of B but not equal to B, i.e., when B contains an element which is
not contained in A then one says that A is a proper subset of B. The empty set is considered
to be a subset of every set.

Two sets are equal if and only if both A ⊂ B and B ⊂ A hold (and equality of sets is
often proven by proving mutual inclusion).

To every given set A there exists a set P(A), the power set of A, which contains precisely
all the subsets of A (including the empty set and the set A itself). If A has finitely many,
say n, elements then P(A) has 2n elements.
1.3.4 Difference of sets. If A and B are sets then we introduce their difference by

A−B = {x ∈ A : x 6∈ B}.

If B is a subset of A then A−B is also called the complement of B with respect to A.
1.3.5 Unions. Let C be a collection of sets. Then we define the union of the sets in C to

be the set which contains all elements which belong to at least one of the members of C.
This set is denoted by

⋃
A∈C A, i.e.,⋃

A∈C
A = {x : x ∈ A for some A ∈ C} = {x : (∃A ∈ C : x ∈ A)}.

In particular,
⋃
A∈{}A = {} and

⋃
A∈{B}A = B. The union of finitely many sets is also

denoted by A1 ∪ ...∪An. In particular, the union of the sets A and B is denoted by A∪B.
1.3.6 Intersections. Now let C be a nonempty collection of sets. Then we define the

intersection of the sets in C to be the set which contains all elements that belong to every
member of C. This set is denoted by

⋂
A∈C A, i.e.,⋂

A∈C
A = {x : x ∈ A for every A ∈ C} = {x : (∀A ∈ C : x ∈ A)}.

If C is empty then
⋂
A∈C A is not defined. Note that

⋂
A∈{B}A = B. The intersection of

finitely many sets is also denoted by A1 ∩ ...∩An. In particular, the intersection of the sets
A and B is denoted by A ∩B.

If A ∩B = {} then A and B are called disjoint. A collection C of sets is called a set of
pairwise disjoint sets when A ∩B = {} for any two distinct elements A,B of C.
1.3.7 Properties of unions, intersections, and complements. The processes of taking

unions and intersections obey the following laws:
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(1) Commutative laws:

A ∪B = B ∪A and A ∩B = B ∩A.

(2) Associative laws:

(A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C).

(3) Distributive laws:

A ∪ (
⋂
X∈S

X) =
⋂
X∈S

(A ∪X),

A ∩ (
⋃
X∈S

X) =
⋃
X∈S

(A ∩X).

Here A, B, and C denote sets and S denotes a collection of sets which, in the first case, must
be nonempty. Parentheses are used to denote priorities when performing the various oper-
ations of taking unions and intersections. When an associative law holds and parentheses
become superfluous they are usually omitted.

Let E be a set and suppose all sets under consideration are subsets of E. One then can
simplify notation by avoiding to refer to E when taking complements with respect to E.
The difference E −A is abbreviated by Ac. Taking complements (with respect to E) obeys
the following rules:

(Ac)c = A,

{}c = E,Ec = {},
A ∩Ac = {}, A ∪Ac = E,

A ⊂ B if and only if Bc ⊂ Ac.

We will prove that A ⊂ (Ac)c in an exemplary way using the scheme for proofs from 1.1.6.

(1) x ∈ A {1} premise
(2) −(−(x ∈ A)) {1} from (1) by law of double negation
(3) −(x 6∈ A) {1} from (2) by definition of 6∈
(4) −(x ∈ Ac) {1} from (3) by definition of complement
(5) x 6∈ Ac {1} from (4) by definition of 6∈
(6) x ∈ (Ac)c {1} from (5) by definition of complement
(7) x ∈ A→ x ∈ (Ac)c {} from (6) by rule CP
(8) ∀x : x ∈ A→ x ∈ (Ac)c {} from (7) by UG
(9) A ⊂ (Ac)c {} from (8) by definition of subset

1.3.8 De Morgan’s laws. Let E be a set and suppose that S is a nonempty collection of
subsets of E. De Morgan’s laws are( ⋃

X∈S
X

)c
=
⋂
X∈S

Xc,( ⋂
X∈S

X

)c
=
⋃
X∈S

Xc.

These formulas can be expressed concisely, if not precisely, as follows: The complement of
a union is the intersection of the complements and the complement of an intersection is the
union of the complements.
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1.3.9 Axiomatic set theory. The discussion of set theory in this section can be labeled
“Intuitive set theory”. The presentation, however, has certain pitfalls. In particular, we
have considered the set A = {x : P (x)} when P was some property. Now let P be the
property “is not an element of A” and consider whether A ∈ A. First assume that A ∈ A.
Then P (A) is true, i.e., A 6∈ A which is a contradiction. Hence assume that A 6∈ A. Then
P (A) must be false, i.e., A ∈ A again a contradiction. This paradox was first noticed by
B. Russell and is known as Russell’s paradox. In “Axiomatic set theory” this problem is
avoided by restricting the use of the word set in a proper way (determined by the axioms).
For a treatment of axiomatic set theory see, for instance:

[1] Paul Halmos, Naive Set Theory, Springer, New York,1973.
[2] Patrick Suppes, Axiomatic Set Theory, van Nostrand, Princeton, 1960.
[3] Martin Zuckerman, Sets and Transfinite Numbers, Macmillan Publishing Co., New

York, 1974.

1.4. Relations, Functions and Partial Orderings

1.4.1 Ordered pairs and Cartesian products. Let A and B be two sets (not necessarily
distinct) and assume a ∈ A and b ∈ B. Then consider the ordered pair (a, b). The adjective
‘ordered’ emphasizes that (a, b) and (b, a) are different, in general. More precisely, (a, b) =
(c, d) if and only if a = c and b = d. Thus (a, b) = (b, a) if and only if a = b.

The set of all ordered pairs which can be formed from A and B is called the Cartesian
product of A and B and is denoted by A×B, i.e.,

A×B = {(a, b) : a ∈ A ∧ b ∈ B}.
One can next define the Cartesian product of three sets A, B, and C by A×B × C =

(A×B)× C. Proceeding in this manner one can then define the Cartesian product of any
finite number of sets.
1.4.2 Relations. Let X and Y be sets. A set of ordered pairs in X × Y , i.e., a subset of
X × Y , is called a relation. If (x, y) ∈ R we say that x is in relation R to y and denote this
by xRy. Given a relation R we define the domain and the image of R by

dom(R) = {x : ∃y : (x, y) ∈ R},
im(R) = {y : ∃x : (x, y) ∈ R}.

A set R of ordered pairs can always be thought of as a subset of the Cartesian product
dom(R)× im(R). Conversely, every subset of the Cartesian product X × Y is a relation.

If R is a subset of X × Y we call R a relation from X to Y . If Y = X we call R a
relation in X.

Let R be a relation from X to Y and A a subset of X. Then the set R(A) = {y ∈ Y :
∃x ∈ A : xRy} is called the image of A under the relation R. In particular, im(R) = R(X).
1.4.3 Inverse and composite relations. Given a relation R from X to Y the inverse

relation R−1 is the relation from Y to X defined by

R−1 = {(y, x) ∈ Y ×X : (x, y) ∈ R}.
If B is a subset of Y then the image R−1(B) of B under the relation R−1 is also called the
preimage of B under the relation R. In particular,

R−1(B) = {x ∈ X : ∃y ∈ B : yR−1x} = {x ∈ X : ∃y ∈ B : xRy}.
Given a relation R1 from X to Y and a relation R2 from Y to Z the composite relation

R2 ◦R1 is the relation from X to Z defined by

R2 ◦R1 = {(x, z) ∈ X × Z : ∃y ∈ Y : ((x, y) ∈ R1 ∧ (y, z) ∈ R2)}.
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1.4.4 Reflexivity, symmetry, and transitivity. A relation R in X, i.e., R ⊂ X ×X,
is called reflexive if xRx for every x ∈ X. It is called symmetric if xRy implies yRx and it
is called transitive if xRy and yRz imply xRz. Thus, a relation R in a set is symmetric if
and only if R = R−1 and it is transitive if and only if R ◦R ⊂ R.

Examples: Consider the set of all cities. The relation “is less than 300 miles away from”
is reflexive and symmetric but not transitive. The relation “is smaller than or equal to” in
the set of all real numbers is reflexive and transitive but not symmetric.

If the relation R in A is symmetric and transitive let B = {b ∈ A : (∃a ∈ A : (b, a) ∈ R)}.
Then R is symmetric, transitive, and reflexive in B.
1.4.5 Equivalence relations. A relation which is reflexive, symmetric and transitive is

called an equivalence relation. If E is an equivalence relation in A and x ∈ A then the
equivalence class of x is defined to be the set

[x] = {y ∈ A : xEy}.
x is then called a representative of [x]. The set of all such equivalence classes, i.e., the set
{[x] : x ∈ A}, is called the set of equivalence classes of E and is denoted by A/E (pronounce
A modulo E).

Example: Fix the natural number m. Consider the relation M in the set of integers
defined by aMb if and only if a− b is divisible by m. Then M is an equivalence relation.

A partition of a nonempty set A is a set of pairwise disjoint nonempty subsets of A
whose union is equal to A.

Theorem. If E ⊂ A × A is an equivalence relation in the nonempty set A then the set of
all equivalence classes of E is a partition of A. Conversely, if P is a partition of A then
there exists an equivalence relation E in A such that A/E = P .

1.4.6 Functions. Let f be a relation from X to Y . The relation f is called a function
from X to Y if the following two conditions hold:
1. dom(f) = X,
2. ∀x ∈ X : ∀y1, y2 ∈ Y : (xfy1 ∧ xfy2)→ y1 = y2.
In other words, for every x ∈ X the exists a unique element of Y which is related to x by
f . This element is called the image of x under f or the value which f assumes at x and
is denoted by f(x). The point x is called an argument of f . The following notation for a
function from X to Y is commonly used: f : X → Y : x 7→ y = f(x). The words map,
mapping, transformation, and operator are frequently used synonymously for function. By
definition the set X is the domain of f . However, the set Y , which will be called the range
of f , is to be distinguished from the image of X under f , i.e., the set f(X) = im(f) which
is, in general, only a subset of Y .

If f : X → Y and g : Y → Z are functions then the composite relation g◦f is a function
from X to Z. Composition of functions is an associative operation, i.e., (f ◦g)◦h = f ◦(g◦h).

If f : X → Y is a function the inverse relation f−1 need not be a function. For
example, if X = Y is the set of real numbers and f = {(x, x2) : x ∈ X} then f is a function
with f(x) = x2. On the other hand, both (4, 2) and (4,−2) are elements of f−1 and thus
{y ∈ Y : 4f−1y} consists of two elements.

A function f : X → Y is called onto or surjective if im(f) = Y . We then say that f
is a function from X onto Y . A function f : X → Y is called one-to-one or injective if
the relation f−1 is a function from im(f) (on)to X. Equivalently, f is injective if and only
if f(x) = f(x′) implies that x = x′. A function f : X → Y which is both injective and
surjective is called bijective or a one-to-one correspondence between X and Y . If f : X → Y
is a bijective function then f−1 : Y → X is also a bijective function.
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Let f be a function from X to Y and A a subset of X. Then the function g : A → Y
defined by g(x) = f(x) for all x ∈ A is called the restriction of f to A and is denoted by
f |A. Conversely, the function f is called an extension of g.

A particular bijective function from a nonempty set X to itself is the identity function
id : x 7→ x.
1.4.7 Partial orderings. A relation R in X is called antisymmetric if xRy and yRx

together imply that x = y. A reflexive, antisymmetric, transitive relation in X is called a
partial ordering of X. We then say that X is partially ordered by R. Now let R be a partial
ordering of X and A a subset of X. We define

• u ∈ X is an upper bound of A if aRu for all a ∈ A,
• l ∈ X is a lower bound of A if lRa for all a ∈ A,
• sup(A) ∈ X is a least upper bound or supremum of A if it is an upper bound of A

and a lower bound of the set of all upper bounds of A,
• inf(A) ∈ X is a greatest lower bound or infimum of A if it is a lower bound of A

and an upper bound of the set of all lower bounds of A,
• sup(A) is called a maximum if it is an element of A, similarly, if inf(A) ∈ A it is

called a minimum,
• m ∈ A is a maximal element if mRa implies m = a whenever a ∈ A, similarly, if
m ∈ A and if aRm implies m = a for all a ∈ A then m is called a minimal element.

The supremum and infimum of a set are each unique if they exist. A maximum (or minimum)
of A is always a maximal (or minimal) element of A.

Example: Consider the power set P(X) of a nonempty set X. Then the relation “is
subset of” is a partial ordering of P(X). Now let X = {1, 2, 3}, A = {{1}, {2}, {1, 2}},
and B = {{1, 2}, {2, 3}}. Then max(A) = {1, 2}, inf(A) = {}, sup(B) = {1, 2, 3}, and
inf(B) = {2}. However, B does not have a maximum and neither A nor B have a minimum.
Both {1} and {2} are minimal elements of A.
1.4.8 Total orderings. A partial ordering R of X is called a total (or linear) ordering if
xRy or yRx for any two x, y ∈ X, i.e., any two elements of X may be compared. In this
case we call X totally ordered by R. If a is a maximal (minimal) element of A ⊂ X then
it is equal to max(A) (min(A)). In particular, maximal and minimal elements are unique if
they exist.

Example: The set of real numbers is totally ordered by the relation “is smaller than or
equal to”.

Often a total ordering will be denoted by the symbol ≤. We then introduce also the
symbols ≥, <, and > in the following way:

• x ≥ y if and only if y ≤ x,
• x < y if and only if x ≤ y but x 6= y, and
• x > y if and only if y < x.

1.4.9 Well orderings. A total ordering R of X is called a well ordering if every nonempty
subset of X contains a minimum. In this case we call X well-ordered by R. In 1.6.4 we
will show that the set of natural numbers is well-ordered by the relation “is smaller than or
equal to”.
1.4.10 The axiom of choice and some of its equivalents. If the two sets X and Y

are not empty then X contains an element x and Y contains an element y. Therefore, the
Cartesian product X × Y contains at least the element (x, y) and hence is not empty. In
an axiomatic approach to set theory it is possible to generalize this result to collections of
finitely many sets but not to arbitrary collections of sets without adding another axiom.
This axiom is called the Axiom of Choice.
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Axiom of Choice: Let C be a nonempty collection of nonempty sets. Then there
exist a function F : C →

⋃
X∈C X, called a choice function, such that F (X) ∈ X for every

X ∈ C. In other words, it is possible to choose simultaneously an element from each member
of the collection C and thus form an element of the Cartesian product of the elements of C.

The following two statements, Zorn’s Lemma and the Well-ordering Theorem, can be
shown to be equivalent to the Axiom of Choice. Even if the Axiom of Choice seems obvious
and hardly worth mentioning, the Well-ordering Theorem is certainly not obvious.

Zorn’s Lemma: Let X be a set which is partially ordered by R. If every subset which
is totally ordered by R has an upper bound then X has a maximal element.

Well-ordering Theorem: For every set there exists a well-ordering.

1.5. The Subjects of Algebra

1.5.1 Binary Operations. A binary operation on a set A is a function from A×A to A.
In other words, a binary operation assigns to each ordered pair of elements of A uniquely
another element of A. One generally writes aFb = c instead of F ((a, b)) = c. Familiar
examples are A∪B and A∩B when A and B are sets and a+ b and a · b when a and b are
numbers.

Let F and G be two binary operations on a set A and a, b, and c arbitrary elements of
A. Then

(1) F is called associative if always

(aFb)Fc = aF (bFc),

(2) F is called commutative if always

aFb = bFa,

(3) F is called left distributive over G if always

aF (bGc) = (aFb)G(aFc),

(4) F is called right distributive over G if always

(aGb)Fc = (aFc)G(bFc),

and
(5) F is called distributive over G if it is both right and left distributive.

If F is associative parentheses as in (aFb)Fc may be omitted since no confusion can
arise.

If F is commutative then the notions of left distributivity, right distributivity, and
distributivity all coincide.
1.5.2 Identities and inverse elements. Let F be a binary operation on a set A. An

element e is called a left (right) identity if eFa = a (aFe = a) for all a ∈ A. The element e
is called an identity if it is both a left and a right identity. If there is a left identity e and
a right identity e′ then e = ee′ = e′. In particular, an identity, if it exists, must be unique.
However, it is instructive to consider the example where A = {a, b} and aFa = bFa = a
and bFb = aFb = b.

Let F be a binary operation on a set A. Let e be an identity or a left or right identity.
An element b is called a left (right) inverse of an element a if bFa = e (aFb = e). The
element b is called an inverse element of a (or just an inverse of a) if it is both a left and a
right inverse of a.

If several binary operations are considered, reference to the operation in question must
be made in statements about identities and inverses.
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1.5.3 Groups, rings, fields, modules, vector spaces, and algebras. Let G be a set
and · a binary operation on G. Then (G, ·) is called a group if the operation · is associative,
if G contains a left identity, and if every element of G possesses a left inverse. (G, ·) is called
a commutative group if · is commutative.

Let R be a set with two binary operations + and ·. Then (R,+, ·) is called a ring if
(R,+) is a commutative group and if · is associative as well as left and right distributive
over +. If · is commutative then (R,+, ·) is called a commutative ring.

A set F with two binary operations + and · is called a field if (F,+) is a commutative
group with identity element 0, if (F −{0}, ·) is a commutative group, and if · is distributive
over +. The operations + and · are called addition and multiplication, respectively.

Let (M,+) be a commutative group, R a commutative ring, and σ a function from
R×M to M (called a scalar multiplication). Then (M,R,+, σ) is called an R-module if the
following conditions are satisfied:

• ∀r, s ∈ R : ∀x ∈M : (rs)x = r(sx),
• ∀r, s ∈ R : ∀x ∈M : (r + s)x = rx+ sx,
• ∀r ∈ R : ∀x, y ∈M : r(x+ y) = rx+ ry.

If R has a multiplicative identity 1, then it is also required that 1x = x for all x ∈ M . In
this case the module is called a unitary module.

Let (V,+) be a commutative group, K a field, and σ a function from K×V to V (called
a scalar multiplication). Then (V,K,+, σ) is called a vector space over K if the following
conditions are satisfied:

• ∀r, s ∈ K : ∀x ∈ V : (rs)x = r(sx),
• ∀r, s ∈ K : ∀x ∈ V : (r + s)x = rx+ sx,
• ∀r ∈ K : ∀x, y ∈ V : r(x+ y) = rx+ ry,
• ∀x ∈ V : 1x = x where 1 is the multiplicative identity in K.

In other words (V,K,+, σ) is a vector space over K if it is a unitary K-module.
Finally (A,K,+, ·, σ) is called an associative algebra if (A,K,+, σ) is a vector space over

K, if (A,+, ·) is a ring, and if (αx)y = x(αy) = α(xy) for all α ∈ K and all x, y ∈ A.

1.6. The Number Systems

In this section we give a very quick overview over the construction of the various number
systems starting from Peano’s axioms. It should be remarked here that Peano’s axioms may
be derived from the usual axioms in (axiomatic) set theory. A certain familiarity with
the real numbers is assumed. Anybody who is interested in more details may consult, for
instance, the monographs listed at the end of the section.
1.6.1 The Peano axioms. There exists a set N, called the set of natural numbers, and a

function s : N→ N, called the successor function, with the following properties:

(1) s is one-to-one, i.e., if s(n) = s(m) then n = m,
(2) N− im(s) contains an element, called 1,
(3) (Principle of Induction) Let X be a subset of N. If X contains 1 and if X contains

s(n) whenever it contains n then X = N.

If n ∈ N, s(n) is called the successor of n. Note that 1 is not a successor of any natural
number.

Theorem. N− im(s) = {1}, i.e., every natural number except for 1 is the successor of some
natural number.

Sketch of proof: This follows easily from the Principle of Induction. �
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The Principle of Induction is also the basis for the method of proof called Proof by
Induction: One proves that a certain statement holds for 1 and that it holds for s(n)
whenever it holds for n. Then one has proven that the statement holds for every natural
number.
1.6.2 The Recursion Theorem. Let X be a nonempty set, f a function from X to X,

and x1 an element of X. Then there is one and only one function u : N → X such that
u(1) = x1 and u(s(n)) = f(u(n)) for every n ∈ N.

Sketch of proof:
1. Existence: Let

C = {A ⊂ N×X : (1, x1) ∈ A ∧ ∀(n, x) ∈ N×X : [(n, x) ∈ A→ (s(n), f(x)) ∈ A]}.

Since N×X ∈ C the collection C is not empty. Therefore

u =

( ⋂
A∈C

A

)
⊂ N×X

exists and is a relation from N to X.
2. u ∈ C: This claim is proved in a straightforward manner.
3. dom(u) = N: Let M = dom(u). Then 1 ∈ M . Suppose n ∈ M , i.e., ∃x : (n, x) ∈ u.
Then, since u ∈ C we have also (s(n), f(x)) ∈ u, i.e., s(n) ∈M . By the induction principle
M = N.
4. u is a function: Let

M = {n ∈ N : ∀x, y ∈ X : ((n, x) ∈ u ∧ (n, y) ∈ u)→ x = y}.

We first want to show that 1 ∈ M . Assume 1 6∈ M , i.e, there exists y1 ∈ X such that
x1 6= y1 but (1, y1) ∈ u. Then u0 = u− {(1, y1)} is a proper subset of u and an element of
C which is impossible. Hence 1 is indeed in M . Next suppose n ∈ M and s(n) 6∈ M , i.e.,
there exists a unique x such that (n, x) ∈ u but in addition to (s(n), f(x)) the set u contains
also an element (s(n), y) where y 6= f(x). Again u0 = u − {(s(n), y)} is a proper subset of
u and an element of C which proves our assumption s(n) 6∈M wrong.
5. Uniqueness: Let v : N → X be a function such that v(1) = x1 and v(s(n)) = f(v(n)).
Also let M = {n ∈ N : u(n) = v(n)}. Again the induction principle shows M = N and
hence u = v. �

The following is an important application of the Recursion Theorem. Let A be a
nonempty set and F (A,A) the set of all functions from A to itself. Choosing X = F (A,A),
x1 = g ∈ F (A,A), and f = (h 7→ g◦h) the theorem shows the existence of a unique function
u : N → F (A,A) such that u(1) = g and u(s(n)) = g ◦ u(n). One may show by induction
that g ◦ u(n) = u(n) ◦ g. It is customary to use the notation u(n) = gn.
1.6.3 Ordering of the natural numbers. Define u1 = id and us(n) = sn as functions

from N to itself. The functions un have the following properties:
1. un ◦ s = s ◦ un = us(n).
2. un(1) = n. Use induction for M = {n ∈ N : un(1) = n}.
3. im(un) ⊂ im(um) if and only if im(us(n)) ⊂ im(us(m)). One of these conditionals follows
since for every j ∈ N there exists an ` ∈ N such that

us(n)(j) = s(un(j)) = s(um(`)) = us(m)(`).

The other one is proved similarly.
4. im(un) = {n} ∪ im(us(n)). This follows from properties 1 and 2 and the definitions.
5. n 6∈ im(us(n)). Use induction for M = {n ∈ N : n 6∈ im(us(n))}.
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6. im(um) ⊂ im(un) if and only if m ∈ im(un). Use induction for M = {k ∈ N : um(k) ∈
im(un)}.

Given two natural numbers n and m we introduce the relation ‘less than or equal to’,
denoted by ≤: we say n ≤ m if and only if im(um) ⊂ im(un).

Theorem. The relation ≤ is a total ordering of N.

Sketch of proof: Obviously the relation is reflexive and transitive. Assume that n ≤ m
and m ≤ n. This implies that im(un) = im(um). Since

n ∈ im(un) = im(um) = {m} ∪ im(us(m)) = {m} ∪ im(us(n))

property 5 forces n = m, i.e., ≤ is antisymmetric and hence a partial ordering of N.
Assume now that n 6= m and let M = {j ∈ N : n ∈ im(uj)∧m ∈ im(uj)}. Then 1 ∈M

but M 6= N. Therefore there must be a k ∈ N such that n and m are both in im(uk) but at
least one of them, say n, is not in im(us(k)). Since im(uk) = {k} ∪ im(us(k)) it follows that
k = n and m ∈ im(us(n)). Thus n ≤ s(n) ≤ m. �

Given a total ordering on N we may introduce the notation

{k, ...,m} = {n ∈ N : k ≤ n ≤ m}.
1.6.4 Induction and well ordering of N. N is actually well ordered by the relation ‘less

than or equal to’. In fact, one has the following theorem.

Theorem. Each of the following two statements is equivalent to the induction principle
(IP):

Well ordering principle (WOP): N is well-ordered with respect to the relation
≤. In particular, every nonempty subset of N has a minimum (or first element).

Second induction principle (SIP): If S is a subset of N, 1 ∈ S, and {1, ..., n} ⊂
S ⇒ s(n) ∈ S then S = N.

Sketch of proof: (IP to WOP): Suppose T is a nonempty subset of N. Let M = {n ∈ N :
(∀t ∈ T : n ≤ t)}, i.e., the set of all lower bounds of T . Then 1 ∈M . Since T is not empty
it contains a number k. Then s(k) 6∈M and hence M 6= N. By the induction principle there
must be a number m ∈M such that s(m) 6∈M , i.e., m ≤ t < s(m) for some t ∈ T . Then

im(us(m)) ⊂ im(ut) ⊂ im(um) = {m} ∪ im(us(m))

implies that the second inclusion is not proper, i.e., t = m ∈ T . This shows that m =
maxM = minT .

(WOP to SIP): Suppose S is a subset of N which contains 1 and that s(n) ∈ S whenever
{1, ..., n} ⊂ S. Let T = N−S and assume that T 6= {}. Then T has a minimum larger than
1, say s(k). Then {1, ..., k} ∩ T is empty, i.e., {1, ..., k} ⊂ S. But then s(k) ∈ S ∩ T = {}.
This is impossible and hence T = {} and S = N.

(SIP to IP): Assume S ⊂ N, 1 ∈ S, and s(n) ∈ S whenever n ∈ S. Then, obviously,
{1, ..., n} ⊂ S implies n ∈ S and hence s(n) ∈ S. Thus by the second induction principle
S = N. �
1.6.5 Finite, countable, and uncountable sets. Let {1, ..., n} denote the set of natural

numbers which are less than or equal to n. One may then prove by induction

M = {n ∈ N : ∀k ∈ {1, ..., n} : (∃bijection f : {1, ..., n} → {1, ..., k})→ k = n} = N.
Note also that there is never a bijection from a nonempty set to the empty set.

Therefore it makes sense to give the following definition: a set A has n elements or has
cardinality n if there exists a natural number n and a bijective function f : A → {1, ..., n}.
Also, if A is empty or if there is a natural number n such that A has n elements, then A is
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called a finite set. Otherwise, A is called an infinite set. In particular, one shows that N is
infinite using a proof by contradiction.

Now let A be any infinite set. If there exists a bijective function f : A → N then A is
called countably infinite and otherwise uncountable. A set is called countable if it is finite or
countably infinite.

Examples: The set of even natural numbers and the set of rational numbers are all
countable (in fact, countably infinite). The set of real numbers, however, is uncountable.
1.6.6 Addition and multiplication. Using the Recursion Theorem we introduced the

functions sn : N→ N. We now define the binary operation of addition (+) on N by letting

n+m = sn(m).

One may then show that the operation + is associative and commutative. Note, in partic-
ular, that s(m) = 1 +m = m+ 1. The law of cancellation holds, i.e., n+m = n+ k if and
only if m = k. Also n ≤ n+m.

We can now also define an addition on the set F (N,N) of all functions from N to N by
letting (f + g) = (k 7→ f(k) + g(k)). This is also an associative and commutative operation.

To define multiplication (·) we let X = F (N,N), x1 = id, and f = (X → X : g 7→ g+id).
Then, by the Recursion Theorem there exists a unique function t : N→ F (N,N) such that
t(1) = id and t(s(n)) = t(n) + id. Using it we define

n ·m = (t(n))(m).

The operation · is commutative and associative. Also, · is distributive over +. The number
1 is an identity with respect to multiplication. The law of cancellation holds, i.e., n·m = n·k
if and only if m = k. If m > 1 then n ·m > n.
1.6.7 The whole numbers or integers. Call (a, b), (c, d) ∈ N×N equivalent if a+d = b+c.
This definition introduces an equivalence relation Z in N× N. Define

Z = (N× N)/Z,

the set of integers or whole numbers. The equivalence class of (a, b) is denoted by a − b
(pronounce, for now, a dash b).

The set Z is totally ordered by the relation ≤ defined by: (a− b) ≤ (c− d) if and only
if a+ d ≤ b+ c where the last occurrence of the relation ≤ refers to the ordering of natural
numbers. This definition does not depend on the representatives chosen for the classes a− b
and c− d. One says that the relation ≤ is well-defined.

We define addition and multiplication of integers in the following way. Let x = a − b
and y = c− d be integers. Then

x+ y = (a− b) + (c− d) = (a+ c)− (b+ d),

x · y = (a− b) · (c− d) = (a · c+ b · d)− (a · d+ b · c).

Note that each of the symbols + and · are used here to represent two different operations,
namely operations on integers as well as operations on natural numbers.

The operations of addition and multiplication of integers are well-defined (independent
from the representatives chosen), associative and commutative. Also multiplication is dis-
tributive over addition.

The integer a − b is called positive if b < a and negative if a < b. The integer a − a is
called zero, i.e., a − a = 0. The integers a − a and (a + 1) − a are identities with respect
to addition and multiplication, respectively. Also every integer a − b has an inverse with
respect to addition (called an additive inverse) which is denoted by −(a − b) (pronounced
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minus a dash b). In fact the inverse of a− b is b− a since (a− b) + (b− a) = 0. Note also
that −(−(a− b)) = a− b. Hence we have the following theorem.

Theorem. (Z,+, ·) is a commutative ring.

The map j : N → Z : n 7→ (b + n) − b is a bijection from the natural numbers to
the positive integers. Suppose that j(n) = a − b and j(m) = c − d. Then j(n) + j(m) =
(a+ c)− (b+d) = (b+n+d+m)− (b+d) = j(n+m). Similarly, j(n) · j(m) = j(n ·m) and
n ≤ m if and only if j(n) ≤ j(m). Since the map n 7→ b − (b + n) is also a bijection from
the natural numbers to the negative integers we have that any integer may be represented
by either 0, j(n), or −j(n) when n is a suitable natural number. These considerations show
that N may be treated as a subset of Z. Hence we will drop the usage of j and just identify
the numbers n and (b + n) − b. Also we will use −n instead of b − (b + n). Finally, if we
introduce (as a luxury) the binary operation of subtraction on Z as addition of an additive
inverse we obtain that the symbol − (dash) represents subtraction. The identification of
the natural numbers with the positive integers also justifies the use of the same symbol for
the addition of natural numbers and integers. We will use the symbol N0 to denote the set
N ∪ {0} ⊂ Z.

We have equipped the set N with various structures, namely a total ordering, an addi-
tion, and a multiplication. These structures are preserved when N is treated as a subset of
Z. We say then that (N,≤,+, ·) is embedded in (Z,≤,+, ·).

The absolute value |a| of an integer a is defined to be equal to a or −a depending on
whether a itself is nonnegative or negative.
1.6.8 Division theorem for integers. The following theorem is called the division the-

orem:

Theorem. Let a, b ∈ Z, a 6= 0. Then there exists a unique pair of integers q and r (called
quotient and remainder, respectively) such that 0 ≤ r < |a| and b = aq + r.

Sketch of proof: Let

S = {n ∈ N : (∃q, r ∈ N0 : n− 1 = |a|q + r ∧ r < |a|)}.
Choosing q = 0 and r = 0 shows that 1 ∈ S. Now assume that {1, ..., k} ⊂ S and consider
k + 1. If k < |a| then choosing q = 0 and r = k shows k + 1 ∈ S. If k ≥ |a| then
k + 1 − |a| ∈ {1, ..., k}. Hence there exist q, r ∈ N0 such that (k + 1 − |a|) − 1 = |a|q + r
and r < |a|. This implies (k + 1) − 1 = |a|(q + 1) + r, i.e., k + 1 ∈ S. By the second
induction principle S = N. Therefore quotient and remainder with respect to |a| exist for
every nonnegative number. If b is negative one shows existence of quotient and remainder by
considering −b. To show uniqueness assume b = aq+ r = aq′+ r′. Then |r− r′| = |a||q′− q|
and |r − r′| < |a|. Hence q = q′ and r = r′. �
1.6.9 Greatest common divisors. An integer a 6= 0 is called a divisor or a factor of an

integer b if there exists an integer q such that b = aq. One also says that a divides b or that
b is a multiple of a. If a is a divisor of each of the integers b1, ..., bn it is called a common
divisors of these. The numbers 1 and −1 are divisors of any integer and every nonzero
integer is a divisor of zero. If a is a divisor of b then −|b| ≤ a ≤ |b| unless b = 0. Hence
the set of common divisors of b1, ..., bn is a nonempty finite set unless b1 = ... = bn = 0.
The largest member of this set (which is positive) is called the greatest common divisor of
b1, ..., bn and is denoted by gcd(b1, ..., bn). Note that gcd(a, 0) = |a| when a 6= 0.
1.6.10 Euclid’s algorithm. Let a, b ∈ Z and a 6= 0. Then there exist unique q, r ∈ Z

such that 0 ≤ r < |a| and b = aq + r. If c is a common divisor of a and b then it divides r.
Also, if c is a common divisor of a and r then it divides b. Hence gcd(a, b) = gcd(a, r).
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Euclid’s algorithm may be used to compute the greatest common divisor of two integers
a1, b1. It works by recursion: Let X = Z2 and x1 = (a1, b1) where we may assume, without
loss of generality, that a1 > 0. Define f : Z2 → Z2 by

f((a, b)) =

{
(r(b, a), a) if a 6= 0

(0, 0) if a = 0

where r(b, a) ∈ {0, ..., |a| − 1} is the remainder of b after division by a as defined according
to the division theorem. By the Recursion Theorem there is a unique function u : N → Z2

such that u(1) = (a1, b1) and u(n+ 1) = f(u(n)) = (an+1, bn+1).
Now note that an ≥ 0 and, if an > 0, that an+1 = r(bn, an) < an. Let M = {k ∈ N :

ak > 0}. Then M is a finite set and we denote max(M) by m. Therefore um+1 = (0, am).
Since, by the above remark, gcd(ak+1, bk+1) = gcd(ak, bk) if ak 6= 0 we obtain

gcd(a1, b1) = gcd(a2, b2) = ... = gcd(0, am) = am.

1.6.11 The GCD identity. Given two integers a, b where a 6= 0 consider the set

S = {ax+ by : x, y ∈ Z} ∩ N.

S is not empty and hence contains a smallest element which will be denoted by d. Thus
there exist x0, y0 ∈ Z such that d = ax0 + by0 and q, r ∈ Z such that a = qd + r and
0 ≤ r < d. Therefore r = a− qd = a(1− qx0) + b(−qy0) is in S ∪ {0}. Since r cannot be in
S we get that r = 0 and hence that d divides a. Similarly one shows that d divides b, i.e., d
is a common divisor of a and b. Now suppose that c > d is also a common divisor of a and
b. Then there exist integers n,m such that a = nc and b = mc. Hence d/c = nx0 + my0

is a positive integer strictly smaller than one which is impossible. Hence d = gcd(a, b). We
have proven

Theorem. If a, b ∈ Z and a 6= 0 then there exist x, y ∈ Z such that gcd(a, b) = ax+ by.

The numbers x and y can be computed by running Euclid’s algorithm backwards.
1.6.12 Prime and irreducible numbers. An integer p for which |p| > 1 is called prime

or a prime number if, whenever p divides ab, then p divides a or b.
An integer p for which |p| > 1 is called irreducible if p = ab implies that |a| = 1 or

|b| = 1. In other words p is irreducible if its only divisors are 1,−1, p, and −p.

Theorem. An integer is prime if and only if it is irreducible.

Sketch of proof: Suppose p is prime and p = ab. Then (without loss of generality) p
divides a, i.e., there exists n ∈ Z such that a = np. Hence p = npb, i.e., nb = 1 which
shows that p is irreducible. Next suppose p is irreducible and that p divides ab. If p divides
a nothing is to be proven and we assume therefore that p does not divide a. Since p is
irreducible its only positive divisors are 1 and |p|. Since p does not divide a we get that
gcd(p, a) = 1. By the GCD identity there exist integers x, y such that 1 = ax + py and
hence b = abx+ pby. This shows that p divides b. �
1.6.13 Unique factorization theorem for integers. The following well-known theorem

is also called the Fundamental Theorem of Arithmetic.

Theorem. Every integer x other than 0 and ±1 is either an irreducible or a product of
irreducibles. Moreover, this product is essentially unique in the sense that, when x =
a1...an = b1...bm where a1, ..., bm are irreducibles, then n = m and the bj may be rearranged
so that ai = ±bi for i = 1, ..., n.
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Sketch of proof: For convenience we will consider an irreducible as a product with
one factor. We first proof the existence of a factorization by induction. Let S = {n :
n+ 1 is a product of irreducibles}. Then 1 ∈ S. Assume that {1, ..., n} ⊂ S. If n + 2
is not irreducible then n + 2 = ab where a, b ∈ {2, ..., n + 1}. Hence, both a and b are
products of irreducibles and hence n+ 2 is a product of irreducibles, too. Uniqueness is also
proven by induction: Let S be the set of all natural numbers n which satisfy the property
that every product of n irreducibles is essentially unique. Suppose a1 = b1...bm where
a1, b1..., bm are irreducibles. Since a1 is prime it divides one of b1, ..., bm, say b1. Since b1 is
irreducible we get a1 = ±b1 and hence b2...bm = ±1. This is impossible showing that m = 1,
a1 = ±b1, and thus 1 ∈ S. Next assume that n ∈ S and that a1...an+1 = b1...bm where
a1, ..., bm are irreducibles. Now a2...an+1 = (±b2)b3...bm. Since a2...an+1 has n factors the
induction hypothesis shows that m − 1 = n and, after a suitable rearrangement, aj = ±bj
for j = 2, ..., n+ 1. �
1.6.14 The rational numbers. Now call (a, b), (c, d) ∈ Z × N equivalent if a · d = b · c.

Again this definition introduces an equivalence relation Q in Z× N. Define

Q = (Z× N)/Q,

the set of rational numbers. The equivalence class of the pair (a, b) is abbreviated by a/b
(pronounce a slash b).

A total ordering (again, of course, denoted by ≤) is introduced on Q in the following
way: a/b ≤ c/d if and only if a · d ≤ b · c using the total ordering of the integers. a/b is
called positive (negative) if a is a positive (negative) integer.

We define addition and multiplication of rational numbers in the following way. Let
x = a/b and y = c/d be rational numbers. Then

x+ y = (a/b) + (c/d) = ((a · d) + (b · c))/(b · d),

x · y = (a/b) · (c/d) = (a · c)/(b · d).

These operations are well-defined, associative and commutative. Multiplication is distribu-
tive over addition.

The number 0/1 is an additive identity while 1/1 is a multiplicative identity. Every
rational number a/b has an additive inverse (−a)/b, simply denoted by −a/b, and every
rational number but zero has a multiplicative inverse, denoted by (a/b)−1. In fact, (a/b)−1 =
b/a if a is positive and (a/b)−1 = (−b)/(−a) if a is negative. Altogether the following
theorem holds.

Theorem. (Q,+, ·) is a field.

Note that (Z,≤,+, ·) and hence (N,≤,+, ·) are embedded in (Q,≤,+, ·) by identifying
the integer n with the rational number [(n, 1)] = n/1.

Another important property of rational numbers is that they are dense, i.e., between
any two rational numbers there are infinitely many other rational numbers. Even though
the set of rational numbers is countable.
1.6.15 The real numbers. We define real numbers by the method of Dedekind cuts. Let
L be a subset of Q with the following properties:

(1) neither L nor Lc is empty, i.e., {L,Lc} is a partition of Q,
(2) if x ∈ L and y ∈ Lc then x < y,
(3) for every x1 ∈ L there exists x2 ∈ L such that x1 < x2.

The set of all such L is denoted by R and is called the set of real numbers. The name
Dedekind cut reflects the fact that the partition (L,Lc) cuts the standard real number line
in two.
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A total ordering ≤ on R is defined through: L1 ≤ L2 if and only if L1 ⊂ L2. A real
number L is called positive if L contains a positive rational number and negative if Lc

contains a negative rational number. The real number {q ∈ Q : q < 0} is called zero and is
also denoted by 0. Every nonzero real number is either positive or negative but not both.
Zero is neither positive nor negative.

Addition of real numbers is defined as follows:

L1 + L2 = {x1 + x2 : x1 ∈ L1, x2 ∈ L2}.
It is associative and commutative. The real number zero is an additive identity. Every real
number L has an additive inverse

−L = {x ∈ Q : (∃y ∈ Lc : x+ y < 0)}.
If L is negative then −L is positive and vice versa.

To facilitate notation we introduce the set Q−0 of nonpositive rational numbers. Also,
L+ denotes the set of positive elements of L.

Multiplication of two positive real numbers is defined by

L1 · L2 = Q−0 ∪ {x1x2 : x1 ∈ L+
1 , x2 ∈ L+

2 }.
Next one defines products of arbitrary real numbers by

L1 · L2 = −((−L1) · L2) if L1 < 0 and L2 > 0,

L1 · L2 = −(L1 · (−L2)) if L1 > 0 and L2 < 0,

L1 · L2 = (−L1) · (−L2) if L1 < 0 and L2 < 0, and

L1 · L2 = 0 if L1 = 0 or L2 = 0.

Multiplication is associative and commutative. Also it is distributive over addition. The
number 1 = {q ∈ Q : q < 1} is the multiplicative identity. Every nonzero real number L has
a multiplicative inverse L−1. If L > 0 then L−1 = {x ∈ Q : (∃y ∈ Lc : xy < 1)}. If L < 0
then L−1 = −(−L)−1. Combining these facts we arrive at the following theorem.

Theorem. (R,+, ·) is a field.

Note that L does not contain a maximal element. Thus if sup(L) exists then it is in Lc,
in fact it is the minimum of Lc, and hence a rational number. We now embed (Q,≤,+, ·) into
(R,≤,+, ·) by identifying the rational number sup(L), if this exists, with the real number
L. If sup(L) does not exist we call L an irrational number.

Examples: Let L = {q ∈ Q : q < 3/4}. Then the real number L is identified with the
rational number 3/4. Let L = {q ∈ Q : (q < 0 ∨ q2 < 2)}. Then L is a real number but not

a rational number since sup(L) does not exist. Of course, L is usually denoted by
√

2.
1.6.16 The least upper bound property of R. Every subset of R which has an upper

bound has in fact a least upper bound. This fact accounts for the importance of the real
numbers and sets them apart from the rational numbers, which do not have a least upper
bound property.

Sketch of proof: Let {} 6= Σ ⊂ R and suppose Σ has an upper bound. Define S =⋃
L∈Σ L. Then S ∈ R and, for all L ∈ Σ we have L ≤ S, i.e., S is an upper bound of Σ.

Now assume T < S is also an upper bound of Σ. Then there is a rational number q ∈ S−T
but also an L ∈ Σ such that q ∈ L. This is impossible. �
1.6.17 Roots. Denote the set of positive real numbers by R+.

Theorem. Let n be a natural number. Then every positive real number has a unique n-th
positive root, i.e., if y ∈ R+ then there is a unique x ∈ R+ such that xn = y.
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Sketch of proof: Consider the set S = {s ∈ R : s > 0 ∧ sn < y}. By the least upper
bound property of R the number x = sup(S) exists. One may show that xn = y. Uniqueness
follows from the fact that xn1 − xn2 = (x1 − x2)(xn−1

1 + xn−2
1 x2 + ...+ xn−2

2 ).
1.6.18 The complex numbers. The set R× R is called the set of complex numbers. A

complex number z = (x, y) is usually denoted by z = x+ iy where x and y are real numbers.
x = Re(z) is then called the real part and y = Im(z) the imaginary part of the complex
number z = x+ iy.

We define addition and multiplication:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d),

(a+ ib) · (c+ id) = (a · c− b · d) + i(b · c+ a · d).

The set of complex numbers is not equipped with an ordering. However, by identifying
the real number a with the complex number a + i0 we embed (R,+, ·) into (C,+, ·), i.e.,
addition and multiplication in R transfer in the natural way to C.

Just as a+ i0 is abbreviated by a the expression 0 + ib is abbreviated by ib and 0 + i1
by i. Since i · b = (0 + i1) · (b+ i0) = 0 + ib = ib we find that ib may be considered to be a
product. (It is customary, in fact, to leave off the dot in all the products we have discussed,
i.e., a · b = ab.) Moreover, since also i2 = (0 + i1)(0 + i1) = −1 + i0 = −1 the definitions of
addition and multiplication follow formally from the rules of addition and multiplication of
real numbers.

The numbers 0 = 0 + i0 and 1 = 1 + i0 are the additive and multiplicative identity,
respectively. Every complex number a+ib has an additive inverse −(a+ib) = −a+i(−b) and
every nonzero complex number has a multiplicative inverse (a+ ib)−1 = (a− ib)(a2 + b2)−1.

To every complex number z = x + iy, x, y ∈ R one assigns a real number, called

the absolute value of z and denoted by |z|, through |z| =
√
x2 + y2 and another complex

number, called the complex conjugate of z and denoted by z, through z = x − iy. In
particular, then, z−1 = z|z|−1/2.

Any two complex numbers u and v (and hence also two real numbers, two rational
numbers etc.) satisfy the following inequalities, called triangle inequalities:

|u+ v| ≤ |u|+ |v|,
|u+ v| ≥ |u| − |v|.

For θ ∈ R let exp(iθ) = cos(θ) + i sin(θ). From this one proves that exp(0) = 1 and
exp(iα) exp(iβ) = exp(i(α+ β)). (There exists a deep relationship between the exponential
function and the trigonometric functions which is studied in a course on complex analysis.)

Since C is identified with R × R we may represent complex numbers by points in a
two-dimensional plane. Every complex number has then a so-called polar representation:
z = x+ iy = r exp(iθ) where r denotes the distance of the point (x, y) from the origin and
θ is the oriented angle between the real axis and the line through (x, y) and the origin. In

particular, x = r cos(θ), y = r sin(θ), and r =
√
x2 + y2.

1.6.19 References. For further study the following books are suggested:

[1] Paul Halmos, Naive Set Theory, Springer, New York,1973.
[2] Steven G. Krantz, The Elements of Advanced Mathematics, CRC Press, Boca

Raton, 1995.
[3] Martin Zuckerman, Sets and Transfinite Numbers, Macmillan Publishing Co., New

York, 1974.



CHAPTER 2

Groups

2.1. Groups

2.1.1 Groups. Let G be a set and · a binary operation on G. Then (G, ·) is called a group
if the operation · is associative, if G contains a left identity and every element of G possesses
a left inverse. More explicitly, (G, ·) is called a group if

(1) a · (b · c) = (a · b) · c for all a, b, c ∈ G,
(2) there exists an element 1 ∈ G such that 1 · a = a for all a ∈ G, and
(3) for every a ∈ G there exists b ∈ G such that b · a = 1.

The dot is usually omitted, i.e., a · b is simply written as ab. We will also say that G is a
group under the operation · or, if no confusion can arise just that G is a group.

A group is called commutative or abelian if its binary operation is commutative, i.e., if
ab = ba for all a, b ∈ G.
2.1.2 Basic properties. Let G be group with left identity 1.

1. Any left inverse of a is also a right inverse of a.
Proof: Suppose ba = 1 and cb = 1. Then b = (ba)b and hence ab = (cb)(ab) = c(ba)b = cb =
1.

2. 1 is the unique identity in G.
Proof: Because of 1.5.2 we only have to show that 1 is a right identity. Now let a ∈ G and
suppose ba = ab = 1. Then a = (ab)a = a(ba) = a1.

3. Every element a ∈ G has a unique inverse, denoted by a−1. In particular, (a−1)−1 =
a.
Proof: Suppose ba = 1 and b′a = 1. Then b′ = b′(ab) = (b′a)b = b.

4. The inverse of the product ab is (ab)−1 = b−1a−1.
5. Cancellation: If ca = cb or ac = bc then a = b.
6. For every a, b ∈ G the equations ax = b and ya = b have unique (possible different)

solutions, i.e., there exists one and only one x ∈ G such that ax = b and one and only one
y ∈ G such that ya = b.
2.1.3 Examples of abelian groups. A lot of familiar examples of groups are abelian

groups:
1. (Z,+), (Q,+), (R,+), (C,+),
2. (Q+, ·), (R+, ·), where Q+ and R+ denoted the positive rational and real, respectively,
3. (Q− {0}, ·), (R− {0}, ·), (C− {0}, ·),
4. ({1}, ·), ({0},+), ({1,−1}, ·),
5. ({exp(iθ) : θ ∈ R}, ·).
2.1.4 Notation. If the group G has only finitely many elements then we denote the number

of its elements by |G|. This number is also called the order of the group. If G has infinitely
many elements we say that G is of infinite order.

Nonabelian groups are usually written multiplicatively, i.e., using · or juxtaposition to
denote the binary operation. Abelian groups, however, are usually written additively, i.e.,

23
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using + to denote the binary operation. This affects then also various other notational
conventions.

multiplicative additive
1 0
a−1 −a∏n

j=1 aj = a1a2...an
∑n
j=1 aj = a1 + a2...+ an

an =
∏n
j=1 a na =

∑n
j=1 a

a0 = 1 0a = 0
a−n =

∏n
j=1 a

−1 −na =
∑n
j=1(−a)

If n,m ∈ Z and a ∈ G then na + ma = (n + m)a and m(na) = (nm)a for a additively
written group anam = an+m and (an)m = anm for a multiplicatively written group.
2.1.5 Groups of bijections. Let X be a set and consider the set of all bijections f :
X → X. Composition is an associative binary operation in this set. The mapping x 7→ x,
called the identity map, is an identity (with respect to composition). Given any bijection
f : X → X then the f−1 is also a bijection from X to X and it is the inverse element of f
(with respect to composition).

Bijection groups need not be abelian. For example, letX = R and consider the bijections
x 7→ f(x) = 2x and x 7→ g(x) = x+ 1. Then (f ◦ g)(x) = 2x+ 2 6= 2x+ 1 = (g ◦ f)(x).
2.1.6 Symmetry groups. A rigid motion is a bijection of the two-dimensional plane (or

three-dimensional space) to itself such that distances between points are preserved. Rigid
motions form a group under composition. A rigid motion which maps some subset A of the
plane onto itself is called a symmetry of A. The set of symmetries of a subset A of the plane
is again a group under composition. Symmetry groups need not be abelian. This is seen in
the following example.

Consider the equilateral triangle two of whose vertices lie on the x-axis while the third
lies on the positive y-axis. Denote the clockwise and counterclockwise rotation through
120◦ about the center of the triangle by ρ− and ρ+, respectively. Also, denote the reflection
across the median from the upper vertex by φu, the reflection across the median from the
lower left vertex by φl, and the reflection across the median from the lower right vertex
by φr. All these operations are symmetries of the triangle. Finally, denote the identity by
ι. All possible compositions of these symmetries are given by the following multiplication
table where the first factor of a product is taken from the left and the second from the top:

ι ρ− ρ+ φl φr φu
ι ι ρ− ρ+ φl φr φu
ρ− ρ− ρ+ ι φr φu φl
ρ+ ρ+ ι ρ− φu φl φr
φl φl φu φr ι ρ+ ρ−
φr φr φl φu ρ− ι ρ+

φu φu φr φl ρ+ ρ− ι

This table shows that compositions of the six symmetries of an equilateral triangle
introduced above do not yield any new symmetries. Are there any other symmetries of the
equilateral triangle? Let α be any symmetry. Then α maps vertices to vertices. Let β be the
restriction of α to the set of vertices, i.e., β = α|{1,2,3}. Each such function β is a bijection
from {1, 2, 3} to itself. Since there are six such bijections there are at most six symmetries.
Hence

D3 = {ι, ρ−, ρ+, φl, φr, φu}
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is the set of all symmetries of an equilateral triangle. More generally, Dn is the symmetry
group of a regular n-gon.
2.1.7 Permutations and symmetric groups. Consider again the bijections β of 2.1.6.

Any β just rearranges or permutes the “letters” 1,2, and 3. Therefore β is called a permuta-
tion. More generally, let M = {1, 2, ..., n} and Sn = {s : M → M : s is a bijection)}. Then
Sn is a group under composition. (Sn, ◦) (or just Sn) is called the group of permutations
of n letters (symbols) or the symmetric group of n letters. Any element of Sn is called a
permutation. One usually uses juxtaposition to denote the group operation, i.e., α ◦ β is
abbreviated by αβ.

Note that Sn has n! elements since the number of bijections between two sets of n
elements is n!.

A convenient notation for a permutation β ∈ Sn is β =

(
1 2 ... n

β(1) β(2) ... β(n)

)
.

If β ∈ Sn we call the set {k : β(k) 6= k} the support of β denoted by supp(β). Two
permutations are called disjoint if their supports are disjoint. Note that α(supp(α)) =
supp(α).

Suppose that α and β are disjoint permutations. If k is not in the support of β then
α(k) is also not in the support of β and hence (αβ)(k) = α(k) = (βα)(k). A similar
argument applies when k is not in the support of α. Hence we have shown that two disjoint
permutations are commutative.
2.1.8 Cycles. A permutation β ∈ Sn is called a cycle of length k if there are distinct

integers a1, ..., ak ∈ {1, ...n} such that β(a1) = a2, β(a2) = a3, ..., β(ak) = a1, and such
that β leaves all other n − k elements of {1, ..., n} fixed. Such a cycle will be denoted by
(a1, a2, ..., ak). For example the permutation(

1 2 3 4 5
3 5 2 4 1

)
is a cycle of length 4 and can also be denoted by (1, 3, 2, 5).

Theorem. Every permutation, except the identity, is either a cycle or can be written as a
composition (product) of disjoint cycles. This factorization is unique up to the order of the
cycles.

Sketch of proof: Fix n and consider Sn. Let

C = {α ∈ Sn : α is the identity, a cycle, or a composition of disjoint cycles}.

and

X = {k ∈ N : ∀α ∈ Sn : # supp(α) = k → α ∈ C}.
Then 1 ∈ X since the support of any permutation different from the identity has at least
two elements. Suppose {1, ..., k} ⊂ X. If k ≥ n then k + 1 ∈ X since the support of any
permutation has at most n elements. If k < n consider a permutation α whose support
has k + 1 elements and hence is not empty. Pick a1 ∈ supp(α) and define recursively
aj+1 = α(aj) = αj(a1). Let J = {j : ∃m < j : am = aj}. Since J is not empty it contains
a smallest element ` + 1. Since a`+1 = α(a`) = a1 one obtains that (a1, ...., a`) is a cycle
which we denote by β. If ` = k + 1 then α = β is a cycle. If ` ≤ k let γ = β−1α. The
permutations β and γ are disjoint and supp(γ) has no more than k elements. Hence, by
induction hypothesis, γ is in C and so is α. Altogether we have k + 1 ∈ X and the second
induction principle gives now that every element of Sn except the identity is a cycle or a
product of disjoint cycles.
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To prove uniqueness assume that B = {β1, ..., βm} and C = {γ1, ..., γ`} each form a set

of pairwise disjoint cycles and that α =
∏m
j=1 βj =

∏`
j=1 γj . Suppose β ∈ B and choose

k ∈ supp(β). Then k ∈ supp(α) and hence there must be a precisely one element γ in C
such that k ∈ supp(γ). Induction shows then β = γ (let X = {j : βj−1(k) = γj−1(k)}) and
hence B ⊂ C. Similarly one proves C ⊂ B and this implies uniqueness. �
2.1.9 Transpositions and the parity of a permutation. A cycle of length 2 is called a

transposition. Every permutation is a product of transpositions. This follows immediately
from

(a1, ..., ak) = (a1, ak)(a1, ak−1)...(a1, a2).

Factorizations into transpositions need not be unique, for example (1, 2) = (1, 2)3. However,
if a permutation has a factorization into an even (odd) number of transpositions then all
its factorizations into transpositions have an even (odd) number of factors, as will be shown
below.

Definition. The parity of the identity is even, the parity of a cycle of length k is the parity
of the number k − 1, and the parity of a product of disjoint cycles of lengths k1, ... km is
the parity of the number

∑m
j=1(kj − 1).

Theorem. If a permutation is factored into transpositions then the parity of the number
of factors equals the parity of the permutation.

Sketch of proof: First note that the parity of a transposition is odd. Let a, b, c1, ...,
cr, d1, ..., ds, where r, s ≥ 0, be pairwise distinct and define f = (a, c1, ..., cr, b, d1, ..., ds),
g = (b, c1, ..., cr)(a, d1, ..., ds), and h = (a, c1, ..., cr) (here we agree that both (a) and (b)
represent the identity). Since

(a, c1, ..., cr, b, d1, ..., ds)(a, b) = (b, c1, ..., cr)(a, d1, ..., ds),

(b, c1, ..., cr)(a, d1, ..., ds)(a, b) = (a, c1, ..., cr, b, d1, ..., ds),

(a, c1, ..., cr)(a, b) = (a, b, c1, ..., cr)

we have that the parity of f(a, b), g(a, b), and h(a, b) is opposite of that of f , g, and h,
respectively. Hence, if α =

∏m
j=1 βj , where the βj are pairwise disjoint cycles, then the

parities of α and α(a, b) are opposite. Induction shows then that the parity of a product of
transpositions equals the parity of the number of factors. �

Note that it follows now at once that the parity of a product of permutations equals the
sum of the parities of the factors. In particular, the parity of a product of two permutations
is even if and only if the parities of the factors are the same (both even or both odd).
Otherwise the parity of the product is odd.
2.1.10 The alternating groups. The identity of Sn has even parity. The parity of each

element of Sn equals the parity of its inverse. Since the product of two even permutations
is even we see that the set of all even permutations in Sn forms a group, the alternating
group An. If n ≥ 2, the group An has n!/2 elements since any transposition is a bijection
from An to Sn −An.
2.1.11 Subgroups. Let (G, ·) be a group and A a subset of G. If (A, ·) is a group then it

is called a subgroup of G.

Theorem. If (G, ·) is a group and A a nonempty subset of G then (A, ·) is a subgroup of
G if and only if a · b−1 ∈ A for every a, b ∈ A.

Sketch of proof:
Necessity: Let (A, ·) be a subgroup and e the identity of A. Then e2 = e. Since e ∈ G it
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has an inverse e−1 ∈ G. Hence e = e−1e2 = e−1e = 1 when 1 is the identity of G. Let
a, b ∈ A. Then b−1, the inverse of b in G is also the inverse in A and hence an element of
A. Therefore a · b−1 is in A, too.
Sufficiency: Since A is not empty there is an element a ∈ A. Then 1 = a · a−1 ∈ A. Also,
for every b ∈ A we have that b−1 = 1 · b−1 ∈ A. Finally, a · b = a · (b−1)−1 ∈ A whenever
a, b ∈ A. Hence · is an associative binary operation on A. �

Examples: For any group G with identity 1 the sets {1} and G are both subgroups of
G. The former is called the trivial subgroup of G. If k ≤ n then Sk is a subgroup of Sn.
The group of integers, (Z,+), is a subgroup of (Q,+). Rigid motions of the plane form a
subgroup of the group of all bijections from R2 to R2. The subsets {ι, ρ−, ρ+} and {ι, φk},
k = 1, 2, 3, of D3 in Section 2.1.6 are subgroups of D3. The alternating group An is a
subgroup of Sn.

If U1 and U2 are subgroups of a group G then U1 ∩U2 is also a subgroup of G, or, more
generally, if C is any nonempty collection of subgroups of G then

⋂
U∈C U is also a subgroup

of G.
2.1.12 Subgroups generated by subsets of a group. Let M be a nonempty subset of a

group G and C the collection of all subgroups of G which include M . Then 〈M〉 =
⋂
U∈C U

is called the group generated by M .
The group generated by M is the minimum of C when the set of all subgroups of G is

partially ordered by inclusion. It is therefore also called the smallest subgroup of G including
M .

Theorem. Let G be a group and M a nonempty subset of G. Then

〈M〉 = {
N∏
j=1

a
nj

j : N ∈ N, aj ∈M , nj ∈ Z for j = 1, ..., N}.

Sketch of proof: Let A be the set on the right hand side. Then {} 6= M ⊂ A. Suppose
a, b ∈ A. Then ab−1 ∈ A, too. Hence A is a subgroup of G which includes M , i.e., 〈M〉 ⊂ A.

Now let a ∈ A, i.e., a =
∏N
j=1 a

nj

j where aj ∈M and nj ∈ Z. Then aj ∈ 〈M〉 and therefore

a ∈ 〈M〉, too. �
2.1.13 Centralizer and center. Let (G, ·) be a group and M a subset of G. Then define

C(M) = {g ∈ G : gm = mg for every m ∈M},

the centralizer of M . The centralizer C(G) of the group itself is also called the center of G.
(C(M), ·) is a subgroup of (G, ·) and (C(G), ·) is abelian.

2.1.14 Order of a group element. The order ord a of an element a ∈ G is defined to be
the smallest natural number k such that ak = 1 if this exists. Otherwise a is said to have
infinite order (ord a =∞).
2.1.15 Cyclic groups. Let a ∈ G. Then 〈a〉 = {an : n ∈ Z} is called the cyclic subgroup

of G generated by a. A group G such that 〈a〉 = G for some a ∈ G is called a cyclic group.
A cyclic group is always abelian. If a has infinite order then the elements an of 〈a〉 are all
distinct. If a has order k then 〈a〉 = {1, a, a2, . . . , ak−1}.

Examples: (Z,+) is cyclic, in fact Z = 〈1〉. The subgroup {ι, ρ−, ρ+} of D3 equals
〈ρ+〉 = 〈ρ−〉 and hence is cyclic. {exp(in) : n ∈ Z} and {exp(2πin/k) : n ∈ {1, ..., k}} are
cyclic groups under multiplication of order infinity and k, respectively.

Theorem. The following statements hold:
1. All subgroups of a cyclic group are cyclic.
2. For an infinite cyclic group all subgroups but the trivial one have infinitely many elements.
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Sketch of proof: 1. Let S be a nontrivial subgroup of G = 〈a〉 and A = {n ∈ N : an ∈ S}.
Let m = min(A) and b = am. For any c ∈ S we have c = a` where ` = qm + r with q ∈ Z
and r ∈ {0, ...,m− 1}. Then c = bqar and ar = b−qc ∈ S. Hence r = 0 and S = 〈b〉.

2. 〈a〉 has infinite order if and only if a does. Hence bq = amq are all different. �
2.1.16 Subset multiplication in groups. Let A and B be subsets of a group G (written

multiplicatively). Then the product of A and B is defined to be the set

AB = {ab : a ∈ A, b ∈ B} ⊂ G.
Hence subset multiplication is a binary operation on the power set of G. The associative
law of G induces an associative law for subset multiplication, i.e., (AB)C = A(BC). When
A = {a} we also write aB instead of AB (see the definition of cosets).

If G is written additively one uses also additive notation for subset multiplication, i.e.,
A+B = {a+ b : a ∈ A, b ∈ B}.
2.1.17 Cosets. Let U be a subgroup of G. Define a relation RU on G × G by defining
aRUb if and only if a−1b ∈ U . This relation is an equivalence relation. The equivalence
classes have the form [a] = aU = {g ∈ G : g = au for some u ∈ U} and are called left cosets
of U . In particular [1] = U . The set G/RU of equivalence classes of G with respect to the
relation RU is usually denoted by G/U .

By Theorem 1.4.5 the left cosets form a partition of G. The number of left cosets is
called the index of U in G.

Let aU and bU be two cosets then g 7→ f(g) = ba−1g defines a bijective function from
aU to bU . Hence, any two cosets contain either the same number of elements, are both
countably infinite, or are both uncountable.
2.1.18 Lagrange’s theorem. Let G be a group of finite order and U a subgroup of G.

The cosets aU , a ∈ G, form a partition of G such that each one has the same number,
namely |U |, of elements. In particular, the order of G is the product of the order of U and
the number distinct cosets, i.e., the number of elements of G/U . Thus we have the

Theorem. The order of a finite group is divisible by the order of any of its subgroups.

Corollary. If G is a finite group, then |G| is divisible by the order of any of its elements.
In particular a|G| = 1.

The results of this section can also be found by working with the equivalence relation
aRb ⇔ ab−1 ∈ U having right cosets Ua as equivalence classes. In general, it is not true
that aU = Ua for all a ∈ G.
2.1.19 Normal subgroups. A subgroup N of a group G is called a normal subgroup if

the left cosets of N in G are equal to the right cosets of N in G, i.e., if gN = Ng for all
g ∈ G. We write N / G.

Theorem. Equivalent conditions for a subgroup N of G to be normal are given by:
1. ∀g ∈ G : Ng ⊂ gN ,
2. ∀g ∈ G : gN ⊂ Ng,
3. ∀g ∈ G : gNg−1 ⊂ N .

Sketch of proof: The definition implies the first statement trivially. To prove the second
from the first choose g ∈ G and b ∈ gN . Then there exits n ∈ N such that b = gn. Note
that Ng−1 ⊂ g−1N , in particular, there is an m ∈ N such that ng−1 = g−1m, i.e., gn = mg.
Hence b = mg ∈ Ng. Since b was arbitrary gN ⊂ Ng. Since g was arbitrary the second
statement follows from the first. The remaining proofs are similar. �

Examples: {1} and G are normal subgroups of G. Every subgroup of an abelian group
is normal. The alternating group An is a normal subgroup of Sn.
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2.1.20 Quotient groups. The following theorem is true.

Theorem. If N is a normal subgroup of G then G/N is a group under the binary operation
given by the subset product.

Sketch of proof: Let aN, bN ∈ G/N . Then (aN)(bN) = {anbm : n,m ∈ N}. Since N is
normal we find that for all n ∈ N there exists n′ ∈ N such that nb = bn′. Hence (aN)(bN) =
{abn′m : n′,m ∈ N} = (ab)N is a left coset of N . Choosing different representatives from
aN and bN will yield the same product set so that multiplication of cosets is well defined.
Hence subset multiplication is an associative binary operation on G/N. Also, N is the
identity element in G/N and a−1N the inverse element of aN . �

The group G/N of left cosets of a normal subgroup N of G is called a quotient group
or factor group.

If G is finite, then we have |G/N | = |G|/|N |. If G is infinite and N is finite, then G/N
is infinite.
2.1.21 Residue classes. Let m be an integer. Then the set mZ = {mk : k ∈ Z} is a

subgroup of (Z,+). The cosets of mZ are called residue classes mod m. For a + (mZ) =
(mZ) + a we will write am. The residue classes mod m are explicitly given by

am = {a+ km : k ∈ Z}.
Since (mZ,+) is a normal subgroup of (Z,+) we get that Zm = Z/(mZ) is a group

(under subset addition).
2.1.22 Direct products. Let G and H be groups. Then introduce a binary operation on
G × H by (g1, h1)(g2, h2) = (g1g2, h1h2). Under this binary operation G × H is a group
called the direct product of G and H.
2.1.23 Homomorphisms. Let G and H be groups. A mapping η : G → H is called a

(group) homomorphism if η(ab) = η(a)η(b) for all a, b ∈ G.
Examples: The identity map from G to G is a homomorphism. The map G→ {e} : g 7→

e, where e is the identity of any group, is a homomorphism. For m ∈ N the map Z→ mZ,
k 7→ mk, is a homomorphism.

For a homomorphism η : G → H we define the kernel ker η of η to be the set ker η =
{g ∈ G : η(g) = 1H}. Recall that the image of G under η is the set η(G) = {η(g) : g ∈ G}.

Let η : G → H and ν : H → K be group homomorphisms. Then the following basic
facts hold:
1. η(1G) = 1H .
2. η(a−1) = η(a)−1.
3. If g ∈ G has finite order then the order of η(g) ∈ H divides the order of g.
4. ν ◦ η : G→ K is a homomorphism.

Theorem. For any homomorphism η : G → H the set η(G) is a subgroup of H which
is abelian if G is abelian. The set ker η is a normal subgroup of G. A homomorphism
η : G→ H is injective if and only if ker η = {1G}.

Sketch of proof: 1H = η(1G) ∈ η(G). Suppose η(x), η(y) ∈ η(G). Then η(x)η(y)−1 =
η(xy−1) ∈ η(G). If G is abelian then η(x)η(y) = η(xy) = η(yx) = η(y)η(x).

1G ∈ ker η. If x, y ∈ ker η then η(xy−1) = η(x)η(y)−1 = 1H and hence xy−1 ∈ ker η.
Let a be any element in G and x any element in ker η. Then axa−1 ∈ ker η, too. Hence
ker η / G.

Suppose ker η = {1G} and η(g) = η(g′). Then η(g−1g′) = 1H and hence g = g′. �
2.1.24 Canonical homomorphisms. Let N /G. Then the mapping G→ G/N : a 7→ aN

is a homomorphism which is called the canonical homomorphism from G to G/N .
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2.1.25 Embeddings and projections. Let G×H be a direct product of groups. Then
the functions from G or H to G×H defined by g 7→ (g, 1) and h 7→ (1, h), respectively, are
injective homomorphisms. They are called embeddings.

The functions from G×H to G or H defined by (g, h) 7→ g and (g, h) 7→ h, respectively,
are surjective homomorphisms. They are called projections.
2.1.26 Isomorphisms. If a homomorphism η : G → H is bijective then η is called an

isomorphism. In this case η−1 : H → G is also an isomorphism. Two groups G and H are
called isomorphic if there exists an isomorphism from G to H (or from H to G). If G and
H are isomorphic we write G ∼= H.

Theorem. The relation ∼= in the set of all groups is an equivalence relation.

Examples: If G is cyclic and |G| = n, then G ∼= Zn. If G is cyclic and of infinite order
then G ∼= Z. If |G| = p is a prime number, then G ∼= Zp. If |G| = 4, then either G ∼= Z4 or
G ∼= Z2 × Z2. The map x 7→ exp(x) from (R,+) to (R+, ·) is an isomorphism.
2.1.27 The fundamental isomorphism theorem for groups. Any group homomor-

phism on G is related to quotient groups of G.

Theorem. Let η : G → H be a surjective homomorphism and let ν be the canonical
homomorphism from G to G/ ker η. Then there is an isomorphism µ : G/ ker η → H such
that η = µ ◦ ν. In particular, H ∼= G/ ker η.

Sketch of proof: Define µ : G/ ker η → H by g ker η 7→ η(g). However, this defines a
function only if η(g) = η(g′) for all g′ ∈ g ker η. Hence assume that g−1g′ ∈ ker η. Then
1H = η(g−1g′) = η(g)−1η(g′), the required equality.

µ is surjective since η is. Assume that µ(g ker η) = µ(g′ ker η), i.e., η(g) = η(g′),
then g−1g′ ∈ ker η which implies injectivity. Finally, µ((g ker η)(g′ ker η)) = µ(gg′ ker η) =
η(gg′) = µ(g ker η)µ(g′ ker η) which shows that µ is a homomorphism. �

Corollary. Every normal subgroup of G is the kernel of a homomorphism on G.

2.1.28 Automorphisms. Let G be a group. A homomorphism η : G → G is called an
endomorphism in G. If, in addition, η is an isomorphism it is called an automorphism of G.
By Aut(G) we denote the set of all automorphisms of G.

Theorem. Aut(G) is a group under composition.

Sketch of proof: Aut(G) is a subset of the group of all bijections of G onto itself.
The identity is in Aut(G). Suppose η, ν ∈ Aut(G). It is easily checked that η ◦ ν−1 is a
homomorphism. Since it is bijective it is in fact an automorphism. �

Example: Let G be a group, a ∈ G. Then the map from G to G defined by x 7→ axa−1

is an automorphism of G. An element η ∈ Aut(Zm) is uniquely defined by η(1m) = km
where k = 1 or k ∈ {2, ...,m− 1} but has no factor in common with m.
2.1.29 Inner and outer automorphisms. An automorphism of G of the form x 7→ axa−1

for some a ∈ G is called an inner automorphism of G. Every other automorphism is called
an outer automorphism of G.

The set of all inner automorphisms of a group G is a subgroup of Aut(G).
Examples: The identity is the only inner automorphism of an abelian group. S3 has six

inner but no outer automorphisms. If p is prime then Aut(Zp) has p− 1 elements. p− 2 of
these are outer automorphisms.
2.1.30 Conjugate subgroups and elements. Automorphisms of G map subgroups to

subgroups.
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Two subgroups U1 and U2 of G are called conjugate subgroups if there exists an inner
automorphism σa such that σa(U1) = U2. Similarly, two elements x and y of G are called
conjugate if there is an a ∈ G with y = axa−1.

The relation of being conjugated is an equivalence relation in G. The equivalence classes
of this relation are called the conjugacy classes of G.
2.1.31 Free groups. Let S be a finite or infinite set of symbols: S = {a, b, c, ...}. Consider

the set F = F ∗ ∪ {1} where 1 6∈ S and

F ∗ = {xn1
1 ...xnN

N : N ∈ N, xj ∈ S, nj ∈ Z− {0}, xj 6= xj+1}.
Introduce on F a binary operation by 1f = f1 = f for all f ∈ F and (recursively) by
(xn)(x−n) = 1,

(xn1
1 ...xnN

N )(ym1
1 ...ymM

M ) =


xn1

1 ...xnN

N ym1
1 ...ymM

M if xN 6= y1,

xn1
1 ...xnN+m1

N ym2
2 ...ymM

M if xN = y1 and nN +m1 6= 0,

(xn1
1 ...x

nN−1

N−1 )(ym2
2 ...ymM

M ) if xN = y1 and nN +m1 = 0.

Then F is a group called the free group on S.

Theorem. Let F be the free group on a set S, G an arbitrary group, and ϕ a function from
S to G. Then ϕ extends in a unique way to a group homomorphism from F to G.

Sketch of proof: This follows immediately once you define

ϕ(xn1
1 ...xnN

N ) = ϕ(x1)n1 ...ϕ(xN )nN .

�
Let S be a subset of a group G which does not contain 1. Then S defines a homomor-

phism ϕ from the free group on S to G by letting ϕ(x) = x for all x ∈ S. If ϕ is surjective
then S is said to generate G. The elements of S are then called the generators of G. This
definition is consistent with the definition in 2.1.12.
2.1.32 Relations among generators. Let S be a subset of a group G which generates G

and such that 1 6∈ S. Let F the free group on S, and ϕ the unique homomorphism from F
to G which is the identity on S. Then Theorem 2.1.27 implies that F/ kerϕ is isomorphic
to G. Any element x of kerϕ satisfies ϕ(x) = 1G and these equations (and sometimes just
the elements x ∈ kerϕ) are called relations among the generators. If kerϕ = {1} then F
and G are isomorphic. G is then also called a free group.

Example: Consider the group (Zm,+), m ∈ N and S = {[1]m}. Then F ∼= (Z,+).
The associated homomorphism ϕ : Z → Zm is given by n = qm + r 7→ ϕ(n) = r where
r ∈ {0, ...,m− 1} and q ∈ Z. The relations are of the form ϕ(m) = 0, ϕ(2m) = 0 etc.

Let F be a free group on S, R a subset of F and N the smallest normal subgroup
including R. Let ϕ be the canonical homomorphism from F to F/N . Then F/N (and any
group isomorphic to it) is called the group generated by S with defining relations R. For
example, (Zm,+) is the group generated by {1} with defining relation m1 = 0.

Theorem. Any group G is the image of a free group F on a set S under a homomorphism
ϕ. Any subset of F which generates the kernel of ϕ is a set of defining relations among the
elements of S.

2.1.33 Free abelian groups. Let F be the free group on S and consider the relations
ab = ba for all a, b ∈ S, i.e., let N be the smallest normal subgroup of F generated by
{a−1b−1ab : a, b ∈ S}. Then F/N is abelian. It is called the free abelian group on S.





CHAPTER 3

Rings

3.1. General Ring Theory

3.1.1 Rings. Let R be a set. Suppose there are two binary operations + and · on R such
that the following properties are satisfied:
(a) (R,+) is an abelian (commutative) group and
(b) · is associative and (left and right) distributive over +.
Then (R,+, ·) is called a ring.

The ring is called commutative if multiplication is commutative.
The identity element of (R,+) is denoted by 0.
Examples: Z, Q, R, and C are commutative rings. Let R be a ring and X a nonempty

set, then the set of all R-valued functions on forms a ring, which is commutative if R is.
The set of all n × n matrices is a non-commutative ring. The set {0} can be considered a
ring, the zero ring.
3.1.2 Elementary properties. Let (R,+, ·) be a ring. The additive identity is denoted

by 0 and the additive inverse of a ∈ R is denoted by −a. The following properties hold then
in any ring:
1. 0a = a0 = 0 for all a ∈ R,
2. (−a)b = −(ab) = a(−b).
3.1.3 Identity. A (multiplicative) identity or unity in a ring is a nonzero element 1 such

that 1a = a1 = a for all elements a in the ring. If there is such an element the ring is called
a ring with identity (or ring with unity).

An identity, if it exists, is unique, for 1e = 1 = e if both 1 and e are identities.
3.1.4 Direct products. Let R and S be rings. We introduce two binary operations on
R × S by (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1) · (r2, s2) = (r1 · r2, s1 · s2).
Under these binary operation R × S is a ring called the direct product of R and S. It is
commutative if and only if R and S are commutative.
3.1.5 Integral Domains. If a = 0 or b = 0 then ab = 0. If a, b 6= 0 but ab = 0 then a is

called a left zero divisor and b a right zero divisor.
Examples: Every nilpotent matrix is a zero divisor in the ring of matrices. In the ring

of real-valued functions on X any function which vanishes on some nonempty subset of X
but not on all of X is a zero divisor.

A commutative ring with identity but without zero divisors is called an (integral) do-
main.

Hence if ab = 0 in an integral domain then a = 0 or b = 0. In an integral domain the
so called cancellation law holds. This law asserts that ab = ac and a 6= 0 imply b = c.

Example: Z is an integral domain: given a, b ∈ Z − {0} and ab = 0 we may assume
(by multiplying, perhaps, by −1) that a, b ∈ N which is impossible since multiplication is a
binary operation in N.

33
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3.1.6 Units. An element a of a ring with identity is called a unit if there exists a b in the
ring such that ab = ba = 1. Also, if a is a unit and ab = ba = 1 then b is a unit, too. The
set of all units in a ring R is denoted by R∗.

The zero element can never be a unit since 0b = b0 = 0 6= 1 for all b in the ring.
Example: In the ring Z the number 1 is an identity while both +1 and −1 are units.

Theorem. If R is a ring with identity then (R∗, ·) is a group.

Sketch of proof: Let a, b ∈ R∗. Then there exist â, b̂ ∈ R such that âa = aâ = 1 and

b̂b = bb̂ = 1. Hence b̂âab = abb̂â = 1, i.e., ab ∈ R∗ and · is a binary operation on R∗. It
inherits associativity from R. 1 ∈ R∗ is the identity. Inverses exist by the very definition of
R∗. �

Since inverses in groups are uniquely determined we have that for every unit a in a ring
R there exists exactly one element b ∈ R, denoted by a−1, such that ab = ba = 1.
3.1.7 Fields. A commutative ring with identity is called a field if every nonzero element

is a unit, i.e., if R∗ = R− {0}.
This definition is compatible with our earlier definition. In particular, a set R with two

binary operations + and · is a field if and only if (R,+) and (R − {0}, ·) are commutative
groups and if · is distributive over +.

Any field is an integral domain since ab = 0 and a 6= 0 imply that b = a−1ab = 0.
3.1.8 Fraction fields. Let R be an integral domain and E the relation on R× (R− {0})

defined by (a, b)E(α, β) if and only if aβ = bα. The relation E is an equivalence relation.
Therefore we may define the set F = R × (R − {0})/E. The equivalence class of (a, b) will
be denoted by a/b. On F addition and multiplication is now defined by

a/b+ c/d = (ad+ bc)/(bd),

a/b · c/d = (ac)/(bd).

These definitions are possible since they are independent of the representatives chosen.

Theorem. If R is an integral domain the set F defined above is a field called the fraction
field of R.

Sketch of proof: Since bd 6= 0 addition and multiplication are binary operations. One
checks easily that they are associative and commutative and that multiplication is distribu-
tive over addition. The zero element is given by 0/1 and the additive inverse of a/b is given
by (−a)/b. An identity of F is given by 1/1. If a/b 6= 0 then it has a multiplicative inverse
given by b/a. �

Examples: The fraction field of the integers are the rational numbers and the fraction
field of the ring of polynomial functions on R (or C) is the field of rational functions.
3.1.9 Subrings. A subset of a ring R is called a subring if it is a ring itself. Similarly, a

subset of a field K is called a subfield if it is a field itself.

Theorem. A nonempty subset S of a ring R is a subring if and only if a− b and ab are in
S whenever a, b ∈ S. If R is abelian then so is S.

Sketch of proof: Assume S is a subring. Then ab and a − b = a + (−b) are in S.
Now assume that S is not empty and that a − b, ab ∈ S for all a, b ∈ S. Then (S,+) is a
group by the subgroup criterion. It inherits commutativity from (R,+). Also S is closed
under multiplication, i.e., · is a binary operation on S. Associativity and distributivity of
multiplication over addition are inherited from R. So is, if necessary, commutativity of
multiplication. �

Examples: mZ is a subring of Z. C1(R) is a subring of C0(R).
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Suppose R is a ring and S is a subring of R. It may now be the case that neither R
nor S have an identity, that R has an identity but S does not, that S has an identity but
R does not, and that both R and S have an identity. In the last case it may be that the
identity of R is also the identity S but R and S can also have different identities.

If R has an identity 1 and if 1 ∈ S then S is called a unitary subring of R.
3.1.10 Ideals. A nonempty subset J of a commutative ring R is called an ideal if a−b ∈ J

for all a, b ∈ J and ar = ra ∈ J for all a ∈ J and r ∈ R. This latter property is called the
multiplicative absorption property of ideals. One may also introduce left and right ideals on
noncommutative rings. An ideal is called a proper ideal if it is a proper subset of R.

Theorem. Any ideal is a subring.

Examples: If m is an integer the set mZ is an ideal in Z. J = {0} is an ideal, the zero
ideal. Also J = R is an ideal, the improper ideal. However, C1(R) is not an ideal in C0(R).
3.1.11 Ideals generated by subsets. Let S be a nonempty set of ideals in a commutative

ring R. Then
⋂
J∈S J , the intersection of all elements of S, is again an ideal in R.

Let R be a commutative ring and M a nonempty subset of R. Then 〈M〉 denotes
the intersection of all ideals in R which contain M . Thus 〈M〉 is the smallest ideal which
contains M .

Theorem. Let R be a commutative ring and M a nonempty subset of R. Then

(1) 〈M〉 = {
N∑
j=1

(rjaj + njaj) : N ∈ N, aj ∈M, rj ∈ R,nj ∈ Z for j = 1, ..., N}.

Sketch of proof: Let J be the set on the right hand side of equation (1). Then J is an

ideal containing M . Hence 〈M〉 ⊂ J . Consider the element x =
∑N
j=1(rjaj + njaj) ∈ J .

By the multiplicative absorption property 〈M〉 contains rjaj . Since 〈M〉 is a group with
respect to addition it must contain also the element njaj . Again by the group property 〈M〉
thus contains x, i.e., J ⊂ 〈M〉. �

If R is a ring with identity then na = n1a and thus ra+ na = (r + n1)a. Therefore, in
this case,

〈M〉 = {
N∑
j=1

rjaj : N ∈ N, aj ∈M, rj ∈ R for j = 1, ..., N}.

An ideal J is called finitely generated if there exists a finite set M such that J = 〈M〉.
If M = {a1, ..., an} we will also use the notation 〈M〉 = 〈a1, ..., an〉. Note that

〈a1, ..., an〉 = {
n∑
j=1

rjaj : rj ∈ R for j = 1, ..., n}.

3.1.12 Principal ideals and principal ideal domains. An ideal is called principal if it
is generated by a single element. The zero ideal is always principal and the improper ideal
is principal if R has an identity. In fact, in this case R = 〈u〉 for any unit u in R.

An integral domain in which every ideal is principal is called a principal ideal domain
(PID).

Example: Z is a principal ideal domain. To see this let J 6= {0} be an ideal in Z and a
the smallest positive integer in J . Then 〈a〉 ⊂ J . Let b ∈ J . Then b = qa + r for suitable
q, r ∈ Z with 0 ≤ r < a. Since qa ∈ 〈a〉 ⊂ J we have that r = b− qa ∈ J . Thus r = 0 since
there is no positive integer in J smaller than a. This proves b = qa ∈ 〈a〉 and hence J = 〈a〉.
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Theorem. A commutative ring R with identity is a field if and only if its only ideals are
the zero and the improper ideal. In particular, every field is a principal ideal domain.

Sketch of proof: Suppose R is a field. Let J be any ideal other than the zero ideal.
Then J contains a nonzero element a and, since a is a unit, R = 〈a〉 ⊂ J ⊂ R, i.e., J = R.
Next suppose the only ideals of R are the zero and the improper ideal. Consider a nonzero
element r in R. Then 〈r〉 = R and hence 1 = rs for some s ∈ R, i.e., r is a unit. Hence all
nonzero elements of R are units, i.e., R is a field. �
3.1.13 Residue class rings. Let S be a subring of the ring R. Then (S,+) is a subgroup

of (R,+). Recall that the cosets a + S = {a + s : s ∈ S} = S + a of S form a partition of
R. The set of all cosets of S is denoted by R/S. Since (R,+) is abelian (S,+) is a normal
subgroup of (R,+). Hence R/S is an abelian group with respect to subset addition (i.e.,
M +N = {m+ n : m ∈M,n ∈ N} for any M,N ⊂ R).

Theorem. Let S be an ideal in the commutative ring R. Define addition and multiplication
of cosets by (a+ S) + (b+ S) = (a+ b) + S and (a+ S)(b+ S) = ab+ S. Then (R/S,+, ·)
is a commutative ring called the quotient ring or residue class ring of R modulo S.

Sketch of proof: Since addition of cosets coincides with subset addition we get (as
explained above) that (R/S,+) is an abelian group. Next we prove that multiplication
is well defined. If a + S = c + S and b + S = d + S then a − c, b − d ∈ S. Hence
ab − cd = a(b − d) + (a − c)d ∈ S since S is an ideal. Therefore ab + S = cd + S, i.e.,
multiplication of cosets is well defined. The validity of the associative, commutative and
distributive laws follows now in a straightforward manner. �
3.1.14 Modular arithmetic. For any natural number m the set mZ is an ideal in Z.

Hence Zm = Z/mZ is the residue class ring of Z modulo mZ. We will denote the element
of a+mZ ∈ Zm by am and call it the residue class mod m of a. If am = bm we say that a
and b are congruent modulo m. This happens if and only if a − b is an integer multiple of
m. Note that 0m and 1m are the additive and multiplicative identity, respectively, and that
(−a)m is the additive inverse of am.

Theorem. Zm is a field if and only if m is a prime number.

Sketch of proof: If m is not prime let a, b ∈ {2, ...,m − 1} be such that ab = m. Then
ambm = mm = 0m, i.e., Zm has zero divisors and hence is not a field.

If m is prime consider x ∈ {1, ...,m − 1}, i.e., xm 6= 0 in Zm. Then gcd(x,m) = 1 and
thus there exist integers k, j such that 1 = kx+jm. Now kmxm = (kx)m = (1−jm)m = 1m,
i.e., x−1

m = km. Hence every nonzero element in Zm is a unit, i.e., Zm is a field. �
3.1.15 Prime ideals. An ideal J in a commutative ring R with identity is called a prime

ideal if ab ∈ J implies a ∈ J or b ∈ J .

Theorem. J is a prime ideal in R if and only if R/J is an integral domain.

The improper ideal R is always prime, and the zero ideal is prime if and only R itself is
an integral domain. Proper maximal ideals are prime. In this case R/J is in fact a field.

3.2. Ring Homomorphisms

3.2.1 Ring homomorphisms. Let R1 and R2 be rings. A mapping f : R1 → R2 is called
a (ring) homomorphism if f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R1. It
is called a (ring) isomorphism if it is a bijective homomorphism and a (ring) automorphism
if it is a ring isomorphism from R1 to itself.

Examples: f : Z→ Zm, a 7→ [a]m is a ring homomorphism. The function f : R1 → R2,
a 7→ 0 for all a ∈ R1 is a homomorphism, called the zero homomorphism.
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3.2.2 Basic properties of homomorphisms. The composition of homomorphisms is a
homomorphism. Moreover, if f : R1 → R2 is a ring homomorphism, the following properties
hold:

— f(0) = 0, f(−a) = −f(a).
— f(R1) is a subring of R2.
— ker f = {x ∈ R1 : f(x) = 0} is an ideal of R1.
— f is injective if and only if ker f = {0}.
— If R1 has an identity, if f is onto, and if R2 6= {0} then R2 has an identity, the

image of every unit in R1 is a unit in R2 and f(1) = 1.
— If R1 has an identity, if f 6= 0, and if R2 is an integral domain then the image of

every unit in R1 is a unit in R2 and f(1) = 1.

3.2.3 Domains as subsets of their fraction fields. Let R be an integral domain and F
its fraction field. The mapping φ : R→ F defined by a 7→ a/1 is an injective homomorphism.
One often identifies R with its image φ(R) ⊂ F , i.e., one usually considers R as a subset of
F .
3.2.4 Isomorphy of rings. Two rings R1 and R2 are called isomorphic if there exists a

ring isomorphism from R1 to R2. The relation “is isomorphic to” is an equivalence relation
on the set of all rings.
3.2.5 Canonical homomorphism. Given an ideal S of a commutative ring R the map
φ : R→ R/S, a 7→ a+S is called the canonical (ring) homomorphism from R to R/S. The
kernel of φ is precisely the set S.
3.2.6 The fundamental isomorphism theorem for commutative rings. The follow-

ing theorem relates homomorphisms with quotient rings.

Theorem. If φ : R1 → R2 is a surjective homomorphism between commutative rings and
if ν : R1 → R1/(kerφ) is a canonical homomorphism then there exists an isomorphism
µ : R1/(kerφ)→ R2 such that µ ◦ ν = φ.

Example: Suppose a ∈ R and let φ : C0(R) → C, f 7→ f(a). Then φ is a surjective
homomorphism whose kernel is the ideal kerφ = {f ∈ C0(R) : f(a) = 0}. The theorem
asserts now that C0(R)/(kerφ) is isomorphic to C.

3.3. Unique Factorization

3.3.1 Divisors and multiples. Let R be a commutative ring. A nonzero element a ∈ R
is called a divisor or a factor of b ∈ R if there exists q ∈ R such that b = aq. We will also
say that a divides b or that b is a multiple of a.

If R is an integral domain the element a is called a proper divisor of b if b = aq and
neither a nor q are units. Otherwise it is called an improper divisor. If b is a unit it has
only improper divisors namely all units of R. Every nonzero element of the ring is a divisor
of zero.
3.3.2 Associates. Let R be an integral domain and a, b ∈ R. Then we shall say a is an

associate of b or that a is associated with b if there exists a unit u such that a = ub. The
relation “is an associate of” is an equivalence relation. Therefore we shall also say that a
and b are associates. The equivalence class of 0 contains only 0. The equivalence class of 1
is the set of all units of R.

Example: The class of associates of n ∈ Z is {n,−n}.
3.3.3 The greatest common divisors. Let R be an integral domain. An element d ∈ R

is called a greatest common divisor of the elements a, b ∈ R if d is a divisor of both a and b
and if any common divisor of a and b is also a divisor of d. If d is a greatest common divisor
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of a and b then so is any associate of d and any two greatest common divisor of a and b are
associates. The notation gcd(a, b) is used to denote any greatest common divisor of a and
b.
3.3.4 Prime and irreducible Elements. A nonzero element p of an integral domain is

called prime if it is not a unit and if p divides a or b whenever p divides ab.
A nonzero element p of an integral domain is called irreducible if it is not a unit and

has only improper divisors. In other words an irreducible element p allows only “trivial”
factorizations p = up′ where u is a unit.

Theorem. A prime element is irreducible.

Sketch of proof: Assume that p = ab is prime. Then p divides a or b, say a, i.e., a = pc.
Hence p = ab = pcb which implies cb = 1 since cancellation is allowed in an integral domain.
Thus b is a unit and hence p is irreducible. �
3.3.5 Divisibility and ideals. Divisibility is strongly related to containment of ideals:

Theorem. Let R be an integral domain and a, b ∈ R, b 6= 0. Then
1. 〈a〉 = R if and only if a is a unit.
2. 〈a〉 ⊂ 〈b〉 if and only if b is a divisor of a. Also 〈a〉 = 〈b〉 if and only if b is an improper
divisor of a, i.e., if and only if a and b are associates.
3. a is irreducible if and only if 〈a〉 6= {0} is maximal among all proper principal ideals, i.e.,
there is no principal ideal but R and 〈a〉 itself which contains 〈a〉.

Let J1 and J2 be ideals in the integral domain R. One calls an ideal J1 a multiple of
J2 or J2 a factor or divisor of J1 if J1 ⊂ J2. The greatest common divisor of J1 and J2,
denoted by gcd(J1, J2), is the ideal generated by J1 ∪ J2. The least common multiple of J1

and J2 is the ideal J1 ∩ J2.
3.3.6 Unique factorization domains. Let R be an integral domain and a a nonzero

element of R which is not a unit. Two factorizations a = a1...an = b1...bm into irreducibles
a1, ..., bm are called equivalent if n = m and if there is a permutation σ ∈ Sn such that aj is
associated with bσj for j = 1, ..., n. If all factorizations of a into irreducibles are equivalent
one says that the factorization of a is essentially unique.

An integral domain R is called a unique factorization domain (UFD) if it satisfies the
following conditions:
1. every nonzero element which is not a unit is a finite product of irreducibles,
2. for every nonzero element which is not a unit all factorizations into irreducibles are
essentially unique.

Any two elements in a UFD which are not both equal to zero have a greatest common
divisor.
3.3.7 Primality and irreducibility. In Theorem 3.3.4 we have shown that a prime

element is always irreducible. If the converse is also true then factorizations are essentially
unique. A more precise statement is the following

Theorem. Let R be an integral domain in which every nonzero non-unit has a factorization
into finitely many irreducibles. Then these factorizations are essentially unique (i.e., R is a
unique factorization domain) if and only if every irreducible element is prime.

Sketch of proof: Assume that R is a unique factorization domain. Let p ∈ R be
irreducible and assume p divides ab, i.e., ab = pc. First consider the case that one of a, b,
say b is a unit. Then a = pcb−1 and hence p divides a. Hence assume that neither a nor
b is a unit. Then let a1...am and b1...bn be a factorizations of a and b, respectively, into
irreducibles. Since pc = ab the product a1...amb1...bn is (an essentially unique) factorization
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of pc into irreducibles. The unique factorization property implies now that p is associated
with one of the factors a1, ..., bn and hence divides a or b. Thus p is prime.

The proof showing that factorizations are essentially unique when every irreducible
element of R is prime follows very closely the analogous part of the proof in the Fundamental
Theorem of Arithmetic. �

Corollary. The terms prime and irreducible coincide in unique factorization domains.

3.3.8 Quadratic extensions of the integers. An integer n different from zero or one is
called square-free if no square number other than 1 is a factor of n. In other words an integer
is square-free if it is equal to −1, if it is irreducible, or if it is a product of irreducibles in
which no factor occurs more often than once.

Let n be a square-free integer. Then Z[
√
n] = {a + b

√
n : a, b ∈ Z} is a subring of C.

Note that Z[
√
n] is commutative and contains the multiplicative identity 1 + 0

√
n. Note

that a + b
√
n = c + d

√
n if and only if a = c and b = d. As a subring of a field Z[

√
n] can

not have zero divisors. Hence Z[
√
n] is an integral domain.

3.3.9 Factorization for quadratic extensions of the integers. Let n be a square-free
integer and introduce the function N : Z[

√
n] → N0, a + b

√
n 7→ |a2 − nb2|. This function

has the following properties:
1. N(r) = 0 if and only if r = 0.
2. N(rs) = N(r)N(s) for all r, s ∈ R.
3. N(u) = 1 if and only if u is a unit in R.
4. If N(r) is prime in Z then r is an irreducible in Z[

√
n].

Theorem. Let n be a square-free integer and r an element of Z[
√
n] which is neither zero

nor a unit. Then r is irreducible or a finite product of irreducibles.

Sketch of proof: Let P be the set of all elements in Z[
√
n] which are irreducible or can

be expressed as a finite product of irreducibles. Then define

S = {k ∈ N : ∀r : N(r) = k + 1→ r ∈ P}.
Then 1 ∈ S. Assume that {1, ..., n} ⊂ S. Let r be such that N(r) = n + 2. Then r is
irreducible or r = st where neither s nor t is a unit. Therefore N(s), N(t) ∈ {2, ..., n + 1}
and s, t ∈ P . Thus r ∈ P and n + 1 ∈ S. This proves that S = N and that every nonzero
element which is not a unit is in P . �

However, Z[
√
n] need not be a UFD. For example, if n = −5 then 6 = (1 +

√
−5)(1 −√

−5) = 2 · 3. Using the function N one may show that the elements 2, 3, and 1 ±
√
−5

are irreducible and that 1 +
√
−5 is not associated with either 2 or 3. Hence we have found

inequivalent factorizations of 6 ∈ Z[
√
−5]. This implies also that the terms prime and

irreducible do not coincide in Z[
√
−5]. Indeed 2 divides 6 = (1 +

√
−5)(1 −

√
−5) but it

divides neither of the factors.
3.3.10 Noetherian Domains. An integral domain is called a Noetherian domain if ev-

ery ideal in the domain is finitely generated. In particular, principal ideal domains are
Noetherian domains.

Theorem. The following conditions on an integral domain R are equivalent:

(1) R is Noetherian.
(2) Every ascending chain J1 ⊂ J2 ⊂ ... of ideals in R terminates, i.e., JN = JN+1 = ...

for some suitable natural number N .
(3) Every nonempty set Σ of ideals in R has a maximal element, i.e., there is an

element M ∈ Σ such that whenever J ∈ Σ includes M then J = M .
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Sketch of proof: Given the chain J1 ⊂ J2 ⊂ ... define J =
⋃∞
k=1 Jk. Then J is an ideal.

If R is Noetherian then J = 〈a1, ..., an〉 for suitable elements a1, ..., an. However, there exists
N such that aj ∈ JN for all j = 1, ..., n and hence J = JN . Thus 1. implies 2.

Assume Σ contains no maximal element. Then, for every J ∈ Σ the set X(J) =
{K ∈ Σ : J ⊂ K,J 6= K} is not empty. Therefore the set C = {X(J) : J ∈ Σ} is
a nonempty collection of nonempty sets. By the axiom of choice there exists a function
F : X(J) 7→ K ∈ X(J) and hence there exists a function f : Σ→ Σ : J 7→ F (X(J)). Since
Σ is not empty there exists J1 ∈ Σ. By the recursion theorem there is a unique function
u : N → Σ such that u(1) = J1 and u(n + 1) = f(u(n)). The sequence u(1), u(2), ... is an
ascending chain of ideals in R. Assuming statement 2. shows that there exists N ∈ N such
that u(N + 1) = u(N) which is impossible. Hence Σ must contain a maximal element and
thus 2. implies 3.

Finally, let J be any nontrivial ideal in R and Σ the set of all finitely generated ideals
which are contained in J . Then Σ 6= {} and hence Σ has a maximal element J0 = 〈a1, ..., an〉.
Of course J0 ⊂ J . Let a ∈ J − J0. Then 〈a1, ..., an, a〉 is in Σ but strictly bigger than J0

which is impossible. Hence a does not exist and J − J0 is empty, i.e., J = J0 which shows
that 3. implies 1. �
3.3.11.

Theorem. If n is a negative square-free integer then Z[
√
n] is Noetherian.

Sketch of proof: Let J 6= {0} be an ideal in Z[
√
n]. If x+ y

√
n is a nonzero element of

J then x2 − ny2 = (x + y
√
n)(x − y

√
n) is also an element of J which lies on the positive

real axis. Let a be the smallest element of J ∩N. Next note that J contains elements which
lie in the upper half plane H. The set S = {Im(z)/

√
−n : z ∈ J ∩H} is a nonempty subset

of N and hence has a minimum. Let b be the element of J whose imaginary part equals√
−nmin(S) and whose real part has the smallest possible nonnegative value. Next let

L = {ma+ kb : m, k ∈ Z} (such sets are called lattices). Since a, b ∈ J we get that L ⊂ J .
We now prove that J ⊂ L. Let z ∈ J . By solving two linear equations in two unknowns we
may determine two real numbers γ and δ such that z = γa+δb. Hence z = a(m+r)+b(k+s)
where m, k ∈ Z and 0 ≤ r, s < 1. Therefore z − (ma+ kb) = ra+ sb ∈ J ∩H which shows
that r = s = 0 and z ∈ L.

Let P = {ta + sb ∈ C : 0 ≤ s, t < 1} (called a fundamental parallelogram associated
with L). The area of P is given by a Im(b) and is therefore an integer multiple of

√
−n.

Now let J1 ⊂ J2 ⊂ ... be an ascending chain of ideals in Z[
√
n] and P1, P2, ... the

associated fundamental parallelograms respectively spanned by (a1, b1), (a2, b2), .... If Jk+1

is strictly larger than Jk then Pk contains an element of Jk+1 other than zero. Consequently,
ak+1 < ak or Im(bk+1) < Im(bk) and the area of Pk+1 is strictly smaller than the area of
Pk. When A(P ) denotes the area of the parallelogram P then A(P1)/

√
−n,A(P2)/

√
−n, ...

is a nonincreasing sequence of natural numbers which must converge. This implies that
the sequence is eventually constant and hence that eventually there can be no more strict
inclusions among the ideals Jk, i.e., the chain J1 ⊂ J2 ⊂ ... terminates and Z[

√
n] is

Noetherian. �
This proof fails when n > 0 since the set Z[

√
n] is then a subset of the real line.

3.3.12 Factorization in Noetherian domains. The importance of Noetherian domains
is due to the following fact.

Theorem. In a Noetherian domain every nonzero element which is not a unit is either
irreducible or a product of finitely many irreducibles.
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Sketch of proof: Assume the contrary were true. Then there exists a nonzero non-unit
a1 which is not irreducible nor can it be factored into a product of finitely many irreducibles.
Since a1 is not irreducible a1 = a2b2 where neither a2 nor b2 is a unit. At least one of these,
say a2, is not irreducible nor can it be factored into a product of finitely many irreducibles
since otherwise a1 could be factored in this manner. Thus

(2) a1 = a2b2, a2 = a3b3, a3 = a4b4, ...

where all aj , bj are nonzero non-units and none of the aj is irreducible or can be factored
into a product of finitely many irreducibles. Equations (2) show that 〈a1〉 ⊂ 〈a2〉 ⊂ ....
By Theorem 3.3.10 this chain terminates, i.e., 〈aN 〉 = 〈aN+1〉 for some N . Therefore
aN+1 = caN = cbN+1aN+1. Since an integral domain allows cancellation we have that
cbN+1 = 1, i.e., that bN+1 is a unit, the desired contradiction. �
3.3.13 Every PID is a UFD. Since a PID is Noetherian factorization of nonzero nonunits

is always possible. We show now that it is essentially unique. Suppose p is an irreducible
element in the PID R and that p divides the product ab. If p does not divide a then a 6∈ 〈p〉.
Since 〈p〉 is maximal among all proper principal ideals and hence among all proper ideals
we obtain that 〈a, p〉 = R. Hence 1 ∈ 〈a, p〉, i.e., there exist x, y ∈ R such that 1 = ax+ py
and b = abx+ pby which shows that p divides b. This implies that p is prime, i.e., in a PID
every irreducible element is prime and hence we have the

Theorem. Every PID is a UFD.

3.3.14 Euclidean domains. An integral domain R is called a Euclidean domain if there
exists a function N : R→ N0 with the following properties:
1. N(r) = 0 if and only if r = 0.
2. N(rs) = N(r)N(s) for all r, s ∈ R.
3. If a, b ∈ R and a 6= 0 then there exist q and r in R such that b = aq+r and N(r) < N(a).

Note that N(1) = N(1)2 = 1. Let u be a unit in the Euclidean domain R. Then
1 = N(uu−1) = N(u)N(u−1) and hence N(u) = 1. Conversely, if N(u) = 1 then there
exists a q ∈ R such that 1 = qu, i.e., q is a unit.

Example: Z is a Euclidean domain where N(n) = |n|. Every field is a Euclidean domain
when one defines N(r) = 1 for all r 6= 0.

Imitating the proof for Z yields the following

Theorem. A Euclidean domain is a PID and hence a UFD.

We know that Z[
√
−5] is not a UFD. Therefore there must ideals which are not principal.

Indeed, let J = 〈2, 1 +
√
−5〉. Then x+ y

√
−5 is in J if and only if x− y is an even integer.

Therefore J is a proper ideal. Now assume J is principal and generated by an element r.
Then both 2 and 1 +

√
−5 are multiples of r. Therefore N(r) divides both N(2) = 4 and

N(1 +
√
−5) = 6. Since r is not a unit N(r) = 2. However, N(z) is different from 2 for

every z ∈ Z[
√
−5]. This gives a contradiction to the assumption that J is principal.

3.3.15 Gaussian integers. The integral domain Z[i] = {a+ bi : a, b ∈ Z} is called the set
of Gaussian integers. Since i =

√
−1 the Gaussian integers are a quadratic extension of the

integers. Its units are ±1 and ±i.
Theorem. The Gaussian integers form a Euclidean domain.

Sketch of proof: Let N : Z[i]→ N0, a+ib 7→ a2+b2. We only have to prove that division
with a remainder is possible. Let α, β ∈ Z[i] and suppose α = a+ ib 6= 0. Then the complex
number β/α can be written as m + r + i(n + s) where m,n ∈ Z and −1/2 ≤ r, s ≤ 1/2.
Therefore z0 = β− (m+ in)α = (r+ is)(a+ ib) = (ar−bs)+ i(rb+as) is a Gaussian integer.
But N(z0) = (a2 + b2)(r2 + s2) ≤ N(α)/2 < N(α). �
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3.4. Polynomials

3.4.1 Polynomials. Let R be a ring and

P = {f : N0 → R : (∃N : ∀n > N : f(n) = 0)}.

Hence f ∈ P can be represented by a sequence (a0, a1, a2, ...) of elements of R where
only finitely many of the elements aj are different from zero. We define addition and
multiplication in P in the following way: let f, g ∈ P then

(f + g)(n) = f(n) + g(n),

(fg)(n) =
∑

j+k=n

f(j)g(k).

Thus addition and multiplication are binary operations. It is easy to check that they are
associative. Also addition is commutative and multiplication is distributive over addition.
The element (0, 0, ...) is an additive identity and for any f = (a0, a1, ...) ∈ P the element
−f = (−a0,−a1, ...) is an additive inverse of f . Therefore P is a ring called the ring of
polynomials over R. An element of P is called a polynomial (with coefficients in R).
3.4.2 Basic properties of polynomial rings. The ring P of polynomials over R is

commutative if and only if R is commutative. If R has an identity 1, then so does P namely
the element (1, 0, 0, ...). Conversely, if (b0, b1, ...) is an identity of P then, for any a ∈ R we
have (a, 0, 0, ...)(b0, b1, ...) = (ab0, ab1, ...) which shows that b0 is an identity in R (and that
b1 = b2 = ... = 0).

The mapping ι : R → P , a 7→ (a, 0, ...) is an isomorphism between R and ι(R) ⊂ P .
Therefore we will subsequently abbreviate the element (a, 0, ...) by a when no confusion can
arise.

If R has an identity 1 let x = (0, 1, 0, 0, ...). Then x2 = (0, 0, 1, 0, ...) and, if n ∈ N0,
xn = (0, ..., 0, 1, 0, ...) where 1 is in the (n+ 1)st slot. Therefore

(a0, a1, ..., an, 0, ...) = a0 + a1x+ ...+ anx
n

which yields the familiar expression for a polynomial. It must be stressed, however, that a
polynomial is not to be considered a function from R → R, i.e., x is not to be thought of
as a variable element of R. The element x = (0, 1, 0, ...) ∈ P is called an indeterminate and,
for k = 0, ..., n, the element ak is called a coefficient (of xk). The set P will be denoted by
R[x] and will be called the ring of polynomials in one indeterminate over R.
3.4.3 Polynomial functions. Let P be a ring with identity, let R be a unitary subring

of P , and f = a0 + ...+ anx
n ∈ R[x] a polynomial over R. Then f gives rise to a function

f̂ : P → P through the definition f̂ : p 7→ a0 + ... + anp
n. The function f̂ is called a

polynomial function over R (or P ).

The polynomial function f̂ : R→ R must not be confused with the polynomial f : N0 →
R as the following example shows: let R = Z2, f = x2 +x+ 1, and g = x4 +x3 +x2 +x+ 1.

Then f 6= g but f̂ = ĝ.

Suppose P is commutative and fix p ∈ P . Then f 7→ f̂(p) is a ring homomorphism

from R[x] to P . Therefore f 7→ f̂ is a surjective ring homomorphism from R[x] to the
set of polynomial functions over R on P which is therefore a ring, too, called the ring of
polynomial functions over R on P .
3.4.4 The degree of a polynomial. Let f 6= 0 be a polynomial. Then deg(f) = max{n :
f(n) 6= 0} is called the degree of f . No degree is assigned to the zero polynomial. If
deg(f) = n then f(n) is called the leading coefficient of f . The polynomial f is called monic
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if it has leading coefficient 1. The polynomial f is called constant if it has degree 0 or if
f = 0.

If deg(f) < deg(g) then deg(f + g) = deg(g). If deg(f) ≤ deg(g) then deg(f + g) ≤
deg(g). If one of the leading coefficients of f and g is not a zero divisor then deg(fg) =
deg(f) + deg(g) otherwise fg = 0 or deg(fg) < deg(f) + deg(g). If R is an integral domain
then we always have deg(fg) = deg(f) + deg(g).
3.4.5 Polynomials in several indeterminates. When R is a ring then

R[x1, ..., xn] = {f : Nn0 → R : f(k) = 0 for all but finitely many k ∈ Nn0}
becomes also a ring upon introduction of the binary operations

(f + g)(k1, ..., kn) = f(k1, ..., kn) + g(k1, ..., kn)

(fg)(k1, ..., kn) =
∑

j1+l1=k1

...
∑

jn+ln=kn

f(j1, ..., jn)g(l1, ..., ln).

R[x1, ..., xn] is called the polynomial ring in n indeterminates over R. For j = 1, ..., n define
xj ∈ R[x1, ..., xn] by

xj(k1, ..., kn) =

{
1 if kj = 1 and kl = 0 for l 6= j

0 otherwise.

It is then easy to check that xjxk = xkxj . Therefore f ∈ R[x1, ..., xn] may be expressed as

f =
∑
kn

...
∑
k1

f(k1, ..., kn)xk11 ...x
kn
n .

From this latter equation it is clear that R[x1, ..., xn] is isomorphic to (R[x1, ..., xn−1])[xn],
the ring of polynomials in one indeterminate over R[x1, ..., xn−1].
3.4.6 The elementary symmetric polynomials. Let R be an integral domain and

consider the polynomial

f = (x− a1)...(x− an) = xn + un−1x
n−1 + ...+ u0.

It is the easy to check that the coefficients uj are polynomial functions of the roots ak. In
particular

u0 = (−1)na1...an and un−1 = −a1 − ...− an.
Each of these polynomials is independent of the labeling of the roots, i.e., if σ is a permuta-
tion in Sn then uj(a1, ..., an) = uj(aσ(1), ..., aσ(n)). These polynomials are therefore called
the elementary symmetric polynomials.
3.4.7 Derivatives. Let R be a ring and f ∈ R[x]. With f we associate the polynomial f ′

defined by f ′(k) = (k + 1)f(k + 1), called the derivative of f . The derivative of a constant
is zero. If deg(f) ≥ 1 then deg(f ′) ≤ deg(f) − 1; equality holds if R is an integral domain
of characteristic zero.

Similarly, if f ∈ R[x1, ..., xn] and j ∈ {1, ..., n} we associate with f the polynomials
Djf defined by Djf(k1, ..., kn) = (kj + 1)f(k1, ..., kj−1, kj + 1, kj+1, ..., kn), which is called
a partial derivative of f .

These definitions are made without taking any resort to the limit concept. However, if
R = R or R = C then the polynomial function associated with a derivative of f agrees with

the corresponding analytic derivative of the polynomial function f̂ .

Theorem. The following statements hold in R[x] respectively R[x1, ..., xn]:

(1) (f + g)′ = f ′ + g′ and Dj(f + g) = Djf +Djg.
(2) If a ∈ R then (af)′ = af ′ and Dj(af) = aDjf .
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(3) (fg)′ = fg′ + f ′g and Dj(fg) = (Djf)g + f(Djg).

3.4.8 The division algorithm. We now turn to polynomial division.

Theorem. Let R be a commutative ring with identity and f, g polynomials over R. Suppose
that deg(g) = n and that a is the leading coefficient of g. Then there exist polynomials q
and r and a nonnegative integer k such that akf = qg + r and r = 0 or deg(r) < n.

Sketch of proof: If f = 0 choose q = r = 0. For any nonzero polynomial h ∈ R[x] let
γ(h) = max{deg(h)− n+ 1, 0}. Then define

P = {f ∈ R[x] : (∃q, r ∈ R[x] : aγ(f)f = qg + r ∧ (r = 0 ∨ deg(r) < n))}
and

S = {j ∈ N : deg(f) = j − 1⇒ f ∈ P}.
First we show that 1 ∈ S. Let f have degree zero. If deg(g) = 0 choose r = 0, q = f . If
deg(g) > 0 choose q = 0 and r = f . Hence 1 ∈ S. Now assume that {1, ..., j − 1} ⊂ S.
If j ≤ n one may choose q = 0 and r = f to show that j ∈ S. If j > n denote the
leading coefficient f(j − 1) of f by b. Then bxj−1−ng is a polynomial of degree j − 1 with
leading coefficient ab and hence h = af − bxj−1−ng has degree at most j − 2. By induction
hypothesis h ∈ P and hence there exist q, r ∈ R[x] such that aγ(h)h = qg + r and r = 0 or
deg(r) < n. Since γ(f) = j − n > 0 and γ(h) ≤ max{j − n− 1, 0} = j − n− 1 we find

aγ(f)f = aj−n−1af = aj−n−1(h+ bxj−1−ng) = aj−n−1−γ(h)(qg + r) + b(ax)j−n−1g

= (aj−n−1−γ(h)q + b(ax)j−n−1)g + aj−n−1−γ(h)r.

Hence f ∈ P and j ∈ S. This proves the theorem. �

Corollary. If R is a field then R[x] is a Euclidean domain and hence a UFD.

Sketch of proof: Define N : R[x]→ N0 by N(0) = 0 and N(f) = 2deg(f) if f 6= 0. �
3.4.9 Zeros of polynomial functions. Let R be a ring with identity, f a polynomial

over R, and f̂ the associated polynomial function. An element α ∈ R is called a zero or root

of f̂ if f̂(α) = 0.

Theorem. Let R be a commutative ring with identity, f ∈ R[x], and f̂ the associated

polynomial function. Then α is a zero of f̂ if and only if f is divisible by x− α. Moreover,

if R is an integral domain then the number of distinct roots of f̂ is at most equal to the
degree of f .

Sketch of proof: By the division algorithm there exist polynomials q and r such that

f = q(x−α)+r and r is a constant. But 0 = f̂(α) = r̂(α) since g 7→ g(α) is a homomorphism.

This shows that r = 0. Conversely, if f = q(x− α) then f̂(α) = 0.
Now suppose that R is an integral domain, that deg(f) = n, and that α1, ..., αn+1

are distinct zeros of f̂ . Then, by induction, there exists a polynomial q such that f =
q(x− α1)...(x− αn+1). This implies that deg(f) ≥ n+ 1, a contradiction. �

A zero α of f̂ is called a zero of multiplicity k if (x−α)k divides f but (x−α)k+1 does
not.
3.4.10 Polynomials over integral domains. Let R be an integral domain. Then R[x]

and R[x1, ..., xn] are integral domains also since, if 0 6= f, g ∈ R[x], then deg(fg) = deg(f)+
deg(g) exists, i.e., fg 6= 0. The polynomial f ∈ R[x] is a unit if and only if f = ux0 and u
is a unit of R. Suppose f = rx0 has degree zero. Then f is irreducible in R[x] if and only
if r is irreducible in R. Every polynomial of degree one is irreducible.
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3.4.11 Primitive polynomials and Gauss’s lemma. Let R be a UFD and f ∈ R[x].
Then f is called primitive if its coefficients have no common divisors other than units.

Let f be any nonzero polynomial in R[x]. Then there exists a ∈ R and a primitive
polynomial g such that f = ax0g. The element a is determined up to unit multiples. The
class of associates of a (or simply a) is called the content of f and is denoted by c(f). Note
that a polynomial is primitive if and only if its content is a unit. In particular, every monic
polynomial is primitive.

Theorem Lemma of Gauss. If R is a UFD and f, g ∈ R[x] then c(fg) = c(f)c(g). In
particular, the product of primitive polynomials is primitive.

Sketch of proof: It is only necessary to prove the last assertion of the lemma. Assume
that f, g are primitive but that fg is not. Let p be a prime factor of c(fg). If f =

∑n
k=0 akx

k

and g =
∑m
j=0 bjx

j let s be such that ak is a multiple of p for k < s but that as is not a
multiple of p. Similarly, let t be the smallest index such that bt is not a multiple of p. Then
the coefficient of xs+t in fg is

∑
j+k=s+t akbj . This coefficient and each summand except

for asbt is a multiple of p. This is impossible. �
3.4.12 Polynomials over UFDs.

Theorem. If R is a unique factorization domain then so are R[x] and R[x1, ..., xn].
Sketch of proof: We consider only R[x]. We first show that every nonzero polynomial

is a unit or a product of irreducibles. Let

P = {f ∈ R[x] : f ∈ R[x]∗ or f is irreducible or a product of finitely many irreducibles}
and

S = {n ∈ N0 : deg(f) = n⇒ f ∈ P}.
Let f = ax0 be a constant polynomial which is not a unit and suppose a = p1...pk is a
factorization into irreducibles. Then f = (p1x

0)...(pkx
0) is also a product of irreducibles.

Therefore f ∈ P and 0 ∈ S. Next assume that n > 0, that {0, ..., n− 1} ⊂ S, and that f is
a polynomial of degree n. Then f = cf1 for some constant polynomial c and some primitive
polynomial f1. If f1 is irreducible then f ∈ P . Hence assume that f1 is not irreducible and
that f1 = gh. Then the degrees of both g and h are positive but smaller than n. Hence
g, h and therefore f are in P and n ∈ S. This shows that S = N0 and that every nonzero
polynomial is a unit, an irreducible or a product of finitely many irreducibles.

Next let J be a nontrivial ideal in R[x] and h an element of smallest degree in J . If α is
the leading coefficient of h and f ∈ J then there exists a nonnegative integer k such that h
divides αkf . Let h = γh̃ where γ ∈ R and h̃ is primitive. Gauss’s lemma then implies that
h̃ divides f .

We now show that every irreducible is a prime. Hence let p be irreducible and suppose
that p divides fg but not f . If p = p̂x0 then p̂ is prime in R and p must divide g. Next
assume that deg(p) > 0. Then p is primitive. Let J = 〈p, f〉 and h = af + bp, a polynomial

of smallest degree in J . Suppose h = γh̃ where γ ∈ R and h̃ is primitive. Then, according
to what was just proved, h̃ divides p. Suppose p = sh̃. Since p is irreducible h̃ or s is a
unit. If s were a unit then p would divide f which it does not. Hence h̃ is a unit and thus
h is constant. Now hg = afg + bgp is divided by p, i.e., hg = tp. Using Gauss’s lemma
again, hc(g) = c(t), i.e., t = ht̃ where t̃ is primitive and this shows g = t̃p, the desired
conclusion. �
3.4.13 Polynomials over Noetherian domains. Let R be a PID and J an ideal in R[x].

Define
Lk = {r ∈ R : (∃f ∈ J : deg(f) = k, f(k) = r)} ∪ {0}.
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Then L0, L1, ... is an ascending chain of ideals in R. Therefore there exists an index q such
that Lk = Lq for all k ≥ q. Since R is a PID we have Lk = 〈ak〉 for k = 0, ..., q. For each
such k there exists a polynomial fk ∈ J of degree k with leading coefficient ak. Let

P = 〈f0, ..., fq〉 ⊂ J
and

S = {n ∈ N0 : (g ∈ J, deg(g) = n)⇒ g ∈ P}.
Suppose g = αx0 ∈ J . Then α ∈ L0 and hence there exists r ∈ R such that α = ra0.
Therefore g = (rx0)f0 ∈ P and 0 ∈ S. Next suppose k > 0 and {0, ..., k − 1} ⊂ S. Let g be
a polynomial in J and suppose deg(g) = k and the leading coefficient of g is α. Then α ∈ Lk
and hence there exists an r ∈ R such that α = ram where m = min{k, q}. The polynomial
h = g − rxk−mfm is an element of J with degree less than k. Hence h ∈ P . This shows
that g = h+ rxk−mfm is in P , too, and hence that k ∈ S and S = N0. Thus every nonzero
element of J is in P , i.e., J = 〈f0, ..., fq〉. Hence, if R is a PID then R[x] is Noetherian.

This proof generalizes to the case where R is Noetherian with a little more notational
effort. It is performed, for instance, in Zariski and Samuel, Commutative Algebra, Vol. I,
Springer 1979, p. 201f. we have thus

Theorem Hilbert’s basis theorem. If R is a Noetherian domain then so are R[x] and
R[x1, ..., xn].

3.4.14 Polynomials with rational coefficients. Z[x] is a Noetherian UFD. It is, how-
ever, not a PID since, for example, the ideal 〈2, x〉 is not principal. Q[x] is a Euclidean
domain and hence a PID.

Let f ∈ Z[x] ⊂ Q[x] and g, h ∈ Q[x] such that f = gh. Then there exist integers
α, β, γ, δ such that g = (α/β)g1 and h = (γ/δ)h1 where g1 and h1 are primitive polynomials
in Z[x]. Hence βδf = αγg1h1 holds in Z[x]. Gauss’s lemma shows now that βδc(f) = αγ
and hence f = c(f)g1h1, i.e., we have the following

Theorem. If a polynomial with integer coefficients factors in Q[x] then it factors also in
Z[x]. In other words, if a polynomial is irreducible in Z[x] then it is also irreducible in Q[x].
However, if a polynomial f ∈ Z[x] is irreducible in Q[x] and if f = gh with g, h ∈ Z[x] then
one of g and h is a constant.

Consider, for example, the polynomial 2x. It is irreducible as an element of Q[x] since
2 is a unit in Q[x]. In Z[x], however, neither 2 nor x is a unit.
3.4.15 Polynomials with complex coefficients. C[x] is a Euclidean domain and hence

a PID.

Theorem The fundamental theorem of algebra. If f is a polynomial in C[x] of degree

n then f̂ has precisely n roots (counting multiplicities).

Despite its name this theorem is not a purely algebraic inasmuch no purely algebraic
proof is known. It can be proven with some knowledge of complex analysis.

Corollary. A polynomial in C[x] is irreducible if and only if it has degree 1.

A field K with the property that the irreducible elements of K[x] are precisely the
polynomials of degree 1 is called algebraically complete.
3.4.16 Polynomials with real coefficients. R[x] is a Euclidean domain and hence a

PID. Every constant polynomial is a unit and every polynomial of degree 1 is irreducible.
If f = gh has degree two and neither g nor h are units then both g and h have degree

one. Since a polynomial function of degree 1 has a real root f̂ has real roots also. Hence
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f = ax2 + bx+ c is irreducible if and only if the discriminant of f , i.e., b2− 4ac, is less than

zero. Next let f be a polynomial of degree larger than 2. If f̂ has a real root then f is not

irreducible by Theorem 3.4.9. Hence assume that f̂ has no real root. Let α = s + it be a
complex root and define g = (x − α)(x − α) = x2 − 2sx + s2 + t2 ∈ R[x]. By the division
theorem there exist polynomials q and r such that f = qg + r and r = 0 or deg(r) ≤ 1, i.e.,

r = cx + d with c, d ∈ R. However, 0 = f̂(α) = r̂(α). Hence, if c 6= 0 then r̂ has two roots
α and −d/c which is impossible. Therefore c = d = 0 and f = qg where neither q nor g is a
unit. In summary we have the

Theorem. The following statements hold in R[x]. A nonzero polynomial is a unit if and
only if it is constant. A polynomial is irreducible if and only if it has either degree 1 or else
degree 2 and a negative discriminant.

3.4.17 Common factors of polynomials. We now consider the problem of determining
whether two polynomials have a common factor.

Proposition. Suppose f, g ∈ R[x] where R is a UFD. Then f and g have a non-constant
common factor if and only if there exist nonzero polynomials φ and ψ such that ψf = φg,
degψ < deg g, and deg φ < deg f .

Sketch of proof: If f and g both have a factor h then f = hφ and g = hψ for suitable
polynomials φ and ψ. Conversely assume that ψf = φg. Not all the prime factors of g can
also be factors of ψ if degψ < deg g. Hence at least one of them must be a factor of f . �
3.4.18 Elimination. Let R be a UFD and Q the associated quotient field. Suppose that

f = a0 + ...+ anx
n and g = b0 + ...+ bmx

m

where n,m ≥ 1 and an and bm are different from zero. Then, letting

ψ = α1 + ...+ αmx
m−1 and φ = αm+1 + ...+ αn+mx

n−1,

we obtain

ψf − φg =

n+m∑
j=1

n+m∑
k=1

Mj,kαkx
j−1

where, agreeing that aj = 0 if j < 0 or j > n and bj = 0 if j < 0 or j > m,

Mj,k =

{
aj−k if k ≤ m
bm+j−k if k > m.

The requirement that ψf = φg is therefore equivalent with Mα = 0 when M is the matrix
formed by the Mj,k and α is the vector formed by the αj . Now, if f and g have a non-
constant common factor then detM must be zero because Mα = 0 has then a nontrivial
solution. Conversely, if detM = 0 then Mα = 0 has a nontrivial solution in Qn+m, i.e.,
there exist φ, ψ ∈ Q[x] such that ψf = φg. However, multiplying by a suitable r ∈ R allows
to find φ, ψ ∈ R[x] such that ψf = φg and hence f and g have a non-constant common
factor.

The element detM ∈ R is called the eliminant or resultant of f and g.
We proved the following

Theorem. Let R be a UFD. The polynomials f, g ∈ R[x] have a non-constant common
factor if and only if the eliminant of f and g vanishes.

3.4.19 Discriminant. If R is a UFD then the eliminant of f and f ′ is called the dis-
criminant of f . Since (fg)′ = fg′ + gf ′ the discriminant of f is zero if and only if f has a
non-constant repeated factor.
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3.4.20 Homogeneous polynomials. Let R be an integral domain with infinitely many
elements.

A polynomial of the form axj11 ...x
jn
n ∈ R[x1, ..., xn] is called a monomial of degree

j1 + ... + jn. A polynomial f ∈ R[x1, ..., xn] is called homogeneous of degree m if it is
a sum of monomials of degree m. Alternatively one may define that f ∈ R[x1, ..., xn] is

homogeneous of degree m if the relationship f̂(tr1, ..., trn) = tmf̂(r1, ..., rn) holds for the

polynomial function f̂ for all t, r1, ..., rn ∈ R.
With each homogeneous polynomial F in R[x1, ..., xn+1] of degree m which is not divis-

ible by xn+1 there is associated a unique (nonhomogeneous) polynomial f in R[x1, ..., xn]
of degree, namely

F =

m∑
j=0

ajx
j
n+1 7→ f =

m∑
j=0

aj

where aj ∈ R[x1, ..., xn].
Conversely with each nonhomogeneous polynomial f in R[x1, ..., xn] of degree m there

is associated a homogeneous polynomial F in R[x1, ..., xn+1] of degree m for which xn+1

is not a factor: suppose f =
∑m
j=0 fj where each fj is homogeneous of degree j. Then

F =
∑m
j=0 fjx

m−j
n+1 is homogeneous of degree m.

3.4.21 Euler’s theorem. Suppose R has infinitely many elements and F ∈ R[x1, ..., xn]
is homogeneous of degree m. Then

n∑
j=1

xjDjF = mF.

3.4.22 Factorization and elimination. Let R be an integral domain. The following
statements hold:

(1) If f and F are associated then any factor of f is associated with a factor of F and
vice versa.

(2) Any factor of a homogeneous polynomial is homogeneous and the product of ho-
mogeneous polynomials is homogeneous.

(3) F is irreducible if and only if f is.
(4) The homogeneous polynomials

F = anx
n
1 + ...+ a0x

n
2 , G = bmx

m
1 + ...+ b0x

m
2

have a common non-constant factor if and only if the eliminant of f and g is zero.
The eliminant of f and g is also called the eliminant of F and G.

(5) If F ∈ C[x1, x2] is homogeneous of degree m then

F = γ

m∏
j=1

(ajx1 − bjx2).

(6) Let F,G ∈ R[x1, ..., xn+1] are homogeneous of degree n and m. Consider them
as elements of (R[x1, ..., xn])[xn+1]. Then there resultant is in R[x1, ..., xn]. It is
either zero or else homogeneous of degree nm.

(7) The eliminant of
∏n
j=1(x− yj) and

∏m
j=1(x− zj) is

a

n∏
j=1

m∏
k=1

(yj − zk)

for some a ∈ R.
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3.5. Algebraic Geometry

3.5.1 Algebraic varieties. Let R = C[x1, ..., xn] be the ring of polynomials in n indeter-
minates over the field of complex numbers. An (affine) algebraic variety is a subset V of
Cn such that there exists an ideal J = 〈f1, ..., fk〉 in R for which

V = {x ∈ Cn : (∀f ∈ J : f(x) = 0)} = {x ∈ Cn : f1(x) = ... = fk(x) = 0}.

(Since the ring of polynomials over C in n indeterminates is isomorphic to the ring of
polynomial functions on Cn we will not distinguish polynomials and polynomial functions
in this section. In fact, the word “polynomial” will always mean “polynomial function”
subsequently.)

V is called an (affine) algebraic hypersurface if J is principal, i.e., if k = 1. An affine
algebraic hypersurface in C2, i.e., when n = 2, is called an (affine) algebraic curve.

Algebraic geometry is the mathematical discipline which studies algebraic varieties.
Examples: If n = 1 then R is a PID and every variety is a hypersurface. In fact, in this

case, a variety is just the set of zeros of some polynomial and hence a finite isolated set. If
J = 〈f〉, the ideal generating the variety V is maximal, i.e., if f is irreducible (cf. Theorem
3.3.5) then f = x − α for some α ∈ C by Corollary 3.4.15. Hence V = {α}. If J is any
ideal distinct from C[x] itself the variety associated with it is not empty by the fundamental
theorem of algebra.

Next let n = 2 and k = 1. In this case it is customary to denote the indeterminates
by x and y. According to the above definition a variety V is called an algebraic curve. For
instance, if f = ax+ by + c where a, b, c ∈ R then V = {(x, y) : ax+ by + c = 0} is a subset
of R2 ⊂ C2. In fact, in R2 the variety V is represented by a line. Therefore one calls V a
line even though it is really a two-dimensional subset of C2 (given a reasonable definition of
the term “two-dimensional”). A conic is an algebraic curve given by a quadratic polynomial
f = a1x

2 + a2xy + a3y
2 + b1x + b2y + c. These include, of course, ellipses, parabolas, and

hyperbolas.
3.5.2 The correspondence between ideals and affine sets. Let R = C[x1, ..., xn].

For every ideal J in R we have defined above a subset V (J) of Cn, the algebraic variety of
J . Note that V ({0}) = Cn, V (R) = {}, and that V (J1) ⊂ V (J2) if J2 ⊂ J1.

Conversely, for any subset A of Cn (called an affine set) we define

I(A) = {f ∈ C[x1, ..., xn] : (∀a ∈ A : f(a) = 0)}.

Then I(A) is an ideal. If A ⊂ B ⊂ Cn then I(B) ⊂ I(A). For any A ∈ Cn we have
A ⊂ V (I(A)) and A = V (I(A)) if and only if A is an algebraic variety. Also, for any ideal
J in R we have J ⊂ I(V (J)).

Next note that 〈x1 − a1, ..., xn − an〉 ⊂ I({a}). Conversely, since xj = (xj − aj) + aj
the binomial theorem shows that any f ∈ R can be written as

f = c0,...,0 +
∑
|α|>0

cα(x− a)α

using a multiindex α = (α1, ..., αn). Now, if f ∈ I({a}) then c0,...,0 = 0. Every other
summand in the above expression for f , however, is, for some j ∈ {1, ..., n}, a multiple of
xj − aj . Hence we have the following result:

Theorem. If a = (a1, ..., an) ∈ Cn then 〈x1 − a1, ..., xn − an〉 = I({a}).

3.5.3 Radicals. Let J be an ideal in R, a commutative ring with identity. Then the set
√
J = {r ∈ R : (∃n ∈ N : rn ∈ J)}
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is called the radical of J . The set
√
J is an ideal containing J itself.

Let J be an ideal in R such that
√
J = R. Then 1 ∈

√
J and hence there exists a

natural number n such that 1 = 1n ∈ J and therefore J = R.
3.5.4 Intersections of algebraic curves. Let f, g ∈ C[x, y] be two polynomials with

no common divisors other than constants and let F be the fraction field of C[x]. The
polynomials f and g are polynomials in y with coefficients in C[x] ⊂ F , i.e., f and g can
be viewed as elements of F [y]. By Gauss’s lemma f and g factor over F if and only if they
factor over C[x] (cf. Theorem 3.4.14). Hence, even as elements of F [y] they have no common
divisors other than constants. This shows that 〈f, g〉 = F [y] and thus there exist elements
r, s ∈ F [y] such that 1 = rf + sg. Note that r = r̃/p and s = s̃/p where r̃, s̃ ∈ C[x, y] and
p ∈ C[x]. Therefore p = r̃f+ s̃g. Now suppose that (α, β) is a zero of f and g. Then α must
be a zero of p. Since p has only finitely many distinct zeros α can assume only finitely many
values. Reversing the roles played by x and y shows that β also can assume only finitely
many values. Hence f and g intersect in at most finitely many points. Thus we have shown
the

Theorem. If f, g ∈ C[x, y] have no common factor other than units then the variety
{(x, y) ∈ C2 : f(x, y) = g(x, y) = 0} consists of finitely many points.

An interesting question is now to find the number of intersection points. Bezout’s
theorem states that this number equals the product of the degrees of f and g (provided
they do not intersect at infinity).

On the other hand varieties in C2 generated by ideals which are not principal are not
very interesting as point sets. Hence the most interesting varieties in C2 are the algebraic
curves.
3.5.5 Hilbert’s Nullstellensatz. Nullstelle is the German word for a zero of a function.

The theorem is as follows:

Theorem Hilbert’s Nullstellensatz. Let J be an ideal in C[x1, ..., xn]. The algebraic
variety V (J) is empty if and only if J = C[x1, ..., xn].

This theorem has the following consequences:

Corollary. Let R = C[x1, ..., xn]. Then each of the following two statements is equivalent
to Hilbert’s Nullstellensatz.
1. Let J be an ideal in R. Then I(V (J)) =

√
J , i.e., g|V (J) = 0 if and only if gk ∈ J for

some k ∈ N.
2. The ideal J in R is maximal if and only if there exists a point a = (a1, ..., an) ∈ Cn such
that

J = 〈x1 − a1, ..., xn − an〉 = {f ∈ R : f(a) = 0} = I({a}).

Sketch of proof: First note that always V (R) = {} since 1 ∈ R and
√
J ⊂ I(V (J)).

HN ⇔ 1.: Let J = 〈f1, ..., fk〉 and let 0 6= g ∈ I(V (J)), i.e., g|V (J) = 0. Introduce

another indeterminate y and consider J ′ = 〈f1y
0, ..., fky

0, gy−1〉 ⊂ R[y]. If (a, b) ∈ Cn+1 is
in V (J ′) then fj(a)b0 = 0 for j = 1, ..., k and g(a)b− 1 = 0. Hence a ∈ V (J) but g(a) 6= 0.
Since this is impossible we have V (J ′) = {} and J ′ = R[y]. Therefore

1 =

k∑
j=1

hjfjy
0 + h0(gy − 1)



3.5. ALGEBRAIC GEOMETRY 51

for some h0, h1, ..., hk ∈ R[y]. Let N = max{deg(h0), ...,deg(hk)}. Then hj =
∑N
l=0 ηj,ly

l

and

gN =

k∑
j=1

fj

N∑
l=0

ηj,lg
N−l(gy)l + (gy − 1)

N∑
l=0

η0,lg
N−l(gy)l.

Consider this as an identity in F [y] where F is the fraction field of R. It then holds for all
y ∈ F . Choose y = 1/g to obtain

gN =

k∑
j=1

fj

N∑
l=0

ηj,lg
N−l,

i.e., gN ∈ J and g ∈
√
J . This proves HN ⇒ 1.

Now assume V (J) = {}. Then
√
J = I(V (J)) = I({}) = R and hence J = R.

1. ⇒ 2.: Let J be a maximal ideal. Then J =
√
J and hence I(V (J)) = J . Since

I({}) = R we have that V (J) is not empty. Suppose a ∈ V (J) then J = I(V (J)) ⊂ I({a}).
Since I({a}) 6= R and since J is maximal we get J = I({a}). Conversely, assume that J is
a proper ideal containing I({a}). Then {} 6= V (J) ⊂ V (I({a})) = {a}. Hence J = I({a}),
i.e., I({a}) is maximal.

2. ⇒ HN: Let J be a proper ideal in R. Then, since R is Noetherian, there exists
a maximal ideal M which contains J . Note that M = I({a}) for some a ∈ Cn. Since
{a} = V (M) ⊂ V (J) we have that V (J) is not empty. �





CHAPTER 4

Fields

Let P be a ring and R a unitary subring of P . Given a polynomial f ∈ R[x1, ..., xn] we

will denote, as before, the associated polynomial function on Pn by f̂ . The quotient field of
R[x1, ..., xn] is denoted by R(x1, ..., xn).

4.1. Field Extensions

4.1.1 Fields and subfields. A commutative ring with identity is called a field if all its
nonzero elements are units. If F is a field and K a subset of F which is field with respect
to the the binary operations of F , then K is called a subfield of F and F is called a field
extension over K.

A subset K of F is a subfield if and only if it contains a nonzero element and if a, b ∈ K
and b 6= 0 imply that a− b and ab−1 are also in K.
4.1.2 Prime fields. A prime field is a field which does not contain a proper subfield.

Note that the intersection of all subfields of a field is a subfield itself. It does not
properly contain another subfield, hence it is a prime field. Obviously a given field contains
a unique prime field.

Theorem. If Π is a prime field then it is either isomorphic to Q or else it is isomorphic to
Zp where p is some prime number.

Sketch of proof: Π contains the identity elements 0 and 1 and, necessarily, the element
n1 whenever n is an integer. Note that n1 + m1 = (n + m)1 and that (n1)(m1) = (nm)1,
i.e., the set P = {n1 : n ∈ Z} is the homomorphic image of Z under the map φ : n 7→ n1.
By the fundamental isomorphism theorem for rings P is isomorphic to Z/ ker(φ).

If ker(φ) = {0} then P is isomorphic to Z. But the smallest field containing Z is Q.
If ker(φ) is nontrivial then ker(φ) = 〈p〉 for some natural number p. We then have firstly
that p > 1. Secondly, since P (a subset of a field) does not contain zero divisors p must be
prime. Now note that Z/〈p〉 = Zp is a field if p is prime. �
4.1.3 The characteristic of field. Let F be a field and Π its prime field. If Π is isomorphic
to Q we say that Π and F have characteristic zero. If Π is isomorphic to Zp for some positive
prime number p we say that Π and F have characteristic p.
4.1.4 Field extensions. Let F be a field, K a subfield of F and S a subset of F . Then we

denote by K(S) the smallest field which contains K ∪S, i.e., the intersection of all subfields
of F which contain K ∪ S. We then have

K(S) = { f̂(s1, ..., sn)

ĝ(s1, ..., sn)
: n ∈ N0, s1, ..., sn ∈ S, f, g ∈ K[x1, ..., xn], ĝ(s1, ..., sn) 6= 0}.

If S has n elements s1, ..., sn we will write K(S) = K(s1, ..., sn) and we will say that K(S) is
the field generated over K by s1, ..., sn or the field obtained by adjoining to K the elements
s1, ..., sn.

53
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If S′ ⊂ S then K(S′) is a subfield of K(S). If S any subset of F define C = {T ⊂ S :
T is finite}. Then K(S) =

⋃
T∈C K(T ).

4.1.5 Field extensions as vector spaces. If F is a field extension over K then F is also
a vector space over K where the scalar multiplication is regular multiplication in F . The
dimension of F as a vector space over K is called the degree of F over K. It is denoted by
[F : K]. If [F : K] is finite then F is called a finite field extension over K.
4.1.6 K-isomorphisms. Let F and F ′ be two field extensions over a field K. If there exists

an isomorphism φ : F → F ′ such that φ|K is the identity we call φ a K-isomorphism and
we say that F and F ′ are K-isomorphic. The group of K-automorphisms of F is denoted
by AutK(F ).

For example the fields Q(
√

2) and Q(−
√

2) are Q-isomorphic.
4.1.7 Simple field extensions. Let F be a field and K a subfield of F . If s ∈ F define

S = {f̂(s) : f ∈ K[x]}. Then S is a ring which is isomorphic to K[x]/J for some ideal
J ⊂ K[x]. Since K[x] is a PID we have that J = {0} or that J = 〈ϕ〉 for some polynomial
ϕ.

In the first case, where J = {0}, the element s is called transcendental over K and K(s)
is called a simple transcendental extension over K. In this case K(s) is isomorphic to K(x),
the quotient field of K[x]. On the other hand, since K can be considered a subfield of K(x),
K(x) itself is a simple transcendental extension over K.

In the second case, where J = 〈ϕ〉, note first that ϕ is uniquely determined up to
multiplication by nonzero elements of K. 〈ϕ〉 is a proper maximal ideal since S ⊂ F and
hence K[x]/〈ϕ〉 do not have zero divisors. Therefore K[x]/〈ϕ〉 is a field so that K(s),
K[x]/〈ϕ〉, and S are all isomorphic. Since ϕ̂(s) = 0 the polynomial ϕ has the factor x − s
and hence its degree is at least equal to one. We call s algebraic over K and K(s) a simple
algebraic extension over K. The polynomial ϕ is called the minimal polynomial of s over
K.

Now suppose a field K and an irreducible polynomial ϕ ∈ K[x] are given. Consider
the field H = K[x]/〈ϕ〉 and the canonical homomorphism Ψ : K[x] → H. The subset

K̃ = {ax0 + 〈ϕ〉 : a ∈ K} is the isomorphic image of K and hence we consider K as a

subset of H by identifying K and K̃. Note that H = K(s) where s = Ψ(x) = x+ 〈ϕ〉 is an
algebraic element of H, in fact ϕ̂(s) = 0. Thus the existence of simple algebraic extensions
over K can be obtained without an a priori knowledge of a field F containing the element
s.

Example: Let K = R and ϕ = x2 +1 then C ∼= R[x]/〈x2 +1〉 ∼= {f̂(i) : f ∈ R[x]} ∼= R(i)
where i = x+ 〈x2 + 1〉.
4.1.8 Conjugate elements. Two elements s and s′ of an extension F over K are called

conjugate if they are algebraic over K and have the same minimal polynomial over K.
4.1.9 The degree of a simple extension. Let K be a field, ϕ an irreducible polynomial

in K[x] of degree n, and s = x + 〈ϕ〉. Then [K(s) : K] = n, i.e., the degree of the simple
algebraic extension K(s) over K is equal to n. The degree of a simple transcendental
extension over K is infinite.

Sketch of proof: In the algebraic case one shows, using the division theorem, that
{xj + 〈ϕ〉 : j = 0, ..., n − 1} is a basis of H. Conversely, if [K(s) : K] is finite then K(s)
must be algebraic. �

For example, if i = x+ 〈x2 + 1〉 then 1 and i are linearly independent in R[x]/〈x2 + 1〉
but i2 + 1 = 0. Hence [R[x]/〈x2 + 1〉 : R] = 2 and R[x]/〈x2 + 1〉 ∼= {a+ bi : a, b ∈ R}.
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4.1.10 Algebraic field extension. F is called an algebraic (field) extension over K if
every element of F is algebraic over K. Any other extension is called a transcendental (field)
extension.

Theorem. If F is a field extension over K and if [F : K] = n is finite, then F is an
algebraic extension over K which is obtained by the adjunction of finitely many algebraic
elements. Every element of F is then a zero of polynomial function over K of degree at
most n. Conversely, any extension over a field K which is obtained by adjoining finitely
many algebraic elements is a finite extension and hence an algebraic extension.

Sketch of proof: Let r be an element of F . Then 1, r, ..., rn are linearly dependent
vectors, i.e., there exists k0, ..., kn ∈ K, not all zero, such that k0 + k1r + ... + knr

n = 0.
Let r1, ..., rn be a basis of F then, obviously, F = K(r1, ..., rn). For the converse note that,
by 4.1.9, adjoining a single algebraic element to K produces a finite extension and so does
adjoining finitely many algebraic elements. �
4.1.11 Splitting fields. Let f be a polynomial in K[x] of degree n. Suppose there is a

field extension F over K such that f , considered as an element of F [x], factors into n linear

factors (polynomials of degree 1). Then one says that F contains all the roots of f̂ . The

smallest field which contains K and all the roots of f̂ is called a splitting field of f over K.

Theorem. Let K be a field and f ∈ K[x]. Then there exists a splitting field F over K
of f . Moreover, if deg(f) = n then there exist algebraic elements s1, ..., sn of F such that
F = K(s1, ..., sn). In particular, a splitting field over K is algebraic over K.

Sketch of proof: Let ϕ be an irreducible factor of f and define K(s1) = K[x]/〈ϕ〉 as in

4.1.7. Then ϕ̂(s1) = 0 and hence f̂(s1) = 0. The polynomial f has a factor x− s1 when it is
considered as an element of K(s1)[x], i.e., f = (x− s1)g for some polynomial g ∈ K(s1)[x].
This procedure has to be repeated at most n times if n = deg(f). �
4.1.12 Theorem of the primitive element. If K has characteristic zero then every

finite extension over K is simple.
Sketch of proof: Let F be the extension under consideration. By 4.1.10 we have that

F is generated over K by finitely many, say n, elements. The induction principle gives that
the theorem is proved once it is proved for n = 2.

Let F = K(s, t) and suppose that the minimal polynomials of s and t over K are f and
g, respectively. Let H be a field containing F and the splitting fields of f and g. Suppose

that in H we have f =
∏k
j=1(x− sj) and g =

∏`
j=1(x− tj) where s1 = s and t1 = t. Next

consider the polynomial ϕm,j = (sm − s1)x + tj − t1. We will show below that sm 6= s1

if m 6= 1 and the characteristic of K is zero. Hence ϕ̂m,j has at most one root in K.
Since K has infinitely many elements one may choose c ∈ K such ϕ̂m,j(c) 6= 0 whenever
m ∈ {2, ..., k} and j ∈ {1, ..., `}. Define r = cs + t. Then K(s, t) = K(r) as will be shown
presently.

Obviously K(r) ⊂ K(s, t). We need to show that s, t ∈ K(r). Assume that s is not in

K(r) and let h = ĝ ◦ (r− cx) ∈ K(r)[x]. Note that f̂(sm) = 0 for all m ∈ {1, ..., k} but that

ĥ(sm) = ĝ(r − csm)) 6= 0 for all m ∈ {2, ..., k}. Let d ∈ K(r)[x] be a common divisor of f
and h. Since f and h split into linear factors when considered as elements of H[x] the same
is true for d assuming that deg(d) > 0. This would imply that d is an associate of x − s
which is impossible, since s 6∈ K(r). Therefore d must have degree zero and, by the GCD
identity, there are polynomials α and β in K(r)[x] such that αf + βh = d. This in turn

gives that d = α̂(s)f̂(s) + β̂(s)ĥ(s) = 0. Since this is impossible we have s ∈ K(r). But
then we have also t = r − cs ∈ K(r).
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It remains to show that the roots of f̂ are simple. Suppose f̂ has a root s of multiplicity
at least two. Since f is irreducible as an element of K[x] the ideal 〈f〉 is a proper maximal
ideal in K[x]. Since the degree of f ′ is smaller than the degree of f we have f ′ = 0 or
〈f, f ′〉 = K[x]. The second possibility is ruled out since there would then be α, β ∈ K[x]

such that αf + βf ′ = 1 which contradicts the fact that f̂(s) = f̂ ′(s) = 0. If f =
∑k
j=0 ajx

j

then f ′ =
∑k
j=1 jajx

j so that f ′ = 0 implies jaj = 0 for all j ∈ {1, ..., k}. Since K has

characteristic zero this shows that a1 = ... = ak = 0 and hence that f = a0x
0 which is not

irreducible. Therefore any root of f̂ is simple. �
4.1.13 Extensions of isomorphisms. Let K and K̃ be isomorphic fields and τ : K → K̃

the corresponding isomorphism. If f =
∑n
j=0 αjx

j is a polynomial in K[x] we say that

f̃ =
∑n
j=0 τ(αj)x

j ∈ K̃[x] is the polynomial corresponding to f under τ .

Proposition. Let K and K̃ be isomorphic fields and τ : K → K̃ the corresponding iso-
morphism. Suppose f is an irreducible polynomial in K[x] and that f̃ is the polynomial
corresponding to f under τ . Let F be a field extension over K containing a root r of f
and let F̃ be a field extension over K̃ containing a root s of f̃ . Then there is a unique
isomorphism ρ : K(r)→ K̃(s) such that ρ|K = τ and ρ(r) = s.

Sketch of proof: First note that f is the minimal polynomial of r and that f̃ is irreducible
so that it is the minimal polynomial of s. Hence

K(r) = {
n−1∑
j=0

ajr
j : a0, ..., an−1 ∈ K} and K̃(s) = {

n−1∑
j=0

bjs
j : b0, ..., bn−1 ∈ K̃}.

Define ρ :
∑n−1
j=0 ajr

j 7→
∑n−1
j=0 τ(aj)s

j . One checks easily that ρ is an isomorphism with the
desired properties. Uniqueness is trivial.

Theorem. Let K and K̃ be isomorphic fields and τ : K → K̃ the corresponding isomor-
phism. Suppose f is a polynomial in K[x] and that f̃ is the polynomial corresponding to f

under τ . Let F and F̃ be splitting fields of f over K and of f̃ over K̃, respectively. Then
the isomorphism τ maybe extended to an isomorphism ρ : F → F̃ such that ρ(r) is a root

of f̃ for every root r of f .

Sketch of proof: The proof will be by induction over n, the degree of f . Note that there
is nothing to prove for n = 1 since F = K and F̃ = K̃. Assume now the truth of the
theorem in the case of polynomials of degree n and that f and f̃ are polynomials of degree
n + 1. Let ϕ be an irreducible factor of f and r ∈ F a root of ϕ. Then ϕ̃, the polynomial
corresponding to ϕ under τ , is an irreducible factor of f̃ which has a root s ∈ F̃ . By the
previous proposition τ can extended to an isomorphism τ1 from K(r) to K̃(s) such that

τ1(r) = s. Then f = (x− r)f1 and f̃ = (x− s)f̃1 in K(r) and K̃(s), respectively. Note that

f̃1 corresponds to f1 under τ1 and that F and F̃ are splitting fields of f1 and f̃1, respectively.
Since f1 and f̃1 have degree n the isomorphism τ1 may now be extended to an isomorphism
ρ from F to F̃ by the induction hypothesis. �

Corollary. All splitting fields of f over K are K-isomorphic.

Sketch of proof: Choose K = K̃ and τ to be the identity. �
4.1.14 Normal field extensions. A finite field extension F over K is called normal if F

is the splitting field of some polynomial in K[x].

Theorem. If F is a normal extension over K and if the irreducible polynomial ϕ ∈ K[x]
has a root in F then F contains all the roots of ϕ.
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Sketch of proof: Let F be the splitting field of f over K and let F̃ be the splitting
field of ϕ over F . Let s be the root of ϕ which is in F and let t be any other root of ϕ.
By Proposition 4.1.13 there exists an isomorphism τ : K(s) → K(t). Note that F is also
the splitting field of f over K(s) and that F (t) is the splitting field of f over K(t). By
Theorem 4.1.13 the isomorphism τ extends to an isomorphism from F to F (t). Hence F
and F (t) have the same dimension as vector space over K and thus F (t) has dimension one
as a vector space over F . But this implies t ∈ F . �

4.2. Some more concepts from group theory

4.2.1 Composition series. Let G = G0 be a group and suppose that there are subgroups
G1, ..., G`−1, G` = {1} such that, for j = 1, ..., `, the subgroup Gj is a normal subgroup of
Gj−1 which is maximal among the proper normal subgroups of Gj−1. Then the sequence
(G0, ..., G`) is called a composition series of G = G0. The quotient groups Gj−1/Gj are
called composition factors of the series. The number ` is called the length of the series.

Theorem Jordan-Hölder theorem. Let S1 and S2 be two composition series of a group
G. Then S1 and S2 have the same length and for each composition factor of S1 there is an
isomorphic composition factor of S2.

Example: (Z6,Z3, {0}) and Z6,Z2, {0}) are composition series.
4.2.2 Solvable Groups. A group G is called solvable if it has a composition series for

which each composition factor is abelian.
Cyclic groups of prime order are solvable.

4.2.3 (Un)solvability of the symmetric groups. We denote the symmetric group on
n letters by Sn and the associated alternating subgroup by An.

S2 is a cyclic group of order two and hence solvable.
A3 is a cyclic group of order three and hence solvable. A3 is a normal subgroup of S3

which is maximal among the proper subgroups of S3. The factor S3/A3 is isomorphic to Z2

and the factor A3/{(1)} is isomorphic to Z3. Hence S3 is solvable.
Let V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} which is isomorphic to Klein’s four

group S2 × S2 and let Z2 = {(1), (1, 2)(3, 4)} which is isomorphic to S2. Then

(S4, A4, V4, Z2, {(1)})

is a composition series of S4 all of whose composition factors are abelian.
Next suppose that n > 4 and that Sn is solvable. Then there exists a composition series

(G0, ..., G`) where G0 = Sn and G` = {(1)}. We will show by induction that Gs contains
all cycles of length three for all s = 0, ..., `. Since this is obviously true for G0 assume
that it is true for Gs. Let a, b, c, d, e be distinct numbers in {1, ..., n}. Define σ1 = (a, b, c)
and σ2 = (c, d, e) and let φ be the canonical homomorphism from Gs to the abelian group
Gs/Gs+1. Then

φ(σ−1
1 σ−1

2 σ1σ2) = 1

and hence (b, e, c) = σ−1
1 σ−1

2 σ1σ2 ∈ Gs+1. Since b, e, c were arbitrary the induction is
completed. Hence we have that the trivial subgroup {(1)} contains all cycles of length three
which is impossible.

We have proved the following theorem:

Theorem. The symmetric groups S2, S3, and S4 are solvable. The symmetric groups Sn
are not solvable when n > 4.
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4.3. Galois Theory

Throughout this section we assume that all fields under consideration have characteristic
zero.
4.3.1 Groups of automorphisms. Let F be a field extension of E. Then we define the

set

E∗ = {σ ∈ Aut(F ) : ∀u ∈ E : σ(u) = u}.

E∗ is a subgroup of the automorphism group of F . In fact E∗ = AutE(F ), the group of
E-automorphisms of F .

Theorem. Suppose F is a finite (and hence simple) extension of E, i.e., F = E(s). Let
ϕ be the minimal polynomial of s. Then the order of the group E∗ equals the number of
roots of ϕ contained in F . In particular, if F is a normal extension of E then ord(E∗) =
deg(ϕ) = [F : E].

Sketch of proof: Let ϕ =
∑n
j=0 αjx

j and F = {a0+a1s+...+an−1s
n−1 : a0, ...an−1 ∈ E}.

Denote the number of roots of ϕ in F by m. If σ ∈ E∗ then

0 = σ(ϕ̂(s)) = σ(

n∑
j=0

αjs
j) =

n∑
j=0

αjσ(s)j = ϕ̂(σ(s)).

Hence σ(s) is a root of ϕ in F . Since the image of s under σ determines σ completely we
have ord(E∗) ≤ m. Conversely, let t be a root of ϕ in F . By Proposition 4.1.13 there is an
E-isomorphism σt : F = E(s)→ F = E(t), i.e., an element σt ∈ E∗, such that σt(s) = t. If
t and r are distinct roots of ϕ then σt 6= σr. Hence ord(E∗) ≥ m.
4.3.2 Fixed fields. Let Σ be a subgroup of Aut(F ) and define

Σ∗ = {u ∈ F : ∀σ ∈ Σ : σ(u) = u}.

Then Σ∗ is a subfield of F . It is called the fixed field of Σ.
4.3.3 Duality properties. Let F be a field extension of K. Let Γ = AutK(F ), the group

of K-isomorphisms of F . Suppose that L,M are fields such that K ⊂ L,M ⊂ F and that
Σ and Π are subgroups of Γ. We denote the identity element of Γ by ι. Then the following
properties hold:

(1) F ∗ = {ι}, {ι}∗ = F , and K∗ = Γ.
(2) If L ⊂M then M∗ ⊂ L∗.
(3) If Σ ⊂ Π then Π∗ ⊂ Σ∗.
(4) L ⊂ L∗∗ and Σ ⊂ Σ∗∗.
(5) L∗ = L∗∗∗ and Σ∗ = Σ∗∗∗.

Properties (1) through (4) follow immediately from the definitions. Property (5) follows
from (2), (3), and (4). Note that Γ∗ is not necessarily equal to K and that the inclusions

in (4) can be strict. For example, when K = Q and F = Q( 3
√

2) then Γ contains only the
identity. Hence K∗∗ = Γ∗ = F .
4.3.4 Closed fields and closed subgroups. Let K,L, F as well as Γ and Σ as before.

Then L is called closed if L = L∗∗ and Σ is called closed if Σ = Σ∗∗.
Let F be an extension over K. Let E be a set of all closed fields E such that K ⊂ E ⊂ F

and let G be the set of all closed subgroups of Γ = AutK(F ). Then we define the map
ψ : E → G : E 7→ E∗.

Theorem. The map ψ is bijective.
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4.3.5 The fundamental theorem of Galois theory. If F is a normal field extension
over K then all fields E for which K ⊂ E ⊂ F are closed and all subgroups Σ of AutK(F )
are closed and hence there is a one-to-one correspondence between the intermediate fields
E and the subgroups Σ.

Sketch of proof: Let E be an intermediate field and assume the inclusion E ⊂ E∗∗ is
strict. Choose s ∈ E∗∗ − E and denote the minimal polynomial of s over E by ϕ. Since
s 6∈ E we know that deg(ϕ) > 1. Since F is normal over K it is normal over E and hence
F contains all the roots of ϕ. Let t be a root of ϕ different from s. Then, by Proposition
4.1.13, the identity map from E to E extends to an isomorphism between E(s) and E(t) and
this isomorphism extends to an element σ of E∗. Hence σ(s) = t. However, since s ∈ E∗∗
we also have σ(s) = s and hence s = t, a contradiction. Hence E = E∗∗.

Now let Σ = {σ1, ..., σh} be a subgroup of AutK(F ) = K∗ of order h. There is an
element u ∈ F such that F = K(u) and hence F = Σ∗(u). Denote the minimal polynomial

of u over Σ∗ by ϕ and define the polynomial f = (x − σ1(u))...(x − σh(u)) =
∑h
j=0 ajx

j .

The coefficients aj are symmetric polynomials of the roots σ1(u), ..., σh(u), in particular,

ah = 1, ah−1 = −
∑h
j=0 σj(u), and a0 = (−1)h

∏h
j=0 σj(u). This implies that σk(aj) = aj

whence f ∈ Σ∗[x]. Since u is a root of f we have deg(ϕ) ≤ deg(f). Since F is normal over
Σ∗ Theorem 4.3.1 gives that ord(Σ∗∗) = [F : Σ∗] = deg(ϕ) and hence ord(Σ∗∗) ≤ ord(Σ).
This shows finally that Σ = Σ∗∗. �
4.3.6 The Galois group of a field extension. If F is a normal field extension over K

the set AutK(F ) of all K-automorphism of F is called the Galois group of F over K and it
is denoted by Gal(F/K).
4.3.7 Normal extension and normal subgroups. Suppose F is a normal field extension

over K and E is an intermediate field. Then E is a normal extension over K if and only if
E∗ is a normal subgroup of K∗ = AutK(F ). Moreover, if E is a normal extension over K,
then the Galois group Gal(E/K) is isomorphic to the quotient group K∗/E∗.

Sketch of proof: Assume that E = K(u) and let f be the minimal polynomial of u over
K.

Suppose E is a normal extension over K. If γ ∈ K∗ then γ(u) is a root of f and hence

in E. Therefore, if σ ∈ E∗ and s ∈ E, then s =
∑n−1
j=0 kju

j with kj ∈ K and hence

(γ ◦ σ ◦ γ−1)(s) =

n−1∑
j=0

kj(γ ◦ σ ◦ γ−1)(u)j =

n−1∑
j=0

kju
j = s.

This shows that γ ◦ σ ◦ γ−1 ∈ E∗, i.e., that E∗ is a normal subgroup of K∗.
Now assume that E∗ is a normal subgroup of K∗. Then σ(γ(u)) = (σ ◦ γ)(u) = γ(u)

for all γ ∈ K∗ and all σ ∈ E∗. This implies γ(u) ∈ E∗∗ = E and hence that all roots of f
are contained in E, i.e., E the splitting field of f .

Finally, define the homomorphism Ξ : K∗ → Gal(E/K) : σ 7→ σ|E . This homomor-
phism is surjective by Theorem 4.1.13 and its kernel is E∗. The last statement of the theorem
follows now from the fundamental isomorphism theorem for commutative rings. �

4.4. Radical Extensions

4.4.1 Primitive roots of unity. Let K be a field and let n be a natural number which
is not a multiple of the characteristic p of K (any natural number if K has characteristic

zero). Let f be the polynomial xn − 1 in K[x]. If f̂ has a root ζ ∈ K then ζ is called an

n-th root of unity. Note that f̂ has at most n roots and let F be the splitting field of f . The

derivative of f is nxn−1 and is different from zero. In this case f̂ has therefore n distinct
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n-th roots of unity in F . The set of all n-th roots of unity forms an abelian group under
multiplication. One can in fact show that this group is cyclic, i.e., it is generated by one of
its elements. Any such element is called a primitive n-th root of unity.
4.4.2 Radical extension. A simple field extension K(s) over K is called a simple radical

extension over K if there exists a natural number n > 1 such that sn in K, or, in other
words, if the minimal polynomial of s over K is xn − r for some r ∈ K. The adjunction of
s to K is then called radical.

A field extension F over K is called a radical extension over K if there exist elements t1,
..., tm in F such that F = K(t1)(t2)...(tm) and each of the successive adjunctions is radical.

Theorem. For any radical extension E over K there is an extension F over E and an
ascending tower of fields

K = F0 ⊂ F1 ⊂ ... ⊂ Fk = F

with the following properties:

(1) For each j ∈ {1, ..., k} there exists a prime number pj and an element sj ∈ Fj such
that rj = s

pj
j ∈ Fj−1 and Fj = Fj−1(sj).

(2) Fj is a normal extension over Fj−1.

Sketch of proof: By the definition of a radical extension we have a tower of radical
extension fields

K = F0 ⊂ F1 ⊂ ... ⊂ Fk = E

where Fj = Fj−1(sj). If snj ∈ Fj−1 and n has the prime factorization n = p1...pν let

tj,` = s
n/(p1...p`)
j . Then replace the string Fj−1 ⊂ Fj in the above tower of fields by

Fj−1 ⊂ Fj−1(tj,1) ⊂ ... ⊂ Fj−1(tj,1)...(tj,ν) = Fj .

Doing this for all j we obtain a tower of radical extensions having the first of the above
properties (with F = E).

Suppose Fj−1 is a normal extension over K. If Fj−1 contains ζj , a primitive pj-th root
of unity, then Fj is a normal extension over Fj−1 and hence a normal extension over K. If
Fj−1 does not contain ζj , a primitive pj-th root of unity, replace the string Fj−1 ⊂ Fj in the
tower by Fj−1 ⊂ Fj−1(ζj) ⊂ Fj . Then Fj−1(ζj) is the splitting field of the polynomial xpj−1
and hence normal. Also Fj contains, together with sj , all other roots sjζ

k
j , k = 1, ..., pj of

the polynomial xpj − rj and hence is a splitting field. Repeating this for all j results in a
tower having both of the required properties. Note that at step j the root ζj may not be
an element of E so that the resulting field F may be an extension of E. �

Example: Let K = Q and E = Q( 3
√

2). Then F1 = Q(ω) where ω = (−1 + i
√

3)/2 is a

third root of unity. Also F = F2 = Q(ω, 3
√

2) is the splitting field of x3 − 2.
4.4.3 Radical extension and solvability. If F is a normal radical extension K then the

Galois group of F over K is solvable.
Sketch of proof: There exists a tower of fields

K = F0 ⊂ F1 ⊂ ... ⊂ Fk = F

with the properties of Theorem 4.4.2. By the fundamental theorem of Galois theory there
is a tower of subgroups

{ι} = F ∗ ⊂ F ∗k−1 ⊂ ... ⊂ F ∗1 ⊂ K∗ = Gal(F/K).

By Theorem 4.3.7 we have that F ∗j is a normal subgroup of F ∗j−1. The subgroup F ∗j is
maximal among the normal subgroups of F ∗j−1 since its index in F ∗j−1 equals [Fj : Fj−1] = pj
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which is prime. Hence F ∗j is a maximal normal subgroup of F ∗j−1 and our theorem is proved
once we show that F ∗j−1/F

∗
j = Gal(Fj/Fj−1) is abelian.

Suppose σ1, σ2 ∈ F ∗j−1. Since Fj = Fj−1(sj) we have that σ1 and σ2 are uniquely

determined respectively by the values σ1(sj) = ζk1j sj and σ2(sj) = ζk2j sj where ζj is a
primitive pj-th root of unity and k1 and k2 are appropriate integers. Hence

(σ1 ◦ σ2)(sj) = σ1(ζk2j sj) = σ1(ζj)
k2ζk1j sj and (σ2 ◦ σ1)(sj) = σ2(ζk1j sj) = σ2(ζj)

k1ζk2j sj .

If s
pj
j = 1 we may assume sj = ζj whence

(σ1 ◦ σ2)(sj) = s
(k1+1)k2+k1+1
j = (σ2 ◦ σ1)(sj).

If s
pj
j 6= 1 we have ζj ∈ Fj−1 and hence σ1(ζj) = σ2(ζj) = ζj . Thus

(σ1 ◦ σ2)(sj) = ζk1+k2
j sj = (σ2 ◦ σ1)(sj).

�

4.5. The Theorem of Ruffini and Abel

4.5.1 Historical facts. The quadratic formula was known (in a sense) to the Babylonians
perhaps 5000 years ago. The cubic equation and the quartic equation were solved by radicals
in the 1500s by the Italian mathematicians del Ferro, Tartaglia and Cardan and Ferrari.

By 1799 over 250 years had passed without anyone being able to solve the quintic equa-
tion by radicals even though attempts hade been made by many mathematicians including
very famous people like Euler, Bézout, Vandermonde, and Lagrange.

Then in 1799 Ruffini proved (perhaps not entirely correctly) that this task was in fact
impossible but his assertion did not enter the consciousness of the mathematical community
of the time. The reason was perhaps that nobody really believed that it was impossible. A
quarter century later Abel gave another proof of this fact and this time the message stuck.
4.5.2 The general polynomial equation of degree n. Let k be a field and u0, ..., un−1

indeterminates. Then

f = xn + un−1x
n−1 + ...+ u0

is a polynomial over the field K = k(u0, ..., un−1). The equation

f̂(z) = 0

is called the general polynomial equation of degree n.
4.5.3 The concept of solvability by radicals. To solve a polynomial equation by radicals
means finding a formula for its roots in terms of the coefficients so that the formula only
involves the operations of addition, subtraction, multiplication, division and taking roots,
each a finite number of times.

Definition. Let f ∈ K[x]. The polynomial equation f̂(z) = 0 is called solvable by radicals
if the splitting field of f is a radical extension over K.

For instance, the general quadratic equation in K = C(u0, u1) is z2 + u1z + u0 = 0 and
the corresponding equation is solved by the formula

z1,2 = −u1

2
± 1

2

√
u2

1 − 4u0

in the extension field K(
√

∆) where ∆ = u2
1−4u0. The purpose of the formula is, of course,

that z1,2 are the roots of z2 +u1z+u0 (in K(
√

∆)) for any choice of u1 and u0 in C or even
K.
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However, if K = C, i.e., f ∈ C[x], then the splitting field of f is also C and a radical

extension of itself. So, by our definition, f̂(z) = 0 is solvable, but this does not mean
there are effective means to actually do it. For this reason we consider u0, ..., un−1 as
indeterminates.
4.5.4 The theorem of Ruffini and Abel. Let K be a field of characteristic zero and let
f = xn + un−1x

n−1 + ... + u0 be a polynomial in K(u0, ..., un−1)[x]. Then f̂(z) = 0 is not
solvable by radicals if n > 4.

Sketch of proof: Let x1, ..., xn be n indeterminates and let v0, ..., vn−1 be the elementary
symmetric polynomials of these indeterminates, i.e.,

v0 = (−1)nx1...xn ... vn−1 = −x1 − ...− xn.
Then K(x1, ..., xn) is the splitting field of g = xn + vn−1x

n−1... + v0 over K(v0, ..., vn−1).
The Galois group of K(x1, ..., xn) over K(v0, ..., vn−1) is the group of permutations of the
indeterminates x1, ..., xn.

Now suppose that f̂(z) = 0 is solvable by radicals and let F be the splitting field of
f which, by assumption, is a radical extension of K(u0, ..., un−1). One may show that
the rings K[u0, ..., un−1] and K[v0, ..., vn−1] are isomorphic and this isomorphism extends
to an isomorphism between the fraction fields K(u0, ..., un−1) and K(v0, ..., vn−1) and, by
Theorem 4.1.13, to an isomorphism between F and K(x1, ..., xn) and therefore the Galois
group of F over K(u0, ..., un−1) is isomorphic to the permutation group on n letters which
is not solvable by Theorem 4.2.3. �



CHAPTER 5

Vector Spaces

5.1. Fundamentals

5.1.1 Vector spaces. Let V be a set and let K be a field. Suppose there is a binary
operation on V (denoted by +) and a function σ from K×V to V (denoted by juxtaposition)
such that the following properties are satisfied:
(a) (V,+) is an abelian group,
(b) (rs)x = r(sx) for all r, s ∈ K and all x ∈ V ,
(c) (r + s)x = rx+ sx for all r, s ∈ K and all x ∈ V ,
(d) r(x+ y) = rx+ ry for all r ∈ K and all x, y ∈ V ,
(e) 1x = x for all x ∈ V .
Then (V,K,+, σ) (or just V ) is called a vector space over K. If K = R we call V a real
vector space and if K = C we call V a complex vector space. The elements of V are called
vectors and the elements of K are called scalars. The map (r, x) 7→ rx is called scalar
multiplication. The identity element of the group (V,+), called the zero vector, is denoted
by 0. A confusion with the scalar 0 can not arise.

For all x ∈ V and all r ∈ K we have rx = 0 if and only if r = 0 or x = 0.
5.1.2 Examples. R2 = R × R, R3 and, more generally, Rn are real vector spaces under

the usual componentwise addition and scalar multiplication. C and, more generally, Cn can
be thought of as a real or a complex vector space. The set R[x] of all polynomials in x
with real coefficients and the set R[x]n of all polynomials of degree at most n in x with real
coefficients are real vector spaces. Likewise C[x] and C[x]n are complex vector spaces. The
set of all functions from an interval I ⊂ R to R which are k times continuously differentiable
(denoted by Ck(I)) is a vector space. The set {0} over any field is a vector space, the null
space or trivial vector space.
5.1.3 Linear combinations. If x1, ..., xn are elements of a vector space V and if α1, ..., αn

are scalars then the vector

α1x1 + ...+ αnxn

is called a linear combination of x1, ..., xn.
5.1.4 Subspaces and spans. A subset of a vector space V which is itself a vector space

(with respect to the operations in V ) is called a subspace of V .
A nonempty subset S of a vector space V is a subspace of V if and only if αx+ βy ∈ S

whenever x, y ∈ S and α, β ∈ K, the scalar field.
The intersection of a nonempty collection of subspaces of V is again a subspace of V .
Let A be a subset of V . Let C be the collection of all subspaces of V which include

A. Then the set 〈A〉 =
⋂
U∈C U is a subspace of V called the span of A. We also say that

a vector space W is spanned by A or that A spans (or that the elements of A span) W if
W = 〈A〉.

If A = {} then 〈A〉 = {0}. Otherwise 〈A〉 is the set of all linear combinations of elements
of A.

63
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Example: The vectors (3, 5) and (0,−2) span R2.
5.1.5 Dimension of a vector space. A vector space V is called finite-dimensional if it

is equal to {0} or if there exists a finite subset of V which spans V . Otherwise V is called
infinite-dimensional.

Let V 6= {0} be a finite-dimensional vector space and S the (nonempty) set of natural
numbers n for which there is a subset of V with n elements that spans V . Then S contains
a smallest number which is called the dimension of V . The dimension of V is denoted by
dimV .

The null space {0} is said to have dimension zero.
5.1.6 Linear independence. Let V be a vector space. The vectors x1, ..., xn ∈ V are

called linearly independent if α1x1+...+αnxn = 0 implies that α1 = ... = αn = 0. Otherwise
they are called linearly dependent. A set M ⊂ V is called linearly independent if any finite
number of distinct elements of M are linearly independent. Otherwise M is called linearly
dependent. In particular, the empty set is linearly independent and a set consisting of
precisely one element is linearly independent if and only if that element is not the zero
element. Moreover, any set containing the zero element is linearly dependent. If A ⊂ B and
B is linearly independent then so is A.

The vectors x1, ..., xn are linearly dependent if and only if one of them can be expressed
as a linear combination of the others.
5.1.7 Bases. A set B ⊂ V is called a basis of the nontrivial vector space V if it is linearly

independent and spans V . This is equivalent to the statement that every x ∈ V can be
expressed uniquely as a linear combination of the elements of B. The empty set is the basis
of the trivial vector space.

Theorem. Let M be a linearly independent subset of a nontrivial vector space V . Then
there exists a basis B of V such that M ⊂ B. In particular, every nontrivial vector space
has a basis.

Sketch of proof: Let Σ be the set Σ = {A ⊂ V : M ⊂ A ∧ A linearly independent}.
This is a nonempty set which is partially ordered by set inclusion. For any nonempty totally
ordered subset Γ of Σ define A′ =

⋃
T∈Γ T . We will show that A′ ∈ Σ and hence that Γ has

an upper bound in Σ. Therefore, by Zorn’s Lemma, Σ has a maximal element, which we
call B. If we also show that B spans V , the theorem is proven.

It is obvious that M ⊂ A′. Let a1, ..., an be distinct elements of A′. Then there exist
T1, ..., Tn ∈ Γ such that, for j = 1, ..., n we have that aj ∈ Tj . Since Γ is totally ordered
there is, in fact, a k ∈ {1, ..., n} such that T1, ..., Tn ⊂ Tk and hence a1, ..., an ∈ Tk. Since
Tk is a linearly independent set the vectors a1, ..., an are linearly independent. Since they
were arbitrary, A′ is linearly independent and hence A′ ∈ Σ.

Finally, let v be any element of V and suppose that v is not in the span of B. Then
B∪{v} is a linearly independent subset of V which contains M , i.e., B∪{v} ∈ Σ. But then
B is not maximal which contradicts its definition. Hence no such v can exist, i.e., B spans
V . �

Obviously, the basis of an infinite-dimensional vector space must have infinitely many
elements.

In the case of a finite-dimensional vector space 5.3.1 and 5.3.2 can be combined to give
another (constructive) proof of the above theorem. It will also be shown in Corollary 5.3.2
that the number of elements of any basis of a finite-dimensional vector space is equal to the
dimension of that vector space.
5.1.8 Direct sums. Let V and W be two vector spaces over the field K. We define the

direct sum V ⊕W of V and W to be the vector space (V ×W,K,+, σ) where + is defined
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by (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and σ : K × (V ×W ) → V ×W is defined by
(r, (v, w)) 7→ r(v, w) = (rv, rw).

Theorem. The dimension of a direct sum satisfies dim(V ⊕W ) = dimV + dimW .

Sketch of proof: Let B1 be a basis of V and B2 a basis of W . Define A1 = {(v, 0) : v ∈
B1}, A2 = {(0, w) : w ∈ B2} and B = A1 ∪A2. Then B is a basis of V ⊕W . �

Example: Let V = {(a, a) : a ∈ R} and W = {(a, b) : a, b ∈ R}. Then V ⊕ W =
{((a, a), (b, c)) : a, b, c ∈ R}. A basis is {((1, 1), (0, 0)), ((0, 0), (1, 0)), ((0, 0), (0, 1))}.
5.1.9 Internal sums and internal direct sums. Let X and Y be two subspaces of a

vector space V . The union of X and Y is not necessarily a subspace of V . We define the
sum of X and Y to be the subspace generated by their union, i.e., X + Y = 〈X ∪ Y 〉. It
turns out that X + Y = {x + y : x ∈ X, y ∈ Y }. The dimension of X + Y is infinite if at
least one of X and Y has infinite dimension. Otherwise it is given by

dim(X + Y ) = dimX + dimY − dim(X ∩ Y ).

If X ∩Y = {0} we denote X +Y by X ⊕Y and call it the internal direct sum of X and
Y .1

Theorem. Let X be a subspace of a vector space V . Then there exists a subspace Y such
that X ∩ Y = {0} and X ⊕ Y = V .

Sketch of proof: Let A be a basis of X. By Theorem 5.1.7 there is a basis C of V
such that A ⊂ C. Define B = C − A and Y = 〈B〉. Then Y is a subspace of V . Assume
x ∈ X ∩ Y . Then x can be written as a linear combination of elements of A and as a
linear combination of elements of B. Subtracting these two expressions gives that a linear
combination of elements of C equals zero. Hence all coefficients are zero and x is equal to
zero. Thus X ∩ Y = {0}. Since A ∪B spans V we get that X + Y = V . �

5.2. Linear Transformations

5.2.1 Linear transformations.
Let V and W be two vector spaces over the same field K. A function f : V → W is

called a linear transformation or a vector space homomorphism if

f(αx+ βy) = αf(x) + βf(y)

for all α, β ∈ K and all x, y ∈ V .
A bijective linear transformation from V to W is called a (vector space) isomorphism.

If W = V it is called a (vector space) automorphism. Two vector spaces V and W are called
isomorphic if there exists an isomorphism from V to W .

The following properties hold for linear transformations f : V →W :

— f(0) = 0, f(−x) = −f(x), since a linear transformation is a group homomorphism
from (V,+) to (W,+).

— The composition of linear transformations is a linear transformation.
— The relation “is isomorphic to” is an equivalence relation on the set of all vector

spaces over K.
— f(V ) is a subspace of W .
— ker f = {x ∈ V : f(x) = 0} is a subspace of V .
— f is injective if and only if ker f = {0}.

1The internal direct sum of X and Y is isomorphic (see 5.2.1) to their (external) direct sum. This
justifies using the same notation.
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— The automorphisms of a vector space V form a group under composition called
the linear group of V and denoted by GL(V ).

— The functions from V or W to V ⊕W which maps v ∈ V to (v, 0) or w ∈ W to
(0, w) are injective linear transformations called embeddings.

— The functions from V ⊕W to V or W which maps (v, w) to v or w are surjective
linear transformations called projections.

Theorem. Suppose V and W are vector spaces and B is a basis of V . Then any function
from B to W extends uniquely to a linear transformation from V to W . In particular, any
linear transformation is uniquely determined by the images of a basis of the domain of the
transformation.

Sketch of proof: Denote the given function from B to W by f . Define g on V by g(α1x1+...+
αnxn) = α1f(x1) + ...+ αnf(xn) where {x1, ..., xn} ⊂ B. Then g is a linear transformation
from V to W . It is the only linear transformation whose restriction to B is equal to f . �

Examples: Let A be an n ×m matrix. Then x 7→ Ax is a linear transformation from
Rm to Rn. If q : R→ R is a continuous function then −d2/dx2 + q which maps y ∈ C2(R)
to −y′′ + qy ∈ C0(R) is a linear transformation.
5.2.2 Dimensions of images and kernels. The dimensions of the kernel and the image

of a linear transformation are not independent as the following theorem shows. This theorem
is sometimes called the fundamental theorem of linear algebra.

Theorem. Let f : V →W be a linear transformation. Then dim f(V )+dim ker f = dimV .

Sketch of proof: If dim ker f = ∞ the theorem becomes trivial. Hence assume that
dim ker f = k and that B = {b1, ..., bk} is a basis of ker f . By Theorem 5.1.9 there exists a
subspace Y of V such that ker f ⊕Y = V . Let C be a basis of Y . We show below that f(C)
is a basis of f(V ). If V is infinite-dimensional then C and f(C) are infinite sets and hence
dim f(V ) is infinite. If dimV = n <∞ then C has n− k elements and so does f(C). Hence
dim f(V ) = n − k proving the theorem, provided f(C) is a linearly independent spanning
subset of f(V ).

In the following ck denotes an element of C whenever k ∈ N and wk = f(ck). Consider
the equation α1w1 + ...+ αjwj = 0. Then x = α1c1 + ...+ αjcj ∈ ker f , i.e., x ∈ Y ∩ ker f
and hence x = 0. This shows that all coefficients αj are zero and hence that {w1, ..., wj} is
a linearly independent set.

Let w ∈ f(V ). Then w = f(v) for some v ∈ V . Hence v = x + y where x ∈ ker f and
y ∈ Y . But this shows that f(v) = f(y) since f(x) = 0. Thus f(Y ) = f(V ) but f(C) spans
f(Y ). �

Corollary. Let f be a linear transformation between vector spaces V and W and B a basis
of V . Then
(a) dim f(V ) ≤ dimV and dim f(V ) ≤ dimW ,
(b) f is injective if and only if f |B is injective and f(B) is linearly independent,
(c) f is surjective if and only if f(B) spans W .

If V and W are finite-dimensional we have
(d) f is injective if and only if dim f(V ) = dimV ,
(e) f is surjective if and only if dim f(V ) = dimW .

The dimension of f(V ), i.e., dim f(V ) is called the rank of f denoted by rank f .
5.2.3 A few minor facts. Throughout this section V is a finite-dimensional vector space.

We will prove a few statements which will be needed later:
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A. Let A be a linear transformations from V to V . If kerA2 = kerA then V = kerA⊕
A(V ).

Sketch of proof: Note that A(V ) ∩ kerA = {Ax : x ∈ kerA2}. The latter set, however,
equals {0} since kerA2 = kerA. By 5.1.9 and the fundamental theorem of linear algebra
we obtain then that dim(A(V )⊕ kerA) = dimV . Since V is finite-dimensional this implies
that A(V ) ∪ ker(A) spans V . �

B. Suppose A1 and A2 are commutative linear transformations from V to V , that
kerA1 ∩ kerA2 is trivial, and that kerA2

1 = kerA1. Then ker(A1A2) = kerA1 ⊕ kerA2.
Sketch of proof: Assume x = u + v where u ∈ kerA1 and v ∈ kerA2. Then A1A2x =

A2A1u + A1A2v = 0, i.e., x ∈ ker(A1A2). Next suppose that x ∈ ker(A1A2). By part A
we know that x = u+ A1v for some v ∈ V and some u ∈ kerA1. Hence A2

1A2v = 0. Since
kerA2

1 = kerA1 we have also 0 = A1A2v = A2A1v. Hence A1v ∈ kerA2. �
C. Assume that A1, ..., Am are pairwise commutative linear transformations from V

to V such that kerA2
j = kerAj for j = 1, ...,m and kerAj ∩ kerA` = {0} for j 6= `. Then

ker(A1...Am) = kerA1 ⊕ ...⊕ kerAm.
Sketch of proof: First show (by induction) that kerA1 ∩ ker(Am+1−k...Am) = {0} for

k = 1, ...,m−1. Hence, by part B, ker(A1...Am) = kerA1⊕ker(A2...Am). Another induction
completes the proof. �
5.2.4 Quotient spaces. Let (V,K,+, σ) be a vector space and U a subspace of V . Recall

that (V/U,+) is a commutative group. One may define a scalar multiplication K × V/U →
V/U by (α, x+ U) 7→ αx+ U . This scalar multiplication (also denoted by σ is well defined
and turns (V/U,K,+, σ) into a vector space, called the quotient space of V with respect to
U .

Let ϕ : V → V/U be the canonical group homomorphism which is indeed a vector space
homomorphism, i.e., a linear map. Since U = ker(ϕ) and since ϕ is surjective we obtain
from Theorem 5.2.2

dim(V/U) = dimV − dimU

if U is finite-dimensional.
5.2.5 Invariant subspaces. Let f : V → V be a linear transformation on a vector space
V and U a subspace of V . If f(U) ⊂ U then U is called an invariant subspace with respect
to f . For example, the subspace C∞(R) of C1(R) is an invariant subspace with respect to
the linear transformation y 7→ y′.

5.3. Finite-dimensional vector spaces

5.3.1 Existence of a basis of a finite-dimensional vector space. Suppose that V is
an n-dimensional vector space and that A is a subset of V with n elements. If A spans V ,
then it is a basis of V . In particular, any n-dimensional vector space has a basis consisting
of n elements.

Sketch of proof: Let V be a vector space of dimension n. Then there exists a set
{x1, ..., xn} which spans V . Assume that this set is not linearly independent. Then one of
its elements, say xn, is a linear combination of the others. This fact is used to show that
any x ∈ V can be represented by a linear combination of x1, ..., xn−1. Hence V is in fact
spanned by {x1, ..., xn−1} but this is a contradiction to the fact that V has dimension n. �
5.3.2 Exchange of basis elements. Suppose V is a vector space of dimension n > 0 and

that B = {b1, ..., bn} spans V (and hence is a basis of V ). If A is a linearly independent
subset of V with k ≤ n elements such that A ∩ B is empty, then there exists a basis of V
which contains A and n− k elements of B.
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Sketch of proof: If S is a set we will use #S to denote the number of elements of S. We
say that A has property E if there exists a subset B′ of B such that A ∪B′ is a basis of V
and #A+ #B′ = n. Now define

M = {j ∈ N :j > n+ 1 ∨ [∀A ⊂ V : (A linearly independent ∧#A = j − 1)

→ A has property E]}.
Then 1 ∈ M since the empty set has property E (choose B′ = B). Next suppose that
j ∈ M , j ≤ n, and A = {a1, ..., aj}. Then {a1, ..., aj−1} has property E and hence, after a
proper relabeling of the b`, the set {a1, ..., aj−1, bj , ..., bn} is a basis of V . Hence there exist
scalars α1, ..., αj−1 and βj , ..., βn such that

(3) aj =

j−1∑
`=1

α`a` +

n∑
`=j

β`b`

where at least one of the β`, say βm, must be different from zero. Hence equation (3) can be
solved for bm. Now one may show that bm can be replaced by aj as a basis vector. But this
means that A has property E and hence that j + 1 ∈ M . The induction principle proves
now that M = N and thus the theorem. �

Corollary. Suppose that V is an n-dimensional vector space.
(a) If A is a linearly independent subset of V with n elements, then it is a basis of V .
(b) Every basis of V has precisely n elements.

5.3.3 Arithmetic vector spaces. If K is a field then Kn is an n-dimensional vector
space over K. It is customary to consider Kn as a space of columns with n components.
Subsequently a column will be denoted by (α1, ..., αn)>. For j = 1, ..., n let ej denote
the column all of whose entries are zero except for the j-th entry which is one, i.e., e1 =
(1, 0, ...0)> etc. Then {e1, ..., en} is a basis of Kn called the canonical basis. Note that
(x1, ..., xn)> =

∑n
j=1 xjej .

5.3.4 Coordinates. Let V be a vector space of dimension n and {b1, ..., bn} a basis of V .
Then we call the tuple B = (b1, ..., bn) ∈ V n an ordered basis of V .

Now let x be an element of V . Then the (uniquely determined) coefficients α1, ..., αn
in the representation x =

∑n
j=1 αjbj are called coordinates of x with respect to the ordered

basis B. The tuple (α1, ..., αn)> of coordinates is denoted by xB .
If V = Kn we have to distinguish between an element x of V which is denoted by

(x1, ..., xn)> and the tuple of coefficients of x with respect to an ordered basis B, which we
will denote by [β1, ..., βn]>B . In particular, if B is the canonical basis, then x = (x1, ..., xn)> =
[x1, ..., xn]>B .

The concept of coordinates allows to exhibit a very close relationship between vector
spaces of the same finite dimension:

Theorem. An n-dimensional vector space V over the field K is isomorphic to Kn.

Sketch of proof: Choose an ordered basis B for V . Then the map

g : V → Kn :

n∑
j=1

αjbj 7→ (α1, ..., αn)>

is an isomorphism. �
5.3.5 Matrix representations of a linear transformations. Let f be a linear trans-

formation from Kn to Km. Choose ordered bases A = (a1, ..., an) and B = (b1, ..., bm) for
Kn to Km, respectively, (e.g., the canonical bases). Form an m × n matrix M (a matrix
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with m rows and n columns) by letting the j-th column of M be the tuple of coefficients of
the vector f(aj) with respect to to the basis B, i.e., if f(aj) =

∑m
k=1 βk,jbk then

M =

β1,1 ... β1,n

...
...

βm,1 ... βm,n

 .

Then computing f(x) is reduced to matrix multiplication, since we have for any x ∈ Kn

f(x) =

 y1

...
ym


B

= M

x1

...
xn


A

.

Conversely, every m × n matrix represents a linear transformation from Kn to Km after
choosing ordered bases in both domain and range.

More generally, if V andW are vector spaces over K of dimensions n andm, respectively,
then any linear transformation f from V to W is represented by a matrix with entries in
K and every matrix of suitable dimensions represents a linear transformation after ordered
bases (v1, ..., vn) and (w1, ..., wm) of V and W are chosen. Specifically, given these bases
define isomorphisms g : V → Kn and h : W → Km as in 5.3.4. Then, according to the
above, the linear transformation h ◦ f ◦ g−1 : Kn → Km may be represented by an m × n
matrix M . Then the j-th column of M is h(f(g−1(ej))) = h(f(vj)) = [f(vj)](w1,...,wm), i.e.,
the m-tuple of coefficients of f(vj) when written in terms of the ordered basis (w1, ..., wm).
5.3.6 Systems of linear equations. Consider a system of m linear equations in n un-

knowns x1, ..., xn, i.e,

a1,1x1 + ...+ a1,nxn = b1,

a2,1x1 + ...+ a2,nxn = b2,

. . .

am,1x1 + ...+ am,nxn = bm.

Let A be the matrix with entries Ai,k = ai,k ∈ K, b = (b1, ..., bm)> ∈ Km, and x =
(x1, ..., xn)> ∈ Kn. Then the above system can be concisely written as Ax = b and A can
be considered as the matrix of a linear transformation from Kn to Km (also denoted by A).

We will now consider the questions of existence and uniqueness of solutions of such a
system of linear equations. The columns of A are elements of Km. They span A(Kn), the
image of Kn under the linear transformation A. The number of linear independent columns
of A is called the column rank of (the matrix) A. It is equal to the dimension of A(Kn) and
hence equal to the rank of the linear transformation A.

Let (A, b) be the m×(n+1) matrix obtained by adjoining b as a column to A. The vector
b depends linearly on the columns of A if and only if the matrices A and (A, b) have the same
(column) rank. This implies that Ax = b has a solution if and only if rank(A, b) = rankA.
Since n = rankA + dim kerA the linear transformation A is injective and hence a solution
of Ax = b is unique if and only if rankA = n. The solutions of a homogeneous equation
Ax = 0 are given as the elements of kerA. If x and xp are both solutions of Ax = b then
x − xp ∈ kerA. Hence the solutions of Ax = b are given as the elements of the coset
xp + kerA = {a+ xp : a ∈ kerA}. Thus we have proven the following

Theorem. Let A be an m × n matrix and b ∈ Km. Then existence and uniqueness of
solutions of the system Ax = b is given by the following table
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Ax = b = 0 Ax = b 6= 0
rank(A, b) > rankA does not happen system is unsolvable
rank(A, b) = rankA = n x = 0 is the unique solution system is uniquely solvable
rank(A, b) = rankA < n system has nontrivial solutions system has many solutions

Moreover, the set of solutions of Ax = 0 is a subspace of Kn whose dimension is given
by n − rankA. If xp is some solution of Ax = b then any solution x of Ax = b can be
expressed by x = xp + xh where xh is a solution of Ax = 0.

5.3.7 Gaussian elimination. Two systems Ax = b and A′x = b′ of m linear equations
in n unknowns are called equivalent if they have precisely the same solutions. A system
Ax = b is transformed into an equivalent system by any of the following elementary row
operations:
(a) Multiply an equation by a nonzero scalar.
(b) Add a multiple of one equation to another one.
(c) Interchange any two of the equations.

To these row operations among equations correspond similar row operations among the
rows of the matrix (A, b). Two matrices are called row-equivalent if it is possible to transform
one into the other by a finite sequence of elementary row-operations. Row equivalence is (of
course) an equivalence relation. Of course, the matrices (A, b) and (A′, b′) are row-equivalent
if and only if the systems Ax = b and A′x = b′ are equivalent.

A matrix is said to be a row-echelon matrix if it satisfies
(a) all zero rows occur below any nonzero row,
(b) the first nonzero entry of each nonzero row occurs to the right of the first nonzero entry
of any row above.

The first nonzero entry of a row is called a pivot.

Theorem. Every matrix A is row-equivalent to a row-echelon matrix R. The number of
linearly independent rows of A (called the row rank of A) equals both the number of linearly
independent columns of A (i.e., the column rank of A) and the number of nonzero rows of
R.

Sketch of proof: The first claim follows by induction on the number of rows. The ele-
mentary row operations leave the number of linearly independent rows of a matrix invariant
(as they do not change the space spanned). Since the systems Ax = 0 and Rx = 0 are equiv-
alent, i.e., since kerA = kerR, we obtain rankA = n− dim kerA = n− dim kerR = rankR,
assuming that A is an m × n matrix. Hence the elementary row operations leave also the
column rank of a matrix invariant. The proof is completed by the observation that column
rank and row rank of R are equal to the number of nonzero rows of R. �

Therefore elementary row operations can be used to determine the rank of A and the
rank of (A, b) and hence to answer the questions of existence and uniqueness of solutions
of Ax = b. But they are also useful in actually computing the solution: Let (B, b′) be a
row-echelon matrix which is row equivalent to (A, b) and assume that rankB = rank(B, b′).
Then x solves Ax = b if and only if x solves Bx = b′. Let x = (x1, ..., xn)>. If column
k of B contains the pivot of some row then xk is called a determined and otherwise a free
variable. Any choice of scalars for the free variables will lead to a solution. The determined
variables can now be computed one by one starting with the one having the largest index.

Example: Consider 1 −1 1
1 2 1
1 1 1

x1

x2

x3

 =

 1
−5
b

 .
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This is equivalent to 1 −1 1
0 3 0
0 0 0

x1

x2

x3

 =

 1
−6
b+ 3

 .

If b 6= −3 then there is no solution. If b = −3 then x3 is a free variable and x1 and x2

are determined variables. The second equation gives x2 = −2 and the first gives x1 =
1 + x2 − x3 = −1− x3 for any choice of x3.

5.4. Eigenvalues and Eigenvectors

5.4.1 Eigenvalues and eigenvectors. Let W be a vector space, V a subspace of W ,
T : V → W a linear transformation, and λ a scalar. If there exists a nontrivial (nonzero)
element x ∈ V such that Tx = λx then λ is called an eigenvalue of T and x is called an
eigenvector of T associated with λ. Thus λ is an eigenvalue if and only if T − λI is not
injective.

If W = V and V is finite-dimensional then the set of all eigenvalues is called the spectrum
of T and is denoted by σ(T ). (The spectrum of a general linear transformation is defined
differently and may contain points which are not eigenvalues. Here the word spectrum will
only be used in the case described.)

Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Sketch of proof: This will follow from the more general Theorem 5.4.2. �
Note that for any λ ∈ K the set ker(T −λI) is a subspace of V . If λ is not an eigenvalue

then this space is equal to the trivial space {0}. If λ is an eigenvalue then this space is the
set containing zero and all eigenvectors of T which are associated with λ. It is called the
(geometric) eigenspace of T associated with λ. The dimension of this space is called the
geometric multiplicity of λ. We will occasionally say that λ has geometric multiplicity zero
if λ is not an eigenvalue.
5.4.2 Generalized eigenvectors. A nontrivial vector x in a subspace V of a vector space
W is called a generalized eigenvector of the linear transformation T : V → W associated
with λ if there exists k ∈ N such that (T − λI)kx = 0.

Theorem. Generalized eigenvectors corresponding to distinct eigenvalues are linearly in-
dependent.

Sketch of proof: Let v1, ..., vm be generalized eigenvectors of T associated with the
pairwise distinct eigenvalues λ1, ..., λm and define kr = min{` ∈ N : (T − λrI)`vr = 0}.
Suppose that α1v1 + ...+ αmvm = 0. Apply the operator

(T − λ1I)k1−1(T − λ2I)k2 ...(T − λmI)km

to both sides of the equation. Since

(T − λ1)k1−1(T − λj)kjv1 =

kj∑
`=0

(
kj
`

)
(λ1 − λj)`(T − λ1)k1−1+kj−`v1

= (λ1 − λj)kj (T − λ1)k1−1v1

is different from zero whenever j 6= 1 it follows that α1 = 0. Similarly, α2 = ... = αm =
0. �

The set
⋃
k∈N ker(T − λI)k is a subspace of V called the algebraic eigenspace of λ. Its

dimension is called the algebraic multiplicity of λ. The algebraic eigenspace of λ includes
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the geometric eigenspace of λ as a subspace. Hence the algebraic multiplicity is at least as
large as the geometric multiplicity.

Theorem. The following three statements are equivalent:
(a) λ is an eigenvalue.
(b) The geometric multiplicity of λ is positive.
(c) The algebraic multiplicity of λ is positive.

Sketch of proof: That (a) implies (b) and that (b) implies (c) is immediate. Next assume
that λ is not an eigenvalue. Then T − λI is injective. Since the composition of injective
functions is injective we get (T − λI)k is injective for all k ∈ N. Thus (c) implies (a). �
5.4.3 Index of an eigenvalue. With respect to any linear transformation T we define

the index of a scalar λ to be the smallest nonnegative integer ν, if one exists, such that
ker(T − λI)ν is equal to the algebraic eigenspace of λ. If no such integer exists for λ, we
define the index to be infinity. In particular then, the index of λ is zero, if λ is not an
eigenvalue at all, and one, if the geometric and the algebraic eigenspace of λ coincide.

5.5. Spectral Theory in Finite-dimensional Complex Vector Spaces

5.5.1 Polynomials of linear transformations. Let V be a finite-dimensional complex

vector space, T a linear transformation from V to V , and f =
∑N
j=0 αjz

j a polynomial in

C[z]. Then one may define the transformation

f(T ) : V → V : x 7→
N∑
j=0

αjT
jx,

where, by definition, T 0 is the identity transformation. Note that, if f = gh, then f(T ) =
g(T )h(T ) = h(T )g(T ).
5.5.2 Existence of eigenvalues. Let T : V → V be a linear transformation from an
n-dimensional complex vector space V to itself. If n > 0, then T has at least one eigenvalue
and at most n.

Sketch of proof: Choose 0 6= x ∈ V . Then x, Tx, ..., Tnx are a linearly dependent. Hence
there exist numbers α0, ..., αn, at least one of which is not zero, such that α0x+α1Tx+ ...+
αnT

nx = 0. Let m be the largest index j such that αj 6= 0. Then m ≥ 1 and, without loss
of generality, αm = 1. Let f be the polynomial defined by f(z) = zm+αm−1z

m−1 + ...+α0.
Then, by the fundamental theorem of algebra, there exist complex numbers λ1, ..., λm such
that f(z) = (z − λ1)...(z − λm). Hence

0 = f(T )x = (T − λ1I)...(T − λmI)x.

This implies that at least one of the operators T − λjI is not injective, i.e., at least one of
the λj is an eigenvalue. There can be no more than n distinct eigenvalues by Theorem 5.4.1.
5.5.3 Algebraic multiplicities of eigenvalues. If T is a linear transformation in an
n-dimensional vector space and λ is a complex number, then the index of λ is at most equal
to the algebraic multiplicity of λ and the algebraic multiplicity of λ is at most n.

Sketch of proof: Let m denote the index of λ. There exists an x in the algebraic
eigenspace of λ such that (T − λI)m−1x 6= 0. Assume that y = α0x + ... + αm−1(T −
λI)m−1x = 0. Applying the operator (T − λI)m−1 to y shows that α0 = 0. Next, applying
the operator (T − λI)m−2 to y shows that α1 = 0, also. Proceeding in this manner shows
that the m vectors x, (T − λI)x, ..., (T − λI)m−1x are linearly independent and hence that
the algebraic eigenspace has dimension at least m. The second statement is obvious, since
the algebraic eigenspace of λ is a subspace of V . �
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5.5.4 Equality of f(T ) and g(T ). Suppose f, g are polynomials over C and T is a linear
transformation in a finite-dimensional complex vector space. Let ν(λ) denote the index of
λ. Then f(T ) = g(T ) if and only if ordλ(f − g) ≥ ν(λ) for all λ ∈ C.

Sketch of proof: We denote the vector space on which T is defined by V . As we might
compare the polynomial f − g with the zero polynomial no harm is done in assuming that
g = 0.

First assume f(T ) = 0. Let λ0 be an eigenvalue of T with index ν0. Then there exists a
vector x in the algebraic eigenspace of λ0 such that 0 6= y = (T −λ0)ν0−1x is an eigenvector
of T associated with λ0. Assume m0 = ordλ0(f), i.e., there is a polynomial h such that
f(λ) = h(λ)(λ − λ0)m0 with h(λ0) 6= 0. We have to show that m0 ≥ ν0 and hence we
assume, on the contrary, that m0 < ν0. Then

0 = f(T )(T − λ0)ν0−m0−1x = h(T )(T − λ0)ν0−1x = h(T )y = h(λ0)y.

Hence h(λ0) = 0 which is impossible.
Next assume that ordλ(f) ≥ ν(λ) for all λ ∈ C. Suppose the distinct eigenvalues of T are

λ1, ..., λr. Let S =
∏r
j=1(T − λjI)ν(λj). Note that our hypothesis implies that there exists

a polynomial h such that f(T ) = h(T )S. From the definition of the index ν it follows that
kerS2 = kerS and hence, by part A of 5.2.3, that V = kerS⊕S(V ). Also note that S(V ) is
an invariant subspace for T . Let T ′ = T |S(V ) : S(V )→ S(V ). If S(V ) has dimension n > 0,
then T ′ has an eigenvalue µ. This implies that µ is also an eigenvalue of T with eigenvector
in S(V ) which is impossible. Hence S(V ) = {0} and f(T )(V ) = (h(T )S)(V ) = {0}. �
5.5.5 Jordan blocks and Jordan matrices. Let V be a vector space and T a linear

transformation from V to V . In the following a subspace W of V will be called T -cyclic,
if there exists x ∈ W and m ∈ N such that B = {x, Tx, ...., Tm−1x} is a basis of W but
Tmx = 0. In this case we will write W = [x]T . Note that W is an invariant subspace for T .

The ordered basis (Tm−1x, ..., x) is called a Jordan chain. Its first element is an eigenvec-
tor of T associated with the eigenvalue zero. Every other element is a generalized eigenvector
of T associated with zero. With respect to this the transformation T |W : W → W has the
matrix 

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 .

Matrices of this form a particularly important. We therefore make the following defini-
tions: A matrix of the form 

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


is called a Jordan block with eigenvalue λ. A matrix of the form

J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jr


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where each matrix Jl is a Jordan block is called a Jordan matrix.
5.5.6 Nilpotent transformations. A linear transformation T from a finite-dimensional

vector space V to itself is called nilpotent if there exists a natural number m such that Tm

is the zero transformation.
Suppose that Tm = 0 and that λ is an eigenvalue of T with associated eigenvector

x. Then Tmx = λmx and this shows that λ = 0. Hence, a nilpotent transformation has
only one eigenvalue, namely zero. That eigenvalue has algebraic multiplicity equal to the
dimension of V .

Theorem. Suppose T : V → V is a nilpotent linear transformation on an n-dimensional
complex vector space V . Then V is a direct sum of T -cyclic subspaces.

Sketch of proof: The proof is by induction on the dimension of V . Let M be the set of
all natural numbers for which the theorem is true. Then 1 ∈ M , because dim(V ) = 1 and
0 6= x ∈ V imply that Tx = 0 and hence V = [x]T .

Next assume that n ∈M and that dim(V ) = n+1. Since T is nilpotent dim(T (V )) ≤ n.
Therefore there is a subspace F of V of dimension n such that T (V ) ⊂ F . Since dim(F ) = n

and F is invariant under T there exist vectors x1, ..., xk such that F =
⊕k

j=1[xj ]T where

the indices are chosen such that m1 ≤ ... ≤ mk when mj denotes dim([xj ]T ). Now choose

g ∈ V −F . Then there exists h ∈ F and numbers α1, ..., αk such that Tg = Th+
∑k
j=1 αjxj .

Indeed, since Tg ∈ F we have

Tg =

k∑
j=1

mj−1∑
`=0

αj,`T
`xj

and can therefore choose

h =

k∑
j=1

mj−1∑
`=1

αj,`T
`−1xj

and αj = αj,0 for j = 1, ..., k.
We now distinguish two cases. In the first case all of the numbers αj are zero. Defining

xk+1 = g − h gives Txk+1 = 0, 〈xk+1〉 = [xk+1]T , and V = F ⊕ [xk+1]T .
In the second case we have a number p such that αp 6= 0 but αj = 0 whenever j > p.

In this case we define x̃p = (g − h)/αp and F ′ =
⊕

j 6=p[xj ]T . Then

T `+1x̃p = T `xp +

p−1∑
j=1

αj
αp
T `xj .

This implies that Tmp+1x̃p = 0 and that {x̃p, T x̃p, ..., Tmp x̃p} is linearly independent. Hence
[x̃p]T is a T -cyclic subspace of dimension mp + 1. Since [x̃p]T ∩F ′ = {0} we obtain that the
sum [x̃p]T + F ′ is direct and has dimension n + 1. Thus V = [x̃p]T ⊕ F ′. This shows that
n+ 1 ∈M . The theorem follows now from the induction principle. �

The above proof is due to Gohberg and Goldberg (A simple proof of the Jordan de-
composition theorem for matrices, American Mathematical Monthly 103 (1996), p. 157 –
159).

Corollary. V has an ordered basis such that the matrix associated with T is a Jordan
matrix all of whose Jordan blocks have eigenvalue zero. Conversely, every such matrix is
nilpotent.
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5.5.7 The structure theorem. The theorem below shows that every linear transfor-
mation on a finite-dimensional complex vector space is built up from a number of simple
transformation on certain invariant subspaces.

Theorem. Let T be a linear transformation from a finite-dimensional complex vector space
V to itself and suppose that λ1, ..., λm are the distinct eigenvalues of T with respective
indices ν1, ..., νm. Denote by Uj = ker(T − λjI)νj the algebraic eigenspaces of λj . Then
the following statements are true.
(a) T maps each Uj to itself, i.e., each Uj is an invariant subspace with respect to T .
(b) V = U1 ⊕ ...⊕ Um.
(c) The sum of the algebraic multiplicities of all eigenvalues of T is equal to the dimension
of V .
(d) Each (T − λjI)|Uj

is nilpotent.
(e) Each T |Uj

has exactly one eigenvalue, namely λj .

Sketch of proof: Suppose x ∈ Uj and let y = (T − λjI)x. Then y ∈ Uj and hence
Tx = y + λjx ∈ Uj . This proves (a). Next let Aj = (T − λjI)νj and S = A1...Am. By
Theorem 5.5.4 we have S = 0, i.e., kerS = V . Claim (b) follows now from part C of 5.2.3.
The proofs of (c), (d), and (e) are trivial. �

Corollary. Let T : V → V be a linear transformation on an n-dimensional complex vector
space V . Let λ1, ..., λm be the distinct eigenvalues of T with respective algebraic multiplic-
ities k1, ..., km. Then there exists a basis of V with respect to which the matrix associated
with T is of the form 

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am


where, for l = 1, ...,m, Al is a kl × kl Jordan matrix all of whose Jordan blocks have
eigenvalue λl.

The matrix described in this corollary is called the Jordan normal form of the linear
transformation T .
5.5.8 Functional Calculus. Let V be a finite-dimensional complex vector space, T a

linear transformation from V to V . Let F(T ) be the set of all functions f for which there
is a (not necessarily connected) open set Ω(f) such that Ω(f) contains all eigenvalues of T
and f is analytic Ω(f). For any f ∈ F(T ) there exists a polynomial P such that

f (m)(λ) = P (m)(λ)

for every eigenvalue λ and all m ∈ {0, ..., ν(λ) − 1}. We then define f(T ) = P (T ). Note
that f(T ) is well-defined for, if Q is another polynomial satisfying that condition, then
P (T ) = Q(T ) by theorem 5.5.4.

Theorem. Suppose f, g ∈ F(T ) and α, β ∈ C. Then

(1) αf + βg ∈ F(T ) and (αf + βg)(T ) = αf(T ) + βg(T ).
(2) fg ∈ F(T ) and (fg)(T ) = f(T )g(T ) = g(T )f(T ).
(3) f(T ) = 0 if and only if f (m)(λ) = 0 for every eigenvalue of T and for all m ∈
{0, ..., ν(λ)− 1}.

5.5.9 Spectral projections. An operator E such that E2 = E is called idempotent. Since
E(V )∩ (1−E)(V ) = {0} an idempotent transformation is a projection in the sense of 5.2.1.
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For any λ ∈ C let U(λ) be a neighborhood of λ whose closure contains no eigenvalue
other than possibly λ itself. Define

eλ(µ) =

{
1 if µ is in U(λ),

0 if µ is in the interior of U(λ)c.

Now let T : V → V be a linear transformation on a finite-dimensional complex vector
space V . Then eλ ∈ F(T ) and the transformation Eλ = eλ(T ), called the eigenprojection
of λ, has the following properties:
(a) Eλ 6= 0 if and only if λ ∈ σ(T ).
(b) E2

λ = Eλ.
(c) If λ1 6= λ2 then Eλ1

Eλ2
= 0.

(d)
∑
λ∈σ(T )Eλ = I.

(e) Eλ(V ) is the algebraic eigenspace of λ.
In view of 5.5.8 only the last statement needs proof. Let f : µ 7→ (µ−λ)ν(λ)eλ(µ). Then

f(T ) = 0 and hence Eλ(V ) is a subset of ker(T − λ)ν(λ), the algebraic eigenspace of λ. To
prove the converse note that we have from (d) that x =

∑
µ∈σ(T )Eµ(x). Since Eµ(x) is in

the algebraic eigenspace of µ and since the sum of the algebraic eigenspaces is direct we get
x = Eλ(x) if x ∈ ker(T − λ)ν(λ).
5.5.10 The spectral theorem. Let T be a linear transformation on a finite-dimensional

vector space V and f ∈ F(T ). Then the function

g : µ 7→
∑

λ∈σ(T )

ν(λ)−1∑
m=0

(µ− λ)m

m!
f (m)(λ)eλ(µ)

satisfies g(m)(λ) = f (m)(λ) for all eigenvalues λ and all m ∈ {0, ..., ν(λ− 1)}. This gives rise
to the so called spectral theorem:

Theorem. Let T be a linear transformation on a finite-dimensional vector space V and
f ∈ F(T ). Then

f(T ) =
∑

λ∈σ(T )

ν(λ)−1∑
m=0

(T − λI)m

m!
f (m)(λ)Eλ.

In particular, if ν(λ) = 1 for every eigenvalue λ then

T =
∑

λ∈σ(T )

λEλ.

5.5.11 Representation by Cauchy’s integral formula. Suppose f ∈ F(T ) and that the
domain Ω(f) of f has the following properties: there is an open set U such that σ(T ) ⊂ U ,
U ⊂ Ω(f), and the boundary Γ of U consists of finitely many positively oriented, closed,
rectifiable Jordan curves. Then

f(T ) =
1

2πi

∫
Γ

f(z)(zI − T )−1dz.

Sketch of proof: If z is in Γ, the boundary of U , then rz : U → C : µ 7→ (z − µ)−1 is in
F(T ). Since

r(m)
z (µ) =

m!

(z − µ)m+1
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the spectral theorem implies

(zI − T )−1 =
∑

λ∈σ(T )

ν(λ)−1∑
m=0

(T − λI)m

(z − λ)m+1
Eλ.

Then use Cauchy’s integral formula and again the spectral theorem. �
5.5.12 The minimal polynomial and Cayley’s theorem. Let T : V → V be a linear

transformation on a finite-dimensional complex vector space. Suppose that λ1, ..., λm are
its distinct eigenvalues whose respective indices are ν1, ..., νm. Then the polynomial

(λ− λ1)ν1 ...(λ− λm)νm

is called the minimal polynomial of T .
In view of Theorem 5.5.4 we obtain immediately the validity of the following theorem

of Cayley.

Theorem. If q is (a multiple of) the minimal polynomial of T then q(T ) = 0.

Among all polynomials f with leading coefficient one satisfying f(T ) = 0 the minimal
polynomial of T is the one of lowest degree.
5.5.13 The characteristic polynomial, trace and determinant. Let T : V → V be

a linear transformation on a finite-dimensional complex vector space. Suppose that λ1, ...,
λm are its distinct eigenvalues whose respective algebraic multiplicities are k1, ..., km. Then
the polynomial

(λ− λ1)k1 ...(λ− λm)km = λn − a1λ
n−1 + ...+ (−1)nan

is called the characteristic polynomial of T . The number a1 = k1λ1 + ...+kmλm is called the
trace of T and is denoted by trT . The number an = λk11 ...λ

km
m is called the determinant of T

and is denoted by detT . Since λI−T has an eigenvalue λ−λj of algebraic multiplicity kj if
and only if T has an eigenvalue λj of the same multiplicity it follows that the characteristic
polynomial of T equals det(λI − T ).

Theorem. Suppose T : V → V is a linear transformation on a complex finite-dimensional
vector space. Then T is invertible if and only if detT 6= 0. In this case T−1 is also a linear
transformation from V to V .

5.6. Multilinear Algebra

5.6.1 Multilinear forms. Suppose V is a vector space over the field K. To any function
f : V k → K and any element (x, y) ∈ V j−1 × V k−j we may associate the function fx,y :
V → K : t 7→ f(x, t, y). The function f is called a multilinear form or a (covariant) tensor
of rank k over V if for all j ∈ {1, ..., k} and all (x, y) ∈ V j−1 × V k−j the function fx,y is
linear.

If V has dimension n the set Tk of all tensors of rank k over V is a vector space of
dimension nk.
5.6.2 Antisymmetric tensors. Suppose f is a tensor of rank k over the vector space V .

Then f is called antisymmetric if for every transposition τ the relationship f(x1, ..., xk) =
−f(xτ1, ..., xτk) holds. Equivalently, f is called antisymmetric when j 6= l and xj = xl
imply that f(x1, ..., xk) = 0.

The antisymmetric tensors of rank k form a subspace of Tk.
5.6.3 Determinant forms. Let V be an n-dimensional vector space and {b1, ..., bn} a

basis of V . An antisymmetric tensor f of rank n is called a determinant form. It is uniquely
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determined when f(b1, ..., bn) is given. In particular, the antisymmetric tensors of rank n
form a one-dimensional vector space. To see this let xj =

∑n
k=1 αk,jbk. Then

f(x1, ..., xn) =
∑

k1,...,kn

αk1,1...αkn,nf(bk1 , ..., bkn).

The only nonzero terms in this sum are those for which (k1, ..., kn) = π(1, ..., n), where π is
a permutation on n letters. Let (−1)π denote +1 or −1 depending on whether π is an even
or an odd permutation. Then f(bk1 , ..., bkn) = (−1)πf(b1, ..., bn) and hence

f(x1, ..., xn) = f(b1, ..., bn)
∑
π∈Sn

(−1)παπ1,1...απn,n.

In particular, after having chosen an n-tuple (b1, ..., bn) of basis vectors there is one and
only one determinant form D such that D(b1, ..., bn) = 1.
5.6.4 Determinants. Let V be an n-dimensional vector space. Suppose T : V → V is a

linear transformation. Given any nonzero determinant form f : V n → K define fT : V n →
K : (x1, ..., xn) 7→ f(Tx1, ..., Txn) which is also a determinant form.

Theorem. Let {b1, ..., bn} be any basis of V . Then

detT =
fT (b1, ..., bn)

f(b1, ..., bn)
=
f(Tb1, ..., T bn)

f(b1, ..., bn)
.

Sketch of proof: Since the space of determinant forms is one-dimensional fT is a multiple
of f (f is a basis vector). This shows that f(Tb1, ..., T bn)/f(b1, ..., bn) is independent of the
basis chosen. Recall from 5.5.7 that V has a basis {b1, ..., bn} such that

Tbj = λjbj + αjbj−1

where αj ∈ {0, 1}. Among the numbers λ1, ..., λn each eigenvalue appears as often as
indicated by its multiplicity. �
5.6.5 The multiplicative property of determinants. Let V be an n-dimensional vector
space and suppose that T and S are linear transformations from V → V . If either S or T is
not injective, then neither is TS. Hence, by Theorem 5.5.12, det(TS) = det(T ) det(S) = 0.
Now suppose T , S, and TS are injective and {b1, ..., bn} is a basis of V . Then {Sb1, ..., Sbn}
is likewise a basis of V and hence

det(TS) =
f(TSb1, ..., TSbn)

f(b1, ..., bn)
=
f(TSb1, ..., TSbn)

f(Sb1, ..., Sbn)

f(Sb1, ..., Sbn)

f(b1, ..., bn)
= det(T ) det(S).

In particular, det(T−1) = det(T )−1.
5.6.6 Determinants of matrices. In Kn choose the canonical basis (e1, ..., en). Since

the linear transformations from Kn to Kn are in a one-to-one correspondence to n × n-
matrices the determinant of a matrix A is defined as the determinant of the associated
linear transformation. Equivalently,

detA =
∑
π∈Sn

(−1)πAπ1,1...Aπn,n

if the entries of A are denoted by Aj,k.
We list the most important properties of the determinant of an n× n-matrix A:

(1) detA = detA>, where A> denotes the transpose of A.
(2) A transposition of two columns or two rows of A changes the sign of the determi-

nant.
(3) Adding to a column (or row) of A a linear combination of the remaining columns

(or rows) does not change the determinant.
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(4) Multiplying a column or row by a constant results in a multiplication of detA by
that constant.

(5) If the columns or rows of A are linearly dependent (in particular, if two columns
or rows are equal) then detA = 0.

(6) det(AB) = det(A) det(B), in particular, det(A−1) = det(A)−1 and det I = 1 when
I is the identity matrix.

5.6.7 Laplace’s expansion theorem.

Theorem. Let A be an n × n-matrix and choose a partition (J,K) of {1, ..., n} such that
j1 < ... < jp and k1 < ... < kq when J = {j1, ..., jp} and K = {k1, ..., kq}. Let Γ be the set
of those permutations γ in Sn such that

γj1 < ... < γjp and γk1 < ... < γkq.

Furthermore let Uγ be the submatrix of A consisting only of the columns numbered j1, ..., jp
and the rows numbered γj1, ..., γjp and Vγ the submatrix of A consisting only of the columns
numbered k1, ..., kq and the rows numbered γk1, ..., γkq. Then

detA =
∑
γ∈Γ

(−1)γ detUγ detVγ

Sketch of proof: Let Aγ be the set of all permutations in Sn whose support is contained
in {γk1, ..., γkq} and Bγ the set of all permutations in Sn whose support is contained in
{γj1, ..., γjq}. Then every permutation in Sn can be represented uniquely as α ◦β ◦ γ where
γ ∈ Γ, α ∈ Aγ , and β ∈ Bγ . �

By choosing p = 1 and j1 = j we expand the determinant along row j. Since the
determinant of A equals the determinant of the transpose we can as well expand along a
column.

Corollary. Suppose A is an n × n-matrix. Denote the matrix obtained by deleting row j
and column k by M(j, k). Then

detA =

n∑
k=1

(−1)j+kAj,k detM(j, k) =

n∑
j=1

(−1)j+kAj,k detM(j, k).

5.7. Normed Spaces and Inner product Spaces

5.7.1 Norms. Let V be a vector space over either the real or the complex numbers, i.e.,
K = R or K = C.

A function ‖ · ‖ : V → R is called a norm on V if it satisfies the following conditions:
(a) ‖x‖ ≥ 0 for all x ∈ V ,
(b) ‖x‖ = 0 if and only if x = 0,
(c) ‖αx‖ = |α|‖x‖ for all α ∈ K and all x ∈ V ,
(d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V . (This inequality is called the triangle inequality.)

If there exists a norm ‖ · ‖ on V then (V, ‖ · ‖) is called a normed vector space.
Examples: Rn and Cn can be considered as normed vector spaces. Denote the compo-

nents of x ∈ Cn by x1, ..., xn. Then the following are norms:
(a) ‖x‖∞ = max{|x1|, ..., |xn|},
(b) ‖x‖p = (

∑n
k=1 |xk|p)

1/p
if p ≥ 1.

The set C0([a, b]), i.e., the set of continuous complex-valued or real-valued functions on
[a, b], can be considered as a normed vector space when [a, b] is a closed interval in R. The
following are norms on C0([a, b]):
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(a) ‖f‖∞ = max{|f(x)| : x ∈ [a, b]},

(b) ‖f‖p =
(∫ b

a
|f(x)|pdx

)1/p

if p ≥ 1.

5.7.2 Inner products. Again let V be a vector space over either the real or the complex
numbers. A function (·, ·) : V × V → K is called an inner product or a scalar product if it
satisfies the following conditions:
(a) (x, x) ≥ 0 for all x ∈ V ,
(b) (x, x) = 0 if and only if x = 0,
(c) (αx+ βy, z) = α(x, z) + β(y, z), for all α, β ∈ K and all x, y, z ∈ V ,

(d) (x, y) = (y, x) for all x, y ∈ V .
Here α equals α or its complex conjugate depending on whether K = R or K = C.

Note that y = 0 if and only if (x, y) = 0 for all x ∈ V .
If K = R the inner product is bilinear (linear in both of its arguments). If K = C

the inner product is linear in its first argument but antilinear in its second: (x, αy + βz) =
α(x, y) + β(x, z).

If there exists an inner product (·, ·) on V then (V, (·, ·)) is called an inner product space.
Examples: Rn and Cn can be considered as inner product spaces. An inner product on

Cn is given by (x, y) =
∑n
k=1 xkyk. Also C0([a, b]) can be considered as an inner product

space when [a, b] is a closed interval in R: an inner product is (f, g) =
∫ b
a
fgdx.

Theorem. 1. An inner product satisfies Schwarz’s inequality, i.e.,

|(x, y)| ≤ (x, x)1/2(y, y)1/2.

2. Every inner product space is a normed vector space under the norm x 7→ ‖x‖ = (x, x)1/2.

Sketch of proof: 1. Assume (x, y) 6= 0. Let α = |(x, y)|/(y, x). For any real r

0 ≤ (x− rαy, x− rαy) = (x, x)− 2r|(x, y)|+ r2(y, y).

Now (y, y) 6= 0 since otherwise (x, y) would be zero. Schwarz’s inequality follows now from
choosing r = |(x, y)|/(y, y).
2. The triangle inequality follows from Schwarz’s inequality. �
5.7.3 Orthogonality. Suppose (·, ·) is an inner product on a vector space V . If (x, y) = 0

we say that x and y are orthogonal and denote this by x ⊥ y.
Let M be a subset of V and define M⊥ = {x ∈ V : (∀y ∈ M : (x, y) = 0)}. If

x1, x2 ∈M⊥ then so is αx1 +βx2, i.e., M⊥ is a subspace of V . M⊥ is called the orthogonal
complement of M .

Theorem. Let X be a subset of an inner product space. If the elements of X are nonzero
and pairwise orthogonal then X is linearly independent.

Sketch of proof: Take the inner product of a linear combination of the vectors with each
of the vectors themselves. �
5.7.4 Orthonormal subsets. A set X whose elements have norm one and are pairwise

orthogonal is called orthonormal.

Theorem. Let X be a linearly independent countable (e.g., finite) subset of an inner prod-
uct space. Then 〈X〉, the span of X, has an orthonormal basis.

Sketch of proof: The basis can be produced from X using the so called Gram-Schmidt
process: define z1 = x1/‖x1‖. Then z1 has norm one and spans 〈{x1}〉. Next assume that,
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for some k < n, the set {z1, ..., zk} is orthonormal and spans 〈{x1, ..., xk}〉. Define

yk+1 = xk+1 −
k∑
j=1

(xk+1, zj)zj .

Then yk+1 is different from zero and orthogonal to each of the zj . Finally, define zk+1 =
yk+1/‖yk+1‖ to obtain an orthonormal set {z1, ..., zk, zk+1} which spans 〈{x1, ..., xk+1}〉.
Induction shows therefore the existence of an orthonormal and hence linearly independent
set {z1, z2, ...} which spans 〈X〉. �

Let x be a linear combination of elements of an orthonormal set, i.e., x = α1x1+...+αnxn
when x1, ..., xn are distinct elements of some orthonormal set. Then the coefficients αj are
given by αj = (x, xj).
5.7.5 Finite-dimensional inner product spaces. We restrict our attention again to

finite-dimensional spaces since the appropriate generalizations to infinite-dimensional spaces
require some topology (closed subsets, continuity, limits).

Let M be a subspace of the finite-dimensional inner product space V . Then M ∩M⊥ =
{0} and V = M ⊕M⊥. In particular, (M⊥)⊥ = M . For each x ∈ V there exists a unique
decomposition x = Px + Qx where Px ∈ M and Qx ∈ M⊥. As in 5.2.1 the mappings
P : V → M and Q : V → M⊥ are projections, which, in this case, are called orthogonal
projections.

Theorem Pythagorean theorem. With the above notation we have

‖x‖2 = ‖Px‖2 + ‖Qx‖2.
5.7.6 Dual spaces and the representation theorem. Let L : V → K be a linear

transformation on the vector space V . Then L is called a linear functional. The set of all
such linear functionals is a vector space (define (αL1 +βL2)(x) = αL1x+βL2x). This space
of functionals is called the dual space of V and is denoted by V ∗. The elements of V ∗ are
precisely the tensors of rank 1 over V .

Examples: A 1× n matrix gives rise to a linear functional on Kn. In fact these are all
linear functionals on Kn. The set of all 1× n matrices is again a vector space which is in a
one-to-one correspondence with Kn.

Let g : [a, b] → C be a continuous function. Then G : C0([a, b]) → C given by Gf =∫ b
a
f(x)g(x)dx is a linear functional. However, the continuous functions g give not rise to all

linear functionals on C0([a, b]). In particular the map f 7→ f(x0), where x0 is a fixed point
in [a, b], is a linear functional but can not be represented by any of the functionals G. Thus
C0([a, b]) can be considered as a proper subset of its own dual space.

The following theorem determines the dual space of any finite-dimensional inner product
space.

Theorem Representation theorem. Let V be a real or complex finite-dimensional inner
product space and L a linear functional on V . Then there exists a unique y ∈ V such that
Lx = (x, y) for all x ∈ V . Conversely, for every y ∈ V the function x 7→ (x, y) is a linear
functional on V . In particular, there exists a bijection from V ∗ to V . This bijection is linear
if the scalar field is R and antilinear if the scalar field is C.

5.7.7 Adjoints. Let V be a finite-dimensional inner product space and T : V → V a linear
transformation. Choose y ∈ V . Then x 7→ (Tx, y) is a linear functional. Hence, by Theorem
5.7.6, for each y there is a unique z ∈ V such that (Tx, y) = (x, z) and this relationship
defines a function T ∗ : V → V , i.e., T ∗y = z. Hence

S = T ∗ ⇔ ∀x, y ∈ V : (Tx, y) = (x, Sy).
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T ∗ is a linear transformation. It is called the adjoint of T . Note that T ∗∗ = T since

(T ∗x, y) = (y, T ∗x) = (Ty, x) = (x, Ty).

Let {x1, ..., xn} be an orthonormal basis of V . Suppose that, with respect to that
basis, T is represented by the matrix A while T ∗ is represented by the matrix B, i.e.,
Txj =

∑n
l=1Al,jxl and T ∗xj =

∑n
l=1Bl,jxl. Observe that

Al,j = (Txj , xl) = (xj , T
∗xl) = (xj ,

n∑
k=1

Bk,lxk) = Bj,l.

Hence we found that the matrix representing T ∗ is the complex conjugate of the transpose
of the matrix representing T (or just the transpose if the scalar field is R). We will write
B = A∗.

Theorem. Let T : V → V be a linear transformation on a finite-dimensional inner product
space. Then kerT = T ∗(V )⊥ and kerT ∗ = T (V )⊥. In particular, T and T ∗ have the same
rank.

Sketch of proof: The following sequence of equivalences shows the first statement.

x ∈ kerT ⇔ Tx = 0⇔ ∀y : (Tx, y) = 0⇔ ∀y : (x, T ∗y) = 0⇔ x ∈ (T ∗(V ))⊥. �

5.7.8 Normal linear transformations. Suppose V is a finite-dimensional vector space.
A linear transformation T : V → V on an inner product space V is called normal if it
commutes with its adjoint, i.e., if TT ∗ = T ∗T .

If T is normal and x ∈ V then (Tx, Tx) = (T ∗x, T ∗x). This implies that kerT = kerT ∗

for any normal linear transformation.
If T is normal and x ∈ kerT 2, then Tx ∈ kerT = kerT ∗. Therefore 0 = (T ∗Tx, x) =

(Tx, Tx) and hence kerT = kerT 2. Since T is normal if and only if T − λI is normal, this
implies that the algebraic and geometric multiplicities of any eigenvalue of a normal linear
transformation coincide. In particular, if V , the domain of T , is a complex vector space
then V has a basis of eigenvectors of T .

Suppose λ and λ′ are distinct eigenvalues of a normal linear transformation T and that
x and x′ are the associated eigenvectors. Then

(λ− λ′)(x, x′) = (Tx, x′)− (x, T ∗x′) = 0

which implies that (x, x′) = 0, i.e., that x and x′ are orthogonal. In particular, if V , the
domain of T , is a complex vector space then V has an orthonormal basis of eigenvectors of
T . In summary we have the

Theorem Spectral theorem. Let T be a normal linear transformation on a finite-dimensional
complex vector space V with distinct eigenvalues λ1, ..., λm. Then there exist pairwise or-
thogonal subspaces U1, ..., Um such that V = U1 ⊕ ...⊕ Um and

T =

m∑
j=1

λjPj

where the Pj are orthogonal projections onto Uj .

5.7.9 Self-adjoint linear transformations. A linear transformation on an inner product
space is called self-adjoint if T = T ∗. Note that every self-adjoint linear transformation is
normal.

Example: A linear transformation P is an orthogonal projection if and only if it is
idempotent and self-adjoint. i.e., P = P 2 = P ∗.
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Theorem. Every eigenvalue of a self-adjoint linear transformation is real.

Sketch of proof: Suppose T is self-adjoint and λ is an eigenvalue of T with associated
eigenvector x. Then

λ(x, x) = (Tx, x) = (x, Tx) = λ(x, x). �
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