Theorem 4.16. For any $A \in \mathbb{C}^{m \times n}$ we have

$$\|A\|_2^2 = \|A^*\|_2^2 = \|A^*A\|_2 = \|AA^*\|_2 = \lambda_{\text{max}}$$

where λ_{max} is the largest eigenvalue of both A^*A and AA^*.

In the proof, $\|\cdot\|$ will always denote the 2-norm.

Lemma. For every vector $z \in \mathbb{C}^n$ we have $\|z\| = \sup_{\|y\|=1} |\langle y, z \rangle|$.

Proof. Indeed, by the Cauchy-Schwarz inequality

$$|\langle y, z \rangle| \leq \langle y, y \rangle^{1/2} \langle z, z \rangle^{1/2} = \|z\|$$

and the equality is attained whenever y is parallel to z, we can set $y = \pm \frac{z}{\|z\|}$. \hfill \Box

Step 1. To prove that $\|A\| = \|A^*\|$ we write

$$\|A\| = \sup_{\|x\|=1} \|Ax\| = \sup_{\|x\|=1} \sup_{\|y\|=1} |\langle y, Ax \rangle| = \sup_{\|x\|=1} \sup_{\|y\|=1} |\langle A^*y, x \rangle|$$

$$= \sup_{\|y\|=1} \sup_{\|x\|=1} |\langle x, A^*y \rangle| = \sup_{\|y\|=1} \|A^*x\| = \|A^*\|$$

Step 2. To prove that $\|A\|^2 = \|A^*A\|$ we write

$$\|A^*A\| = \sup_{\|x\|=1} \|A^*Ax\| = \sup_{\|x\|=1} \sup_{\|y\|=1} |\langle y, A^*Ax \rangle| = \sup_{\|x\|=1} \sup_{\|y\|=1} |\langle Ay, Ax \rangle|$$

Then again by the Cauchy-Schwarz inequality

$$|\langle Ay, Ax \rangle| \leq \|Ay\| \|Ax\| \leq \|A\| \|A\| = \|A\|^2$$

hence $\|A^*A\| \leq \|A\|^2$. On the other hand, setting $x = y$ gives

$$\sup_{\|x\|=1} \sup_{\|y\|=1} |\langle Ay, Ax \rangle| \leq \sup_{\|x\|=1} |\langle Ax, Ax \rangle| = \|A\|^2,$$

hence $\|A^*A\| \geq \|A\|^2$. Therefore, $\|A^*A\| = \|A\|^2$.

Step 3. Using an obvious symmetry we conclude that $\|A^*\|^2 = \|AA^*\|$

Lemma. Let B be a Hermitian matrix. Then

$$\|B\| = \max_{1 \leq i \leq n} |\lambda_i|,$$

where $\lambda_1, \ldots, \lambda_n$ denote the eigenvalues of B.

Proof. By the Spectral Theorem, \(B = Q^* \Lambda Q \), where \(Q \) is a unitary matrix and \(\Lambda \) a diagonal matrix whose diagonal entries are \(\lambda_i \)'s. We know (from earlier homework assignments) that

\[
\|B\| = \|Q^* \Lambda Q\| = \|\Lambda\|.
\]

Now for any vector \(x = (x_1, \ldots, x_n) \) we have \(\Lambda x = (\lambda_1 x_1, \ldots, \lambda_n x_n) \), hence

\[
\|\Lambda x\|^2 = |\lambda_1|^2 |x_1|^2 + \cdots + |\lambda_n|^2 |x_n|^2
\]

Now if \(\|x\| = 1 \), then

\[
\|\Lambda x\|^2 \leq \max_{1 \leq i \leq n} |\lambda_i|^2
\]

On the other hand, if \(|\lambda_j| = \max_{1 \leq i \leq n} |\lambda_i| \) then we choose \(x = e_j \) and obtain \(\|\Lambda x\|^2 = |\lambda_j|^2 \). Lemma is proven. \(\square \)

This completes the proof of 4.16. Note that \(A^*A \) and \(AA^* \) are positive-semidefinite matrices, so their eigenvalues are \(\geq 0 \), so \(\max_{1 \leq i \leq n} |\lambda_i| \) is simply the largest eigenvalue, we denote it by \(\lambda_{\text{max}} \).

A little modification of the previous Lemma:

Lemma. Let \(B \) be a Hermitian positive-semidefinite matrix with eigenvalues \(\lambda_1, \ldots, \lambda_n \). Then

\[
\sup_{\|x\| = 1} \langle Bx, x \rangle = \lambda_{\text{max}} = \max_{1 \leq i \leq n} \lambda_i,
\]

and if \(x \) is a vector such that

\[
\|x\| = 1 \quad \text{and} \quad \langle Bx, x \rangle = \lambda_{\text{max}},
\]

then \(x \) is a corresponding eigenvector: \(Bx = \lambda_{\text{max}} x \).

Proof. Again, we use the Spectral Theorem to reduce the problem to a diagonal matrix \(\Lambda \), then the proof is just a direct inspection. \(\square \)

Corollary. If \(\lambda_{\text{max}} \) again denotes the largest eigenvalue of \(A^*A \), then

\[
\|Ax\|_2 = \|A\|_2 \|x\|_2 \quad \iff \quad A^*Ax = \lambda_{\text{max}} x.
\]

Proof. On the one hand

\[
\|Ax\|^2 = \langle Ax, Ax \rangle = \langle A^*Ax, x \rangle
\]

and on the other hand

\[
\|A\|^2 = \lambda_{\text{max}},
\]

so for any vector \(x \) with \(\|x\| = 1 \) we have

\[
\|Ax\|_2 = \|A\|_2 \quad \iff \quad \langle A^*Ax, x \rangle = \lambda_{\text{max}}.
\]

Then we use the previous lemma. \(\square \)