
University of Alabama at Birmingham
Department of Mathematics

Numerical Linear Algebra

Lecture Notes for MA 660
(1997–2014)

Dr Nikolai Chernov

Summer 2014

Contents

0. Review of Linear Algebra 1
0.1 Matrices and vectors . 1
0.2 Product of a matrix and a vector . 1
0.3 Matrix as a linear transformation . 2
0.4 Range and rank of a matrix . 2
0.5 Kernel (nullspace) of a matrix . 2
0.6 Surjective/injective/bijective transformations 2
0.7 Square matrices and inverse of a matrix . 3
0.8 Upper and lower triangular matrices . 3
0.9 Eigenvalues and eigenvectors . 4
0.10 Eigenvalues of real matrices . 4
0.11 Diagonalizable matrices . 5
0.12 Trace . 5
0.13 Transpose of a matrix . 6
0.14 Conjugate transpose of a matrix . 6
0.15 Convention on the use of conjugate transpose 6

1. Norms and Inner Products 7
1.1 Norms . 7
1.2 1-norm, 2-norm, and ∞-norm . 7
1.3 Unit vectors, normalization . 8
1.4 Unit sphere, unit ball . 8
1.5 Images of unit spheres . 8
1.6 Frobenius norm . 8
1.7 Induced matrix norms . 9
1.8 Computation of ‖A‖1, ‖A‖2, and ‖A‖∞ . 9
1.9 Inequalities for induced matrix norms . 9
1.10 Inner products . 10
1.11 Standard inner product . 10
1.12 Cauchy-Schwarz inequality . 11
1.13 Induced norms . 12
1.14 Polarization identity . 12
1.15 Orthogonal vectors . 12
1.16 Pythagorean theorem . 12
1.17 Orthogonality and linear independence . 12
1.18 Orthonormal sets of vectors . 13
1.19 Orthonormal basis (ONB) . 13
1.20 Fourier expansion . 13
1.21 Orthogonal projection . 13
1.22 Angle between vectors . 14
1.23 Orthogonal projection onto a subspace . 14
1.24 Degenerate case . 14
1.25 Gram-Schmidt orthogonalization . 15

ii

1.26 Construction of ONB . 15
1.27 Legendre polynomials (optional) . 15
1.28 Orthogonal complement . 16
1.29 Orthogonal direct sum . 16
1.30 Some useful formulas . 16

2. Unitary Matrices 18
2.1 Isometries . 18
2.2 Characterization of isometries - I . 18
2.3 Characterization of isometries - II . 18
2.4 Characterization of isometries - III . 18
2.5 Identification of finite-dimensional inner product spaces 19
2.6 Unitary and orthogonal matrices . 19
2.7 Lemma . 19
2.8 Matrices of isometries . 20
2.9 Group property . 20
2.10 Orthogonal matrices in 2D . 20
2.11 Characterizations of unitary and orthogonal matrices 21
2.12 Determinant of unitary matrices . 21
2.13 Eigenvalues of unitary matrices . 21
2.14 Invariance principle for isometries . 22
2.15 Orthogonal decomposition for complex isometries 22
2.16 Lemma . 23
2.17 Orthogonal decomposition for real isometries 23
2.18 Unitary and orthogonal equivalence . 24
2.19 Unitary matrices in their simples form . 24
2.20 Orthogonal matrices in their simples form 24

3. Hermitian Matrices 26
3.1 Adjoint matrices . 26
3.2 Adjoint transformations . 26
3.3 Riesz representation theorem . 27
3.4 Quasi-linearity . 27
3.5 Remark . 27
3.6 Existence and uniqueness of adjoint transformation 27
3.7 Relation between KerT ∗ and RangeT . 28
3.8 Selfadjoint operators and matrices . 28
3.9 Examples . 28
3.10 Hermitian property under unitary equivalence 28
3.11 Invariance principle for selfadjoint operators 29
3.12 Spectral Theorem . 29
3.13 Characterization of Hermitian matrices . 30
3.14 Eigendecomposition for Hermitian matrices 30
3.15 Inverse of a selfadjoint operator . 30
3.16 Projections . 31
3.17 Projections (alternative definition) . 31

iii

3.18 “Complimentary” projections . 31
3.19 Orthogonal projections . 32
3.20 Characterization of orthogonal projections 32

4. Positive Definite Matrices 33
4.1 Positive definite matrices . 33
4.2 Lemma . 34
4.3 Sufficient condition for positive definiteness 34
4.4 Bilinear forms . 34
4.5 Representation of bilinear forms . 35
4.6 Corollary . 35
4.7 Hermitian/symmetric forms . 35
4.8 Quadratic forms . 35
4.9 Theorem . 35
4.10 Positive definite forms and operators . 35
4.11 Theorem . 35
4.12 Properties of Hermitian matrices . 36
4.13 Eigenvalues of positive definite matrices . 37
4.14 Inverse of a positive definite matrix . 37
4.15 Characterization of positive definite matrices 38
4.16 Characterization of positive semi-definite matrices 38
4.17 Full rank and rank deficient matrices . 38
4.18 Products A∗A and AA∗ . 38
4.19 Spectral radius . 39
4.20 Spectral radius for Hermitian matrices . 40
4.21 Theorem on the 2-norm of matrices . 40
4.22 Example . 42
4.23 Corollary for the 2-norm of matrices . 42

5. Singular Value Decomposition 44
5.1 Singular value decomposition (SVD) . 44
5.2 Singular values and singular vectors . 46
5.3 Real SVD . 46
5.4 SVD analysis . 47
5.5 Useful relations - I . 47
5.6 Computation of SVD for small matrices . 48
5.7 Reduced SVD . 48
5.8 Rank-one expansion . 49
5.9 Useful relations - II . 49
5.10 Low-rank approximation . 50
5.11 Distance to the nearest singular matrix . 51
5.12 Small perturbations of matrices . 51
5.13 Rank with tolerance ε . 51
5.14 Computation of the numerical rank . 51
5.15 Metric for matrices . 52
5.16 Topological properties of full rank matrices 52

iv

5.17 Topological property of diagonalizable matrices 52

6. Schur Decomposition 54
6.1 Schur decomposition . 54
6.2 Normal matrices . 55
6.3 Normal matrices under unitary equivalence 55
6.4 Lemma . 55
6.5 Theorem . 56
6.6 Remark . 56
6.7 Real Schur Decomposition . 57

7. LU Decomposition 59
7.1 Gaussian elimination . 59
7.2 Principal minors . 61
7.3 Criterion of failure . 61
7.4 Gauss matrices . 61
7.5 Main matrix formulas . 62
7.6 Unit lower/upper triangular matrices . 62
7.7 Main matrix formulas (continued) . 63
7.8 Theorem (LU decomposition) . 63
7.9 Forward and backward substitutions . 64
7.10 Cost of computation . 65
7.11 Computation of A−1 . 65
7.12 “Manual” solution of systems of linear equations 66
7.13 Example . 66
7.14 Warnings . 66
7.15 Partial pivoting . 67
7.16 Example . 67
7.17 Complete pivoting . 67
7.18 Example . 67
7.19 Diagonally dominant matrices . 68

8. Cholesky Factorization 69
8.1 Theorem (LDM∗ Decomposition) . 69
8.2 Corollary (LDL∗ Decomposition) . 69
8.3 Sylvester’s Theorem . 70
8.4 Corollary . 70
8.5 Theorem (Cholesky Factorization) . 71
8.6 Algorithm for Cholesky factorization . 71
8.7 Cost of computation . 72
8.8 Criterion of positive definiteness . 72

9. QR Decomposition 73
9.1 Gram-Schmidt orthogonalization (revisited) 73
9.2 Linearly dependent case . 74
9.3 Extension of Q̂ to Q . 74

v

9.4 Theorem (QR decomposition) . 75
9.5 Real QR decomposition . 75
9.6 Positivity of the diagonal of R . 75
9.7 Uniqueness of the QR decomposition . 76
9.8 Cost of QR . 76
9.9 Cost of SVD . 76
9.10 Modified Gram-Schmidt orthogonalization 77

10. Least Squares 80
10.1 Definition . 80
10.2 Conditions for existence and uniqueness of a solution 80
10.3 Least squares solution . 80
10.4 Normal equations . 80
10.5 Theorem . 81
10.6 Linear least squares fit . 82
10.7 Polynomial least squares fit . 82
10.8 Continuous least squares fit . 83
10.9 Algorithm 1, based on normal equations 83
10.10 Algorithm 2, based on QR decomposition 84
10.11 Algorithm 3, based on SVD . 84
10.12 Rank deficient matrix A . 85

11. Machine Arithmetic 86
11.1 Decimal number system . 86
11.2 Floating point representation . 86
11.3 Normalized floating point representation 87
11.4 Binary number system . 87
11.5 Other number systems . 88
11.6 Machine number systems (an abstract version) 88
11.7 Basic properties of machine systems . 89
11.8 Two standard machine systems . 89
11.9 Rounding rules . 89
11.10 Relative errors . 90
11.11 Machine epsilon . 90
11.12 Machine epsilon for the two standard machine systems 90
11.13 Example . 91
11.14 Example . 93
11.15 Computational errors . 94
11.16 Multiplication and division . 94
11.17 Addition and subtraction . 95

12. Condition Numbers 96
12.1 Introduction . 96
12.2 Computational process as a function . 96
12.3 Condition number of a function . 97
12.4 Lemma . 97

vi

12.5 Condition number of a matrix . 97
12.6 Main theorem for the condition number of a matrix 98
12.7 Corollary . 99
12.8 Corollary . 99
12.9 Practical interpretation . 100
12.10 Maxmag and minmag . 100
12.11 Properties of the condition numbers . 101
12.12 Closeness to a singular matrix . 102
12.13 A posteriori error analysis using the residual 102
12.14 Extension to rectangular matrices . 102

13. Numerical Stability 104
13.1 Introduction . 104
13.2 Stable algorithms (definition) . 105
13.3 Backward error analysis . 105
13.4 Backward stable algorithms (definition) . 106
13.5 Theorem . 106
13.6 Theorem (without proof) . 106
13.7 Example . 107
13.8 Further facts (without proofs) . 107
13.9 Example . 108
13.10 Example . 108

14. Numerically Stable Least Squares 109
14.1 Normal equations revisited . 109
14.2 QR-based algorithm revisited . 111
14.3 SVD-based algorithm revisited . 111
14.4 Hyperplanes . 112
14.5 Reflections . 112
14.6 Householder reflection matrices . 112
14.7 Basic properties of Householder reflectors 113
14.8 Theorem . 113
14.9 Remarks . 113
14.10 Corollary . 114
14.11 QR Decomposition via Householder reflectors 114
14.12 Givens rotation matrices . 115
14.13 Geometric description of Givens rotators 115
14.14 QR decomposition via Givens rotators . 116
14.15 Cost of QR via Givens rotators . 117

15. Computation of Eigenvalues: Theory 119
15.1 Preface . 119
15.2 Rayleigh quotient . 120
15.3 Restriction to the unit sphere . 120
15.4 Properties of Rayleigh quotient . 121
15.5 Theorem . 121

vii

15.6 Lemma . 122
15.7 Courant-Fisher Minimax Theorem . 123
15.8 Corollary . 123
15.9 Theorem . 124
15.10 Corollary . 124
15.11 Approximation analysis using the residual 125
15.12 Bauer-Fike theorem . 125
15.13 Corollary . 126
15.14 Left eigenvectors (definition) . 126
15.15 Lemma . 126
15.16 Lemma . 127
15.17 Lemma . 127
15.18 Lemma . 128
15.19 Theorem . 128
15.20 Condition number of a simple eigenvalue 130
15.21 Remarks . 130
15.22 Properties of condition numbers for simple eigenvalues 130
15.23 Relation to Schur decomposition . 131
15.24 Multiple and ill-conditioned eigenvalues . 131
15.25 Theorem (without proof) . 131
15.26 First Gershgorin theorem . 132
15.27 Second Gershgorin theorem . 133

16. Computation of Eigenvalues: Power Method 135
16.1 Preface . 135
16.2 Power method: a general scheme . 136
16.3 Linear, quadratic and cubic convergence 137
16.4 Remarks on convergence . 137
16.5 Scaling problem in the power method . 138
16.6 First choice for the scaling factor . 138
16.7 Example . 138
16.8 Example . 139
16.9 Theorem (convergence of the power method) 140
16.10 Second choice for the scaling factor . 141
16.11 Example . 142
16.12 Example . 143
16.13 Initial vector . 144
16.14 Aiming at the smallest eigenvalue . 144
16.15 Inverse power method . 145
16.16 Practical implementation . 145
16.17 Aiming at any eigenvalue . 146
16.18 Power method with shift . 147
16.19 Note on the speed of convergence . 147
16.20 Power method with Rayleigh quotient shift 148
16.21 Example . 148

viii

16.22 Power method: pros and cons . 149

16. Computation of Eigenvalues: QR Algorithm 151
17.1 “Pure” QR algorithm . 151
17.2 Two basic facts . 151
17.3 Theorem (convergence of the QR algorithm) 152
17.4 Example . 153
17.5 Advantages of the QR algorithm . 153
17.6 Hessenberg matrix . 154
17.7 Lucky reduction of the eigenvalue problem 154
17.8 Theorem (Hessenberg decomposition) . 155
17.9 Cost of Arnoldi algorithm . 156
17.10 Preservation of Hessenberg structure . 156
17.11 Cost of a QR step for Hessenberg matrices 157
17.12 The case of Hermitian matrices . 157
17.13 Theorem (without proof) . 157
17.14 QR algorithm with shift . 158
17.15 QR algorithm with Rayleigh quotient shift 158
17.16 QR algorithm with deflation . 159
17.17 Example . 160
17.18 Wilkinson shift . 160
17.19 Example 17.17 continued . 160
17.20 Wilkinson shifts for complex eigenvalues of real matrices 161
17.21 Analysis of the double-step . 162

ix

Chapter 0

Review of Linear Algebra

0.1 Matrices and vectors
The set of m× n matrices (m rows, n columns) with entries in a field F

is denoted by Fm×n. We will only consider two fields: complex (F = C) and
real (F = R). For any matrix A ∈ Fm×n, we denote its entries by

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
The vector space Fn consists of column vectors with n components:

x =

x1
...
xn

 ∈ Fn.

Note: all vectors, by default, are column vectors (not row vectors).

0.2 Product of a matrix and a vector
The product y = Ax is a vector in Fm:

y = Ax =

a1

∣∣∣∣∣∣∣a2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣an

x1

...
xn

 = x1

a1

+ x2

a2

+ · · ·+ xn

an

where a1, . . . , an denote the columns of the matrix A.
Note: Ax is a linear combination of the columns of A. Thus

Ax ∈ span{a1, . . . , an}.

1

0.3 Matrix as a linear transformation
Every matrix A ∈ Fm×n defines a linear transformation

Fn → Fm by x 7→ Ax.

We will denote that transformation by the same letter, A.

0.4 Range and rank of a matrix
The range of A ∈ Fm×n is a vector subspace of Fm defined by

RangeA = {Ax : x ∈ Fn} ⊂ Fm.

The range of A is a subspace of Fm spanned by the columns of A:

RangeA = span{a1, . . . , an}.

The rank of A is defined by

rankA = dim(RangeA).

0.5 Kernel (nullspace) of a matrix
The kernel (also called nullspace) of A ∈ Fm×n is a vector subspace of Fn:

KerA = {x : Ax = 0} ⊂ Fn.

We have the following matrix rank formula:

rankA = dim(RangeA) = n− dim(KerA). (0.1)

An intuitive explanation: n is the total number of dimensions in the space Fn to
which the matrix A is applied. The kernel collapses to zero, thus dim(KerA) dimensions
disappear. The rest survive, are carried over to Fm, and make the range of A.

0.6 Surjective/injective/bijective transformations
The transformation from Fn to Fm defined by a matrix A is

− surjective iff RangeA = Fm. This is only possible if n ≥ m.
− injective iff KerA = {0}. This is only possible if n ≤ m.
− bijective iff it is surjective and injective.

In the last case, m = n and we call A an isomorphism.

2

0.7 Square matrices and inverse of a matrix
Every square matrix A ∈ Fn×n defines a linear transformation Fn → Fn,

called an operator on Fn. The inverse of a square matrix A ∈ Fn×n is a
square matrix A−1 ∈ Fn×n uniquely defined by

A−1A = AA−1 = I (identity matrix).

A matrix A ∈ Fn×n is said to be invertible (nonsingular) iff A−1 exists.
The matrix is noninvertible (singular) iff A−1 does not exist.

The following are equivalent:

(a) A is invertible
(b) rankA = n
(c) RangeA = Fn
(d) KerA = {0}
(e) 0 is not an eigenvalue of A
(f) detA 6= 0

Note that
(AB)−1 = B−1A−1

0.8 Upper and lower triangular matrices
A square matrix A ∈ Fn×n is upper triangular if aij = 0 for all i > j.
A square matrix A ∈ Fn×n is lower triangular if aij = 0 for all i < j.
A square matrix D is diagonal if dij = 0 for all i 6= j. In that case we

write D = diag{d11, . . . , dnn}.
Note: if A and B are upper (lower) triangular, then so are their product

AB and inverses A−1 and B−1 (if the inverses exist).

upper
triangular
matrices: 0

×
0

=
0 0

-1

=
0

lower
triangular
matrices:

0 × 0 = 0 0
-1

= 0

3

0.9 Eigenvalues and eigenvectors
We say that λ ∈ F is an eigenvalue for a square matrix A ∈ Fn×n with an

eigenvector x ∈ Fn if

Ax = λx and x 6= 0.

Eigenvalues are the roots of the characteristic polynomial

CA(λ) = det(λI − A) = 0.

By the fundamental theorem of algebra, every polynomial of degree n with
complex coefficients has exactly n complex roots λ1, . . . , λn (counting multi-
plicities). This implies

CA(λ) =
n∏
i=1

(λ− λi).

0.10 Eigenvalues of real matrices
A real-valued square matrix A ∈ Rn×n can be treated in two ways :
First, we can treat it as a complex matrix A ∈ Cn×n (we can do that

because real numbers make a subset of the complex plane C). Then A has
n eigenvalues (real or non-real complex). An important note: since the
characteristic polynomial CA(λ) has real coefficients, its non-real complex
roots (i.e., non-real complex eigenvalues of A) come in conjugate pairs. Thus
the eigenvalues of A can be listed as follows:

c1, . . . , cp, a1 ± ib1, . . . , aq ± ibq

where ci (i = 1, . . . , p) are all real eigenvalues and aj ± ibj (j = 1, . . . , q) are
all non-real complex eigenvalues (here aj and bj 6= 0 are real numbers); and
we denote i =

√
−1. Note that p+ 2q = n.

Second, we can treat A as a matrix over the real field R, then we can only
use real numbers. In that case the eigenvalues of A are only

c1, . . . , cp

(from the previous list). Thus A may have fewer than n eigenvalues, and it

may have none at all. For instance, A =

[
0 −1
1 0

]
has no (real) eigenvalues.

However, if A does have real eigenvalues c1, . . . , cp, then for each eigenvalue
ci (i = 1, . . . , p) there is a real eigenvector, i.e., Ax = cix for some x ∈ Rn.

4

0.11 Diagonalizable matrices
A square matrix A ∈ Fn×n is diagonalizable (over F) iff

A = XΛX−1, (0.2)

where Λ = diag{λ1, . . . , λn} is a diagonal matrix and X ∈ Fn×n. In this case
λ1, . . . , λn are the eigenvalues of A and the columns x1, . . . , xn of the matrix
X are the corresponding eigenvectors.

Indeed, we can rewrite (0.2) in the form AX = XΛ and note that

AX =

 A

x1

∣∣∣∣∣∣∣x2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣xn
 =

Ax1

∣∣∣∣∣∣∣Ax2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣Axn

and

XΛ =

x1

∣∣∣∣∣∣∣x2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣xn

λ1

0

. . .

0

λn

 =

λ1x1

∣∣∣∣∣∣∣λ2x2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣λnxn

 ,
therefore

Ax1 = λ1x1, Ax2 = λ2x2, . . . Axn = λnxn.

The formula (0.2) is often called the eigenvalue decomposition of A.

0.12 Trace
The trace of a matrix A ∈ Fn×n is defined by

trA =
n∑
i=1

aii.

Trace has the following properties:
(a) trAB = trBA;
(b) if A = X−1BX, then trA = trB;
(c) trA = λ1 + · · ·+ λn (the sum of all complex eigenvalues).

5

0.13 Transpose of a matrix
For any matrix A = (aij) ∈ Fm×n we denote by AT = (aji) ∈ Fn×m the

transpose1 of A. Note that

(AB)T = BTAT ,
(
AT
)T

= A.

If A is a square matrix, then

detAT = detA,
(
AT
)−1

=
(
A−1

)T
.

A matrix A is symmetric if AT = A. Only square matrices can be symmetric.

0.14 Conjugate transpose of a matrix
For any matrix A = (aij) ∈ Cm×n we denote by A∗ = (āji) ∈ Fn×m the

conjugate transpose2 of A (also called adjoint of A):

A =

a b
c d
e f

 =⇒ A∗ =

[
ā c̄ ē
b̄ d̄ f̄

]

Note that
(AB)∗ = B∗A∗,

(
A∗
)∗

= A.

If A is a square matrix, then

detA∗ = detA,
(
A∗
)−1

=
(
A−1

)∗
. (0.3)

For any real matrix A ∈ Rm×n, we have A∗ = AT . However, if A ∈ Cm×n is a non-real

complex matrix, then its conjugate transpose A∗ is different from its transpose AT .

0.15 Convention on the use of conjugate transpose
For non-real complex matrices A (and vectors x), just transpose AT (re-

spectively, xT) usually does not give us anything good. For complex matrices
and vectors, we should always use conjugate transpose.

In our formulas we will use A∗ for both complex and real matrices, and
we will use x∗ for both complex and real vectors. We should just keep in
mind that for real matrices A∗ can be replaced with AT and for real vectors
x∗ can be replaced with xT .

1Another popular notation for the transpose is At, but we will always use AT .
2Another popular notation for the conjugate transpose is AH , but we will use A∗.

6

Chapter 1

Norms and Inner Products

1.1 Norms
A norm on a vector space V over C is a real valued function ‖ · ‖ on V

satisfying three axioms:

1. ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 if and only if v = 0.

2. ‖cv‖ = |c| ‖v‖ for all c ∈ C and v ∈ V .

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V (triangle inequality).

If V is a vector space over R, then a norm is a function V → R satisfying
the same axioms, except c ∈ R.

Norm is a general version of length of a vector.

1.2 1-norm, 2-norm, and ∞-norm
Some common norms on Cn and Rn are:

‖x‖1 =
∑n

i=1
|xi| (1-norm)

‖x‖2 =
(∑n

i=1
|xi|2

)1/2

(2-norm)

‖x‖p =
(∑n

i=1
|xi|p

)1/p

(p-norm, p ≥ 1)

‖x‖∞ = max
1≤i≤n

|xi| (∞-norm)

The 2-norm in Rn corresponds to the Euclidean distance.
Some norms on C[a, b], the space of continuous functions on [a, b]:

‖f‖1 =

∫ b

a
|f(x)| dx (1-norm)

‖f‖2 =
(∫ b

a
|f(x)|2 dx

)1/2
(2-norm)

‖f‖p =
(∫ b

a
|f(x)|p dx

)1/p
(p-norm, p ≥ 1)

‖f‖∞ = max
a≤x≤b

|f(x)| (∞-norm)

7

1.3 Unit vectors, normalization
We say that u ∈ V is a unit vector if ‖u‖ = 1.

For any v 6= 0, the vector u = v/‖v‖ is a unit vector.

We say that we normalize a vector v 6= 0 when we transform it to u = v/‖v‖.

1.4 Unit sphere, unit ball
The unit sphere in V is the set of all unit vectors:

S1 = {v ∈ V : ‖v‖ = 1} (1.1)

The unit ball in V is the set of all vectors whose norm is ≤ 1:

B1 = {v ∈ V : ‖v‖ ≤ 1} (1.2)

The unit ball is the unit sphere with its interior.

1.5 Images of unit spheres
The figure shows unit spheres in R2 for three common norms: 1-norm,

2-norm (the Euclidean norm), and ∞-norm.

x

y

1-norm

x

y

2-norm

x

y

∞-norm

1.6 Frobenius norm
The space Cm×n of matrices can be naturally identified with Cmn. Hence

we can define norms on it in a similar way. In particular, an analogue of the
2-norm is

‖A‖F =

(∑
i

∑
j

|aij|2
)1/2

.

It is called Frobenius norm of a matrix. It is easy to verify that

‖A‖2
F = tr (A∗A) = tr (AA∗).

8

1.7 Induced matrix norms
Recall that every matrix A ∈ Fm×n defines a linear transformation Fn →

Fm. Suppose the spaces Fn and Fm are equipped with certain norms, ‖ · ‖.
Then we define the induced norm (also called operator norm) of A as follows:

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
x 6=0

‖Ax‖
‖x‖

(1.3)

This norm is the maximum expansion factor, i.e., the largest factor by which the matrix

A stretches vectors x ∈ Fn.

Respectively, we obtain ‖A‖1, ‖A‖2, and ‖A‖∞, if the spaces Fn and Fm
are equipped with ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞.

For students familiar with topology: The supremum in (1.3) is always attained and can
be replaced by maximum. This follows from the compactness of S1 and the continuity of
‖ ·‖. For the 2-norm, this can be also proved by an algebraic argument, see Corollary 4.23.

There are norms on Cn×n that are not induced by any norm on Cn, for example

‖A‖ = maxi,j |aij | (see Exercise 1.1).

1.8 Computation of ‖A‖1, ‖A‖2, and ‖A‖∞
We have simple rules for computing ‖A‖1 and ‖A‖∞:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| (“maximum column sum”)

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij| (“maximum row sum”)

Unfortunately, there is no explicit formulas for ‖A‖2 in terms of the aij’s. A
substantial part of this course will be devoted to the computation of ‖A‖2.

1.9 Inequalities for induced matrix norms
Any induced matrix norm satisfies

‖Ax‖ ≤ ‖A‖ ‖x‖ and ‖AB‖ ≤ ‖A‖ ‖B‖.

9

1.10 Inner products
Let V be a vector space over C. An inner product on V is a complex

valued function of two vector arguments, i.e., V × V → C, denoted by 〈·, ·〉,
satisfying four axioms:

1. 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

2. 〈cu, v〉 = c〈u, v〉 for all c ∈ C and u, v ∈ V .

3. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V .

4. 〈u, u〉 ≥ 0 for all u ∈ V , and 〈u, u〉 = 0 iff u = 0.

These axioms imply the following rules:

〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 and 〈u, cv〉 = c̄〈u, v〉. (1.4)

i.e., the inner product is linear in the first argument (due to axioms 2 and 3)
but “conjugate linear” in the second.

If V is a vector space over R, then an inner product is a real valued
function of two arguments, i.e., V × V → R satisfying the same axioms
(except c ∈ R, and there is no need to take conjugate).

1.11 Standard inner product
A standard (canonical) inner product in Cn is

〈x, y〉 =
n∑
i=1

xiȳi = y∗x.

A standard (canonical) inner product in Rn is

〈x, y〉 =
n∑
i=1

xiyi = yTx.

A standard inner product in C([a, b]), the space of complex-valued continuous
functions, is:

〈f, g〉 =

∫ b

a

f(x) ḡ(x) dx

For real-valued functions, we can replace ḡ(x) with g(x).

10

1.12 Cauchy-Schwarz inequality
Let V be an inner product space. Then for any two vectors u, v ∈ V

|〈u, v〉| ≤ 〈u, u〉1/2〈v, v〉1/2 (1.5)

The equality holds if and only if u and v are linearly dependent, i.e.,

|〈u, v〉| = 〈u, u〉1/2〈v, v〉1/2 ⇐⇒ au+ bv = 0 (1.6)

for some scalars a, b of which at least one is different from zero.

Proof. The easy case is where v = 0. Then 〈u, v〉 = 0 and 〈v, v〉 = 0, so both
sides of (1.5) are zero, hence the claim is trivial.

We now turn to the difficult case: v 6= 0. Consider the function

f(z) = 〈u− zv, u− zv〉
= 〈u, u〉 − z〈v, u〉 − z̄〈u, v〉+ |z|2〈v, v〉

of a complex variable z. Let z = reiθ and 〈u, v〉 = seiϕ be the polar forms of
the complex numbers z and 〈u, v〉, respectively. We fix θ = ϕ and note that

z〈v, u〉 = reiϕse−iϕ = rs

and
z̄〈u, v〉 = re−iϕseiϕ = rs.

We assume that r varies from −∞ to ∞, then

0 ≤ f(z) = 〈u, u〉 − 2sr + r2〈v, v〉 (1.7)

Since this holds for all r ∈ R, the discriminant of the above quadratic poly-
nomial has to be ≤ 0, i.e.

s2 − 〈u, u〉〈v, v〉 ≤ 0. (1.8)

This proves the inequality (1.5).
The equality in (1.5) means the equality in (1.8), because s = |〈u, v〉|. The

equality in (1.8) means that the discriminant of the quadratic polynomial in
(1.7) is zero, hence that polynomial assumes a zero value, i.e.,

f(z) = 〈u− zv, u− zv〉 = 0

for some z ∈ C. This, in turn, means u − zv = 0, thus u = zv for some
z ∈ C, i.e., u and v are linearly dependent, as claimed. �

11

1.13 Induced norms
If V is an inner product vector space, then

‖v‖ = 〈v, v〉1/2 (1.9)

defines a norm on V (all the axioms can be verified by direct inspection,
except the triangle inequality is proved by Cauchy-Schwarz inequality 1.12).

1.14 Polarization identity
Some norms are induced by inner products, others are not. The 2-norm in

Rn and in Cn (defined in Sect. 1.2) is induced by the standard inner product
in those spaces (as defined in Sect. 1.11).

In vector spaces over R, if a norm ‖ · ‖ is induced by an inner product
〈·, ·〉, then the latter can be computed by polarization identity :

〈u, v〉 = 1
4

(
‖u+ v‖2 − ‖u− v‖2

)
(1.10)

A similar but more complicated polarization identity holds in vector spaces over C.

1.15 Orthogonal vectors
Two vectors u, v ∈ V are said to be orthogonal if 〈u, v〉 = 0.

1.16 Pythagorean theorem
If two vectors u and v are orthogonal, then

‖u+ v‖2 = ‖u‖2 + ‖v‖2 (1.11)

Vectors u and v make two legs of a right triangle, and u+ v is its hypotenuse:
u

u +
v

v

Suppose u1, . . . , uk are mutually orthogonal, i.e., 〈ui, uj〉 = 0 for each i 6= j. Then one

can show, by induction, that ‖u1 + · · ·+ uk‖2 = ‖u1‖2 + · · ·+ ‖uk‖2.

1.17 Orthogonality and linear independence
If nonzero vectors u1, . . . , uk are mutually orthogonal, i.e., 〈ui, uj〉 = 0 for

each i 6= j, then they are linearly independent.

Proof. Suppose a linear combination of these vectors is zero, i.e.,

c1u1 + · · ·+ ckuk = 0.

Then for every i = 1, . . . , k we have

0 = 〈0, ui〉 = 〈c1u1 + · · ·+ ckuk, ui〉 = ci〈ui, ui〉

hence ci = 0 (because 〈ui, ui〉 6= 0 for the non-zero vector ui). Thus c1 = · · · = ck = 0. �

12

1.18 Orthonormal sets of vectors
A set {u1, . . . , uk} of vectors is said to be orthonormal if all the vectors

ui are mutually orthogonal and have unit length (i.e., ‖ui‖ = 1 for all i).
The orthonormality can be expressed by a single formula:

〈ui, uj〉 = δij,

where δij denotes the Kronecker delta symbol defined as follows: δij = 1 if
i = j and δij = 0 if i 6= j.

1.19 Orthonormal basis (ONB)
An orthonormal set of vectors {u1, . . . , uk} that is a basis in V is called

orthonormal basis (ONB).
An orthonormal set {u1, . . . , uk} is an ONB in V iff k = n = dimV .

1.20 Fourier expansion
If {u1, . . . , un} is an ONB, then for any vector v we have

v =
n∑
i=1

〈v, ui〉ui. (1.12)

In other words, the numbers 〈v, ui〉 (called Fourier coefficients) are the co-
ordinates of the vector v in the basis {u1, . . . , un}.

1.21 Orthogonal projection
Let u, v ∈ V , and u 6= 0. The orthogonal projection of v onto u is

Pruv =
〈v, u〉
‖u‖2

u.

One can easily check that the vector w = v − Pruv is orthogonal to u. Thus
v is the sum of two vectors: Pruv (parallel to u) and w (orthogonal to u).

u

v w

Pruv

13

1.22 Angle between vectors
If V is a vector space over R, then for any nonzero vectors u, v ∈ V there

is a unique angle θ ∈ [0, π] such that

cos θ =
〈v, u〉
‖u‖ ‖v‖

. (1.13)

Indeed, by Cauchy-Schwarz inequality 1.12, the above fraction is a real number in the

interval [−1, 1]. Then recall that the function cos−1 takes [−1, 1] onto [0, π] bijectively.

We call θ the angle between u and v.
Note that cos θ = 0 (i.e., θ = π/2) if and only if u and v are orthogonal. Also,

cos θ = ±1 if and only if u, v are proportional, i.e. v = cu. In that case the sign of c

coincides with the sign of cos θ.

1.23 Orthogonal projection onto a subspace
Let {u1, . . . , uk} be an orthonormal set of vectors. According to Sect. 1.17,

they are linearly independent, hence they span a k-dimensional subspace
L = span{u1, . . . , uk}. For any v ∈ V ,

PrLv =
k∑
i=1

〈v, ui〉ui

is the orthogonal projection of v onto L. One can easily check that the vector

w = v − PrLv

is orthogonal to all the vectors u1, . . . , uk, hence it is orthogonal to all vectors
in L. In particular, the vectors u1, . . . , uk, w are mutually orthogonal, and
one can easily check that

span{u1, . . . , uk, v} = span{u1, . . . , uk, w}.

1.24 Degenerate case
In the above construction, we have

w = 0 ⇐⇒ v ∈ span{u1, . . . , uk}.

Note: In Section 1.23, the subspace L is spanned by an orthonormal set of vectors.
What if we want to project a vector v onto a subspace L that is spanned by a non-
orthonormal set of vectors {v1, . . . , vk}?

14

1.25 Gram-Schmidt orthogonalization
Let {v1, . . . , vk} be a linearly independent set of vectors. They span a

k-dimensional subspace L = span{v1, . . . , vk}. Our goal is to find an or-
thonormal set of vectors {u1, . . . , uk} that spans L. We will modify and
adjust the vectors v1, . . . , vk, one by one.

At our first step, we define

w1 = v1 and u1 = w1/‖w1‖. (1.14)

At our second step, we define

w2 = v2 − 〈v2, u1〉u1 and u2 = w2/‖w2‖. (1.15)

Then recursively, for each p ≥ 2, we define

wp = vp −
p−1∑
i=1

〈vp, ui〉ui, and up = wp/‖wp‖ (1.16)

By induction on p, one can easily check that

span{v1, . . . , vp} = span{u1, . . . , up}

and wp 6= 0 (in accordance with Sect. 1.24).
The above procedure is called Gram-Schmidt orthogonalization. It gives

us an orthonormal set {u1, . . . , uk} which spans the same subspace:

L = span{v1, . . . , vk} = span{u1, . . . , uk}.

1.26 Construction of ONB
Suppose {v1, . . . , vn} is a basis in V . Then the Gram-Schmidt orthogo-

nalization gives us an orthonormal basis (ONB) {u1, . . . , un} in V .
As a result, every finite dimensional vector space with an inner product

has an ONB. Furthermore, every set of orthonormal vectors {u1, . . . , uk} can
be extended to an ONB.

1.27 Legendre polynomials (optional)
Let V = Pn(R), the space of real polynomials of degree ≤ n, with the inner product

given by 〈f, g〉 =
∫ 1

0
f(x)g(x) dx. Applying Gram-Schmidt orthogonalization to the basis

{1, x, . . . , xn} gives the first n+ 1 of the so called Legendre polynomials.

15

1.28 Orthogonal complement
Let S ⊂ V be a subset (not necessarily a subspace). Then

S⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈ S}

is called the orthogonal complement to S.
One can easily check that S⊥ is a vector subspace of V .
We also note that if W ⊂ V is a subspace of V , then (W⊥)⊥ ⊂ W .

Moreover, if V is finite dimensional, then (W⊥)⊥ = W (see Exercise 1.4).

1.29 Orthogonal direct sum
If W ⊂ V is a finite dimensional subspace of V , then V = W ⊕W⊥.

Proof. Let {u1, . . . , un} be an ONB of W (one exists according to Sect. 1.26). For any
v ∈ V define

w =

n∑
i=1

〈v, ui〉ui

One can easily verify that w ∈ W and v − w ∈ W⊥. Therefore v = w + w′ where w ∈ W
and w′ ∈ W⊥. Lastly, W ∩W⊥ = {0} because any vector w ∈ W ∩W⊥ is orthogonal to

itself, i.e., 〈w,w〉 = 0, hence w = 0.

1.30 Some useful formulas
Let {u1, . . . , un} be an orthonormal set (not necessarily an ONB) in V .

Then for any vector v ∈ V we have Bessel’s inequality :

‖v‖2 ≥
n∑
i=1

|〈v, ui〉|2. (1.17)

If {u1, . . . , un} is an ONB in V , then Bessel’s inequality turns into an equality:

‖v‖2 =
n∑
i=1

|〈v, ui〉|2. (1.18)

More generally, we have Parceval’s identity :

〈v, w〉 =
n∑
i=1

〈v, ui〉〈w, ui〉, (1.19)

which easily follows from the Fourier expansion (1.12).

16

Parceval’s identity (1.19) can be also written as follows. Suppose

v =
n∑
i=1

aiui and w =
n∑
i=1

biui,

so that (a1, . . . , an) and (b1, . . . , bn) are the coordinates of the vectors v and
w, respectively, in the ONB {u1, . . . , un}. Then

〈v, w〉 =
n∑
i=1

aib̄i. (1.20)

In particular,

‖v‖2 = 〈v, v〉 =
n∑
i=1

aiāi =
n∑
i=1

|ai|2. (1.21)

Exercise 1.1. Show that the norm ‖A‖ = maxi,j |aij | on the space of n×n real matrices
is not induced by any vector norm in Rn. Hint: use inequalities from Section 1.7.

Exercise 1.2. Prove the Neumann lemma: if ‖A‖ < 1, then I−A is invertible. Here ‖ · ‖
is a norm on the space of n× n matrices induced by a vector norm.

Exercise 1.3. Let V be an inner product space, and ‖ · ‖ denote the norm induced by
the inner product. Prove the parallelogram law

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

Based on this, show that the norms ‖ · ‖1 and ‖ · ‖∞ in C2 are not induced by any inner
products.

Exercise 1.4. Let W ⊂ V be a subspace of an inner product space V .

(i) Prove that W ⊂ (W⊥)⊥.

(ii) If, in addition, V is finite dimensional, prove that W = (W⊥)⊥.

Exercise 1.5. Let {u1, . . . , un} be an ONB in Cn. Assuming that n is even, compute

‖u1 − u2 + u3 − · · ·+ un−1 − un‖

17

Chapter 2

Unitary Matrices

2.1 Isometries
Let V and W be two inner product spaces (both real or both complex).

An isomorphism T : V → W is called an isometry if it preserves the inner
product, i.e.

〈Tv, Tw〉 = 〈v, w〉
for all v, w ∈ V . In this case the spaces V and W are said to be isometric.

2.2 Characterization of isometries - I
An isomorphism T is an isometry iff it preserves the induced norm, i.e.,

‖Tv‖ = ‖v‖ for all vectors v ∈ V .

Proof. This follows from Polarization Identity (1.10)

2.3 Characterization of isometries - II
An isomorphism T is an isometry iff ‖Tu‖ = ‖u‖ for all unit vectors

u ∈ V .

Proof. This easily follows from the previous section and the fact that every non-zero

vector v can be normalized by u = v/‖v‖; cf. Sect. 1.3.

2.4 Characterization of isometries - III
Let dimV < ∞. A linear transformation T : V → W is an isometry iff

there exists an ONB {u1, . . . , un} in V such that {Tu1, . . . , Tun} is an ONB
in W .

Proof. If T is an isometry, then for any ONB {u1, . . . , un} in V the set {Tu1, . . . , Tun}
is an ONB inW . Now suppose T takes an ONB {u1, . . . , un} in V to an ONB {Tu1, . . . , Tun}
in W . Since T takes a basis in V into a basis in W , it is an isomorphism. Now for each
vector v = c1u1 + · · ·+ cnun ∈ V we have, by linearity, Tv = c1Tu1 + · · ·+ cnTun, hence
v and Tv have the same coordinates in the respective ONBs. Now by Parceval’s Identity
(1.21) we have

‖v‖2 = |c1|2 + · · ·+ |cn|2 = ‖Tv‖2

Thus T is an isometry according to Sect. 2.2.

18

2.5 Identification of finite-dimensional inner product spaces
Finite dimensional inner product spaces V and W (over the same field)

are isometric iff dimV = dimW .
(This follows from Section 2.4.)

As a result, we can make the following useful identifications:

c© All complex n-dimensional inner product spaces can be identified with
Cn equipped with the standard inner product 〈x, y〉 = y∗x.

R© All real n-dimensional inner product spaces can be identified with Rn

equipped with the standard inner product 〈x, y〉 = yTx.

These identifications allow us to focus on the study of the standard spaces Cn and Rn

equipped with the standard inner product.

Isometries Cn → Cn and Rn → Rn are operators that, in a standard basis
{e1, . . . , en}, are given by matrices of a special type, as defined below.

2.6 Unitary and orthogonal matrices
A matrix Q ∈ Cn×n is said to be unitary if Q∗Q = I, i.e., Q∗ = Q−1.
A matrix Q ∈ Rn×n is said to be orthogonal if QTQ = I, i.e., QT = Q−1.

One can easily verify that

Q is unitary⇔ Q∗ is unitary⇔ QT is unitary⇔ Q̄ is unitary.

In the real case:

Q is orthogonal⇔ QT is orthogonal.

2.7 Lemma
Let A,B ∈ Fm×n be two matrices (here F = C or F = R) such that

〈Ax, y〉 = 〈Bx, y〉 for all x ∈ Fn and y ∈ Fm. Then A = B.

Proof. For any pair of canonical basis vectors ej ∈ Fn and ei ∈ Fm we
have 〈Aej, ei〉 = aij and 〈Bej, ei〉 = bij, therefore aij = bij. �

19

2.8 Matrices of isometries

c© The linear transformation of Cn defined by a matrix Q ∈ Cn×n is an
isometry (preserves the standard inner product) iff Q is unitary.

R© The linear transformation of Rn defined by a matrix Q ∈ Rn×n is an
isometry (preserves the standard inner product) iff Q is orthogonal.

Proof If Q is an isometry, then for any pair of vectors x, y

〈x, y〉 = 〈Qx,Qy〉 = (Qy)∗Qx = y∗Q∗Qx = 〈Q∗Qx, y〉

hence Q∗Q = I due to Lemma 2.7. Conversely: if Q∗Q = I, then

〈Qx,Qy〉 = (Qy)∗Qx = y∗Q∗Qx = y∗x = 〈x, y〉,

hence Q is an isometry. �

2.9 Group property
If Q1, Q2 ∈ Cn×n are unitary matrices, then so is Q1Q2.
If Q ∈ Cn×n is a unitary matrix, then so is Q−1.

In terms of abstract algebra, unitary n× n matrices make a group, denoted by U(n).

Similarly, orthogonal n× n matrices make a group, denoted by O(n).

2.10 Orthogonal matrices in 2D

Q =

[
0 1
1 0

]
defines a reflection across the diagonal line y = x;

Q =

[
cos θ − sin θ
sin θ cos θ

]
is a counterclockwise rotation by angle θ.

For a complete description of 2D orthogonal matrices, see Exercises 2.3 and 2.4.

x

y

y
=
x

x

y

reflection rotation

20

2.11 Characterizations of unitary and orthogonal matrices
A matrix Q ∈ Cn×n is unitary iff its columns make an ONB in Cn.
A matrix Q ∈ Cn×n is unitary iff its rows make an ONB in Cn.

A matrix Q ∈ Rn×n is orthogonal iff its columns make an ONB in Rn.
A matrix Q ∈ Rn×n is orthogonal iff its rows make an ONB in Rn.

Proof. The idea is illustrated by the following diagram:

Q∗ × Q = I = Q × Q∗

q∗1
q∗2
...
q∗n

q1

∣∣∣∣∣∣∣∣∣ q2
∣∣∣∣∣∣∣∣∣ · · ·

∣∣∣∣∣∣∣∣∣ qn
 =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =

q̃1
q̃2
...
q̃n

 q̃∗1

∣∣∣∣∣∣∣∣∣ q̃
∗
2

∣∣∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣∣∣ q̃
∗
n

Here qi denotes the ith column of Q and q̃i denotes the ith row of Q.

The proof is now a direct inspection. �

2.12 Determinant of unitary matrices
If Q is unitary/orthogonal, then |detQ| = 1.

Proof. We have

1 = det I = detQ∗Q = detQ∗ · detQ = detQ · detQ = | detQ|2.

If Q is a real orthogonal matrix, then detA = ±1. Orthogonal n × n matrices with

determinant 1 make a subgroup of O(n), denoted by SO(n).

2.13 Eigenvalues of unitary matrices
If λ is an eigenvalue of a unitary/orthogonal matrix, then |λ| = 1.

Proof. If Qx = λx for some x 6= 0, then

〈x, x〉 = 〈Qx,Qx〉 = 〈λx, λx〉 = λλ̄〈x, x〉 = |λ|2〈x, x〉;

therefore |λ|2 = 1. �

Note: orthogonal matrices Q ∈ Rn×n may not have any real eigenvalues; see the rotation

matrix in Example 2.10. But if an orthogonal matrix has real eigenvalues, those equal ±1.

21

2.14 Invariance principle for isometries
Let T : V → V be an isometry and dimV <∞. If a subspace W ⊂ V is

invariant under T , i.e., TW ⊂ W , then so is its orthogonal complement W⊥,
i.e., TW⊥ ⊂ W⊥.

Proof. The restriction of T to the invariant subspace W is an operator on
W . It is an isometry of W , hence it is a bijection W → W , i.e.,

∀w ∈ W ∃w′ ∈ W : Tw′ = w.

Now, if v ∈ W⊥, then

∀w ∈ W : 〈w, Tv〉 = 〈Tw′, T v〉 = 〈w′, v〉 = 0,

hence Tv ∈ W⊥. This implies TW⊥ ⊂ W⊥. �

2.15 Orthogonal decomposition for complex isometries
For any isometry T of a finite dimensional complex space V there is an

ONB of V consisting of eigenvectors of T .

Proof. Recall that eigenvalues always exist for operators on complex vector
spaces (Sect. 0.10). Let λ1 be an eigenvalue of T with an eigenvector x1 6= 0.
Then W1 = span{x1} is a one-dimensional subspace invariant under T . By
Section 2.14, the (n−1)-dimensional subspace W⊥

1 is also invariant under T .
The restriction of T to W⊥

1 is an operator on W⊥, which is an isometry.
Let λ2 be an eigenvalue of the operator T : W⊥

1 → W⊥
1 , with an eigenvec-

tor x2 ∈ W⊥
1 . Then W2 = span{x2} is a one-dimensional subspace of W⊥

1

invariant under T .
Since both W1 and W2 are invariant under T , we have that W1 ⊕W2 is

a two-dimensional subspace of V invariant under T . By Section 2.14, the
(n − 2)-dimensional subspace (W1 ⊕ W2)⊥ is also invariant under T . The
restriction of T to (W1 ⊕W2)⊥ is an isometry, too.

Then we continue, inductively: at each step we “split off” a one-dimensional
subspace invariant under T and reduce the dimensionality of the remaining
subspace. Since V is finite dimensional, we eventually exhaust all the dimen-
sions of V and complete the proof. �

Note: the above theorem is not true for real vector spaces. An isometry of a real vector

space may not have any eigenvectors; see again the rotation matrix in Example 2.10.

22

2.16 Lemma
Every operator T : V → V on a finite dimensional real space V has either

a one-dimensional or a two-dimensional invariant subspace W ⊂ V .

Proof. Let T be represented by a matrix A ∈ Rn×n in some basis. If A
has a real eigenvalue, then Ax = λx with some x 6= 0, and we get a one-
dimensional invariant subspace span{x}. If A has no real eigenvalues, then
the matrix A, treated as a complex matrix (cf. Sect. 0.10), has a complex
eigenvalue λ = a+ ib, with a, b ∈ R and i =

√
−1, and a complex eigenvector

x+ iy, with x, y ∈ Rn. The equation

A(x+ iy) = (a+ ib)(x+ iy) = (ax− by) + (bx+ ay)i

can be written as

Ax = ax− by
Ay = bx+ ay

This implies that the subspace span{x, y} is invariant. �

Note: The above subspace span{x, y} is two-dimensional, unless x and y are linearly

dependent. With some extra effort, one can verify that x and y can be linearly dependent

only if b = 0, i.e. λ ∈ R.

2.17 Orthogonal decomposition for real isometries
Let T : V → V be an isometry of a finite dimensional real space V . Then

V = V1⊕· · ·⊕Vp for some p ≤ n, where Vi are mutually orthogonal subspaces,
each Vi is T -invariant, and either dimVi = 1 or dimVi = 2.

Proof. Use induction on dimV and apply Sections 2.14 and 2.16. �

Note: the restriction of the operator T to each two-dimensional invariant
subspace Vi is simply a rotation by some angle (as in Example 2.10); this
follows from Exercises 2.3 and 2.4.

Recall that two n × n matrices A and B are similar (usually denoted
by A ∼ B) if there exists an invertible matrix X such that B = X−1AX.
Two matrices are similar if they represent the same linear operator on an
n-dimensional space, but under two different bases. In that case X is the
change of basis matrix.

23

2.18 Unitary and orthogonal equivalence

c© Two complex matrices A,B ∈ Cn×n are said to be unitary equivalent
if B = P−1AP for some unitary matrix P . This can be also written as
B = P ∗AP (because P−1 = P ∗).

R© Two real matrices A,B ∈ Rn×n are said to be orthogonally equivalent
if B = P−1AP for some orthogonal matrix P . This can be also written
as B = P TAP (because P−1 = P T).

Two complex/real matrices are unitary/orthogonally equivalent if they
represent the same linear operator on a complex/real n-dimensional inner
product space under two different orthonormal bases (ONBs). Then P is
the change of basis matrix, which must be unitary/orthogonal, because it
changes an ONB to another ONB (cf. Sect. 2.4).

In this course we mostly deal with ONBs, thus unitary/orthogonal equiv-
alence will play the same major role as similarity plays in Linear Algebra.
In particular, for any type of matrices we will try to find simplest matrices
which are unitary/orthogonal equivalent to matrices of the given type.

2.19 Unitary matrices in their simples form
Any unitary matrix Q ∈ Cn×n is unitary equivalent to a diagonal matrix

D = diag{d1, . . . , dn}, whose diagonal entries belong to the unit circle, i.e.
|di| = 1 for 1 ≤ i ≤ n.

Proof. This readily follows from Section 2.15.

2.20 Orthogonal matrices in their simples form
Any orthogonal matrix Q ∈ Rn×n is orthogonally equivalent to a block-

diagonal matrix

B =

R11 0 · · · 0
0 R22 · · · 0
...

...
. . .

...
0 0 · · · Rmm

where Rii are 1× 1 and 2× 2 diagonal blocks. Furthermore, each 1× 1 block
is either Rii = +1 or Rii = −1, and each 2× 2 block is a rotation matrix

Rii =

[
cos θi − sin θi
sin θi cos θi

]
Proof. This readily follows from Section 2.17.

24

Exercise 2.1. Let A ∈ Cm×n. Show that

‖UA‖2 = ‖AV ‖2 = ‖A‖2

for any unitary matrices U ∈ Cm×m and V ∈ Cn×n.

Exercise 2.2. Let A ∈ Cm×n. Show that

‖UA‖F = ‖AV ‖F = ‖A‖F

for any unitary matrices U ∈ Cm×m and V ∈ Cn×n. Here ‖ · ‖F stands for the Frobenius
norm.

Exercise 2.3. Let Q be a real orthogonal 2× 2 matrix and detQ = 1.
Show that

Q =

[
cos θ − sin θ
sin θ cos θ

]
for some θ ∈ [0, 2π).

In geometric terms, Q represents a rotation of R2 by angle θ.

Exercise 2.4. Let Q be a real orthogonal 2× 2 matrix and detQ = −1.
Show that

Q =

[
cos θ sin θ
sin θ − cos θ

]
for some θ ∈ [0, 2π).
Also prove that λ1 = 1 and λ2 = −1 are the eigenvalues of Q.

In geometric terms, Q represents a reflection of R2 across the line spanned by the
eigenvector corresponding to λ1 = 1.

25

Chapter 3

Hermitian Matrices

Beginning with this chapter, we will always deal with finite dimensional inner product
spaces (unless stated otherwise). Recall that all such spaces can be identified with Cn or
Rn equipped with the standard inner product (Sect. 2.5). Thus we will mostly deal with
these standard spaces.

3.1 Adjoint matrices
Recall that every complex matrix A ∈ Cm×n defines a linear transfor-

mation Cn → Cm. Its conjugate transpose A∗ ∈ Cn×m defines a linear
transformation Cm → Cn, i.e., Cn CmA

A∗

Furthermore, for any x ∈ Cn and y ∈ Cm we have

〈Ax, y〉 = y∗Ax = (A∗y)∗x = 〈x,A∗y〉

Likewise, 〈y, Ax〉 = 〈A∗y, x〉. In plain words, A can be moved from one
argument of the inner product to the other, but it must be changed to A∗.

Likewise, every real matrix A ∈ Rm×n defines a linear transformation
Rn → Rm. Its transpose AT ∈ Rn×m defines a linear transformation Rm →
Rn. Furthermore, for any x ∈ Rn and y ∈ Rm we have

〈Ax, y〉 = yTAx = (ATy)Tx = 〈x,ATy〉

Thus in the real case, too, A can be moved from one argument of the inner
product to the other, but it must be changed to A∗ = AT .

3.2 Adjoint transformations
More generally, for any linear transformation T : V → W of two inner

product vector spaces V and W (both real or both complex) there exists a
unique linear transformation T ∗ : W → V such that ∀v ∈ V, ∀w ∈ W

〈Tv, w〉 = 〈v, T ∗w〉.

T ∗ is often called the adjoint of T .

26

T ∗ generalizes the conjugate transpose of a matrix.

The existence and uniqueness of T ∗ can be proved by a general argument, avoiding
identification of the spaces V and W with Cn or Rn. The argument is outlined below, in
Sections 3.3 to 3.6. (This part of the course can be skipped.)

3.3 Riesz representation theorem
Let f ∈ V ∗, i.e., let f be a linear functional on V . Then there is a unique vector u ∈ V

such that
f(v) = 〈v, u〉 ∀v ∈ V

Proof. Let B = {u1, . . . , un} be an ONB in V . Then for any v =
∑
ciui we have

f(v) =
∑
cif(ui) by linearity. Also, for any u =

∑
diui we have 〈v, u〉 =

∑
cid̄i. Hence,

the vector u =
∑
f(ui)ui will suffice. To prove the uniqueness of u, assume 〈v, u〉 = 〈v, u′〉

for all v ∈ V . Setting v = u− u′ gives 〈u− u′, u− u′〉 = 0, hence u = u′.

3.4 Quasi-linearity
The identity f ↔ u established in the previous theorem is “quasi-linear” in the follow-

ing sense: f1 + f2 ↔ u1 + u2 and cf ↔ c̄u. In the real case, it is perfectly linear, though,
and hence it is an isomorphism between V ∗ and V .

3.5 Remark
If dimV = ∞, then Theorem 3.3 fails. Consider, for example, V = C[0, 1] (real

functions) with the inner product 〈F,G〉 =
∫ 1

0
F (x)G(x) dx. Pick a point t ∈ [0, 1]. Let

f ∈ V ∗ be a linear functional defined by f(F) = F (t). It does not correspond to any G ∈ V
so that f(F) = 〈F,G〉. In fact, the lack of such functions G has led mathematicians to
the concept of delta-functions: a delta-function δt(x) is “defined” by three requirements:

δt(x) ≡ 0 for all x 6= t, δt(t) =∞ and
∫ 1

0
F (x)δt(x) dx = F (t) for every F ∈ C[0, 1].

3.6 Existence and uniqueness of adjoint transformation
Let T : V →W be a linear transformation. Then there is a unique linear transforma-

tion T ∗ : W → V such that ∀v ∈ V and ∀w ∈W

〈Tv,w〉 = 〈v, T ∗w〉.

Proof. Let w ∈ W . Then f(v) : = 〈Tv,w〉 defines a linear functional f ∈ V ∗. By the

Riesz representation theorem, there is a unique v′ ∈ V such that f(v) = 〈v, v′〉. Then we

define T ∗ by setting T ∗w = v′. The linearity of T ∗ is a routine check. Note that in the

complex case the conjugating bar appears twice and thus cancels out. The uniqueness of

T ∗ is obvious. �

We now return to the main line of our course.

27

3.7 Relation between KerT ∗ and RangeT
Let T : V → W be a linear transformation. Then

KerT ∗ = (RangeT)⊥

Proof. Suppose y ∈ KerT ∗, i.e., T ∗y = 0. Then for every x ∈ V

0 = 〈x, 0〉 = 〈x, T ∗y〉 = 〈Tx, y〉.

Thus y is orthogonal to all vectors Tx, x ∈ V , hence y ∈ (RangeT)⊥.
Conversely, if y ∈ (RangeT)⊥, then y is orthogonal to all vectors Tx, x ∈ V , hence

0 = 〈Tx, y〉 = 〈x, T ∗y〉

for all x ∈ V . In particular, we can put x = T ∗y and see that 〈T ∗y, T ∗y〉 = 0, hence

T ∗y = 0, i.e., y ∈ KerT ∗. �

Next we will assume that V = W , in which case T is an operator.

3.8 Selfadjoint operators and matrices
A linear operator T : V → V is said to be selfadjoint if T ∗ = T .
A square matrix A is said to be selfadjoint if A∗ = A.

In the real case, this is equivalent to AT = A, i.e., A is a symmetric matrix.
In the complex case, selfadjoint matrices are called Hermitian matrices.

3.9 Examples
The matrix [1 3

3 2] is symmetric. The matrix
[

1 3+i
3−i 2

]
is Hermitian.

The matrices
[

1 3+i
3+i 2

]
and

[
1+i 3+i
3−i 2

]
are not Hermitian (why?).

Note: the diagonal components of a Hermitian matrix must be real numbers!

3.10 Hermitian property under unitary equivalence

c© If A is a complex Hermitian matrix unitary equivalent to B, then B is
also a complex Hermitian matrix.

R© If A is a real symmetric matrix orthogonally equivalent to B, then B
is also a real symmetric matrix.

Proof. If A∗ = A and B = P ∗AP , then B∗ = P ∗A∗P = P ∗AP = B. �

28

3.11 Invariance principle for selfadjoint operators
Let T be a selfadjoint operator and a subspace W be T -invariant, i.e.,

TW ⊂ W . Then W⊥ is also T -invariant, i.e., TW⊥ ⊂ W⊥.

Proof. If v ∈W⊥, then for any w ∈W we have 〈Tv,w〉 = 〈v, Tw〉 = 0, so Tv ∈W⊥.

3.12 Spectral Theorem
Let T : V → V be a selfadjoint operator. Then there is an ONB consisting

of eigenvectors of T , and all the eigenvalues of T are real numbers.

Proof. First let V be a complex space. Then we apply Principle 3.11 to
construct an ONB of eigenvectors, exactly as we did in Section 2.15.

Now T is represented in the canonical basis {e1, . . . , en} by a Hermitian
matrix A. In the (just constructed) ONB of eigenvectors, T is represented by
a diagonal matrix D = diag{d1, . . . , dn}, and d1, . . . , dn are the eigenvalues
of T . Since A and D are unitary equivalent, D must be Hermitian, too (by
3.10). Hence the diagonal components d1, . . . , dn of D are real numbers. This
completes the proof of Spectral Theorem for complex spaces.

Before we proceed to real spaces, we need to record a useful fact about
complex Hermitian matrices. Every Hermitian matrix A ∈ Cn×n defines
a selfadjoint operator on Cn. As we just proved, there exists an ONB of
eigenvectors. Hence A is unitary equivalent to a diagonal matrix D =
diag{d1, . . . , dn}. Since D is Hermitian, its diagonal entries d1, . . . , dn are
real numbers. Therefore

Every Hermitian matrix has only real eigenvalues (3.1)

Now let V be a real space. In the canonical basis {e1, . . . , en}, the self-
adjoint operator T : V → V is represented by a real symmetric matrix A.
The latter, considered as a complex matrix, is Hermitian, thus it has only real
eigenvalues (see above). Hence the construction of an ONB of eigenvectors,
as done in Section 2.15, works again. The proof is now complete. �

Note: For every real symmetric matrix A, the characteristic polynomial is CA(x) =∏
i(x− λi), where all λi’s are real numbers.

29

3.13 Characterization of Hermitian matrices

c© A complex matrix is Hermitian iff it is unitary equivalent to a diagonal
matrix with real diagonal entries.

R© A real matrix is symmetric iff it is orthogonally equivalent to a diagonal
matrix (whose entries are automatically real).

More generally: if an operator T : V → V has an ONB of eigenvectors, and
all its eigenvalues are real numbers, then T is self-adjoint.

3.14 Eigendecomposition for Hermitian matrices
Let A = QDQ∗, where Q is a unitary matrix and D is a diagonal matrix.

Denote by qi the ith column of Q and by di the ith diagonal entry of D.
Then

Aqi = diqi, 1 ≤ i ≤ n

i.e. the columns of Q are eigenvectors of A whose eigenvalues are the corre-
sponding diagonal components of D (cf. Section 0.11).

3.15 Inverse of a selfadjoint operator
(a) If an operator T is selfadjoint and invertible, then so is T−1.
(b) If a matrix A is selfadjoint and nonsingular, then so is A−1.

Proof. (a) By Spectral Theorem 3.12, there is an ONB {u1, . . . , un} consisting
of eigenvectors of T , and the eigenvalues λ1, . . . , λn of T are real numbers.
Since T is invertible, λi 6= 0 for all i = 1, . . . , n. Now

Tui = λiui =⇒ T−1ui = λ−1
i ui

hence T−1 has the same eigenvectors {u1, . . . , un}, and its eigenvalues are the
reciprocals of those of T , so they are real numbers, too. Therefore, T−1 is
selfadjoint.

(b) If A is selfadjoint, then A = P ∗DP with a unitary matrix P and a
diagonal matrix D = diag{d1, . . . , dn} with real diagonal entries. Now

A−1 = P−1D−1(P ∗)−1 = P ∗D−1P

where D−1 = diag{d−1
1 , . . . , d−1

n } is also a diagonal matrix with real diagonal
entries. Therefore A−1 is selfadjoint. �

30

3.16 Projections
Let V = W1 ⊕W2, i.e., suppose our vector space V is a direct sum of

two subspaces. Recall that for each v ∈ V there is a unique decomposition
v = w1 + w2 with w1 ∈ W1 and w2 ∈ W2.

The operator P : V → V defined by

Pv = P (w1 + w2) = w2

is called projection (or projector) of V on W2 along W1.
Note that

KerP = W1 and RangeP = W2.

Also note that P 2 = P .

vw1

w2

W1

W2

KerP

RangeP

3.17 Projections (alternative definition)
An operator P : V → V is a projection iff P 2 = P .

Proof. P 2 = P implies that for every v ∈ V we have P (v − Pv) = 0, so

w1 : = v − Pv ∈ KerP

Denoting w2 = Pv we get v = w1 +w2 with w1 ∈KerP and w2 ∈ RangeP . Furthermore,

Pv = Pw1 + Pw2 = 0 + P (Pv) = P 2v = Pv = w2

We also note that KerP ∩ RangeP = {0}. Indeed, for any v ∈ RangeP we have Pv = v

(as above) and for any v ∈ KerP we have Pv = 0. Thus v ∈ KerP ∩ RangeP implies

v = 0. Hence V = KerP ⊕ RangeP . �

3.18 “Complimentary” projections
Let V = W1 ⊕ W2. There is a unique projection P1 on W1 along W2

and a unique projection P2 on W2 along W1. They “complement” each other
adding up to the identity:

P1 + P2 = I.

31

3.19 Orthogonal projections
Let V be an inner product vector space (not necessarily finite dimen-

sional) and W ⊂ V a finite dimensional subspace. Then the projection on
W along W⊥ is called orthogonal projection on W .

The assumption dimW <∞ is made to ensure that V = W ⊕W⊥ (cf. Sect. 1.29).

3.20 Characterization of orthogonal projections
Let P be a projection. Then P is an orthogonal projection if and only if

P is selfadjoint.

Proof. Let P be a projection on W2 along W1, and V = W1⊕W2. For any vectors v, w ∈ V
we have v = v1 + v2 and w = w1 + w2 with some vi, wi ∈Wi, i = 1, 2.

Now, if P is an orthogonal projection, then

〈Pv,w〉 = 〈v2, w〉 = 〈v2, w2〉 = 〈v, w2〉 = 〈v, Pw〉.

If P is not an orthogonal projection, then there are v1 ∈ W1 and w2 ∈ W2 so that

〈v1, w2〉 6= 0. Then 〈v1, Pw2〉 6= 0 = 〈Pv1, w2〉. �

Exercise 3.1. Let V be an inner product space and W ⊂ V a finite dimensional subspace
with ONB {u1, . . . , un}. For every x ∈ V define

P (x) =

n∑
i=1

〈x, ui〉ui

(i) Prove that x− P (x) ∈W⊥, hence P is the orthogonal projection onto W .
(ii) Prove that ‖x− P (x)‖ ≤ ‖x− z‖ for every z ∈ W , and that if ‖x− P (x)‖ = ‖x− z‖
for some z ∈W , then z = P (x).

Exercise 3.2. (JPE, May 1999) Let P ∈ Cn×n be a projector. Show that ‖P‖2 ≥ 1 with
equality if and only if P is an orthogonal projector.

32

Chapter 4

Positive Definite Matrices

Recall that an inner product 〈·, ·〉 is a complex-valued function of two
vector arguments, cf. Section 1.10. It is linear in the first argument and
“conjugate linear” in the second.

In the space Cn, any function f : Cn×Cn → C with the last two properties
can be defined by

f(x, y) = 〈Ax, y〉 = y∗Ax,

where A ∈ Cn×n is a matrix. Then f(x, y) automatically satisfies axioms 2
and 3 of the inner product (Sect. 1.10), as well as the rules (1.4).

But axiom 1 of the inner product (Sect. 1.10) may not hold for any such
f(x, y). It holds if and only if

〈Ax, y〉 = f(x, y) = f(y, x) = 〈Ay, x〉 = 〈x,Ay〉 = 〈A∗x, y〉,

i.e., iff A = A∗, which means that A must be a Hermitian matrix.
Furthermore, if we want f(x, y) satisfy all the axioms of the inner product,

then we need to ensure the last axiom 4:

f(x, x) = 〈Ax, x〉 > 0 ∀x 6= 0.

4.1 Positive definite matrices
A matrix A is said to be positive definite if it is Hermitian and

〈Ax, x〉 = x∗Ax > 0 ∀x 6= 0.

In the real case, a matrix A is positive definite if it is symmetric and

〈Ax, x〉 = xTAx > 0 ∀x 6= 0.

If we replace “> 0” with “≥ 0” in the above formulas, we get the definition
of positive semi-definite3 matrices.

3Perhaps, a more natural term would be “non-negative definite”, but we will use the
official name positive semi-definite.

33

Symmetric positive definite matrices play important role in optimization theory (the

minimum of a function of several variables corresponds to a critical point where the ma-

trix of second order partial derivatives is positive definite) and probability theory (the

covariance matrix of a random vector is symmetric positive definite).

Interestingly, the condition 〈Ax, x〉 > 0 for all x ∈ Cn implies that the matrix
A is Hermitian, and therefore positive definite. We will prove this in Sections 4.2
and 4.3. (It is just a curious fact, with little importance, so the next two sections
can be skipped.)

4.2 Lemma
Let A,B be complex matrices. If 〈Ax, x〉 = 〈Bx, x〉 for all x ∈ Cn, then A = B.

(Proof: see exercises.)

Note: this lemma holds only in complex spaces, it fails in real spaces (see exercises).

4.3 Sufficient condition for positive definiteness
If A is a complex matrix such that 〈Ax, x〉 ∈ R for all x ∈ Cn, then A is

Hermitian. In particular, if 〈Ax, x〉 > 0 for all non-zero vectors x ∈ Cn, then A is
positive definite.

Proof. We have
〈Ax, x〉 = 〈Ax, x〉 = 〈x,Ax〉 = 〈A∗x, x〉,

hence A = A∗ by Lemma 4.2. Now the condition 〈Ax, x〉 > 0 for all x 6= 0 implies

that A is positive definite. �

Next we define positive definite and positive semi-definite operators in general spaces in a more
abstract way; see Sections 4.4–4.11 below. (These sections can be skipped in class and assigned to more
advanced students as a reading project.)

4.4 Bilinear forms
A bilinear form on a complex vector space V is a complex-valued function of two vector arguments,

i.e., f : V × V → C such that

f(u1 + u2, v) = f(u1, v) + f(u2, v)

f(cu, v) = cf(u, v)

f(u, v1 + v2) = f(u, v1) + f(u, v2)

f(u, cv) = c̄f(u, v)

for all vectors u, v, ui, vi ∈ V and scalars c ∈ C. In other words, f must be linear in the first argument
and “conjugate linear” in the second.

A bilinear form on a real vector space V is a mapping f : V ×V → R that satisfies the same properties,
except c is a real scalar, i.e., c̄ = c.

34

4.5 Representation of bilinear forms
Let V be a finite dimensional inner product space. Then for every bilinear form f on V there is a

unique linear operator T : V → V such that

f(u, v) = 〈Tu, v〉 ∀u, v ∈ V

Proof. For every v ∈ V the function g(u) = f(u, v) is linear in u, so by Riesz Representation Theorem 3.3
there is a vector w ∈ V such that f(u, v) = 〈u,w〉. Define a map S : V → V by Sv = w. It is then a
routine check that S is linear. Setting T = S∗ proves the existence. The uniqueness is obvious. �

4.6 Corollary

c© Every bilinear form on Cn can be represented by f(x, y) = 〈Ax, y〉 with some A ∈ Cn×n.

R© Every bilinear form on Rn can be represented by f(x, y) = 〈Ax, y〉 with some A ∈ Rn×n.

Bilinear forms generalize the notion of inner product in abstract spaces. In order for a bilinear form to
become an inner product, though, it needs two additional properties: conjugate symmetry f(x, y) = f(y, x)
and the positivity f(x, x) > 0 for all x 6= 0.

4.7 Hermitian/symmetric forms

A bilinear form f on a complex space V is Hermitian if f(u, v) = f(v, u) ∀u, v ∈ V .
A bilinear form f on a real space V is symmetric if f(u, v) = f(v, u) ∀u, v ∈ V .

4.8 Quadratic forms
For a Hermitian bilinear form f , the function q : V → R defined by q(u) = f(u, u) is called the

quadratic form associated with f . Note that q(u) ∈ R even in the complex case, because f(u, u) = f(u, u).

4.9 Theorem
A linear operator T : V → V is selfadjoint if and only if the bilinear form f(u, v) = 〈Tu, v〉 is

Hermitian (in the real case, symmetric).

Proof. If T is selfadjoint, then f(u, v) = 〈Tu, v〉 = 〈u, Tv〉 = 〈Tv, u〉 = f(v, u). If f is Hermitian, then

〈u, Tv〉 = 〈Tv, u〉 = f(v, u) = f(u, v) = 〈Tu, v〉 = 〈u, T ∗v〉, therefore T = T ∗. �

Thus, Hermitian bilinear forms on Cn are defined by Hermitian matrices.

4.10 Positive definite forms and operators
A Hermitian (symmetric) bilinear form f on a vector space V is said to be positive definite if f(u, u) >

0 for all u 6= 0. A selfadjoint operator T : V → V is said to be positive definite if 〈Tu, u〉 > 0 for all u 6= 0.

If we replace “> 0” with “≥ 0” in the above formulas, we get the definition of positive semi-definite
bilinear forms and operators.

4.11 Theorem
The following are equivalent:

(a) a bilinear form f(u, v) is an inner product.

(b) f(u, v) = 〈Tu, v〉, where T is a positive definite operator.

We now return to the main line of our course.

35

Special note: The rest of Chapter 4 and the entire Chapter 5 are extremely important.
The instructor should go slow, cover every minor detail, and not hesitate spending extra
time explaining things. The students are advised to attend classes, closely follow the
lectures, and do their best to fully grasp the material. Covering this part of the course
well will allow the class to move faster through subsequent chapters. On the other hand,
failure to fully understand this part of the course will cause major troubles later, and it
might be virtually impossible to learn some of the subsequent topics.

Let A ∈ Cn×n be a Hermitian matrix. By (3.1), all its eigenvalues
λ1, . . . , λn are real numbers, hence they can be ordered. In particular, we
can define

λmin = min
1≤i≤n

λi and λmax = max
1≤i≤n

λi. (4.1)

4.12 Properties of Hermitian matrices
Let A ∈ Cn×n be a Hermitian matrix. Then

(a) For every vector x ∈ Cn we have

〈Ax, x〉 ∈ R. (4.2)

(b) For every vector x ∈ Cn we have

λmin‖x‖2
2 ≤ 〈Ax, x〉 ≤ λmax‖x‖2

2. (4.3)

(c) We have

〈Ax, x〉 = λmin‖x‖2
2 ⇐⇒ Ax = λminx (4.4)

and
〈Ax, x〉 = λmax‖x‖2

2 ⇐⇒ Ax = λmaxx (4.5)

Part (c) implies that the left and right inequalities in (4.3) cannot be im-
proved – they turn into equalities for certain nonzero vectors x.

Proof. By Spectral Theorem 3.12, there is an ONB {u1, . . . , un} of eigenvec-
tors of A, corresponding to the eigenvalues λ1, . . . , λn. Then for any vector
x =

∑
ciui we have Ax =

∑
λiciui. Due to (1.20), we have

〈Ax, x〉 = λ1c1c̄1 + · · ·+ λncnc̄n

= λ1|c1|2 + · · ·+ λn|cn|2.

36

Since λi ∈ R, we conclude that 〈Ax, x〉 ∈ R thus proving part (a). Next,

〈Ax, x〉 ≥ λmin

(
|c1|2 + · · ·+ |cn|2

)
= λmin‖x‖2

2,

where we used (1.21). We also see that

〈Ax, x〉 − λmin‖x‖2
2 =

n∑
i=1

|ci|2(λi − λmin),

where all the terms are nonnegative because λi ≥ λmin. Thus, the left in-
equality in (4.3) turns into an equality if and only if ci = 0 for all i’s such
that λi > λmin. This means exactly that x is an eigenvector corresponding to
the smallest eigenvalue λmin. The left inequality in (4.3) and the claim (4.4)
are now proved.

Similarly,

〈Ax, x〉 ≤ λmax

(
|c1|2 + · · ·+ |cn|2

)
= λmax‖x‖2

2

and

λmax‖x‖2
2 − 〈Ax, x〉 =

n∑
i=1

|ci|2(λmax − λi).

Thus, the right inequality in (4.3) turns into an equality if and only if ci = 0
for all i’s such that λmax > λi, which means exactly that x is an eigenvector
corresponding to the largest eigenvalue λmax. The right inequality in (4.3)
and the claim (4.5) are now proved, too. �

4.13 Eigenvalues of positive definite matrices
Let A ∈ Cn×n be a Hermitian matrix. It is positive definite iff all its

eigenvalues are positive.
Similarly, a Hermitian matrix A ∈ Cn×n is positive semi-definite iff all its

eigenvalues are nonnegative.

Proof. This readily follows from Section 4.12. �

4.14 Inverse of a positive definite matrix
If a matrix A is positive definite, then so is A−1.

37

4.15 Characterization of positive definite matrices
A matrix A ∈ Cn×n is positive definite iff there is a nonsingular matrix

B such that A = B∗B.

Proof. “⇐” If A = B∗B, then A∗ = B∗(B∗)∗ = A, so A is Hermitian. Now

〈Ax, x〉 = 〈Bx,Bx〉 > 0 ∀x 6= 0,

so A is positive definite (note that x 6= 0 implies Bx 6= 0, because B is
nonsingular).

“⇒” According to Sections 3.13 and 4.13, A = P−1DP , where D =
diag {d1, . . . , dn} is a diagonal matrix with positive diagonal entries di > 0,
and P is a unitary matrix. We construct a new diagonal matrix

D1/2 = diag {
√
d1, . . . ,

√
dn}.

Now A = B2 where B = P−1D1/2P . Lastly we note that B is Hermitian,
due to Section 3.13, hence A = B∗B. �

4.16 Characterization of positive semi-definite matrices
A matrix A ∈ Cn×n is positive semi-definite if and only if there is a matrix

B (not necessarily nonsingular) such that A = B∗B.

The proof is similar to the above, so we omit it.

4.17 Full rank and rank deficient matrices
A matrix A ∈ Cm×n is said to have full rank if

rankA = min{m,n}

Otherwise, A is said to be rank deficient.

4.18 Products A∗A and AA∗

Let A be a rectangular m× n matrix. Then the matrices A∗A and AA∗

are Hermitian and positive semi-definite. If m 6= n and A has full rank, then
the smaller of the two matrices A∗A and AA∗ is positive definite.

Proof. First we verify the Hermitian property:

(A∗A)∗ = A∗(A∗)∗ = A∗A

38

and similarly (AA∗)∗ = AA∗. Next we verify positive semidefiniteness:

〈A∗Ax, x〉 = 〈Ax,Ax〉 ≥ 0

for any x ∈ Cn and similarly

〈AA∗y, y〉 = 〈A∗y, A∗y〉 ≥ 0

for any y ∈ Cm.
Now let A have full rank. If m ≥ n, then Ker(A) = {0}, hence Ax 6= 0

for any 0 6= x ∈ Cn, so that 〈A∗Ax, x〉 = 〈Ax,Ax〉 > 0, which implies that
A∗A is positive definite. If m < n, then Range(A) = Cm, hence for any
0 6= y ∈ Cm there is 0 6= x ∈ Cn such that y = Ax. Therefore

〈A∗y, x〉 = 〈y, Ax〉 = 〈y, y〉 > 0

which implies A∗y 6= 0. Therefore

〈AA∗y, y〉 = 〈A∗y, A∗y〉 > 0

which implies that AA∗ is positive definite. �

4.19 Spectral radius
Let A ∈ Cn×n be a square matrix and λ1, . . . , λn its eigenvalues. Then

ρA = max
1≤i≤n

|λi|

is called the spectral radius of A. It is the radius of the smallest disk {|z| ≤ r}
in the complex plane that contains all the eigenvalues of A.

Note: if A is a Hermitian matrix, then

ρA = max{|λmax|, |λmin|}

in the notation of (4.1).

39

4.20 Spectral radius for Hermitian matrices
If A ∈ Cn×n is a Hermitian matrix, then

‖A‖2 = ρA.

Proof. We use the notation of the proof in Section 4.12:

‖Ax‖2
2 = 〈Ax,Ax〉 = λ2

1|c1|2 + · · ·+ λ2
n|cn|2

≤
[

max
1≤i≤n

λ2
i

] n∑
j=1

|cj|2 = ρ2
A ‖x‖2

2.

Taking the square root and assuming x 6= 0 we get

‖Ax‖2/‖x‖2 ≤ ρA.

Now there exists k ∈ [1, n] such that |λk| = ρA. Let x = uk, i.e., x is an
eigenvector corresponding to λk. Then ck = 1 and ci = 0 for all i 6= k.
Therefore

‖Ax‖2
2 = λ2

k = ρ2
A.

Combining the above estimates gives us

‖A‖2 = max
x 6=0
‖Ax‖2/‖x‖2 = ρA

as desired. �

The next theorem is particularly important.

4.21 Theorem on the 2-norm of matrices
For any matrix A ∈ Cm×n we have

‖A‖2
2 = ‖A∗‖2

2 = ‖A∗A‖2 = ‖AA∗‖2 = λmax

where λmax denotes the largest eigenvalue of both A∗A and AA∗.

Note: This theorem gives a practical method for computing ‖A‖2 for small matrices,

where m = 2 or n = 2. In that case one of the two matrices A∗A and AA∗ is of size 2× 2,

thus its eigenvalues are the roots of a quadratic polynomial.

Proof of Theorem 4.21 is long and will be done in four steps. In the proof,
‖ · ‖ will always denote the 2-norm.

40

Lemma. For every vector z ∈ Cn we have ‖z‖ = max‖y‖=1 |〈y, z〉|.
Proof. Indeed, by the Cauchy-Schwarz inequality

|〈y, z〉| ≤ 〈y, y〉1/2〈z, z〉1/2 = ‖z‖

and the equality is attained whenever y is parallel to z. So we can set
y = ± z

‖z‖ and achieve the maximum. �

Step 1. To prove that ‖A‖ = ‖A∗‖ we write

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖y‖=1

|〈y, Ax〉| = sup
‖x‖=1

sup
‖y‖=1

|〈A∗y, x〉|

= sup
‖y‖=1

sup
‖x‖=1

|〈x,A∗y〉| = sup
‖y‖=1

‖A∗y‖ = ‖A∗‖.

Step 2. To prove that ‖A‖2 = ‖A∗A‖ we write

‖A∗A‖ = sup
‖x‖=1

‖A∗Ax‖ = sup
‖x‖=1

sup
‖y‖=1

|〈y, A∗Ax〉| = sup
‖x‖=1

sup
‖y‖=1

|〈Ay,Ax〉|.

Then we again use the Cauchy-Schwarz inequality:

|〈Ay,Ax〉| ≤ ‖Ax‖ ‖Ay‖ ≤ ‖A‖ ‖A‖ = ‖A‖2

hence ‖A∗A‖ ≤ ‖A‖2. On the other hand,

‖A∗A‖ = sup
‖x‖=1

sup
‖y‖=1

|〈Ay,Ax〉| ≥ sup
‖x‖=1

|〈Ax,Ax〉| = ‖A‖2.

Combining the upper and lower bounds gives us ‖A∗A‖ = ‖A‖2.

Step 3. Using an obvious symmetry we conclude that ‖A∗‖2 = ‖AA∗‖.
Step 4. According to Section 4.20, we have

‖A∗A‖2 = max |λi(A∗A)|.

Recall that A∗A is a Hermitian positive semi-definite matrix, so its eigenval-
ues λi(A

∗A) are real and ≥ 0, hence max |λi(A∗A)| = λmax(A∗A), the largest
eigenvalue of A∗A. The same argument applies to AA∗. In particular, we see
that

λmax(A∗A) = λmax(AA∗).

This completes the proof of Theorem 4.21. �

41

4.22 Example

Let A =

[
3
4

]
∈ C2×1. For any unit vector x ∈ C1 we can write x = [eiθ],

therefore Ax =

[
3eiθ

4eiθ

]
and

‖Ax‖ =
√
|3eiθ|2 + |4eiθ|2 =

√
32 + 42 = 5

which implies ‖A‖ = 5. Now let us find the norm of A∗ =
[
3 4

]
∈ C1×2,

i.e., ‖A∗‖ = sup‖y‖=1 ‖A∗y‖. For simplicity, we will only use real unit vectors

y ∈ C2, which can be described by y =

[
cosϕ
sinϕ

]
for ϕ ∈ [0, 2π]. We have

A∗y = 3 cosϕ+4 sinϕ, thus ‖A∗y‖ = |3 cosϕ+4 sinϕ|. Finding the maximum
of this function (over the interval 0 ≤ ϕ ≤ 2π) is a Calculus-I problem: the
maximum is achieved at cosϕ = ±3/5 and sinϕ = ±4/5, and we get

‖A∗‖ = max
‖y‖=1

‖A∗y‖ =
9

5
+

16

5
=

25

5
= 5.

We see that, indeed, ‖A‖ = ‖A∗‖. Note that A∗A = [25] ∈ C1×1, so obviously
‖A∗A‖ = 25, in full agreement with Theorem 4.21.

4.23 Corollary for the 2-norm of matrices
Let λmax again denote the largest eigenvalue of A∗A. Then we have

‖Ax‖2 = ‖A‖2‖x‖2 ⇐⇒ A∗Ax = λmaxx.

Hence, the supremum in Section 1.7 is attained (on the eigenvectors of A∗A
corresponding to λmax) and can be replaced by maximum. Moreover, this
implies that the 2-norm of a real matrix is the same, whether it is computed
in the complex space or in the real space.

Proof. On the one hand

‖Ax‖2
2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉

and on the other hand
‖A‖2 = λmax,

so for any vector x with ‖x‖ = 1 we have

‖Ax‖2
2 = ‖A‖2

2 ⇐⇒ 〈A∗Ax, x〉 = λmax,

and lastly we use Section 4.12. �

42

Exercise 4.1. Let A ∈ Cn×n satisfy A∗ = −A. Show that the matrix I −A is invertible.
Then show that the matrix (I −A)−1(I +A) is unitary.

Exercise 4.2. Let A = (aij) be a complex n× n matrix. Assume that 〈Ax, x〉 = 0 for all
x ∈ Cn. Prove that
(a) aii = 0 for 1 ≤ i ≤ n by substituting x = ei
(b) aij = 0 for i 6= j by substituting x = pei+qej then using (a) and putting p, q = ±1,±i
(here i =

√
−1) in various combinations.

Conclude that A = 0.

Exercise 4.3. Let A,B be complex n × n matrices such that 〈Ax, x〉 = 〈Bx, x〉 for all
x ∈ Cn. Use the previous exercise to prove that A = B.

Exercise 4.4. Find a real 2× 2 matrix A 6= 0 such that 〈Ax, x〉 = 0 for all x ∈ R2. Thus
find two real 2 × 2 matrices A and B such that 〈Ax, x〉 = 〈Bx, x〉 for all x ∈ R2, but
A 6= B.

Exercise 4.5. Find a real 2× 2 matrix A such that 〈Ax, x〉 > 0 for all x ∈ R2, but A is
not positive definite.

43

Chapter 5

Singular Value Decomposition

Recall that every matrix A ∈ Cm×n defines a linear transformation Cn →
Cm. Let B be an ONB in Cn and B′ be ONB in Cm. Then T is represented
in the bases B and B′ by the matrix U∗AV , where U ∈ Cm×m and V ∈ Cn×n

are unitary matrices. The following theorem shows that one can always find
two bases B and B′ so that the matrix U∗AV will be diagonal. This can be
written as U∗AV = D or equivalently, A = UDV ∗.

SVD (m > n) =

A

×

U

×
0

0

D
V ∗

SVD (m < n) =

A

×

U

×
0

0

D
V ∗

Note: D ∈ Cm×n is said to be diagonal if Dij = 0 for i 6= j. It has exactly
p = min{m,n} diagonal entries and can be denoted by D = diag{d1, . . . , dp}.

5.1 Singular value decomposition (SVD)
Let A ∈ Cm×n and denote p = min{m,n}. Denote the rank of A by r

(0 ≤ r ≤ p). Then there are unitary matrices U ∈ Cm×m and V ∈ Cn×n and
a real diagonal matrix D = diag{σ1, . . . , σp} ∈ Rm×n such that

A = UDV ∗ (5.1)

and
σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0,

The matrix D is uniquely determined by A.

The matrices U and V are not unique, for every A there are many choices of U and V .

44

Proof. Observe that (5.1) is equivalent to A∗ = V DTU∗, which is an SVD
for A∗. Therefore, A has an SVD if and only if A∗ does. This allows us to
assume that m ≥ n, without loss of generality.

We now fix l = m − n ≥ 0 and use induction on n (for every n ≥ 1 we
automatically take m = n+ l).

Denote σ1 = ‖A‖2. If σ1 = 0, then A is a zero matrix (aij = 0 for all
i, j), and an SVD is constructed trivially: D is a zero matrix and U and V
are arbitrary unitary matrices. So let us assume that σ1 > 0.

Due to Corollary 4.23, there is a unit vector v1 ∈ Cn such that ‖Av1‖2 =
‖A‖2 = σ1. Then the vector u1 = Av1/σ1 is a unit vector in Cm.

According to Section 1.26, we can extend v1 to an ONB {v1, v
′
2, . . . , v

′
n}

in Cn and u1 to an ONB {u1, u
′
2, . . . , u

′
m} in Cm. Let V1 denote the unitary

matrix whose columns are v1, v
′
2, . . . , v

′
n and U1 denote the unitary matrix

whose columns are u1, u
′
2, . . . , u

′
m. Then the product S = U∗1AV1 has the

following structure (as one can verify directly):

U∗1AV1 = S =

[
σ1 w∗

0 B

]
(∗)

If n = 1, then S = [σ1
0] is a diagonal matrix yielding an SVD

A = U1SV
∗

1

for A. This is the basis for our induction.
Suppose now n > 1, observe that

‖S‖2 = ‖S∗‖2 ≥
∥∥∥∥[σ1 0

w B∗

] [
1
0

]∥∥∥∥
2

=

∥∥∥∥[σ1

w

]∥∥∥∥
2

=
√
σ2

1 + w∗w.

On the other hand, the matrices U∗1 and V1 are unitary, hence we have

‖S‖2 = ‖U∗1AV1‖2 = (Exercise 2.1) = ‖A‖2 = σ1.

Comparing the above two formulas shows that w = 0. The matrix B has
dimensions (m − 1) × (n − 1), thus by our inductive assumption it has an
SVD, let us denote it by B = ÛD̂V̂ ∗. Now it can be easily verified that

A = U1

[
1 0

0 Û

]
︸ ︷︷ ︸

U

[
σ1 0

0 D̂

]
︸ ︷︷ ︸

D

[
1 0

0 V̂ ∗

]
V ∗1︸ ︷︷ ︸

V ∗

45

which gives us an SVD for A.
To prove the uniqueness of D, observe that

A∗A = V DTDV ∗ and AA∗ = UDDTU∗

i.e., σ2
1, . . . , σ

2
p are the eigenvalues of both A∗A and AA∗, hence they are

uniquely determined by A. �

Incidentally, the last part of the proof shows that the matrices A∗A and
AA∗ have common non-zero eigenvalues.

Note also that the columns of U are eigenvectors of AA∗ and the columns
of V are eigenvectors of A∗A, according to Section 3.14.

5.2 Singular values and singular vectors

• The positive numbers σ1, . . . , σr are called singular values of A.

• The columns v1, . . . , vn of the matrix V (not those of V ∗) are called
right singular vectors for A.

• The columns u1, . . . , um of the matrix U are called left singular vectors
for A.

5.3 Real SVD
If A ∈ Rm×n is a real matrix, then it has a real SVD

A = UDV T (5.2)

where U ∈ Rm×m and V ∈ Rn×n are real orthogonal matrices.

Proof is just a repetition of the proof in Section 5.1, except v1, v
′
2, . . . , v

′
n and u1, u

′
2, . . . , u

′
m

must be real vectors. �

The following diagram illustrates the SVD; see also Section 5.4:

v1

v2 V ∗

e1

e2 D

σ1e1

σ2e2
U

σ1u1

σ2u2

A

46

5.4 SVD analysis
For 1 ≤ i ≤ r we have

Avi = σiui, A∗ui = σivi.

We also have

KerA = span{vr+1, . . . , vn}, KerA∗ = span{ur+1, . . . , um}
RangeA = span{u1, . . . , ur}, RangeA∗ = span{v1, . . . , vr}

and
rankA = rankA∗ = r.

Here is a diagram illustrating the previous relations:

A A∗

v1

×σ1

−−−→ u1

×σ1

−−−→ v1

v2

×σ2

−−−→ u2

×σ2

−−−→ v2
...

...
...

...
...

vr
×σr
−−−→ ur

×σr
−−−→ vr

vr+1 → 0 ur+1 → 0
...

...
...

...
vn → 0 um → 0

5.5 Useful relations - I
For any matrix A ∈ Cm×n, an SVD for A∗ is

A∗ = V DTU∗,

hence A and A∗ have the same singular values. In particular,

‖A‖2 = ‖A∗‖2 = ‖D‖2 = ‖DT‖2 = σ1.

If A ∈ Cn×n is a square invertible matrix, then

A−1 = V D−1U∗

where D−1 = diag{σ−1
1 , . . . , σ−1

n }, and

‖A−1‖2 = ‖D−1‖2 = σ−1
n .

If A ∈ Cn×n is a Hermitian matrix with eigenvalues λ1, . . . , λn, then its
singular values are |λ1|, . . . , |λn| (this follows from Section 3.13).

47

5.6 Computation of SVD for small matrices
One can manually compute an SVD of an m× 2 matrix as follows. First

we form the 2 × 2 matrix A∗A. Then we find its eigenvalues λ1 ≥ λ2 ≥ 0
by solving the corresponding quadratic equation. (Since A∗A is a Hermitiam
positive semi-definite matrix, its eigenvalues are real non-negative numbers.)
Then we find the corresponding unit eigenvectors v1, v2 of the matrix A∗A.
Then we compute σ1 =

√
λ1, σ2 =

√
λ2 and u1 = σ−1

1 Av1, u2 = σ−1
2 Av2.

(Recall that u1 and u2 must be unit vectors orthogonal to each other.) Lastly,
ifm > 2, we extend the orthonormal set {u1, u2} to an ONB in Cm arbitrarily.

5.7 Reduced SVD
Let A ∈ Cm×n with m > n. Then there is a matrix Û ∈ Cm×n with

orthonormal columns, a unitary matrix V ∈ Cn×n and a square diagonal
matrix D̂ = diag{σ1, . . . , σn} such that

A = ÛD̂V ∗. (5.3)

For m < n, the reduced SVD is similar: there exist a unitary matrix U ∈
Cm×m, a matrix V̂ ∈ Cn×m with orthonormal columns, and a square diagonal
matrix D̂ = diag{σ1, . . . , σm} such that

A = UD̂V̂ ∗, (5.4)

Proof. Suppose m > n. Then we take the (full) SVD A = UDV ∗ given by
(5.1) and erase the last m− n columns of U and the bottom m− n rows of
D (consisting of zeros). For m < n, the construction is similar. �

Reduced SVD
(m > n)

=

A

×

Û

×
0

0

D̂

V ∗

Reduced SVD
(m < n)

=

A

×

U

×
0

0

D̂
V̂ ∗

48

5.8 Rank-one expansion
We have the following expansion of A:

A =
r∑
i=1

σiuiv
∗
i (5.5)

Each term of this sum is an m× n matrix of rank one (Exercise 5.1).

Proof. It is enough to observe that for every vj, 1 ≤ j ≤ n,(r∑
i=1

σiuiv
∗
i

)
vj = σjuj = Avj

because v∗i vj = δij (the Kronecker delta symbol defined in Sect. 1.18). �

5.9 Useful relations - II
Recall the Frobenius norm of a matrix (Section 1.6). We have

‖A‖2
F = (Exercise 2.2) = ‖D‖2

F = σ2
1 + · · ·+ σ2

r .

Comparing this with Section 5.5 gives

‖A‖2 ≤ ‖A‖F , (5.6)

The value of ‖A‖2F can be interpreted as the mass (or energy) of the matrix A. The mass

is conserved under multiplication by unitary matrices (Exercise 2.2), and the SVD pulls

all the mass of a matrix onto its diagonal.

For any 1 ≤ k ≤ r, let Ak denote the partial k-sum of (5.5):

Ak =
k∑
i=1

σiuiv
∗
i . (5.7)

It is easy to see that Akvi = σiui for i = 1, . . . , k and Akvi = 0 for i > k,
therefore rankAk = k.

Comparing (5.7) with (5.5) we see that Ak has singular values σ1, . . . , σk
and singular vectors u1, . . . , uk and v1, . . . , vk. Thus it agrees with A on the
k largest singular values and the corresponding singular vectors.

Also, for any unit vectors u and v we have ‖uv∗‖F = 1 (Exercise 5.1),
hence ‖σiuiv∗i ‖2

F = σ2
i and ‖Ak‖2

F = σ2
1 + · · ·+ σ2

k.

49

5.10 Low-rank approximation
For each 1 ≤ k ≤ r we have

σk+1 = ‖A− Ak‖2 = inf
B∈Cm×n
rankB≤k

‖A−B‖2 (5.8)

(for k = r, we assume here that σr+1 = 0).
Thus, Ak is the best approximation to A by matrices of rank ≤ k.

Proof. Note that

A− Ak =
r∑

i=k+1

σiuiv
∗
i (5.9)

hence the singular values of A − Ak are σk+1, . . . , σr, of which σk+1 is the
largest. Thus ‖A− Ak‖2 = σk+1, according to Sect. 5.5.

Now suppose that there is some matrix B with rankB ≤ k such that
‖A−B‖2 < σk+1. For each nonzero vector v ∈ KerB we have

‖Av‖2 = ‖(A−B)v‖2 ≤ ‖A−B‖2‖v‖2 < σk+1‖v‖2. (5.10)

On the other hand, let us consider the subspace L = span{v1, . . . , vk+1}. For
any nonzero vector v ∈ L we have

v = c1v1 + · · ·+ ck+1vk+1.

Due to Section 5.4

Av2 = c1σ1u1 + · · ·+ ck+1σk+1uk+1,

therefore by (1.21)

‖Av‖2
2 =

(
σ2

1|c1|2 + · · ·+ σ2
k+1|ck+1|2

)
≥ σ2

k+1‖v‖2
2. (5.11)

Note that dimL = (k + 1). On the other hand, due to (0.1) we have

dim(KerB) = n− rankB ≥ n− k.

Since (k+ 1) + (n−k) > n, the subspaces L and KerB must have a common
nonzero vector v. That vector must satisfy both (5.10) and (5.11), which is
impossible ⇒ a contradiction. �

50

5.11 Distance to the nearest singular matrix
Let A ∈ Cn×n be a nonsingular square matrix. Then

min {‖A− As‖2 : As is singular} = σn,

i.e., the smallest singular value σn of A is the “distance” from A to the
“nearest” singular matrix.

Proof. Recall: As is singular iff rankAs ≤ n− 1, then use (5.8). �

5.12 Small perturbations of matrices
We say that a matrix E ∈ Cm×n is small if all its components are small.

Equivalently, its norm ‖E‖2 is small. To see the equivalence, note that if
|eij| ≤ ε for all i, j, then ‖E‖2 ≤ ‖E‖F ≤ ε

√
mn. On the other hand, if

‖E‖2 ≤ ε, then |eij| ≤ ‖Eej‖2 ≤ ‖E‖2 ≤ ε for any i, j (here ej denotes the
jth canonical basis vector.

For a matrix A and a small matrix E, we call A+E a small perturbation
of A.

5.13 Rank with tolerance ε
The rank of A ∈ Cm×n with tolerance ε > 0 (also called numerical rank)

is defined by
rank(A, ε) = min

‖E‖2≤ε
rank(A+ E).

Note: rank(A, ε) ≤ rankA. The rank with tolerance ε is the minimum rank
of A under small perturbations by matrices that have 2-norm ≤ ε.

If A has full rank, i.e., rankA = p = min{m,n}, but rank(A, ε) < p for a
small ε, then A is “nearly rank deficient”.

5.14 Computation of the numerical rank
The rank of A with tolerance ε equals the number of singular values of A

(counted with multiplicity) that are greater than ε:

rank(A, ε) = {k : σk > ε, σk+1 ≤ ε}.

We also note that for each ε > 0

rank(A∗, ε) = rank(A, ε),

because A and A∗ have the same singular values (Section 5.5).

51

The rest of this chapter uses certain topological terms (open and dense sets, metric).

For students who are not familiar with these terms, explanations should be given, with

simple examples.

5.15 Metric for matrices
We can measure the “distance” between matrices A,B ∈ Cm×n as follows:

dist(A,B) = ‖A−B‖2

Then the space of matrices Cm×n becomes a metric space. As a result,
topological notions, like open sets, dense sets, etc., apply.

5.16 Topological properties of full rank matrices
Full rank matrices make an open and dense subset of Cm×n.

Openness means that for any full rank matrix A there is an ε > 0 such that all
perturbations A + E by small matrices E with norm ‖E‖2 < ε have full rank. In plain
words, any full rank matrix A is “surrounded” by full rank matrices.

Denseness means that for any rank-deficient matrix A and any ε > 0 there exists a

small matrix E with norm ‖E‖2 < ε such that A + E has full rank. In other words, full

rank matrices are scattered everywhere, they are in “every corner” of the space Cm×n.

Yet in other words, every matrix is “arbitrarily close” to full rank matrices.

Proof. Openness follows from Section 5.14. Indeed, for any full rank matrix
A we have σp > 0, where p = min{m,n}. Hence every matrix B such that
‖A−B‖2 < σp also has full rank.

To prove denseness, let A be a rank deficient matrix and let A = UDV ∗

be its SVD. For any ε > 0, we construct Dε = εI and E = UDεV
∗. Then

‖E‖2 = ‖Dε‖2 = ε and

rank(A+ E) = rank
(
U(D +Dε)V

∗) = rank(D +Dε) = min{m,n}

so A+ E has full rank. �

5.17 Topological property of diagonalizable matrices
Diagonalizable matrices make a dense subset of Cn×n.

Proof. See Exercise 6.3.

52

Exercise 5.1. Let x ∈ Cn and y ∈ Cm. Consider the m× n matrix defined by A = yx∗.

(a) Show that rankA = 1.

(b) Show that ‖A‖2 = ‖x‖2‖y‖2.

(c) Show that ‖A‖F = ‖x‖2‖y‖2 (which is the same as ‖x‖F ‖y‖F).

Exercise 5.2. (JPE, September 1996) Compute the singular values of

A =

0 −1.6 0.6
0 1.2 0.8
0 0 0
0 0 0

Exercise 5.3. (JPE, May 2003) Determine the singular value decomposition for the ma-
trix

A =

 3 2
2 3
2 −2

Exercise 5.4. Find the numerical rank with tolerance 0.9 of the matrix

A =

(
3 2
−4 −5

)

Exercise 5.5. Let Q ∈ Cn×n be unitary. Find all singular values of Q.

Exercise 5.6. Show that if two matrices A,B ∈ Cn×n are unitary equivalent, then they
have the same singular values. Is the converse true? (Prove or give a counterexample.)

53

Chapter 6

Schur Decomposition

Recall that every complex matrix A ∈ Cn×n is similar to a Jordan ma-
trix. In other words, for every linear operator Cn → Cn there exists a basis
in which the operator is represented by a Jordan matrix. How can we rep-
resent linear operators if we use orthonormal bases only? In other words, to
what extend one can simplify a complex matrix by using unitary equivalence
(instead of similarity)?

6.1 Schur decomposition
Any matrix A ∈ Cn×n is unitary equivalent to an upper triangular matrix

T . That is, there exists a unitary matrix Q such that

A = QTQ∗.

Note that the diagonal of T consists of the eigenvalues of A. Moreover, one
can find Q and T in such a way that the eigenvalues of A appear in any given
order on the diagonal of T .

Proof. We use induction on n. For n = 1, we just write A = I ·A · I∗ and note that I
is unitary and A = [a11] is upper triangular.

Now let n > 1. Let λ be an eigenvalue of A and let x be a unit eigenvector corre-
sponding to λ. Let Q1 be a unitary matrix whose first column is x. Such a matrix exists,
because there is an ONB in Cn whose first vector is x, according to Section 1.26; then Q1

can be constructed as a matrix whose columns are the vectors of that ONB.
Note that Q1e1 = x, hence Q∗1x = e1. Therefore

Q∗1AQ1e1 = Q∗1Ax = λQ∗1x = λe1.

In other words, e1 is an eigenvector of the matrix Q∗1AQ1 corresponding to the eigenvalue
λ. Now the above formula implies

Q∗1AQ1 =

[
λ w∗

0 B

]
with some w ∈ Cn−1 and B ∈ C(n−1)×(n−1).

54

By our inductive assumption, the smaller matrix B has a Schur decomposition, i.e.,
Q̂∗BQ̂ = T̂ for a unitary matrix Q̂ ∈ C(n−1)×(n−1) and an upper triangular matrix T̂ . By

Section 2.11, the enlarged n× n matrix

[
1 0

0 Q̂

]
is also unitary. Thus

Q = Q1

[
1 0

0 Q̂

]
is a unitary matrix, too (Section 2.9). Now one can verify directly that

Q∗AQ =

[
1 0

0 Q̂∗

] [
λ w∗

0 B

] [
1 0

0 Q̂

]
=

[
λ w∗Q̂

0 Q̂∗BQ̂

]
=

[
λ w∗Q̂

0 T̂

]
.

The last matrix is an n× n upper triangular matrix, as required. �

6.2 Normal matrices
A matrix A ∈ Cn×n is said to be normal if AA∗ = A∗A.

One can easily check that unitary and Hermitian matrices are normal.

6.3 Normal matrices under unitary equivalence
If A is normal and Q unitary, then B = Q∗AQ is normal. In other words,

the class of normal matrices is closed under unitary equivalence.

Proof. Note that B∗ = Q∗A∗Q and BB∗ = Q∗AA∗Q = Q∗A∗AQ = B∗B. �

6.4 Lemma
If A is normal and upper triangular, then A is diagonal.

Proof. We use induction on n. For n = 1 the lemma is trivial. Assume that n > 1.
Let us compute the top left element of the matrix AA∗ = A∗A. On the one hand, it is

n∑
i=1

a1iā1i =

n∑
i=1

|a1i|2.

On the other hand, it is just |a11|2. Hence, a12 = · · · = a1n = 0, i.e.,

A =

[
a11 0
0 B

]
One can easily check that AA∗ = A∗A implies BB∗ = B∗B, i.e., B is a normal (n− 1)×
(n − 1) matrix. Since A is upper triangular, so is B. By our inductive assumption, B is

diagonal, hence A is diagonal, too. �

Note: Any diagonal matrix is normal, because diagonal matrices commute.

55

6.5 Theorem
A matrix A ∈ Cn×n is normal if and only if it is unitary equivalent to a

diagonal matrix. In that case the Schur decomposition takes form

A = QDQ∗ (6.1)

where D is a diagonal matrix. Whenever the Schur decomposition takes form
(6.1), the columns of Q (Schur vectors) become eigenvectors of A.

Proof. This readily follows from Sections 6.1–6.4; see also Section 3.14. �

6.6 Remark
Three classes of complex matrices (unitary, Hermitian, and normal) have

the same property: they are unitary equivalent to a diagonal matrix (in other
words, they admit an ONB consisting of eigenvectors).

The difference between these classes lies in restrictions on the eigenvalues:
unitary matrices have eigenvalues on the unit circle (|λ| = 1), Hermitian ma-
trices have real eigenvalues (λ ∈ R), and now normal matrices have arbitrary
complex eigenvalues.

1−1

i

−i

H e r m i t i a n

U
n

i t a r y

N

O

R

M

A

L

56

6.7 Real Schur Decomposition
If A ∈ Rn×n, then there exists an orthogonal matrix Q such that

QTAQ =

R11 R12 · · · R1m

0 R22 · · · R2m
...

...
. . .

...
0 0 · · · Rmm

where each diagonal block Rii is either a 1× 1 matrix or a 2× 2 matrix.

Proof. We use the induction on n. Our induction will be somewhat unusual – its increment
will be either 1 or 2, i.e., our proof of the theorem for any given n will be based on its
validity for either n − 1 or n − 2 (depending on the matrix A). Thus the basis for our
induction must consist of two smallest values of n, i.e., n = 1 and n = 2.

For n = 1 and n = 2, we just write A = I · A · I∗ and note that I is unitary and A is
either a single 1× 1 block (if n = 1) or a single 2× 2 block (if n = 2).

Now let n > 2. If the matrix A has a real eigenvalue, then we can reduce the dimension
by one just like in the proof in Section 6.1 and then use our inductive assumption of the
validity of the theorem for n− 1.

If A has no real eigenvalues, then by Lemma 2.16 there is a two-dimensional subspace
W ⊂ Rn invariant under A. Let {x1, x2} be an ONB of W (one exists due to Sect. 1.26).
The invariance of W under A implies that Ax1 ∈W and Ax2 ∈W , hence

Ax1 = r11 x1 + r21 x2

Ax2 = r12 x1 + r22 x2

with some rij ∈ R. Due to Sect. 1.26, the ONB {x1, x2} in W can be extended to an

ONB {x1, . . . , xn} in Rn. Let Q̃ denote the orthogonal matrix with columns x1, . . . , xn.
Observe that Q̃e1 = x1 and Q̃e2 = x2, hence Q̃Tx1 = e1 and Q̃Tx2 = e2. Therefore,

Q̃TAQ̃e1 = Q̃TAx1 = Q̃T (r11 x1 + r21 x2) = r11 e1 + r21 e2

and similarly

Q̃TAQ̃e2 = Q̃TAx2 = Q̃T (r12 x1 + r22 x2) = r12 e1 + r22 e2

Thus,

Q̃TAQ̃ =

[
R11 R̃12

0 R̃22

]
where

R11 =

[
r11 r12

r21 r22

]
R̃12 is some 2 × (n − 2) matrix and R̃22 is some (n − 2) × (n − 2) matrix. Now we can

apply our inductive assumption to the (n− 2)× (n− 2) matrix R̃22 and finish the proof in

the same way as the proof in Section 6.1. Note that we need the validity of the theorem

for n− 2, i.e., the increment of our induction is 2 in the above case. �

57

Exercise 6.1. (combined from JPE, October 1990 and May 1997) Let A ∈ Cn×n be a
normal matrix.

(a) Prove that A− λI is normal for any λ ∈ C.

(b) Prove that ‖Ax‖ = ‖A∗x‖ for all x.

(c) Prove that (λ, x) is an eigenpair of A if and only if (λ̄, x) is an eigenpair of A∗.
(Hence, A and A∗ have the same eigenvectors.)

Exercise 6.2. (JPE, September 2002) A matrix A ∈ Cn×n is said to be skew Hermitian
if A∗ = −A.

(a) Prove that if A is skew Hermitian and B is unitary equivalent to A, then B is also
skew Hermitian.

(b) Prove that the eigenvalues of a skew Hermitian matrix are purely imaginary, i.e.
they satisfy λ̄ = −λ.

(c) What special form does the Schur decomposition take for a skew Hermitian matrix
A?

Exercise 6.3. (JPE, September 1998). Show that diagonalizable complex matrices make
a dense subset of Cn×n. That is, for any A ∈ Cn×n and ε > 0 there is a diagonalizable
B ∈ Cn×n such that ‖A−B‖2 < ε.

Exercise 6.4 (Bonus). (JPE, May 1996). Let T be a linear operator on a finite dimen-
sional complex inner product space V , and let T ∗ be the adjoint of T . Prove that T = T ∗

if and only if T ∗T = T 2.

58

Chapter 7

LU Decomposition

First we review Gaussian elimination from Linear Algebra:

7.1 Gaussian elimination
Let A ∈ Cn×n be a square matrix. We will modify it consecutively, in

n − 1 steps, as described below, to obtain an upper triangular matrix. For
the first step we denote A(1) = A and a

(1)
ij = aij for all 1 ≤ i, j ≤ n.

Step 1. Assume that a
(1)
11 6= 0. We define multipliers

mi1 = a
(1)
i1 /a

(1)
11 for i = 2, . . . , n

Then we replace the i-th row ã
(1)
i of the matrix A(1) with ã

(1)
i −mi1ã

(1)
1 for

all i = 2, . . . , n, and obtain a new matrix

A(2) =

a

(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 · · · a

(2)
nn

where

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j for 2 ≤ i, j ≤ n

Note that the first column of A(2) below the diagonal consists of zeros, i.e.,
a

(2)
i1 = 0 for all i = 2, . . . , n.

Step 2. Assume that a
(2)
22 6= 0. We define multipliers

mi2 = a
(2)
i2 /a

(2)
22 for i = 3, . . . , n

Then we replace the i-th row ã
(2)
i of the matrix A(2) with ã

(2)
i −mi2ã

(2)
2 for

59

all i = 3, . . . , n, and obtain a new matrix

A(3) =

a

(1)
11 a

(1)
12 a

(1)
13 · · · a

(1)
1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(2)
3n

...
...

...
. . .

...

0 0 a
(3)
n3 · · · a

(3)
nn

where

a
(3)
ij = a

(2)
ij −mi1a

(2)
2j for 3 ≤ i, j ≤ n

Note that the first two columns of A(3) below the diagonal consists of zeros,
i.e., a

(3)
ij = 0 for j = 1, 2 and all i = j + 1, . . . , n.

Then we continue this process. At each step we create zeros in one more
column below the diagonal. In n − 1 steps all the columns below the main
diagonal will consist of zeros, hence the resulting matrix An will be upper
triangular, and we will denote ir by U :

A(n) = U =

a

(1)
11 a

(1)
12 a

(1)
13 · · · a

(1)
1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

...
...

...
. . .

...

0 0 0 · · · a
(n)
nn

Remember that the above procedure requires a

(k)
kk 6= 0 for all k = 1, . . . , n−1.

These numbers are called pivots.
The procedure has to stop prematurely if (and only if) one of the pivots

happens to be zero. In that case we say that the Gaussian elimination fails.
Note that

a
(k)
kk 6= 0 for all k = 1, . . . , n− 1

is equivalent to

a
(1)
11 · · · a

(k)
kk 6= 0 for all k = 1, . . . , n− 1

This will be convenient for the criterion of failure below.

60

7.2 Principal minors
Let A ∈ Cn×n. For 1 ≤ k ≤ n − 1, the k-th principal minor of A is the

k×k matrix formed by the entries in the first k rows and the first k columns
of A. In other words, Ak is the top left k× k block of A. We denote the k-th
principal minor of A by Ak. We will also denote An = A.

7.3 Criterion of failure
Gaussian elimination fails if and only if

detAk = 0 for some k = 1, . . . , n− 1.

This is because for each k = 1, . . . , n

detAk = a
(1)
11 · · · a

(k)
kk .

Next we present the Gaussian elimination in matrix form. All our formu-
las can be verified by direct inspection, so we give them without proof.

7.4 Gauss matrices
For each j = 1, . . . , n− 1 we denote

m(j) =

0
...
0

mj+1,j
...

mn,j

and then we define the so called Gauss matrix Gj by

Gj = I −m(j)e∗j =

1 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0
. . . 1 · · · ...

...
...

...
. . . −mj+1,j

. . .
...

...
...

...
. . .

...
... 1 0

0 0 · · · −mn,j · · · 0 1

.

61

7.5 Main matrix formulas
For each k = 1, . . . , n− 1 we have

A(k+1) = GkA
(k)

and therefore
U = A(n) = Gn−1 · · ·G2G1A.

This can be rewritten as

A = G−1
1 G−1

2 · · ·G−1
n−1U.

Next let us denote

Lj = I +m(j)e∗j =

1 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 1 · · · 0 0
...

...
. . . mj+1,j

. . .
...

...
...

...
. . .

...
. . . 1 0

0 0 · · · mn,j · · · 0 1

.

For each j = 1, . . . , n− 1 we have LjGj = I, hence G−1
j = Lj, and thus

A = L1L2 · · ·Ln−1U. (7.1)

7.6 Unit lower/upper triangular matrices
A matrix L is said to be unit lower triangular if it is lower triangular and

has ones on its main diagonal. Note that detL = 1. The following slight
extensions of the rules given in Section 0.8 can be verified directly:

• If L1 and L2 are both unit lower triangular matrices, then so is their
product L1L2 and so are their inverses L−1

1 and L−1
2 .

Unit lower
triangular
matrices:

01

1

1

× 01

1

1

= 01

1

1

01

1

1

-1

= 01

1

1

In a similar way we can define unit upper triangular matrices. They obey
similar rules.

62

7.7 Main matrix formulas (continued)
Note that L1, . . . , Ln−1 in (7.1) are unit lower triangular matrices, thus

their product is a unit lower triangular matrix, which we denote by L. More
precisely, we have

L = L1L2 · · ·Ln−1

= (I +m(1)e∗1)(I +m(2)e∗2) · · · (I +m(n−1)e∗n−1)

= I +m(1)e∗1 +m(2)e∗2 + · · ·+m(n−1)e∗n−1

=

1 0 0 · · · 0
m21 1 0 · · · 0

...
...

...
. . .

...
mn−1,1 mn−1,2 · · · 1 0
mn1 mn2 · · · mn,n−1 1

 .
We summarize our matrix formulas in the following theorem:

7.8 Theorem (LU decomposition)
Let A ∈ Cn×n have non-singular principal minors up to the order n− 1.

Then there is a decomposition

A = LU

where L is a unit lower triangular matrix and U is an upper triangular matrix:

A

= 01

1

1

L

×
0
U

Note that detL = 1, hence

detA = detU = u11 · · ·unn.
If, in addition, A is non-singular, then the LU decomposition is unique.

Proof : The existence follows from our matrix formulas. To prove the uniqueness, we
argue by way of contradiction. Let A = L̃Ũ = LU be two LU decompositions. Since A is
non-singular, it follows that Ũ is also non-singular, and hence

L−1L̃ = UŨ−1.

By the rules of Section 7.6, the inverse L−1 is unit lower triangular, so the product L−1L̃
is unit lower triangular. On the other hand, UŨ−1 is upper triangular. The only matrix
that is both unit lower triangular and upper triangular is the identity matrix I, hence

L−1L̃ = UŨ−1 = I.

This implies L̃ = L and Ũ = U . �

63

7.9 Forward and backward substitutions
The LU decomposition can be used to solve a system of linear equations

Ax = b,

where A ∈ Cn×n is a given nonsingular matrix, b ∈ Cn is a given vector, and
and x ∈ Cn is an unknown vector to be computed.

Suppose we have an LU decomposition A = LU , where L is lower trian-
gular and U is upper triangular. Then we can find x in two steps.

0

L

×
0
U

×

x

=

b︸ ︷︷ ︸
y

Step 1. Denote Ux = y and solve the lower triangular system Ly = b for y
via “forward substitution” (computing y1, . . . , yn subsequently):

`11y1 = b1 ⇒ y1 = b1/`11

`21y1 + `22y2 = b2 ⇒ y2 = (b2 − `21y1)/`22

`31y1 + `32y2 + `33y3 = b3 ⇒ y3 = (b3 − `31y1 − `32y2)/`33

...
...

`n1y1 + · · ·+ `nnyn = bn ⇒ yn = (bn − `n1y1 − · · · − `n(n−1)yn−1)/`nn

Note: if L is unit lower triangular, then `11 = · · · = `nn = 1, and therefore
the divisions can be avoided.

Step 2. Solve the system Ux = y for x via “backward substitution” (com-
puting xn, . . . , x1 subsequently):

unnxn = yn ⇒ xn = yn/unn

u(n−1)(n−1)xn−1 + u(n−1)nxn = yn−1 ⇒ xn−1 = (yn−1 − u(n−1)nxn)/u(n−1)(n−1)

...
...

u11x1 + · · ·+ u1nxn = y1 ⇒ x1 = (y1 − u12x2 − · · · − u1nxn)/u11

64

7.10 Cost of computation
The cost of computation is measured in “flops”, where a flop (floating

point operation) is an arithmetic operation (addition, subtraction, multipli-
cation, division, or a root extraction).

Let us estimate the cost of the LU decomposition. The cost of computa-
tion of A(2) is n− 1 divisions to compute the multipliers and then 2n(n− 1)
flops to update the rows (n − 1 rows with 2n flops per row), i.e. total of
approximately 2n2 flops. The computation of A(3) then takes 2(n−1)2 flops,
and so on.

Thus the total computational cost for the LU factorization is

2
(
n2 + (n− 1)2 + · · ·+ 12

)
=

2n(n+ 1)(2n+ 1)

6
≈ 2n3

3
flops

If one solves a system of linear equations Ax = b, then the LU decompo-
sition is followed by solving two triangular systems (Section 7.9). The cost
to solve one triangular system is about n2 flops. So there is an additional
cost of 2n2 flops, which is negligible compared to 2n3/3. Hence, the total
cost is still ≈ 2n3/3.

Note that the LU decomposition takes most of the computations required
for solving a system Ax = b. Thus, this method is particularly well suited to
very common situations in which one is solving systems Ax = b for more than
one vector b, but with the same matrix A. In that case the LU decomposition
is done just once, and then each additional b will require ≈ 2n2 flops.

7.11 Computation of A−1

Assume that A ∈ Cn×n is non-singular and has non-singular principal
minors up to the order n−1, so that the Gaussian elimination works. One can
find the matrix X = A−1 by solving the system AX = I for X ∈ Cn×n. This
amounts to solving n systems of linear equations Axk = ek, for k = 1, . . . , n,
where xk stands for the k-th column of the matrix X. The computational
cost of this procedure is

2n3

3
+ n× 2n2 =

8n3

3
flops

As a matter of fact, this is the fastest way of computing the inverse A−1.

65

7.12 “Manual” solution of systems of linear equations
One needs to remember that the LU decomposition (with the subsequent

forward and backward substitutions) is just a convenient matrix represen-
tation of the standard and more familiar Gaussian elimination. These two
procedures are mathematically equivalent. When one solves a system of lin-
ear equations Ax = b practically (on paper), one should definitely apply the
Gaussian elimination to both A and b, rather than forming the L and U
matrices.

7.13 Example
Suppose one needs to solve the following system by LU decomposition:[

0.01 2
1 3

] [
x
y

]
=

[
2
4

]
Then one multiplies the first row by 100 and subtracts it from the second row. This gives[

0.01 2
0 −197

] [
x
y

]
=

[
2
−196

]
Then one solves the second equation for y and finds y = 196

197 . Lastly, one substitutes this

value for y into the first equation and finds x = 200
197 .

7.14 Warnings
It is a common practice to solve systems of linear equations Ax = b

with a nonsingular matrix A via Gaussian elimination (or, equivalently, LU
decomposition). However, this method requires that the matrix A satisfies
certain conditions (Section 7.3).

It is easy to find nonsingular matrices for which Gaussian elimination does
not work and LU decomposition does not exist. For example, let A = [0 1

1 0].
Then the Gaussian elimination fails instantly, because the very first pivot is
zero. Furthermore, for this matrix A there is no LU decomposition A = LU ,
even if we only require that L be lower triangular (not necessarily unit lower
triangular); see Exercise 7.2.

In addition, when a pivot is not exactly zero but close to zero, then things
can go wrong, too: multipliers become very large, and numerical computa-
tions (in the sense specified later in Chapter 11) tend to become inaccurate.
One should avoid such situations by using an appropriate pivoting strategy.
We will describe these strategies, briefly, and illustrate them by example.

66

7.15 Partial pivoting
The idea is to avoid zero or small pivots by interchanging rows. At every

step of Gaussian elimination one looks for the largest (in absolute value)
element in the pivot column (at or below the main diagonal). Then the row
containing the largest element is interchanged with the current row. Now
the largest element is on the main diagonal. After that the usual elimination
step is performed.

Partial pivoting ensures that all the multipliers (i.e., the elements of the
matrix L) have absolute values less than or equal to one.

7.16 Example
We apply the partial pivoting strategy to Example 7.13. In the first column, the larger

element is 1, hence we need to interchange the rows to put that element on the diagonal:[
1 3

0.01 2

] [
x
y

]
=

[
4
2

]
.

Now we multiply the first row by 0.01 and subtract it from the second row. This gives[
1 3
0 1.97

] [
x
y

]
=

[
4

1.96

]
.

Then we solve the second equation for y and find y = 196
197 . Lastly, we substitute this value

for y into the first equation and find x = 200
197 .

7.17 Complete pivoting
The method of complete pivoting involves both row and column inter-

changes to make use of the largest pivot available. This method provides
additional insurance against buildup of computational errors.

7.18 Example
We apply the complete pivoting strategy to Example 7.13. The largest element in the

whole matrix is 3, so we need to move it to the top left position by interchanging rows
and columns: [

3 1
2 0.01

] [
y
x

]
=

[
4
2

]
.

Note that interchanging columns requires permutation of the unknowns x and y. Next we
multiply the first row by 2/3 and subtract it from the second row. This gives[

3 1
0 − 197

300

] [
y
x

]
=

[
4
− 2

3

]
.

Then we solve the second equation for x and find x = 200
197 . Lastly, we substitute this value

for x into the first equation and find y = 196
197 .

67

7.19 Diagonally dominant matrices
A matrix A ∈ Cn×n such that

|aii| >
∑
j 6=i

|aij |

for all i is said to be strictly row diagonally dominant. If

|ajj | >
∑
i6=j

|aij |

for all j the matrix is said to be strictly column diagonally dominant.

One can check that if a matrix A is strictly row (or column) diagonally
dominant, then detA 6= 0 (the proof can be omitted for now; this fact readily follows

from Gershgorin Theorem that will be given in Chapter 15). Since all the principal
minors of A are also strictly row (or column) diagonally dominant, we have
detAk 6= 0 for all 1 ≤ k < n. Therefore no zero pivots will be encountered
during Gaussian elimination.

With some extra effort one can show that if A is strictly column diagonally dominant,

then all the multipliers (i.e., the elements of L) have absolute values ≤ 1.

Exercise 7.1. Find a nonzero matrix A ∈ R2×2 that admits at least two LU decompo-
sition, i.e. A = L1U1 = L2U2, where L1 and L2 are two distinct unit lower triangular
matrices and U1 and U2 are two distinct upper triangular matrices.

Exercise 7.2. Show that the matrix

[
0 1
1 0

]
admits no LU decomposition, even if we only

require that L be lower triangular (not necessarily unit lower triangular).

Exercise 7.3. The spectral radius of a matrix A ∈ Cn×n is defined by

ρA = max{|λ| : λ eigenvalue of A}.

(a) Show that ρA ≤ ‖A‖2.

(b) Give an example of a 2× 2 matrix A such that ρA < 1 but ‖A‖2 > 100.

(c) Show that if
lim
n→∞

‖An‖2 = 0,

then ρA < 1.

Exercise 7.4 (Bonus). In the notation of the previous problem, show that if ρA < 1, then

lim
n→∞

‖An‖2 = 0.

Hint: use Jordan decomposition.

68

Chapter 8

Cholesky Factorization

8.1 Theorem (LDM∗ Decomposition)
Assume that A ∈ Cn×n is non-singular and has non-singular principal

minors, i.e., detAk 6= 0 for all k = 1, . . . , n. Then there are unique matrices
L,D,M such that L,M are unit lower triangular, D is diagonal, and

A = LDM∗ (8.1)

A

= 01

1

1

L

×
0

0

D

×
1

1

10
M∗

Proof. According to Theorem 7.8, there is an LU decomposition A = LU . Let u11, . . . , unn
denote the diagonal components of U . Define diagonal matrix D = diag{u11, . . . , unn}.
Since A is non-singular, D is invertible, and D−1 = diag{u−1

11 , . . . , u
−1
nn}. One can easily

check that M∗ = D−1U is a unit upper triangular matrix, hence (8.1) exists.

To prove the uniqueness, suppose A = LDM∗ = L1D1M
∗
1 are two different LDM∗

decompositions. Note that all the matrices here are invertible, because A is non-singular.

By the uniqueness of the LU decomposition (Theorem 7.8), we have L = L1, hence,

DM∗ = D1M
∗
1 and D−1

1 D = M∗1 (M∗)−1. Since both M∗ and M∗1 are unit upper triangu-

lar, so is M∗1 (M∗)−1 (by Sect. 7.6). On the other hand, D−1
1 D is diagonal. The only matrix

that is unit lower triangular and diagonal is the identity matrix. Thus M∗1 (M∗)−1 = I

and D−1
1 D = I, which implies M∗ = M∗1 and D = D1. �

8.2 Corollary (LDL∗ Decomposition)
Suppose A ∈ Cn×n satisfies the assumptions of Theorem 8.1 and is Hermi-

tian. Then there exist a unique unit lower triangular matrix L and a unique
diagonal matrix D such that

A = LDL∗

Moreover, the components of D are real numbers.

69

Proof. By Theorem 8.1, A = LDM∗. Now A = A∗ = MD∗L∗, and by the uniqueness of

the LDM∗ decomposition we have L = M and D = D∗. The latter implies that D is a

real matrix. �

8.3 Sylvester’s Theorem
Let A ∈ Cn×n be a Hermitian matrix. Then

A is positive definite ⇐⇒ detAk > 0 (∀k = 1, . . . , n)

Proof. Let A be positive definite. By Section 4.15, A = B∗B and detB 6= 0. Hence

detA = detB × detB∗ = detB × detB = |detB|2 > 0.

One can easily check that every principal minor Ak is also a Hermitian positive definite
matrix, therefore by the same argument detAk > 0.

Now let detAk > 0 for all k = 1, . . . , n. By Corollary 8.2, A = LDL∗. Denote by
Lk and Dk the k-th principal minors of L and D, respectively. One can easily check that
Ak = LkDkL

∗
k. Since Lk is unit lower triangular, we have detLk = 1, thus detDk =

detAk > 0. Denote D = diag{d1, . . . , dn}, hence Dk = diag{d1, . . . , dk}. Now

detDk = d1 · · · dk > 0 ∀k = 1, . . . , n

implies that d1, . . . , dn are all real and positive. Lastly,

〈Ax, x〉 = 〈LDL∗x, x〉 = 〈DL∗x, L∗x〉 = 〈Dy, y〉 > 0

where y = L∗x. Note that y 6= 0 whenever x 6= 0, because L∗ is invertible. �

8.4 Corollary
Let A be a positive definite matrix. Then aii > 0 for all i = 1, . . . , n.

Furthermore, let 1 ≤ i1 < i2 < · · · < ik ≤ n, and let A′ be the k × k matrix
formed by the intersections of the rows and columns of A with numbers
i1, . . . , ik. Then detA′ > 0.

Proof. Recall that A defines an operator Cn → Cn. We can reorder the canonical basis

vectors e1, . . . , en in Cn and get a new ONB {ei1 , . . . , eik , . . .}. In this new basis, the

operator is represented by a matrix B such that Bk = A′, i.e., A′ is a principal minor of

a positive definite matrix. Then we can apply Sylvester’s Theorem 8.3. �

The above corollary suggests a quick way of proving that a given matrix A
is not positive definite: just spot a non-positive diagonal component or a 2×2
submatrix (with two components on the diagonal of A) with a non-positive
determinant, etc.

70

8.5 Theorem (Cholesky Factorization)
Let A ∈ Cn×n be Hermitian and positive definite. Then there exists a

unique lower triangular matrix G with real positive diagonal entries such that

A = GG∗

Example (zeros in matrices are not shown):4 2 8
2 10 7
8 6 21

 =

2
1 3
4 2 1

×
2 1 4

3 2
1

 = ×

Proof. By Corollary 8.2, the matrix A has an LDL∗ decomposition A = LDL∗. Denote
D = diag{d1, . . . , dn}. As it was shown in the proof of Sylvester’s Theorem 8.3, all di’s are
real and positive numbers. Thus we can form another diagonal matrix with real positive
diagonal entries as follows: D1/2 = diag{

√
d1, . . . ,

√
dn}. Then D = D1/2D1/2 and setting

G = LD1/2 readily gives A = GG∗. One can easily check that the diagonal entries of G
are
√
d1, . . . ,

√
dn, so they are real positive numbers, as required.

To prove the uniqueness, suppose A = GG∗ = G̃G̃∗ are two different Cholesky factor-
izations. Then G̃−1G = G̃∗(G∗)−1. This is the equality of a lower triangular matrix and
an upper triangular one; hence both matrices are diagonal:

G̃−1G = G̃∗(G∗)−1 = D′ = diag{d′1, . . . , d′n}.

Since A is positive definite, it must be non-singular, hence all the matrices in our formulas
must be invertible. Note that G̃ = G(D′)−1, which implies

g̃ii = gii/d
′
i ∀ i = 1, . . . , n.

Similarly, G̃∗ = G∗D′, which implies

g̃ii = giid
′
i ∀ i = 1, . . . , n.

Multiplying the above two formulas gives g̃2
ii = g2

ii, and since these are real positive

numbers, we get g̃ii = gii. Therefore d′i = 1 and D′ = I. This implies G̃ = G. �

8.6 Algorithm for Cholesky factorization
Here we outline the algorithm for computing the matrix G = (gij) from the matrix

A = (aij). For simplicity, we will restrict our presentation to the real matrices A ∈ Rn×n.
Note that G is lower triangular, i.e., gij = 0 for i < j, hence,

aij =

min{i,j}∑
k=1

gikgjk.

Setting i = j = 1 gives a11 = g2
11, hence

g11 =
√
a11.

71

Next, for 2 ≤ i ≤ n we have ai1 = gi1g11, hence

gi1 = ai1/g11 i = 2, . . . , n.

This gives the first column of G. Now, inductively, assume that we already have the first
j − 1 columns of G. Then ajj =

∑j
k=1 g

2
jk, hence

gjj =

√√√√ajj −
j−1∑
k=1

g2
jk.

Next, for j + 1 ≤ i ≤ n we have aij =
∑j
k=1 gikgjk, hence

gij =
1

gjj

(
aij −

j−1∑
k=1

gikgjk

)
.

8.7 Cost of computation
The computation of gij takes ≈ 2j flops for each i = j, . . . , n, so the total is

n∑
j=1

2j(n− j) ≈ 2n
n2

2
− 2

n3

3
=
n3

3

Recall that the LU decomposition takes about 2n3/3 flops, so the Cholesky factorization

is nearly twice as fast. It is also more stable than the LU decomposition, in the sense

precisely defined below, in Chapter 13.

8.8 Criterion of positive definiteness
The above algorithm can be used to verify that a given real symmetric

matrix, A, is positive definite. Whenever all the square root extractions in
Section 8.6 are possible and give non zero numbers, i.e. whenever

a11 > 0 and ajj −
j−1∑
k=1

g2
jk > 0 ∀j ≥ 2

the matrix A is positive definite. If at least one of the above quantities is not
positive, then A is not positive definite.

Exercise 8.1. (JPE, May 1994) Let A ∈ Rn×n be given, symmetric and positive definite.
Define A0 = A, and consider the sequence of matrices defined by

Ak = GkG
t
k and Ak+1 = GtkGk

where Ak = GkG
t
k is the Cholesky factorization for Ak. Prove that the Ak all have the

same eigenvalues.

72

Chapter 9

QR Decomposition

9.1 Gram-Schmidt orthogonalization (revisited)
Let {v1, . . . , vn} be a linearly independent set of vectors in Cm (m ≥ n).

The Gram-Schmidt orthogonalization described in Section 1.25 gives an or-
thonormal set of vectors {u1, . . . , un} in Cm, and the equations (1.14)–(1.16)
can be written as

v1 = r11u1,

v2 = r12u1 + r22u2,

v3 = r13u1 + r23u2 + r33u3, (9.1)

. . .

vn = r1nu1 + r2nu2 + · · ·+ rn−1,nun−1 + rnnun

where rip = 〈vp, ui〉 for i < p ≤ n and rpp = ‖wp‖. Note that rpp > 0.
Let us assemble a matrix A ∈ Cm×n whose columns are the vectors

v1, . . . , vn, a matrix Q̂ whose columns are the vectors u1, . . . , un:

A =

v1

∣∣∣∣∣∣∣v2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣vn
 and Q̂ =

u1

∣∣∣∣∣∣∣u2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣un
 .

Let R̂ ∈ Cn×n be an upper triangular matrix defined as follows:

R̂ =

r11 r12 · · · r1n

0 r22 · · · r2n
...

...
. . .

...
0 0 · · · rnn

 .
Then the above relations (9.1) can be written in matrix form:

A = Q̂R̂ (9.2)

One can verify the equivalence of (9.1) and (9.2) by direct inspection.

73

9.2 Linearly dependent case
Let us relax our assumption that v1, . . . , vn are linearly independent. Thus let {v1, . . . , vn}

be an arbitrary set of vectors in Cm. Then the Gram-Schmidt procedure 1.25 can be ad-
justed as follows.

For some p ≥ 1 we now may have vp = 0 or, more generally,

vp ∈ span{v1, . . . , vp−1}.

This implies vp ∈ span{u1, . . . , up−1}, therefore wp = 0, in the notation of Section 1.25.
Now the vector up = wp/‖wp‖ cannot be determined.

Instead, we can choose up as an arbitrary unit vector orthogonal to u1, . . . , up−1 (we
know that such vectors exist due to Sect. 1.26). After such a “loosely constrained” selection
of up we continue the Gram-Schmidt orthogonalization as described in Section 1.25. Every
time we encounter a linear dependence vp ∈ span{v1, . . . , vp−1}, we select up “frivolously”
as specified above. In that case, the respective equation

vp = r1pu1 + · · ·+ rp−1,pup−1 + rppup

for vp, as given in (9.1), will still hold, but with rpp = 0 instead of rpp > 0.

9.3 Extension of Q̂ to Q
The vectors u1, . . . , un make an orthonormal set in Cm that can be ex-

tended to an ONB {u1, . . . , um}, according to Sect. 1.26. Now we can form
a larger, square matrix

Q =

u1

∣∣∣∣∣∣∣∣∣∣∣∣
u2

∣∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
un

∣∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
um

 ∈ Cm×m

which is unitary, according to Sect. 2.4. By adding m − n rows consisting
of zeros to the bottom of the matrix R̂ we get a larger matrix

R =

r11 r12 · · · r1n

0 r22 · · · r2n

...
...

. . .
...

0 0 · · · rnn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

∈ Cm×n.

We still call R an “upper triangular matrix”. Now the relation (9.2) can be
written as

A = QR. (9.3)

The equivalence of (9.2) and (9.3) can be verified by direct inspection.

74

We summarize the previous constructions as follows:

9.4 Theorem (QR decomposition)
For any matrix A ∈ Cm×n with m ≥ n there exist a unitary matrix

Q ∈ Cm×m and an upper triangular matrix R ∈ Cm×n such that

A = QR. (9.4)

This is called (full) QR decomposition of A.
The first (left) n columns of the matrixQ form a smaller matrix Q̂ ∈ Cm×n

(whose columns are orthonormal vectors in Cm) and the first (upper) n rows
of the matrix R form a square upper triangular matrix R̂ so that

A = Q̂R̂. (9.5)

This is called reduced (“skinny”) QR decomposition of A.

=

A

×

Q

=

0

R

×

Q̂

0

R̂

Proof. Given a matrix A ∈ Cm×n, we disassemble it into column vectors v1, . . . , vn ∈ Cm,

and then apply all the constructions described in Sections 9.1–9.3. �

9.5 Real QR decomposition
Suppose A ∈ Rm×n is a real matrix. Then all the constructions of Sec-

tions 9.1–9.3 can be done with real matrices only, and they produce real
matrices Q and R. In particular, Q will be an orthogonal matrix.

9.6 Positivity of the diagonal of R
The QR decomposition can be constructed so that the diagonal compo-

nents of R (R̂) are real non-negative numbers:

rii ≥ 0 ∀i = 1, . . . , n.

If A has full rank (i.e., rankA = n), then the columns of A are linearly
independent. In that case R̂ is invertible, and one can construct R (and R̂)
so that its diagonal components are real positive numbers:

rii > 0 ∀i = 1, . . . , n.

75

9.7 Uniqueness of the QR decomposition
If A has full rank (i.e., rankA = n), then the matrix R̂ with real positive

diagonal entries (rii > 0) is unique. The corresponding matrix Q̂ is unique,
too.

Proof. Let A = Q̂R̂ = Q̂1R̂1 be two different reduced QR decompositions with the specified
properties. Then

A∗A = R̂∗R̂

because Q̂∗Q̂ = I is the identity matrix (this follows from the columns of Q̂ being or-
thonormal vectors). Similarly,

A∗A = R̂∗1R̂1.

Thus we get two Cholesky factorizations for the same matrix A∗A. But this matrix is

positive definite (due to Section 4.18), hence its Cholesky factorization must be unique

(cf. Section 8.5). This implies R̂ = R̂1. Lastly, Q̂1 = Q̂R̂R̂−1
1 = Q̂. �

9.8 Cost of QR
In order to compute the reduced QR decomposition (9.5), one needs to apply Gram-

Schmidt orthogonalization to the n columns of the matrix A and compute the n columns
u1, . . . , un of the matrix Q̂. The vector up is found by

wp = vp −
p−1∑
i=1

〈vp, ui〉ui, and up =
wp
‖wp‖

,

see Section 1.25. Here each scalar product 〈vp, ui〉 requires m multiplications and m
additions, and then subtracting every term 〈vp, ui〉ui from vp requiresmmultiplication and
m subtractions, for each i = 1, . . . , p. The total is 4mp flops. The subsequent computation
of ‖wp+1‖ and then up+1 requires 3m flops, which is a relatively small number, and we
ignore it. The total flop count is

∑n
p=1 4mp ≈ 2mn2 flops, i.e., the QR takes

2mn2 flops

9.9 Cost of SVD
There is no finite algorithms for the computation of SVD described in Chapter 5 (ex-

cept for small matrices, see Remark 5.6). The reason will be discussed later in Chapter 15.
In practice, the SVD is computed by special iterative algorithms. The computation of the
reduced SVD requires approximately

2mn2 + 11n3 flops

76

9.10 Modified Gram-Schmidt orthogonalization
The algorithm from Section 1.25 is often called classical Gram-Schmidt

orthogonalization, as opposed to the modified Gram-Schmidt orthogonaliza-
tion we present next. Given a linearly independent set of vectors {v1, . . . , vn}
in Cm, we denote v

(1)
i = vi for i = 1, . . . , n, then compute

u1 = v
(1)
1 /‖v(1)

1 ‖,

and then modify all the remaining vectors by the rule

v
(2)
i = v

(1)
i − 〈v

(1)
i , u1〉u1 for 1 < i ≤ n.

After that, inductively, for each p ≥ 2 we compute

up = v(p)
p /‖v(p)

p ‖,

and then modify all the remaining vectors by the rule

v
(p+1)
i = v

(p)
i − 〈v

(p)
i , up〉up for p < i ≤ n.

The modified and classical Gram-Schmidt methods produce the same or-
thonormal basis {u1, . . . , un} (i.e., these two methods are mathematically
equivalent). They are based on a different logic, though.

The classical Gram-Schmidt computes up by making the current vector
vp orthogonal to all the previously constructed vectors u1, . . . , up−1, without
touching the remaining vectors vp+1, . . . , vn. The amount of work increases
as p grows from 1 to n. This is a “lazy man schedule” - do as little as possible
and leave the rest of the work “for later”.

The modified Gram-Schmidt computes up and makes all the remaining
vectors vp+1, . . . , vn orthogonal to it. Once this is done, the remaining vectors
will be in the orthogonal complement to the subspace span{u1, . . . , up} and
there is no need to involve the previously constructed vectors anymore. The
amount of work decreases as p grows from 1 to n. This is an “industrious
man schedule” - do as much as possible now and reduce the workload.

Overall, both methods require the same amount of flops. But the mod-
ified Gram-Scmidt has an important advantage that it gives more accurate
numerical results in computer calculations; see programming assignment.

77

Classical Gram-Schmidt:

w1=v1 u1 = w1

‖w1‖

w2=v2−〈v2, u1〉u1 u2 = w2

‖w2‖

w3=v3−〈v3, u1〉u1−〈v3, u2〉u2 u3 = w3

‖w3‖

w4=v4−〈v4, u1〉u1−〈v4, u2〉u2−〈v4, u3〉u3 u4 = w4

‖w4‖

...
...

...

wp=vp−〈vp, u1〉u1−〈vp, u2〉u2 − · · · −〈vp, up−1〉up−1 up = wp
‖w4‖

...
...

...
...

The amount of work increases at each step (the red rows grow longer)

Modified Gram-Schmidt:

w1=v1 u1 = w1

‖w1‖

w2=v2−〈v2, u1〉u1 u2 = w2

‖w2‖

w3=v3−〈v3, u1〉u1−〈v3, u2〉u2 u3 = w3

‖w3‖

w4=v4−〈v4, u1〉u1−〈v4, u2〉u2−〈v4, u3〉u3 u4 = w4

‖w4‖

...
...

...

wp=vp−〈vp, u1〉u1−〈vp, u2〉u2 − · · · −〈vp, up−1〉up−1 up = wp
‖w4‖

...
...

...
...

The amount of work decreases at each step (the red columns get shorter)

78

Exercise 9.1. (JPE, September 2002) Consider three vectors

v1 =

1
ε
0
0

 , v2 =

1
0
ε
0

 , v3 =

1
0
0
ε

 .

where ε� 1.

(a) Use the classical Gram-Schmidt method to compute 3 orthonormal vectors q1, q2, q3,
making the approximation that 1 + ε2 ≈ 1 (that is, replace any term containing ε2

or smaller with zero, but retain terms containing ε). Are qi (i = 1, 2, 3) pairwise
orthogonal? If not, why not?

(b) Repeat (a) using the modified Gram-Schmidt orthogonalization process. Are the
qi(i = 1, 2, 3) pairwise orthogonal? If not, why not?

79

Chapter 10

Least Squares

10.1 Definition
A system of linear equations Ax = b with A ∈ Cm×n, x ∈ Cn and b ∈ Cm,

is said to be overdetermined if m > n. Since there are more equations than
unknowns, the system usually has no solutions; so we will write it as Ax ≈ b.

10.2 Conditions for existence and uniqueness of a solution
Recall that every matrix A ∈ Cm×n defines a linear transformation Cn → Cm.

Since it takes a smaller space into a larger one, its range is a proper subset of Cm.

Cn
RangeA Cm

A

It is clear that the equation Ax = b has a solution if and only if b ∈ RangeA.

In the latter case the solution is unique if and only if our linear transformation is

injective. The latter occurs if and only if KerA = {0} (cf. Section 0.6).

10.3 Least squares solution
Let Ax ≈ b be an overdetermined linear system. A vector x ∈ Cn that

minimizes the function
E(x) = ‖b− Ax‖2

is called a least squares solution of Ax ≈ b. The vector r = b− Ax is called
the residual vector and ‖r‖2 the residual norm.

10.4 Normal equations
Let Ax ≈ b be an overdetermined linear system. The linear system

A∗Ax = A∗b (10.1)

is called the system of normal equations associated with Ax ≈ b.

Note that A∗A ∈ Cn×n, hence (10.1) is an ordinary system of linear equations

(not an overdetermined system).

80

10.5 Theorem
Let Ax ≈ b be an overdetermined linear system. Then

(a) A vector x minimizes E(x) = ‖b − Ax‖2 if and only if it is an exact
solution of the system Ax = b̂, where b̂ is the orthogonal projection of
b onto RangeA.

(b) A vector x minimizing E(x) always exists. It is unique if and only if A
has full rank (equivalently, KerA = {0}).

(c) A vector x minimizes E(x) if and only if it is a solution of the system
of normal equations A∗Ax = A∗b.

Proof. Denote W = RangeA. We have an orthogonal decomposition Cm = W ⊕W⊥,
in particular b = b̂ + r, where b̂ ∈ W and r ∈ W⊥ are uniquely determined by b. Now
Pythagorean Theorem 1.16 gives

[E(x)]2 = ‖b−Ax‖22 = ‖ b− b̂︸ ︷︷ ︸
=r∈W⊥

+ b̂−Ax︸ ︷︷ ︸
∈W

‖2

= ‖r‖22 + ‖b̂−Ax‖22 ≥ ‖r‖22

Hence, minxE(x) = ‖r‖2 is attained whenever Ax = b̂. Since b̂ ∈ RangeA, there is always

a vector x ∈ Cn such that Ax = b̂. The vector x is unique whenever the map A : Cn → Cm
is injective, i.e., whenever KerA = {0}, i.e., whenever A has full rank. This proves (a)
and (b).

To prove (c), recall that (RangeA)⊥ = KerA∗ (by Section 3.7), therefore r = b− b̂ ∈
KerA∗. Moreover, b − Ax ∈ KerA∗ if and only if Ax = b̂, because b̂ and r are uniquely
determined by b. Now

x minimizes E(x) ⇔ Ax = b̂ ⇔ Ax− b ∈ KerA∗ ⇔ A∗Ax = A∗b

The proof is complete. �

Cn

b

b̂

r

W = RangeA

W⊥

Cm

A

81

Next we give examples that lead to overdetermined systems and least
squares problems.

10.6 Linear least squares fit
Let (xi, yi), 1 ≤ i ≤ m, be points in the xy plane. For any straight line

y = a0 +a1x one defines the “combined distance” from that line to the given
points by

E(a0, a1) =

[m∑
i=1

(a0 + a1xi − yi)2

]1/2

The line y = a0 +a1x that minimizes the function E(a0, a1) is called the least
squares fit to the points (xi, yi). This is a basic tool in statistics. Let

A =

1 x1

1 x2
...

...
1 xm

 x =

[
a0

a1

]
b =

y1

y2
...
ym

Then

E(a0, a1) = ‖b− Ax‖2

Hence the least squares fit is equivalent to the least squares problem Ax ≈ b.

10.7 Polynomial least squares fit
Generalizing 10.6, one can fit a polynomial y = p(x) = a0+a1x+· · ·+anxn

of degree n ≥ 2 to a set of data points (xi, yi), 1 ≤ i ≤ m, with m > n + 1.
The least squares fit is based on minimizing the function

E(a0, . . . , an) =

[m∑
i=1

(
a0 + a1xi + · · ·+ anx

n
i − yi

)2
]1/2

This is equivalent to the least squares problem for an overdetermined linear
system

a0 + a1xi + · · ·+ anx
n
i ≈ yi 1 ≤ i ≤ m

in which a0, . . . , an are unknowns.

82

10.8 Continuous least squares fit
Instead of fitting a polynomial p(x) ∈ Pn(R) of degree n to a discrete data set (xi, yi)

one can fit it to a continuous function y = f(x) on [0, 1]. The least squares fit is based on
minimization of

E(a0, . . . , an) =

[∫ 1

0

|f(x)− p(x)|2 dx
]1/2

The solution to this problem is the orthogonal projection of f(x) onto Pn(R).
To find the solution, we use the basis {1, x, . . . , xn} in Pn(R). Then a0, . . . , an can be

found by solving the system of equations (analogous to normal equations)

n∑
j=0

aj〈xj , xi〉 = 〈f, xi〉 1 ≤ i ≤ n.

The matrix of coefficients here is

〈xj , xi〉 =

∫ 1

0

xi+j dx =
1

1 + i+ j

for 0 ≤ i, j ≤ n.

Next we present three computer algorithms for solving the least square prob-
lem.

10.9 Algorithm 1, based on normal equations
This is the simplest one:

1. Form the matrix A∗A and the vector A∗b.
2. Compute the Cholesky factorization A∗A = GG∗.
3. Solve the lower-triangular system Gz = A∗b for z by forward substitution 7.9.
4. Solve the upper-triangular system G∗x = z for x by backward substitution 7.9.

The cost of this algorithm is dominated by Steps 1 and 2. Because the matrix A∗A is
symmetric, its computation requires mn(n + 1) ≈ mn2 flops. The computation of A∗b
requires only 2mn flops, a relatively small amount which we can ignore. The Cholesky
factorization takes n3/3 flops (cf. Section 8.7). Hence the total cost is

≈ mn2 + 1
3n

3 flops

Note: the above method is a computer algorithm. For manual work (on
paper), solving the least squares problem by using normal equations means
the following: you compute the matrix A∗A and the vector A∗b and then solve
the system A∗Ax = A∗b for x any way you want (by Gaussian elimination,
for example).

83

10.10 Algorithm 2, based on QR decomposition
Using the reduced QR decomposition (Section 9.5) allows us to rewrite the system of

normal equations as
R̂∗Q̂∗Q̂R̂x = R̂∗Q̂∗b

If A has full rank, the matrix R̂∗ is nonsingular and we cancel it out. Also, since the
columns of Q̂ are orthonormal vectors, Q̂∗Q̂ = I. Hence

R̂x = Q̂∗b

This suggests the following algorithm:

1. Compute the reduced QR decomposition A = Q̂R̂.
2. Compute the vector Q̂∗b.
3. Solve the upper-triangular system R̂x = Q̂∗b for x by backward substitution 7.9.

The cost of this algorithm is dominated by Step 1, the reduced QR factorization, which
requires

≈ 2mn2 flops

see Section 9.8. This is approximately twice as much as Algorithm 1 takes.

10.11 Algorithm 3, based on SVD
Using the reduced SVD (Section 5.7) allows us to rewrite the system of normal equa-

tions as
V D̂Û∗ÛD̂V ∗x = V D̂Û∗b

The matrix V is unitary, and we cancel it out. If A has full rank, the matrix D̂ is
nonsingular and we cancel it, too. Since the columns of Û are orthonormal vectors,
Û∗Û = I. Hence

D̂V ∗x = Û∗b

This suggests the following algorithm:

1. Compute the reduced SVD decomposition A = ÛD̂V ∗.
2. Compute the vector Û∗b.
3. Solve the diagonal system D̂z = Û∗b for z.
4. Compute x = V z.

The cost of this algorithm is dominated by step 1, the reduced SVD decomposition, which
requires

≈ 2mn2 + 11n3 flops

see Section 9.9. This is approximately the same amount as in Algorithm 2 for m� n, but

for n ≈ m this algorithm is much more expensive.

84

Algorithm 1 is the simplest and the cheapest, but it often gives inaccurate
results in numerical calculations. Algorithms 2 and 3 are more complicated
and expensive (in terms of flops), but usually give more accurate numerical
results, for the reasons we learn in the next chapters.

10.12 Rank deficient matrix A
If rankA < n, then the least squares solution is not unique: the set of

solutions is {x ∈ Cn : Ax = b̂}, which is a line or a plane in Cn parallel to
KerA. In this case the “best” solution is the one of minimal norm:

Axbest = b̂ and ‖xbest‖2 ≤ ‖x‖2 ∀x : Ax = b̂

Algorithms 1 and 2 fail to find any solution for a rank deficient matrix A. On
the contrary, Algorithm 3 easily finds the minimal norm solution as follows.

When solving the diagonal system D̂z = Û∗b for z, we just set zi = 0
whenever dii = 0 (in that case (Û∗b)i = 0 automatically). This obviously
gives a minimal norm vector z. Since ‖x‖2 = ‖V z‖2 = ‖z‖2, we get a
minimal norm vector x as well.

Exercise 10.1. (JPE, September 1997) Let

A =

 3 3
0 4
4 −1

 , and b =

 2
−2

1

Use the Gram-Schmidt process to find an orthonormal basis for the column space of A.
Factor A into a product QR where Q ∈ R3×2 has an orthonormal set of column vectors
and R ∈ R2×2 is upper triangular. Solve the least squares problem Ax = b. Compute the
norm of the residual vector, ‖r‖.

Exercise 10.2. (JPE, May 1998) Given the data (0,1), (3,4) and (6,5), use a QR factor-
ization technique to find the best least squares fit by a linear function. Also, solve the
problem via the system of normal equations.

85

Chapter 11

Machine Arithmetic

11.1 Decimal number system
In our decimal system, natural numbers are represented by a sequence of

digits. For example, 582 = 5 · 102 + 8 · 10 + 2. Generally,

an · · · a1a0 = 10nan + · · ·+ 10a1 + a0,

where ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} are digits. Fractional numbers require an
additional fractional part:

f = .d1d2 . . . dt . . . = 10−1d1 + 10−2d2 + · · ·+ 10−tdt + · · ·

which may be finite or infinite.

11.2 Floating point representation
Alternatively, any real number can be written as a product of a fractional

part with a sign and a power of ten:(
±.d1d2 . . . dt . . .

)
× 10e

where di are decimal digits and e ∈ Z is an integer. For example,

58.2 = 0.582× 102 = 0.0582× 103, etc. (11.1)

This is called floating point representation of decimal numbers. The part
.d1d2 . . . dt . . . is called mantissa and e is called exponent. By changing the
exponent e with a fixed mantissa .d1d2 . . . dt . . . we can move (“float”) the
decimal point, for example 0.582× 102 = 58.2 and 0.582× 101 = 5.82.

86

11.3 Normalized floating point representation
To avoid unnecessary multiple representations of the same number, such

as in (11.1), we can require that d1 6= 0. We say the floating point repre-
sentation is normalized if d1 6= 0. Then 0.582 × 102 is the only normalized
representation of the number 58.2.

For every positive real r > 0 there is a unique integer e ∈ Z such that
f = 10−er ∈ [0.1, 1). Then r = f × 10e is the normalized representation of r.
For most of real numbers, the normalized representation is unique, however,
there are exceptions, such as(

.9999 . . .
)
× 100 =

(
.1000 . . .

)
× 101,

both representing the number r = 1. In such cases one of the two representa-
tions has a finite fractional part and the other has an infinite fractional part
with trailing nines.

11.4 Binary number system
In the binary number system, the base is 2 (instead of 10), and there

are only two digits: 0 and 1. Any natural number N can be written, in the
binary system, as a sequence of binary digits:

N = (an · · · a1a0)2 = 2nan + · · ·+ 2a1 + a0

where ai ∈ {0, 1}. For example, 5 = 1012, 11 = 10112, 64 = 10000002, etc.
Binary system, due to its simplicity, is used by all computers. In the modern
computer world, the word bit means binary digit.

Fractional numbers require an additional fractional part:

f = (.d1d2 . . . dt . . .)2 = 2−1d1 + 2−2d2 + · · ·+ 2−tdt + · · ·

which may be finite or infinite. For example, 0.5 = 0.12, 0.625 = 0.1012, and

0.6 = (0.10011001100110011 . . .)2

(the blocks 00 and 11 alternate indefinitely). The floating point representa-
tion of real numbers in the binary system is given by

r =
(
±.d1d2 . . . dt . . .

)
2
× 2e

where .d1d2 . . . dt . . . is called mantissa and e ∈ Z is called exponent. Again,
we say that the above representation is normalized if d1 6= 0, this ensures
uniqueness for almost all real numbers. Note that d1 6= 0 implies d1 = 1, i.e.,
every normalized binary representation begins with a one.

87

11.5 Other number systems
We can use a number system with any fixed base β ≥ 2. By analogy

with Sections 11.1 and 11.4, any natural number N can be written, in that
system, as a sequence of digits:

N = (an · · · a1a0)β = βnan + · · ·+ βa1 + a0

where ai ∈ {0, 1, . . . , β − 1} are digits. Fractional numbers require an addi-
tional fractional part:

f = .d1d2 . . . dt . . . = β−1d1 + β−2d2 + · · ·+ β−tdt + · · ·

which may be finite or infinite. The floating point representation of real
numbers in the system with base β is given by

r =
(
±.d1d2 . . . dt . . .

)
β
× βe

where .d1d2 . . . dt . . . is called mantissa and e ∈ Z is called exponent. Again,
we say that the above representation is normalized if d1 6= 0, this ensures
uniqueness for almost all real numbers.

In the real world, computers can only handle a certain fixed number of digits in their

electronic memory. For the same reason, possible values of the exponent e are always

limited to a certain fixed interval. This motivates our next definition.

11.6 Machine number systems (an abstract version)
A machine number system is specified by four integers, (β, t, L, U), where

β ≥ 2 is the base
t ≥ 1 is the length of the mantissa
L ∈ Z is the minimal value for the exponent e
U ∈ Z is the maximal value for the exponent e (of course, L ≤ U).

Real numbers in a machine system are represented by

r =
(
±.d1d2 . . . dt

)
β
× βe, L ≤ e ≤ U (11.2)

The representation must be normalized, i.e., d1 6= 0.

88

11.7 Basic properties of machine systems
Suppose we use a machine system with parameters (β, t, L, U). There are finitely many

real numbers that can be represented by (11.2). More precisely, there are

2(β − 1)βt−1(U − L+ 1)

such numbers. The largest machine number is

M =
(
.(β − 1)β . . . β

)
β
× βU = βU (1− β−t).

The smallest positive machine number is

m =
(
.10 . . . 0

)
β
× βL = βL−1.

Note that zero cannot be represented in the above format, since we require d1 6= 0. For

this reason, every real machine systems includes a few special numbers, like zero, that

have to be represented differently. Other “special numbers” are +∞ and −∞.

11.8 Two standard machine systems
Most modern computers conform to the IEEE floating-point standard (ANSI/IEEE

Standard 754-1985), which specifies two machine systems:

I© Single precision is defined by β = 2, t = 24, L = −125 and U = 128.

II© Double precision is defined by β = 2, t = 53, L = −1021 and U = 1024.

11.9 Rounding rules
A machine system with parameters (β, t, L, U) provides exact represen-

tation for finitely many real numbers. Other real numbers have to be ap-
proximated by machine numbers. Suppose x 6= 0 be a real number with
normalized floating point representation

x =
(
±0.d1d2 . . .

)
β
× βe

where the number of digits may be finite or infinite.
If e > U or e < L, then x cannot be properly represented in the machine system (it

is either “too large” or “too small”). If e < L, then x is usually converted to the special

number zero. If e > U , then x is usually converted to the special number +∞ or −∞.

If e ∈ [L,U] is within the proper range, then the mantissa of x has to
be reduced to t digits (if it is longer than that or infinite). There are two
standard versions of such reductions:

(a) keep the first t digits and chop off the rest;

(b) round off to the nearest available, i.e. use the rules{
.d1 . . . dt if dt+1 < β/2
.d1 . . . dt + .0 . . . 01 if dt+1 ≥ β/2

89

11.10 Relative errors
Let x be a real number and xc its computer representation in a machine

system with parameters (β, t, L, U), as described above. We will always assume

that x is neither too big nor too small, i.e., its exponent e is within the proper range

L ≤ e ≤ U . How accurately does xc represent x? (How close is xc to x?)
The absolute error of the computer representation, i.e., xc − x, may be

quite large when the exponent e is big. It is more customary to describe the
accuracy in terms of the relative error (xc − x)/x as follows:

xc − x
x

= ε or xc = x(1 + ε).

It is easy to see that the maximal possible value of |ε| is

|ε| ≤ u =

{
β1−t for chopped arithmetic (a)

1
2
β1−t for rounded arithmetic (b)

The number u is called unit roundoff or machine epsilon.

11.11 Machine epsilon
Note that the machine epsilon u is not the smallest positive number m

represented by the given machine system (cf. Sect. 11.7).
One can describe u as the smallest positive number ε > 0 such that

(1 + ε)c 6= 1. In other words, u is the smallest positive value that, when
added to one, yields a result different from one.

In more practical terms, u tells us how many accurate digits machine
numbers can carry. If u ∼ 10−p, then any machine number xc carries at
most p accurate decimal digits.

For example, suppose for a given machine system u ∼ 10−7 and a machine number

xc representing some real number x has value 35.41879236 (when printed on paper or

displayed on computer screen). Then we can say that x ≈ 35.41879, and the digits of x

beyond 9 cannot be determined. In particular, the digits 236 in the printed value of xc

are meaningless (they are “trash” to be discarded).

11.12 Machine epsilon for the two standard machine systems
I© For the IEEE floating-point single precision standard with chopped

arithmetic u = 2−23 ≈ 1.2× 10−7. In other words, approximately 7 decimal
digits are accurate.

II© For the IEEE floating-point double precision standard with chopped
arithmetic u = 2−52 ≈ 2.2×10−16. In other words, approximately 16 decimal
digits are accurate.

90

In the next two examples, we will solve systems of linear equations by
using the rules of a machine system. In other words, we will pretend that we
are computers. This will help us understand how real computers work.

11.13 Example
Let us solve the system of equations[

0.01 2
1 3

] [
x
y

]
=

[
2
4

]
The exact solution was found in Section 7.13:

x = 200
197 ≈ 1.015 and y = 196

197 ≈ 0.995.

Now let us solve this system by using chopped arithmetic with base β = 10 and t = 2 (i.e.,
our mantissa will be always limited to two decimal digits).

First we use Gaussian elimination (without pivoting). Multiplying the first equation
by 100 and subtracting it from the second gives −197y = −196. Both numbers 197 and
196 are three digit long, so we must chop the third digit off. This gives −190y = −190,
hence y = 1. Substituting y = 1 into the first equation gives 0.01x = 2 − 2 = 0, hence
x = 0. Thus our computed solution is

xc = 0 and yc = 1.

The relative error in x is (xc − x)/x = −1, i.e., the computed xc is 100% off mark!
Let us increase the length of mantissa to t = 3 and repeat the calculations. This gives

xc = 2 and yc = 0.994.

The relative error in x is now (xc − x)/x = 0.97, i.e., the computed xc is 97% off mark.
Not much of improvement... We postpone the explanation until Chapter 13.

Let us now apply partial pivoting (Section 7.15). First we interchange the rows:[
1 3

0.01 2

] [
x
y

]
=

[
4
2

]
.

Now we multiply the first equation by 0.01 and subtract it from the second to get 1.97y =
1.96. With t = 2, we must chop off the third digit in both numbers: 1.9y = 1.9, hence
y = 1. Substituting y = 1 into the fits equation gives x+ 3 = 4, hence x = 1, i.e.,

xc = 1 and yc = 1.

This is a great improvement over the first two solutions (without pivoting). The relative
error in x is now (xc − x)/x = −0.015, so the computed xc is only 1.5% off. The relative
error in y is even smaller (about 0.005).

91

Machine arithmetic Exact arithmetic: Machine arithmetic
with t = 2: with t = 3:

0.01x+ 2y = 2

x+ 3y = 4
⇓

0.01x+ 2y = 2

−190y =− 190

Chopping off

←−−−−−−
0.01x+ 2y = 2

−197y = −196
⇓ ⇓

0.01x+ 2y = 2

y = 1

0.01x+ 2y = 2

y = 196
197 ≈ 0.9949

Chopping off

−−−−−−→
0.01x+ 2y = 2

y = 0.994
⇓ ⇓ ⇓

0.01x = 2− 2 = 0

y = 1

!!© 0.01x = 2− 392
197 = 2

197

y = 196
197

!!© 0.01x = 2− 1.98�A8 = 0.02

y = 0.994
⇓ ⇓ ⇓

x = 0

y = 1

x = 200
197 ≈ 1.0152

y = 196
197 ≈ 0.9949

x = 2

y = 0.994

Example 11.13 without pivoting.

Machine arithmetic Exact arithmetic: Machine arithmetic
with t = 2: with t = 3:

x+ 3y = 4

0.01x+ 2y = 2
⇓

x+ 3y = 4

1.9y = 1.9

Chopping off

←−−−−−−−
x+ 3y = 4

1.97y = 1.96
⇓ ⇓

x+ 3y = 4

y = 1

x+ 3y = 4

y = 196
197 ≈ 0.9949

Chopping off

−−−−−−−→
x+ 3y = 4

y = 0.994
⇓ ⇓ ⇓

x = 4− 3 = 1

y = 1

x = 4− 588
197 = 200

197

y = 196
197

x = 4− 2.98�A2 = 1.02

y = 0.994

Example 11.13 with partial pivoting.

92

Now let us continue the partial pivoting with t = 3. We can keep three digits, so
1.97y = 1.96 gives y = 1.96/1.97 ≈ 0.9949, which we have to reduce to y = 0.994.
Substituting this value of y into the first equation gives x + 2.982 = 4, which we have to
reduce to x+ 2.98 = 4, hence x = 1.02. So now

xc = 1.02 and yc = 0.994.

The relative error in x is (xc − x)/x = 0.0047, less than 0.5%.
The table below shows the relative error of the numerical solution xc by Gaussian

elimination with pivoting and different lengths of mantissa. We see that the relative error
is roughly proportional to the “typical” round-off error 10−t, with a factor of about 2 to
5. We can hardly expect a better accuracy.

relative error typical error factor
t = 2 1.5× 10−2 10−2 1.5
t = 3 4.7× 10−3 10−3 4.7
t = 4 2.2× 10−4 10−4 2.2

Conclusions: Gaussian elimination without pivoting may lead to catastrophic errors, which

will remain unexplained until Chapter 13. Pivoting is more reliable – it seems to provide

nearly maximum possible accuracy here. But see the next example...

11.14 Example
Let us solve another system of equations:[

3 1
1 0.35

] [
x
y

]
=

[
5

1.7

]
The exact solution here is

x = 1 and y = 2.

The largest coefficient, 3, is at the top left corner already, so pivoting (partial or complete)
would not change anything.

Solving this system in chopped arithmetic with β = 10 and t = 2 gives xc = 0 and
yc = 5, which is 150% off. Increasing the length of the mantissa to t = 3 gives xc = 0.883
and yc = 2.35, so the relative error is 17%. With t = 4, we obtain xc = 0.987 and
yc = 2.039, now the relative error is 2%. The table below shows that the relative error
of the numerical solutions is roughly proportional to the typical round-off error 10−t, but
with a big factor fluctuating around 150 or 200.

relative error typical error factor
t = 2 1.5× 10−0 10−2 150
t = 3 1.7× 10−1 10−3 170
t = 4 2.0× 10−2 10−4 200

We postpone a complete analysis of the above two examples until Chapter 13.

93

11.15 Computational errors
Let x and y be two real numbers represented in a machine system by xc

and yc, respectively. An arithmetic operation x ∗ y (where ∗ stands for one
of the four basic operations: +,−,×,÷) is performed by a computer in the
following way. The computer first finds xc ∗ yc exactly and then represents
that number in its machine system. The result is z = (xc ∗ yc)c.

Note that, generally, z is different from (x ∗ y)c, which is the machine representation

of the exact result x ∗ y. Hence, z is not necessarily the best representation for x ∗ y. In

other words, the computer makes additional round off errors at each arithmetic operation.

Assuming that xc = x(1 + ε1) and yc = y(1 + ε2) we have

(xc ∗ yc)c = (xc ∗ yc) (1 + ε3) = [x(1 + ε1)] ∗ [y(1 + ε2)] (1 + ε3)

where |ε1|, |ε2|, |ε3| ≤ u.

11.16 Multiplication and division
For multiplication, we have

z = xy(1 + ε1)(1 + ε2)(1 + ε3) ≈ xy(1 + ε1 + ε2 + ε3)

(here we ignore higher order terms like ε1ε2), so the relative error is (approx-
imately) bounded by 3u. A similar estimate can be made for division:

z =
x(1 + ε1)(1 + ε3)

y(1 + ε2)
≈ x

y
(1 + ε1 − ε2 + ε3).

Note: we used Taylor expansion

1

1 + ε2
= 1− ε2 + ε2

2 − ε3
2 + · · ·

and again ignored higher order terms.

Thus again the relative error is (approximately) bounded by 3u.

Conclusion: machine multiplication and machine division magnify rela-
tive errors by a factor of three, at most.

94

11.17 Addition and subtraction
For addition, we have

z = (x+ y + xε1 + yε2)(1 + ε3) = (x+ y)
(

1 +
xε1 + yε2

x+ y

)
(1 + ε3).

Again ignoring higher order terms we can bound the relative error of z by

|x|+ |y|
|x+ y|

u + u.

Thus, the operation of addition magnifies relative errors by a factor of

|x|+ |y|
|x+ y|

+ 1.

Similar estimates can be made for subtraction x − y: it magnifies relative
errors by a factor

|x|+ |y|
|x− y|

+ 1.

Hence the addition and subtraction magnify relative errors by a variable
factor which depends on x and y. This factor may be arbitrarily large if
x + y ≈ 0 for addition or x − y ≈ 0 for subtraction. This phenomenon is
known as catastrophic cancelation. It occurred in our Example 11.13 when we solved

it without pivoting (see the line marked with double exclamation signs on page 92).

Exercise 11.1. (JPE, September 1993). Solve the system(
0.001 1.00
1.00 2.00

)(
x
y

)
=

(
1.00
3.00

)
using the LU decomposition with and without partial pivoting and chopped arithmetic
with base β = 10 and t = 3 (i.e., work with a three digit mantissa). Obtain computed
solutions (xc, yc) in both cases. Find the exact solution, compare, make comments.

Exercise 11.2. (JPE, May 2003). Consider the system(
ε 1
2 1

)(
x
y

)
=

(
1
0

)
Assume that |ε| � 1. Solve the system by using the LU decomposition with and with-
out partial pivoting and adopting the following rounding off models (at all stages of the
computation!):

a+ bε = a (for a 6= 0),

a+ b/ε = b/ε (for b 6= 0).

Find the exact solution, compare, make comments.

95

Chapter 12

Condition Numbers

12.1 Introduction
We have seen in Chapter 11 that not all real numbers can be precisely encoded in

a given machine system. In most instances there is a difference between the exact value
of a real number x and its computer representation xc (this difference is called error
of representation). We have also seen that numerical calculations with finite precision
(limited length of mantissa) tend to magnify errors, sometimes dramatically. In this
chapter our object of study will be the factor by which errors are magnified (that factor
will be called condition number).

Also we have seen that in numerical analysis it is customary to deal with relative

errors, given by |xc − x|/x, rather than absolute errors, |xc − x|. A relative error ∼ 10−k

means that the value of xc, when recorded in decimal format, has k accurate digits (recall

Sect. 11.11). We note that it is the order of magnitude of a relative error that matters,

not its exact value. For example, relative errors 0.0001 and 0.0002 are nearly the same, in

practical terms: both are of order 10−4, hence both tell us that we can trust approximately

four decimal digits in the recorded value of xc.

12.2 Computational process as a function
Any computational process transforms given numbers (input) into com-

puted numbers (output).

In Example 11.13 we were given the coefficients of a matrix (0.01, 2, 1, and 3) and the
components of a right hand side vector (2 and 4). The results of our computation were
two numbers: x = 200

197 and y = 196
197 .

Input

0.01, 2, 1, 3, 2, 4
−−−−−→

computational

process
−−−−−→

Output
200
197 ,

196
197

Given numbers can be viewed as components of a vector, and computed numbers – as

components of another vector. Thus every computational process is a transformation of a

vector space into another vector space. In our Example 11.13, it was R6 → R2.

In other words, every computational process can be viewed as a function
f : V → W , where V and W are vector spaces.

96

12.3 Condition number of a function
Let V and W be two normed vector spaces, and f : V → W a function.

The condition number κ of f at a point x ∈ V is defined by

κ = κ(f, x) = lim
δ→0

sup
‖∆x‖≤δ

(
‖∆f‖
‖f‖

/
‖∆x‖
‖x‖

)
where ∆f = f(x + ∆x) − f(x). This is the maximal factor by which small
relative errors are magnified by f in the vicinity of the point x.

The condition number characterizes the sensitivity of the output, f(x), to small per-

turbations in the input, x.

12.4 Lemma
Let Cn → Cn be a linear operator defined by a nonsingular matrix A ∈

Cn×n, and let ‖ · ‖ be a norm on Cn. Then for every x ∈ Cn

κ(A, x) ≤ ‖A‖ ‖A−1‖ and sup
x 6=0

κ(A, x) = ‖A‖ ‖A−1‖

where ‖A‖ denotes the induced matrix norm.

Proof. Let y = Ax and note that ∆y = A(x+ ∆x)−Ax = A(∆x). Now

κ(A, x) = sup
∆x6=0

‖A(∆x)‖
‖∆x‖

‖x‖
‖Ax‖

= ‖A‖ ‖x‖
‖Ax‖

which is defined for all x 6= 0. Next

sup
x 6=0

κ(A, x) = ‖A‖ sup
x 6=0

‖x‖
‖Ax‖

= ‖A‖ sup
y 6=0

‖A−1y‖
‖y‖

= ‖A‖ ‖A−1‖

(note that x 6= 0 ⇐⇒ y 6= 0, because A is invertible). �

12.5 Condition number of a matrix
For a nonsingular matrix A ∈ Cn×n, the condition number with respect

to a given matrix norm ‖ · ‖ is defined by

κ(A) = ‖A‖ ‖A−1‖ (12.1)

We denote by κ1(A), κ2(A), κ∞(A) the condition numbers with respect to
the 1-norm, 2-norm, and ∞-norm, respectively.

97

12.6 Main theorem for the condition number of a matrix
Let A ∈ Cn×n be a nonsingular matrix and

Ax = b (1)

(A+ ∆A)(x+ ∆x) = b+ ∆b (2)

Assume that ‖∆A‖ is small so that ‖∆A‖ ‖A−1‖ < 1. Then

‖∆x‖
‖x‖

≤ κ(A)

1− κ(A)‖∆A‖‖A‖

(
‖∆A‖
‖A‖

+
‖∆b‖
‖b‖

)
.

Proof. Expanding out the second equation (2), subtracting from it the first equation (1),
and premultiplying by A−1 gives

∆x = −A−1∆A(x+ ∆x) +A−1∆b.

Taking norms and using Section 1.9 and the triangle inequality give

‖∆x‖ ≤ ‖A−1‖ ‖∆A‖
(
‖x‖+ ‖∆x‖

)
+ ‖A−1‖ ‖∆b‖.

Note that ‖b‖ ≤ ‖A‖ ‖x‖, hence the above inequality rearranges to(
1− ‖A−1‖ ‖∆A‖

)
‖∆x‖ ≤

(
‖A−1‖ ‖∆A‖+ ‖A−1‖ ‖A‖‖∆b‖

‖b‖

)
‖x‖.

Recall that ‖∆A‖ ‖A−1‖ < 1, so the first factor above is positive. The theorem now follows

immediately. �

Note: The smaller the condition number κ(A), the smaller upper bound on

the relative error ‖∆x‖‖x‖ we get. The value of κ(A) thus characterizes the
sensitivity of the solution of the linear system Ax = b to small perturbations
of both A and b.

Interpretation. Let Ax = b be a system of linear equations to be solved
numerically. A computer represents A by Ac = A + ∆A and b by bc =
b+∆b. Assume that the computer finds the exact solution xc of the perturbed
system, i.e., xc satisfies Acxc = bc. Denote by ∆x = xc − x the resulting
error, where x denotes the exact solution of the true system Ax = b. Then
the relative error ‖∆x‖/‖x‖ can be estimated by Theorem 12.6.

98

12.7 Corollary
Consider the problem of solving a system of linear equations Ax = b with

a nonsingular matrix A. Then:

(a) If we fix A and vary b, we get a map fA : b 7→ x. The condition number
of fA satisfies

κ(fA, b) ≤ κ(A) and sup
b∈Cn

κ(A, b) = κ(A).

(b) If we fix b and vary A, we get a map fb : A 7→ x. The condition number
of fb satisfies

κ(fb, A) ≤ κ(A).

Proof. These are particular cases of Theorem 12.6: in part (a) we set ∆A = 0, and in pat

(b) we set ∆b = 0. Then both inequalities easily follow from Theorem 12.6. To prove the

equality in (a), note that x = A−1b and apply Lemma 12.4. Incidentally, we note that

κ(A−1) = κ(A) for any nonsingular matrix A. �

Remark. In part (b), we actually have equality κ(fb, A) = κ(A), but the
proof is beyond the scope of our course (it can be found in the textbook, page 95).

12.8 Corollary
Assume that in Theorem 12.6 we have ‖∆A‖ ≤ u‖A‖ and ‖∆b‖ ≤ u‖b‖,

i.e., the matrix A and the vector b are represented with the best possible
machine accuracy. Then

‖∆x‖
‖x‖

≤ 2uκ(A)

1− uκ(A)
. (12.2)

provided uκ(A)� 1.

One should note that the formula (12.2) is practically meaningful only if uκ(A)� 1,
otherwise ‖∆x‖ would be comparable to ‖x‖ so the computed solution could not be trusted
at all (in particular, estimating its relative error is rather pointless).

On the other hand, if uκ(A)� 1, the formula (12.2) can be written simply (though a
bit inaccurately) as

‖∆x‖
‖x‖

. 2uκ(A). (12.3)

.

99

12.9 Practical interpretation
Assume that u ≈ 10−p, i.e., the machine system provides p accurate

digits. Now if κ(A) ≈ 10q with q < p, then ‖∆x‖/‖x‖ ≤ 10−(p−q), i.e., the
numerical solution provides p− q accurate digits.

We note again, as in Sect. 12.1, that only the order of magnitude of κ(A) matters, not

its exact value. For instance, there is little difference between κ(A) = 100 and κ(A) = 200,

both are of order 102.

Linear systems Ax = b with small κ(A) (∼ 1, 10, 102) are often called
well-conditioned. Those with large κ(A) (∼ 103, 104, etc.) are called ill-
conditioned. Their numerical solutions are unreliable and should be avoided.

12.10 Maxmag and minmag
The maximum and minimum magnification by a matrix A are defined by

maxmag(A) = max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖

and

minmag(A) = min
x 6=0

‖Ax‖
‖x‖

= min
‖x‖=1

‖Ax‖.

Note that
maxmag(A) = ‖A‖.

For singular matrices, minmag(A) = 0. For nonsingular matrices

minmag(A) = min
y 6=0

‖y‖
‖A−1y‖

=
1

maxy 6=0
‖A−1y‖
‖y‖

=
1

‖A−1‖
.

Therefore

κ(A) =
maxmag(A)

minmag(A)
=

sup‖x‖=1 ‖Ax‖
inf‖x‖=1 ‖Ax‖

(12.4)

The formula (12.4) makes it reasonable to say that for singular matrices
κ(A) = ∞. That is, the singularity is the extreme case of ill-conditioning.
Reversing the point of view, we can say that ill-conditioned matrices are
“nearly singular”. This relation is made precise in Section 12.12 below.

100

For the 2-norm, the above relations can be described geometrically with the help
of unit sphere defined by (1.1). The linear transformation A : Cn → Cn maps the unit
sphere S1 onto an ellipsoid. The longest semiaxis of the latter is maxmag(A) and its
shortest semiaxis is minmag(A).

S1

A

maxmag(A)

minmag(A)

Thus, κ2(A) shows how much the linear map A : Cn → Cn “distorts” the unit sphere S1.

12.11 Properties of the condition numbers

1. If aj denotes the j-th column of A, then κ(A) ≥ ‖aj‖/‖ai‖

2. κ(A) ≥ 1 and κ(I) = 1

3. κ2(A) = 1 if and only if A is a multiple of a unitary matrix.

4. For any unitary matrix Q,

κ2(QA) = κ2(AQ) = κ2(A)

5. If D = diag{d1, . . . , dn} then

κ2(D) = κ1(D) = κ∞(D) =
max1≤i≤n |di|
min1≤i≤n |di|

6. If A is Hermitian with eigenvalues λ1, . . . , λn, then

κ2(A) =
maxi |λi|
mini |λi|

7. If σ1 ≥ σ2 ≥ · · · ≥ σn denote the singular values of A, then

κ2(A) = σ1/σn

8. We have

[κ2(A)]2 = κ2(A∗A) = κ2(AA∗) =
λmax(A∗A)

λmin(A∗A)

9. We have κ2(A) = κ2(A∗).

101

12.12 Closeness to a singular matrix
We have

min

{
‖A− As‖2

‖A‖2

: As is singular

}
=

1

κ2(A)
.

In other words, 1/κ2(A) is the relative distance from A to the nearest singular
matrix.

Proof: This follows from Section 5.11 and Section 12.11 (part 7). �

12.13 A posteriori error analysis using the residual
In practice the exact solution x of the system Ax = b is rarely known. If

it is unknown, how can we determine the relative error ‖xc−x‖‖x‖ of a numerical
solution xc?

One way to do that is to compute the residual vector r = Axc − b and
see if r = 0. Of course, r = 0 would imply that xc is the exact solution, and
we can hardly expect that. Now our intuition tells us that if r is small, the
numerical solution xc must be good. But how small should r be?

Note that Axc = b+ r, so xc is the exact solution of a perturbed system

A(x+ ∆x︸ ︷︷ ︸
xc

) = b+ ∆b︸︷︷︸
r

with ∆b = r. Now Theorem 12.6 with ∆A = 0 implies that

‖xc − x‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

In practical terms: if A is well conditioned, then the smallness of ‖r‖‖b‖ ensures

the smallness of the relative error ‖xc−x‖‖x‖ . However, if A is ill-conditioned,
such a conclusion cannot be made: the smallness of r does not guarantee a
good accuracy of xc.

12.14 Extension to rectangular matrices
For rectangular matrices A ∈ Cm×n (m 6= n) the inverse A−1 is not defined, hence

the formula (12.1) does not apply. Instead, the formula (12.4) can be used as a definition
of the condition number:

κ(A)
def
=

maxmag(A)

minmag(A)
=

sup‖x‖=1 ‖Ax‖
inf‖x‖=1 ‖Ax‖

. (12.5)

102

Note that if m < n, then A must have a non-trivial kernel (i.e., Ax = 0 for some x 6= 0);
thus the denominator in (12.5) turns zero. So the definition (12.5) only applies if m > n.
Then one can prove (see Exercise 12.5) that

[κ2(A)]2 = κ2(A∗A) =
λmax(A∗A)

λmin(A∗A)
.

Exercise 12.1. (JPE, September 1997). Show that, given a matrix A ∈ Rn×n, one can
choose vectors b and ∆b so that if

Ax = b

A(x+ ∆x) = b+ ∆b

then
||∆x||2
||x||2

= κ2(A)
||∆b||2
||b||2

Explain the significance of this result for the ‘optimal’ role of condition numbers in the
sensitivity analysis of linear systems.
(Hint: use SVD to show that it is enough to consider the case where A is a diagonal
matrix.)

Exercise 12.2. (JPE, combined May 1997 and May 2008)

(a) Compute the condition numbers κ1, κ2 and κ∞ for the matrix

A =

(
1 2

1.01 2

)
(b) Show that for every non-singular 2× 2 matrix A we have κ1(A) = κ∞(A).

Exercise 12.3. (JPE, September 2002). Consider a linear system Ax = b. Let x∗ be the
exact solution, and let xc be some computed approximate solution. Let e = x∗ − xc be
the error and r = b−Axc the residual for xc. Show that

1

κ(A)

‖r‖
‖b‖
≤ ‖e‖
‖x∗‖

≤ κ(A)
‖r‖
‖b‖

Interpret the above inequality for κ(A) close to 1 and for κ(A) large.

Exercise 12.4. Prove properties 6 and 7 of condition numbers listed in Section 12.11.

Exercise 12.5. Suppose the condition number of a rectangular matrix A ∈ Cm×n with
m > n is defined by (12.5). Prove that

[κ2(A)]2 = κ2(A∗A) =
λmax(A∗A)

λmin(A∗A)

103

Chapter 13

Numerical Stability

13.1 Introduction
When a system of linear equations Ax = b is solved numerically, the

computer only knows machine representations Ac and bc of A and b. Then,
at best, it can find xc = A−1

c bc, instead of x = A−1b. According to 12.3, the
resulting relative error will be

E1 =
‖xc − x‖
‖x‖

. 2uκ(A) (13.1)

This may be bad enough already when the matrix A is ill-conditioned. How-
ever, in reality things appear to be even worse, since the computer does not
evaluate xc = A−1

c bc precisely (apart from trivial cases). The computer ex-
ecutes a certain sequence of arithmetic operations (a program) designed to
solve the system Ax = b. As the program runs, more and more round-off
errors are made at each step, and the errors compound toward the end.

As a result, the computer returns a vector x̂c different from xc = A−1
c bc,

i.e., the actual output x̂c is not the solution of the perturbed system Acxc =
bc. Since errors are made in the process of computation, we expect to arrive
at x̂c 6= xc, therefore Acx̂c 6= bc. The actual output x̂c depends on how many
computational errors are made and how big they are. Those errors depend
not only on the machine system but even more on the algorithm that is used
to solve the system Ax = b. See the diagram below.

Of course, we do not expect the final relative error

E2 =
‖x̂c − x‖
‖x‖

(13.2)

be smaller than E1, but we hope that it will not be much larger either. In
other words, a good algorithm should not magnify the errors caused already
by conditioning. If this is the case, the algorithm is said to be stable.

104

13.2 Stable algorithms (definition)
An algorithm for solving a system of linear equations Ax = b is said to

be stable (or numerically stable) if

‖x̂c − x‖
‖x‖

≤ Cuκ(A) (13.3)

where C > 0 is a constant. More precisely, C must be independent of A, b
and the machine system, but it may depend on the size of the matrix, n.

We see that for stable algorithms, the actual relative error E2 is of the
same order of magnitude as the ‘idealistic’ relative error E1, thus a stable
algorithm does not magnify the errors caused already by conditioning.

Idealistic
solution xc

in the smaller
(blue) region

Computed
solution x̂c
in the larger

(green) region

Well conditioned problem
Stable algorithm

Ill conditioned problem
Stable algorithm

Well conditioned problem
Unstable algorithm

Ill conditioned problem
Unstable algorithm

13.3 Backward error analysis
We have seen in Section 12.13 that the computed solution xc to a system

Ax = b can be represented as the exact solution of a perturbed system
A(x + ∆x) = b + ∆b. This is the idea of backward error analysis: for each
computed solution x̂c find a perturbed matrix, Â = A+ ∆A, such that

(A+ ∆A)x̂c = bc.

After that Theorem 12.6 can be used to estimate the final relative error
E2 = ‖x̂c−x‖

‖x‖ in terms of the relative error ‖∆A‖‖A‖ of the perturbation of A.

We call A + ∆A virtual matrix, since it is neither given nor computed
numerically, its existence is the result of a logical analysis. Moreover, it is
far from being unique. One wants to find a virtual matrix A + ∆A as close
to A as possible, i.e., to make ‖∆A‖ as small as possible.

105

-

-XXXXXXXXXXXXXXXXXXz-

r
r
b

r
r
r

exact A, b

machine Ac, bc

‘virtual’ Âc, bc

exact x

‘idealistic’ xc

computed x̂c

exact solution

exact solution

exact solution

computer
algorithm

13.4 Backward stable algorithms (definition)
An algorithm for solving a system of linear equations Ax = b is said to

be backward stable if there exists a virtual matrix A+ ∆A such that

‖∆A‖
‖A‖

≤ Cu

where C > 0 is a constant. More precisely, C must be independent of A, b
and the machine system, but it may depend on the size of the matrix, n.

13.5 Theorem
Every backward stable algorithm is stable.

Proof. By Theorem 12.6,

‖x̂c − x‖
‖x‖

≤ κ(A)

1− κ(A)‖∆A‖‖A‖

‖∆A‖
‖A‖

. Cuκ(A). �

The proofs of stability (or instability) of algorithms in linear algebra are
quite involved. We only present relevant facts here, without proofs.

13.6 Theorem (without proof)
If one uses LU decomposition A = LU for solving a system Ax = b, then

there is a virtual matrix A+ ∆A such that

‖∆A‖ ≤ C‖L‖ ‖U‖u,

where C > 0 is a constant independent of A and the machine system (but
it may depend on the size of the matrix, n). Thus, the LU algorithm is
unstable, its accuracy deteriorates when ‖L‖ ‖U‖ is large.

106

Theorem 13.6 may explain why numerical solutions of particular systems
of equations happen to be inaccurate.

13.7 Example
In Example 11.13, the LU decomposition (without pivoting) is[

0.01 2
1 3

]
=

[
1 0

100 1

] [
0.01 2

0 −197

]
hence

‖L‖∞ ‖U‖∞ = 101 · 197 ∼ 104.

This explains the huge errors of the corresponding numerical solutions that
we observed.

13.8 Further facts (without proofs)

(a) Applying partial pivoting ensures that the entries of L are uniformly
bounded: |Lij| ≤ 1. Also, it is observed in practice that in most cases
‖U‖ ≤ C‖A‖, hence the partial pivoting algorithm is usually stable.
There are, however, some unusual cases where partial pivoting becomes
unstable. Therefore its accuracy cannot be guaranteed.

(b) The LU decomposition with complete pivoting is always stable, in this
case one can prove that ‖U‖ ≤ C‖A‖.

(c) The Cholesky factorization A = GG∗ of a positive definite matrix A
is a particular form of the LU decomposition, so the above analysis
applies. In this case, we know that

aii =
i∑

j=1

g2
ij

see Section 8.6. Thus, one can easily prove that ‖G‖ ≤ C‖A‖1/2, hence
the Cholesky factorization is always numerically stable.

These facts may explain the accuracy of numerical solutions of particular
systems of equations, as illustrated by the following examples.

107

13.9 Example
In Example 11.13, the matrix[

0.01 2
1 3

]
has singular values σ1 = 3.7037 and σ2 = 0.5319, hence its condition number
is κ2(A) = σ1/σ2 = 6.96. This explains a moderate factor (≤ 5) by which
relative errors of the numerical solutions are related to the minimal error
10−t when we used a stable algorithm with pivoting in Example 11.13.

13.10 Example
In Example 11.14, the matrix[

3 1
1 0.35

]
has singular values σ1 = 3.33 and σ2 = 0.0150, hence its condition number
is κ2(A) = σ1/σ2 = 222. This explains a large factor (up to 200) by which
relative errors of the numerical solutions are related to the minimal error
10−t in Example 11.14, even though we used a stable algorithm (the LU
decomposition with complete pivoting).

Remember that a stable algorithm should not increase errors already
caused by conditioning, but it cannot cancel them out.

Exercise 13.1. (JPE, September 2004) Compute the LU decomposition A = LU for the
matrix

A =

[
0.01 2

1 3

]
Compute ‖L‖∞‖U‖∞. What does this imply about the numerical stability of solving a
system of linear equations Ax = y by LU decomposition without pivoting?

108

Chapter 14

Numerically Stable Least Squares

In Chapter 10 we discussed overdetermined systems of equations

Ax ≈ b

where A ∈ Cm×n with m ≥ n and presented three algorithms for computing
the least squares solution x: (i) based on normal equations, (ii) based on QR
decomposition, and (iii) based on SVD.

14.1 Normal equations revisited
Algorithm 10.9 via normal equations has many advantages. It is the

simplest and most elegant algorithm for the least squares problem. It should
be used whenever the computations are precise, in particular if one solves
the problem manually (on paper).

For machine computations, algorithm 10.9 seems to be good, too: it is at
least twice as cheap (in terms of flops) as the other two algorithms, so it is the
fastest one. It has been used in computer programming almost exclusively
before 1970s, when computers were slow and the top speed was high priority.

However, machine computations involve round-off errors. And it has
been gradually noticed that Algorithm 10.9 based on normal equations tends
to magnify errors and produce inaccurate results to the extent that was
eventually deemed unacceptable. As of now, normal equations are almost
entirely abandoned and used only to demonstrate how bad things can be.

The loss of accuracy can be best understood in terms of the condition
number. If A is the given matrix, then we have seen (Section 12.14) that

κ2(A∗A) = [κ2(A)]2.

If the matrix A is ill-conditioned (i.e., its condition number is large), then
the matrix A∗A will have a much larger condition number.

More precisely, suppose that our machine arithmetic has precision u =
10−p (defined in Section 11.11) and let κ2(A) ∼ 10q for some q > 0. Then a

109

numerical solution of the least squares problem should produce p−q accurate
decimal digits. However, solving the problem by normal equations would
involve the matrix A∗A whose condition number is

κ2(A∗A) = [κ2(A)]2 ∼ 102q.

Thus the resulting numerical solution would have only p−2q accurate decimal
digits: we lose an extra q accurate digits.

Such a loss of accuracy may be disastrous. Suppose we use single precision
(p = 7) and our matrix A is just mildly ill-conditioned, with κ2(A) ∼ 103

(recall Section 12.9). Then solving the problem via normal equations we
would give us just 7 − 2 · 3 = 1 (one!) accurate digit, instead of 7 − 3 = 4
that can be theoretically expected for the given matrix.

Another extreme example: suppose

A =

 1 1
ε 0
0 ε

where ε ≈ 1

2

√
u. This matrix has condition number

κ2(A) =

√
2 + ε2

ε
≈ 2

ε
,

so we can expect the numerical solution to have relative error ∼ u/ε ∼
√

u,
which is not too bad (in single precision we expect 3-4 accurate digits, and
in double precision – eight accurate digits).

However, normal equations require the construction of the matrix

A∗A =

[
1 + ε2 1

1 1 + ε2

]
Since ε2 < u, the matrix A∗A will be stored in the computer memory as [1 1

1 1]
(the additional term ε2 would disappear due to round-off; recall Section 12.9).
The matrix [1 1

1 1] is singular, so the algorithm via normal equations would just
fail (the computer program would crush).

Still, it is possible to find a reasonably good numerical solution in the last
example, with relative error ∼

√
u, if one uses more elaborate algorithms.

110

14.2 QR-based algorithm revisited
Let us examine the accuracy of the QR-based Algorithm 10.10.
Due to Section 12.11 (part 4), κ2(A) = κ2(QA) for any unitary matrix

Q ∈ Cm×m, hence
κ2(R) = κ2(Q∗A) = κ2(A).

Therefore, this method is safe, regarding the conditioning of the problem, no
additional loss of accuracy occurs due to conditioning.

The other aspect of numerical algorithms is stability, described in Chap-
ter 13. The actual error may greatly depend on a particular sequence of
computations producing the matrices Q and R.

So far we have mentioned two specific procedures for constructing Q and
R: the classical Gram-Schmidt (Sect. 1.25) and the modified Gram-Schmidt
(Sect. 9.10). It turns out that the classical Gram-Schmidt is unstable, hence
it leads to unpredictable round-off errors in numerical computations. The
modified Gram-Schmidt is stable and generally produces accurate results
(see programming assignment).

However, there are better algorithms for computing the QR decomposi-
tion: those are based on reflection and rotation matrices. We will learn them
in this chapter.

14.3 SVD-based algorithm revisited
Lastly we briefly examine the accuracy of the SVD-based Algorithm 10.11.
Let A = UDV ∗ be an SVD of A. Due to Section 12.11 (part 4), κ2(A) =

κ2(UA) = κ2(AV) for any unitary matrices U ∈ Cm×m and V ∈ Cn×n hence

κ2(D) = κ2(U∗AV) = κ2(A).

Therefore, this method is just as safe, regarding the conditioning of the
problem, as the QR-based Algorithm 10.10.

However, Algorithm 10.11 requires the computation of an SVD for the
matrix A, for which no simple algorithm exists (the computation of SVD is
beyond the scope of this course). Standard software packages (like MATLAB)
use only stable and highly accurate algorithms for the SVD computation. If
one uses a standard software package, the SVD-based method 10.11 is as
good as the QR-based method 10.10 (see programming assignment).

Just a minor note: the SVD-based method 10.11 is more reliable when
the matrix A is almost singular or exactly singular; cf. Section 10.12.

111

14.4 Hyperplanes
Let V be a finite dimensional vector space. A subspace W ⊂ V is called a

hyperplane if dimW = dimV −1. If V is an inner product space and W ⊂ V
a hyperplane, then

dimW⊥ = 1.

If x ∈ W⊥ is a nonzero vector, then W⊥ = span{x}. In that case

W =
(
W⊥)⊥ =

(
span{x}

)⊥
.

Hence any hyperplane W is completely determined by a non-zero vector x
orthogonal to it.

14.5 Reflections
Let W ⊂ V be a hyperplane in an inner product space V . Recall that

V = W ⊕W⊥ (Sect. 1.29). Thus for any vector v ∈ V we have a unique
decomposition v = w + w′, where w ∈ W and w′ ∈ W⊥.

The linear operator P on V defined by

Pv = P (w + w′) = w − w′

is called a reflection (or reflector) across the hyperplane W .

W
w

vw′

x

P (v)−w′

Note: P (w) = w for all w ∈ W , so P is an identity on W . Also, P (w′) = −w′ for all
w′ ∈W⊥, so P negates vectors orthogonal to W .

Since W is completely determined by a nonzero vector x orthogonal to W , the reflector

can be fully described in terms of x.

14.6 Householder reflection matrices
Let x 6= 0 be a nonzero vector in Cn. The n× n matrix

P = I − 2
xx∗

x∗x
= I − 2

xx∗

‖x‖2

is called the Householder reflection matrix (or Householder reflector) corre-
sponding to x.

Obviously, P is unchanged if x is replaced by cx for any c 6= 0.

112

14.7 Basic properties of Householder reflectors
Let P be the reflector matrix corresponding to a vector x 6= 0. Then

(a) Px = −x.

(b) Py = y whenever 〈y, x〉 = 0.

(c) P is Hermitian (in the real case it is symmetric).

(d) P is unitary (in the real case it is orthogonal).

(e) P is involution, i.e. P 2 = I.

Proof. Direct calculation. �

14.8 Theorem
Let y ∈ Cn. Choose a scalar σ ∈ C so that

|σ| = ‖y‖ and σ · 〈e1, y〉 ∈ R. (14.1)

Suppose that x = y+ σe1 6= 0. Let P = I − 2xx∗/‖x‖2 be the corresponding
Householder reflector. Then Py = −σe1.

Proof. By direct calculation, we have

〈y − σe1, y + σe1〉 = ‖y‖2 − σ〈e1, y〉+ σ̄〈y, e1〉 − |σ|2 = 0

where we used both identities of (14.1). Now

14.7(a) implies: P (y + σe1) = −y − σe1

14.7(b) implies: P (y − σe1) = y − σe1

Adding these two equations proves the theorem. �

14.9 Remarks

(a) To choose σ in Theorem 14.8, write a polar representation for 〈e1, y〉 = reiθ and
then set σ = ±‖y‖e−iθ.

(b) In the real case, we have 〈e1, y〉 ∈ R, and one can just set σ = ±‖y‖. For machine
calculation with round-off errors, the better choice is

σ =

{
+‖y‖ if 〈e1, y〉 ≥ 0

−‖y‖ if 〈e1, y〉 < 0
.

Then the computation of the vector x = y + σe1 will be numerically stable, there
will be no danger of catastrophic cancelation.

113

(c) It is geometrically obvious that for any two vectors x, y ∈ Rn with equal 2-norms,
‖x‖2 = ‖y‖2, there is a reflector P that takes x to y. In the complex space Cn, this
is not true: for generic vectors x, y ∈ Cn with equal 2-norms there is no reflector
that takes x to y. But according to Theorem 14.8, one can always find a reflector
that takes x to cy with some scalar c ∈ C.

14.10 Corollary
For any vector y ∈ Cn there is a scalar σ (which was defined in 14.8 and

specified in 14.9) and a matrix P , which is either a reflector or the identity
(P = I), such that Py = −σe1.

Proof. Apply Theorem 14.8 in the case y + σe1 6= 0 and set P = I otherwise. �

14.11 QR Decomposition via Householder reflectors
For any A ∈ Cm×n with m ≥ n there is a QR decomposition with a

unitary matrix Q ∈ Cm×m that is a product of Householder reflectors. The
number of those reflectors is ≤ n.

Proof. We use induction on n. Let n = 1, so that A is just one column m-vector. By
Corollary 14.10 there is a matrix P (a reflector or identity) such that PA = −σe1 with
a scalar σ ∈ C. Hence, A = PR where R = −σe1 is am upper triangular matrix m × 1.
This provides the basis for our induction.

Now let n ≥ 1. Let a1 denote the first column of A. Again, by Corollary 14.10 there
is a matrix P (a reflector or identity) such that Pa1 = −σe1. Hence,

PA =

[
−σ w∗

0 B

]
where w ∈ Cn−1 and B ∈ C(m−1)×(n−1). By the inductive assumption, there is a unitary
matrix Q1 ∈ C(m−1)×(m−1) and an upper triangular matrix R1 ∈ C(m−1)×(n−1) such that
B = Q1R1. Now we expand Q1 to a unitary m×m matrix as follows:

Q2 =

[
1 0
0 Q1

]
By Section 2.11, the matrix Q2 is unitary whenever Q1 is. Furthermore, if Q1 is a product
of≤ n−1 reflectors, then the same is true forQ2. Now one can easily check that PA = Q2R
where

R =

[
−σ w∗

0 R1

]
is an upper triangular matrix. Hence, A = QR with Q = PQ2. �

114

14.12 Givens rotation matrices
Let 1 ≤ p < q ≤ m and θ ∈ [0, 2π). The matrix G = Gp,q,θ defined by

gpp = cos θ, gpq = sin θ, gqp = − sin θ, gqq = cos θ,

and gij = δij otherwise is called a Givens rotation matrix (or Givens rotator):

G =

1
. . .

1
c s

1
. . .

1
−s c

1
. . .

1

← p

← q

↑ ↑

p q

(here we use convenient shorthand notation c = cos θ and s = sin θ).

It is easy to check that G is an orthogonal matrix (recall Sect. 2.11).

14.13 Geometric description of Givens rotators
Note that the vector y = Gx has components

yp = xp cos θ + xq sin θ

yq = −xp sin θ + xq cos θ

yi = xi ∀ i /∈ {p, q}

Hence the matrix G defines a clockwise rotation through the angle θ of the
xpxq coordinate plane in Rm with all the other coordinates left unchanged.

115

14.14 QR decomposition via Givens rotators
For any A ∈ Rm×n with m ≥ n there is a QR decomposition with an

orthogonal matrix Q ∈ Rm×m that is a product of Givens rotators.

Proof. Let ap be the leftmost column of A that contains a nonzero entry below the main
diagonal, i.e.,

p = min{j ≥ 1: aij 6= 0 for some i > j}

(if such p does not exist, the matrix A is already upper triangular).
Let aqp 6= 0 be one of the nonzero entries in the column ap below the main diagonal,

i.e., satisfying q > p. Consider the matrix A′ = GA where G = Gp,q,θ is a Givens rotator.
Note that p and q are already selected, but we are still free to choose θ.

The structure of the matrices A = (aij) and A′ = (a′ij) can be revealed by examining
the following diagram:

1
. . .

1
c s

1
. . .

1
−s c

1
. . .

1

∗ · · ·

0
. . .

0 0 ∗ ∗
0 · · · 0 app
0 · · · 0 ∗
...

. . .
...

...
0 · · · 0 ∗
0 · · · 0 aqp
0 · · · 0 ∗
...

. . .
...

...
0 · · · 0 ∗ · · ·

=

∗ · · ·

0
. . .

0 0 ∗ ∗
0 · · · 0 a′pp
0 · · · 0 ∗
...

. . .
...

...
0 · · · 0 ∗
0 · · · 0 a′qp
0 · · · 0 ∗
...

. . .
...

...
0 · · · 0 ∗ · · ·

The following facts can be verified by direct inspection:

(a) The first p − 1 columns of A′ are the same as those of A, hence they are still zero
below the main diagonal.

116

(b) In the p-th column, only the components a′pp and a′qp will be different from the
corresponding components of A (hence, if A had some zeros in the p-th column
below the main diagonal, those will propagate to A′).

(c) The subdiagonal component a′qp of A′ is given by

a′qp = −app sin θ + aqp cos θ.

Our goal is to make a′qp = 0. We can achieve this by using our freedom to choose θ. The
following choice will do it:

cos θ =
app√

a2
pp + a2

qp

and sin θ =
aqp√

a2
pp + a2

qp

. (14.2)

Note that one never actually evaluates the angle θ, since Gp,q,θ only contains cos θ and
sin θ, and these are given by the above formulas.

In this way we eliminate one nonzero element aqp below the main diagonal. Working

from left to right, one can convert A into an upper triangular matrix G̃A = R where

G̃ = Gpk,qk,θk · · ·Gp1,q1,θ1

will be a product of Givens rotators. Each nonzero element of A below the main diagonal
requires one multiplication by a rotator. Then we get A = QR with an orthogonal matrix

Q = G̃T = GTp1,q1,θ1 · · ·G
T
pk,qk,θk

.

It remains to note that GTp,q,θ = Gp,q,−θ, so it is a Givens rotator, too. �

14.15 Cost of QR via Givens rotators
The evaluation of cos θ and sin θ by (14.2) takes 6 flops (the square root

extraction is counted here as one flop). The subsequent multiplication of A
by Gp,q,θ takes 6n flops. Thus, the elimination of one nonzero subdiagonal
component of A takes 6n+6 flops. If A originally has k nonzero subdiagonal
entries, the QR decomposition via Givens rotators will take 6k(n+ 1) ∼ 6kn
flops.

When the lower triangle of A is mostly filled with nonzero numbers, then
k is close to its maximal value, mn−n2/2. In that case the total cost will be
very high, it will greatly exceed the cost of QR via Householder reflectors.
Hence Givens rotators are very inefficient for generic matrices.

However, Givens rotators work well if the matrix A is sparse, i.e., con-
tains just a few nonzero components below the main diagonal. Then Givens
rotators can give the quickest result. We will see such instances later.

117

Exercise 14.1. Let x, y ∈ Cn be such that x 6= y and ‖x‖2 = ‖y‖2 6= 0. Show that there
is a reflector matrix P such that Px = y if and only if 〈x, y〉 ∈ R. For an extra credit:
show that if the above reflector exists, then it is unique.

Exercise 14.2. (simplified of JPE, May 2011) Prove that any Givens rotator matrix in
R2 is a product of two Householder reflector matrices. Can a Householder reflector matrix
be a product of Givens rotator matrices?

Exercise 14.3 (Bonus). (JPE May, 2010) Let

A =

 3 −3
0 4
4 1

(a) Find the QR factorization of A by Householder reflectors.

(b) Use the results in (a) to find the least squares solution of Ax = b, where

b = [16 11 17]T

(Note: there is a typo in the original JPE exam, it is corrected here.)

118

Chapter 15

Computation of Eigenvalues: Theory

15.1 Preface
Eigenvalues of a matrix A ∈ Cn×n are the roots of its characteristic poly-

nomial
CA(x) = det(xI − A), where degCA(x) = n.

It is a consequence of the famous Galois group theory (Abel’s theorem) that
there is no closed formula for the roots of a generic polynomial of degree
> 4. Hence, there are no finite algorithms for computation of the roots of
polynomials (or eigenvalues, for that matter).

Thus, all the methods for computing eigenvalues of matrices of size n ≥
5 are necessarily iterative, they provide successive approximations to the
eigenvalues, but never exact results. Furthermore, even though for n = 3 and
n = 4 exact formulas exist, they are rather impractical and often numerically
unstable, so even in these cases iterative methods are used instead.

For this reason, matrix decompositions that reveal eigenvalues (Schur
and SVD) cannot be implemented by finite algorithms. On the other hand,
decompositions that do not reveal eigenvalues (QR, LU, Cholesky) can be
implemented by finite algorithms (and we have seen some of those):

Decompositions Decompositions

revealing eigenvalues not revealing eigenvalues

SVD
LU

Schur
Cholesky

QR

No finite Finite

algorithms exist algorithms exist

In the last chapters of the course we will learn iterative algorithms for
computing eigenvalues and eigenvectors. We note that the most important

119

matrix decomposition, SVD, requires the eigenvalues of a Hermitian posi-
tive semidefinite matrix A∗A. Hence it is particularly important to develop
algorithms for computing eigenvalues of Hermitian matrices.

If an eigenvalue λ of a matrix A is known, an eigenvector x corresponding
to λ can be found by solving the linear system (A − λI)x = 0 (say, by LU
decomposition). Conversely, if an eigenvector x is known, the corresponding
eigenvalue λ can be immediately found by simple formula λ = (Ax)i/xi,
whenever xi 6= 0. Thus eigenvalues help to compute eigenvectors and vice
versa. For this reason eigenvalues and eigenvectors are often computed ‘in
parallel’. In this chapter, we develop a theoretical basis for computation of
eigenvalues and eigenvectors, while in the next two chapters we will turn to
practical algorithms.

15.2 Rayleigh quotient
Let A ∈ Cn×n. We call

r(x) =
x∗Ax

x∗x
=
〈Ax, x〉
〈x, x〉

, x 6= 0

the Rayleigh quotient of x.

15.3 Restriction to the unit sphere
The Rayleigh quotient is defined for all vectors x 6= 0, so it is a function

on Cn \ {0}, with values in C. However, for any nonzero scalar c 6= 0

r(cx) =
〈cAx, cx〉
〈cx, cx〉

=
|c|2〈Ax, x〉
|c|2〈x, x〉

=
〈Ax, x〉
〈x, x〉

= r(x),

hence r is constant on the line span{x}. Since any nonzero vector x 6= 0 is
a scalar multiple of a unit vector u = x/‖x‖, the function r(x) is completely
defined by its values on the unit sphere (1.1)

S1 = {u ∈ Cn : ‖u‖ = 1}.

On the unit sphere S1 the Rayleigh quotient can be computed by a simpler
formula:

r(u) = u∗Au = 〈Au, u〉.

Note that r(u) is a quadratic function of the coordinates of u ∈ S1.

120

15.4 Properties of Rayleigh quotient

(a) If A is Hermitian, then r(x) ∈ R for any nonzero vector x ∈ Cn.
[This follows from Section 4.12(a)]

(b) If x is an eigenvector with eigenvalue λ, then Ax = λx and so

r(x) = λ

(c) If x is an arbitrary unit vector, then r(x)x = (x∗Ax)x is the orthogonal
projection of the vector Ax onto the line spanned by x. Hence

‖Ax− r(x)x‖2 = min
µ∈C
‖Ax− µx‖2

Note: if one regards x as an ‘approximate’ eigenvector, then the Rayleigh
quotient r(x) is the best choice that one can make for the associated ‘ap-
proximate’ eigenvalue in the sense that the value µ = r(x) comes closest (in
the 2-norm) to achieving the desired relation Ax− µx = 0.

Let A ∈ Cn×n and x a unit eigenvector of A corresponding to eigenvalue λ. Let y ≈ x be

another unit vector close to x and r = y∗Ay. It follows from the above that r ≈ λ, but

how close is r to λ?

15.5 Theorem
Let A ∈ Cn×n and x a unit eigenvector of A corresponding to eigenvalue

λ. Let y be another unit vector and r = y∗Ay. Then

|λ− r| ≤ 2 ‖A‖2 ‖x− y‖2. (15.1)

Moreover, if A is a Hermitian matrix, then there is a constant C = C(A) > 0
such that

|λ− r| ≤ C ‖x− y‖2
2. (15.2)

Proof. To prove (15.1), we write

λ− r = x∗A(x− y) + (x− y)∗Ay.

Now the triangle inequality and Cauchy-Schwarz inequality readily give (15.1).

121

Now, assume that A is Hermitian. Then there is an ONB of eigenvectors, and we can
assume that x is one of them. Denote that ONB by {x, x2, . . . , xn} and the corresponding
eigenvalues by λ, λ2, . . . , λn. Let y = cx+ c2x2 + · · ·+ cnxn. Then

‖y − x‖2 = |c− 1|2 +

n∑
i=2

|ci|2 ≥
n∑
i=2

|ci|2

On the other hand, ‖y‖ = 1, i.e., c2 + c22 + · · ·+ c2n = 1, so

λ = λ|c|2 +

n∑
i=2

λ|ci|2

Now, Ay = cλx+
∑n
i=2 ciλixi, therefore

r = 〈Ay, y〉 = λ|c|2 +

n∑
i=2

λi|ci|2.

Subtracting the last two formulas gives

λ− r =

n∑
i=2

(λ− λi)|ci|2.

The result now follows with
C = max

2≤i≤n
|λ− λi|.

The theorem is proved. �

Note: one may feel uncomfortable to deal with an unspecified constant C in
(15.2). In fact, it easily follows from Sect. 4.20 that C ≤ 2‖A‖2.

15.6 Lemma
Let L and G be subspaces of Cn and dimG > dimL. Then there is a

nonzero vector y ∈ G orthogonal to L, i.e., y ∈ L⊥.

Proof. By way of contradiction, suppose G∩L⊥ = {0}. Then G⊕L⊥ would be a subspace
of Cn, and its dimension would be

dimG+ dimL⊥ = dimG+ n− dimL > n,

which is impossible. �

Next let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1, . . . , λn. Since
they are all real, we can number them in an increasing order, so that

λ1 ≤ · · · ≤ λn.

Also recall that x∗Ax ∈ R for any vector x ∈ C, by Sect. 15.4 (a).

122

15.7 Courant-Fisher Minimax Theorem
Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn.

Then for every i = 1, . . . , n

λi = min
L : dimL=i

max
x∈L\{0}

x∗Ax

x∗x

where L stands for a vector subspace of Cn.

Proof. Let {u1, . . . , un} be an ONB of eigenvectors of A corresponding to the
eigenvalues λ1, . . . , λn. If dimL = i, then by Lemma 15.6 there is a nonzero
vector y ∈ L \ {0} orthogonal to the space span{u1, . . . , ui−1}. Hence, the
first i− 1 coordinates of y are zero, i.e. y =

∑n
j=i cjuj. Thus

y∗Ay

y∗y
=

∑n
j=i |cj|2λj∑n
j=i |cj|2

≥ λi

because λj ≥ λi for all j = i, . . . , n. Therefore,

max
x∈L\{0}

x∗Ax

x∗x
≥ y∗Ay

y∗y
≥ λi.

On the other hand, let Li = span{u1, . . . , ui}. Obviously, dimLi = i and for
every nonzero vector x ∈ Li we have x =

∑i
j=1 cjuj, so

x∗Ax

x∗x
=

∑i
j=1 |cj|2λj∑i
j=1 |cj|2

≤ λi

because λj ≤ λi for all j = 1, . . . , i. The theorem is proved. �

15.8 Corollary
A close examination of the proof of the above theorem gives us

λi = max
x∈Li\{0}

x∗Ax

x∗x
, (15.3)

where Li = span{u1, . . . , ui}.

123

15.9 Theorem
Let A and ∆A be two Hermitian matrices. Let α1 ≤ · · · ≤ αn be the

eigenvalues of A. Let δmin and δmax the smallest and the largest eigenvalues
of ∆A. Denote the eigenvalues of the matrix B = A+ ∆A by β1 ≤ · · · ≤ βn.
Then for each i = 1, . . . , n

αi + δmin ≤ βi ≤ αi + δmax. (15.4)

Proof. Let {u1, . . . , un} be an ONB of eigenvectors of A corresponding to
its eigenvalues α1, . . . , αn. For each i = 1, . . . , n, let Li = span{u1, . . . , ui}.
Then dimLi = i, hence by Theorem 15.7 and Corollary 15.8

βi ≤ max
x∈Li\{0}

x∗Bx

x∗x

= max
x∈Li\{0}

[
x∗Ax

x∗x
+
x∗∆Ax

x∗x

]
≤ max

x∈Li\{0}

x∗Ax

x∗x
+ max

x∈Li\{0}

x∗∆Ax

x∗x

= αi + max
x∈Li\{0}

x∗∆Ax

x∗x

≤ αi + max
x∈Cn\{0}

x∗∆Ax

x∗x

= αi + δmax

where at the last step we used Section 4.12 (b). Thus we proved the right
inequality in (15.4). The left one can be proved by a similar calculation, but
we can achieve the result quicker by a trick. We can rewrite that inequality
as

αi ≤ βi − δmin (15.5)

and note that −δmin is the largest eigenvalue of the matrix −∆A. Then we
apply the (already proven) right inequality in (15.4) to the matrices B, −∆A
and A = B + (−∆A) and obtain (15.5). The theorem is completely proved.
�

15.10 Corollary
Since ‖∆A‖2 = max{|δmin|, |δmax|} (due to Section 4.20), we have

|αi − βi| ≤ ‖∆A‖2 ∀i = 1, . . . , n

124

15.11 Approximation analysis using the residual
Suppose one finds an approximate eigenvalue µ and an approximate unit eigenvector

x of a matrix A. How can one estimate the closeness of µ to the actual (but unknown)
eigenvalue λ of A?

One way to do this is to compute the residual r = Ax − µx. If r = 0, then µ is an
eigenvalue of A. If that r is small, then one may hope that µ is close to an eigenvalue of
A. But how close is it?

To place this question in the context of the previous theorems, we define the matrix
∆A = −rx∗. Then

(A+ ∆A)x = Ax− rx∗x = µx,

so (µ, x) are an exact (!) eigenpair of the perturbed matrix A + ∆A. Also note that
‖∆A‖2 = ‖r‖2, so the norm ‖∆A‖2 is readily computable.

If we could apply Corollary 15.10, we would be able to conclude that

|µ− λ| ≤ ‖∆A‖2 = ‖r‖2. (15.6)

But! In Corollary 15.10 the matrices A and ∆A must be Hermitian. And our matrices

(especially ∆A = −rx∗) may not be Hermitian. Thus we need to extend the estimate in

Corollary 15.10 to more general matrices.

15.12 Bauer-Fike theorem
Let A ∈ Cn×n be a diagonalizable matrix, so that

X−1AX = D = diag{λ1, . . . , λn}

If µ is an eigenvalue of a perturbed matrix A+ ∆A, then

min
1≤i≤n

|µ− λi| ≤ κp(X) ‖∆A‖p

where ‖ · ‖p stands for any p-norm (1 ≤ p ≤ ∞).

Proof. The matrix A+ ∆A− µI is singular. Hence so is the matrix

X−1(A+ ∆A− µI)X = D +X−1∆AX − µI.

If D − µI is singular, then µ is an eigenvalue of A and the claim is trivial. Otherwise

(D − µI)−1
[
D +X−1∆AX − µI

]
= I + (D − µI)−1(X−1∆AX)

is a singular matrix. The Neumann lemma (Exercise 1.2) implies

1 ≤ ‖(D − µI)−1(X−1∆AX)‖p ≤ ‖(D − µI)−1‖p‖X−1‖p‖∆A‖p‖X‖p

Lastly, observe that (D − µI)−1 is diagonal, so

‖(D − µI)−1‖p = max
1≤i≤n

1

|λi − µ|
=

1

min1≤i≤n |λi − µ|

The theorem now follows. �

125

15.13 Corollary
If A is a normal matrix, then in the above theorem

min
1≤i≤n

|µ− λi| ≤ ‖∆A‖2

because X is a unitary matrix and so κ2(X) = 1. Thus, (15.6) is actually true

for any normal matrix, in particular for any Hermitian matrix A.

Theorem 15.12 answers the question raised in Section 15.11, it gives an estimate

on |µ− λ| in terms of ‖∆A‖p and κp(X). However, this answer may not be good

enough – it gives one estimate for all eigenvalues. In practical applications, some

eigenvalues can be estimated better than others. It is important then to develop

finer estimates for individual eigenvalues.

15.14 Left eigenvectors (definition)
Let A ∈ Cn×n. A nonzero vector x ∈ Cn is called a left eigenvector of A

corresponding to an eigenvalue λ if

x∗A = λx∗

Note: this is equivalent to
A∗x = λ̄x,

i.e., x is an ordinary (“right”) eigenvector of A∗ corresponding to the eigenvalue λ̄:

(λ, x) is a left eigenpair for A ⇐⇒ (λ̄, x) is a right eigenpair for A∗. (15.7)

But why don’t we introduce a notion of left eigenvalue?

15.15 Lemma
A matrix A has a left eigenvector x 6= 0 corresponding to eigenvalue λ if

and only if λ is a root of the characteristic polynomial of A:

(λ, x) is a left eigenpair for A ⇐⇒ (λ, y) is a right eigenpair for A for some y 6= 0

Proof. A∗x = λ̄x can be written as (A∗ − λ̄I)x = 0, and since x 6= 0, we conclude that

det(A∗ − λ̄I) = 0. Due to (0.3), we have det(A− λI) = 0, i.e., CA(λ) = 0. �

Lemma 15.15 explains why we do not introduce a notion of left eigenvalue: the
set of eigenvalues for left eigenvectors is just the same as the set of eigenvalues for
ordinary (right) eigenvectors.

Our next question is: for a given eigenvalue λ of A, how different the corre-

sponding left and right eigenvectors are? More precisely, how different the corre-

sponding left and right eigenspaces are?

126

15.16 Lemma
For any eigenvalue λ of A, the dimension of the right eigenspace equals

the dimension of the left eigenspace (i.e., the geometric multiplicity of λ is
the same, in the left and right senses).

Proof. Recall that the ordinary (right) eigenspace is Ker(A − λI). By (15.7), the left
eigenspace is Ker(A∗ − λ̄I). Now we have, due to (0.1):

dim Ker(A− λI) = n− rank(A− λI) = n− rank(A∗ − λ̄I) = dim Ker(A∗ − λ̄I).

We used the fact that rankB = rankB∗ for any matrix B. �

Lemma 15.16 shows that for each eigenvalue λ of A the corresponding left and
right eigenspaces have the same dimension. But do those spaces have to coincide?
If not, do they have to be close to each other?

When both eigenspaces are one-dimensional and real, their closeness can be
measured by the angle between them. If x is a right unit eigenvector and y is a left
unit eigenvector, then the angle θ between the corresponding eigenspaces span(x)
and span(y) satisfies cos θ = 〈x, y〉; cf. (1.22). Thus the “indicator of closeness” of
those eigenspaces will be the inner product 〈x, y〉 = y∗x.

Recall that by Cauchy-Schwarz inequality (Section 1.12) for any unit vectors

x and y we have |〈x, y〉| ≤ 1, so the range of values of |〈x, y〉| is the interval [0, 1].

The angle between the left and right eigenspaces span(x) and span(y) is small if

|〈x, y〉| is close to 1, and large if |〈x, y〉| is close to 0. These spaces coincide if

|〈x, y〉| = 1 and are orthogonal to each other if |〈x, y〉| = 0.

x
y

θ small

|〈x, y〉| ≈ 1

x

y

θ large

|〈x, y〉| ≈ 0

x

y

θ = π/2

|〈x, y〉| = 0

y

x

θ = 0

|〈x, y〉| = 1

15.17 Lemma
Let λ be an eigenvalue with a right eigenvector x, and µ 6= λ be another

eigenvalue with a left eigenvector y. Then 〈x, y〉 = 0, i.e. x ⊥ y.

(In other words, left and right eigenspaces corresponding to different eigenval-

ues are orthogonal to one another.)

Proof. First, we have 〈Ax, y〉 = λ〈x, y〉. On the other hand, according to (15.7), we have

〈Ax, y〉 = 〈x,A∗y〉 = 〈x, µ̄y〉 = µ〈x, y〉.

Hence, λ〈x, y〉 = µ〈x, y〉. Since λ 6= µ, we must have 〈x, y〉 = 0. �

127

15.18 Lemma
Let λ be a simple eigenvalue (this means its algebraic multiplicity is one)

with right and left eigenvectors x and y, respectively. Then 〈x, y〉 6= 0.

(In other words, left and right eigenspaces corresponding to the same simple

eigenvalue λ cannot be orthogonal to each other.)

Proof. We can always choose unit eigenvectors, in particular let ‖x‖ = 1. By the Schur
decomposition (Section 6.1), there is a unitary matrix Q such that

Q∗AQ =

[
λ h∗

0 B

]
with some h ∈ Cn−1 and B ∈ C(n−1)×(n−1). According to the proof in Section 6.1, we can
construct the matrix Q so that its first column is the vector x, i.e., that Qe1 = x. Since
λ is a simple eigenvalue of A, it cannot be an eigenvalue of B. Thus the matrix λI −B is
invertible. Hence λ̄I −B∗ is invertible, too. Denote z = (λ̄I −B∗)−1h. Then

λ̄z −B∗z = h =⇒ h∗ + z∗B = λz∗.

Now one can readily verify that

[1 z∗]Q∗AQ = λ [1 z∗] =⇒ [1 z∗]Q∗A = λ [1 z∗]Q∗.

Denote w∗ = [1 z∗]Q∗. The above equation now takes a short form

w∗A = λw∗.

Hence w is a left eigenvector of A. By the simplicity of λ, the vector w is a nonzero
multiple of y. However, observe that

w∗x = [1 z∗]Q∗Qe1 = [1 z∗] e1 = 1 (6= 0),

which proves the lemma. �

15.19 Theorem
Let A ∈ Cn×n have a simple eigenvalue λ with right and left unit eigen-

vectors x and y, respectively. Let E ∈ Cn×n be another matrix such that
‖E‖2 = 1. For small ε, denote by λ(ε), x(ε), and y(ε) the eigenvalue, the
right and left unit eigenvectors of the matrix A + εE that correspond to λ,
x and y when ε = 0. Then

|λ′(0)| ≤ 1

|y∗x|

128

Proof. We note that the existence and differentiability of λ(ε), x(ε), and y(ε) follow from
the inverse function theorem; we leave out the details. Now we write the equation

(A+ εE)x(ε) = λ(ε)x(ε)

and differentiate it with respect to ε:

Ax′(ε) + Ex(ε) + εEx′(ε) = λ′(ε)x+ λx′(ε)

Setting ε = 0 gives
Ax′(0) + Ex = λ′(0)x+ λx′(0).

Now we premultiply this equation by the vector y∗:

y∗Ax′(0) + y∗Ex = λ′(0)y∗x+ λ y∗x′(0).

Since y∗A = λy∗, the two terms with x′(0) cancel each other out, and we arrive at

y∗Ex = λ′(0) y∗x.

Now we use the Cauchy-Schwarz inequality and other standard inequalities:

|λ′(0)| |y∗x| = |y∗Ex| = |〈Ex, y〉| ≤ ‖Ex‖2 ‖y‖2 ≤ ‖E‖2 ‖x‖2 ‖y‖2 = 1.

This proves the theorem. Note that y∗x 6= 0 by Lemma 15.18. �

We regard the matrix A + εE as the perturbation of A “in the direction” of
E. If the matrix E is known, one can find λ′(0) exactly:

λ′(0) =
y∗Ex

y∗x
.

Knowing λ′(0) would be useful, because by Taylor expansion

λ(ε) = λ+
y∗Ex

y∗x
ε+O(ε2)

we could have a fairly good approximation to λ(ε) for small ε. In practice, how-
ever, the perturbation matrix E is totally unknown, we only know the order of
magnitude of perturbation, i.e., the value of ε. Hence we cannot compute an ap-
proximation to λ(ε) by Taylor expansion, we can only use the upper bound of
Theorem 15.19 to estimate how far λ(ε) can be from λ:

|λ(ε)− λ(0)| ≤ ε

|y∗x|
+O(ε2).

This shows that the sensitivity of the eigenvalue λ to small perturbations of the

matrix A is determined by the value of 1
|y∗x| .

129

15.20 Condition number of a simple eigenvalue
Let λ be a simple eigenvalue (this means that its algebraic multiplicity is

equal to one) of a matrix A ∈ Cn×n and x, y the corresponding right and left
unit eigenvectors. Then

K(λ) =
1

|y∗x|
is called the condition number of the eigenvalue λ.

15.21 Remarks

(a) The condition number K(λ) is well defined for every simple eigenvalue.
Indeed, by Lemma 15.18 we have |y∗x| 6= 0. Also, the value of |y∗x| does
not depend on the particular choice of x and y, because |(ay)∗(bx)| =
|ab| |y∗x| = |y∗x| for any scalars a and b such that |a| = |b| = 1.

(b) If λ is a multiple eigenvalue, the condition number K(λ) is not defined,
and for a good reason. If the geometric multiplicity of λ is ≥ 2, then for
any right eigenvector x there is a left eigenvector y such that y∗x = 0
(Exercise 15.4), which would result in K(λ) =∞.

(c) Even if the geometric multiplicity of λ equals one, we may have a
pathological situation where y∗x = 0. Example: A = [0 1

0 0] with a
multiple eigenvalue λ = 0; here the right eigenvector is x = [1

0] and the
left eigenvector is y = [0

1].

15.22 Properties of condition numbers for simple eigenvalues

(a) K(λ) ≥ 1.

(b) If the matrix A is normal, then K(λ) = 1 for all its simple eigenvalues.

(c) Conversely, if a matrix A has all simple eigenvalues with K(λ) = 1 for
each of them, then A is normal.

Proof. By Cauchy-Schwarz inequality, |y∗x| ≤ ‖x‖2‖y‖2 = 1. This implies (a). For the

proofs of (b) and (c), see Exercises 15.2 and 15.3.

130

15.23 Relation to Schur decomposition
We see that matrices with the most well-conditioned eigenvalues (such

that K(λ) = 1 for all the eigenvalues) are normal matrices. On the other
hand, normal matrices are characterized by the fact that their Schur decom-
position Q∗AQ = T results in an upper-triangular matrix T that is actually
diagonal (i.e., its off-diagonal components are zeros). One can expect that if
the Schur matrix T is nearly diagonal (i.e., its off-diagonal components are
small), then the eigenvalues of A are well-conditioned. On the contrary, if
some off-diagonal components of T are large, then at least some eigenvalues
are ill-conditioned.

15.24 Multiple and ill-conditioned eigenvalues
Remarks 15.21 (b) and (c) show that if we attempt to define the condition

number for a multiple eigenvalue λ, we are bound to get K(λ) = ∞. Not
surprisingly, if a simple eigenvalue λ is ill-conditioned (i.e., K(λ) ≈ ∞), then
it is ‘nearly multiple’. The following theorem makes this statement precise.

15.25 Theorem (without proof)
Let λ be a simple eigenvalue. Then there is a matrix E such that

‖E‖2

‖A‖2

≤ 1√
K(λ)2 − 1

and λ is a multiple eigenvalue of A+ E.
(This implies that a simple but ill-conditioned eigenvalue λ becomes multiple under a

small perturbation of the matrix A.)

We conclude this chapter by two important theorems (first and second Gersh-
gorin theorems).

Recall that the eigenvalues of a diagonal matrix D = diag{d1, . . . , dn} are its
diagonal components d1, . . . , dn. Naturally, under small perturbations of D its
eigenvalues should remain close to d1, . . . , dn. More precisely, if E is a small
matrix, then the eigenvalues of A = D + E should be close to d1, . . . , dn.

But how close? This is the subject of the next two theorems.

131

15.26 First Gershgorin theorem
Let D = diag{d1, . . . , dn} be a diagonal matrix and E = (eij) any matrix.

Then every eigenvalue of A = D + E lies in at least one of the closed disks

Di =
{
z ∈ C : |z − di| ≤

n∑
j=1

|eij|
}

The closed disks Di are called Gershgorin disks.

Proof. Let λ be an eigenvalue of A and x = [x1, . . . , xn]T the corresponding eigenvector.
Let xr be the largest (in absolute value) component of x, i.e.,

|xr| = max{|x1|, . . . , |xn|}.

Since x 6= 0, we have xr 6= 0.
Next we use the equation Ax = λx. The r-th components of these two vectors are

(Ax)r = drxr +

n∑
j=1

erjxj and (λx)r = λxr

thus

drxr +

n∑
j=1

erjxj = λxr.

Dividing by xr gives

dr +

n∑
j=1

erjuj = λ

where uj = xj/xr. Note that |uj | ≤ 1 for every j = 1, . . . , n. Therefore

|λ− dr| =
∣∣∣∣ n∑
j=1

erjuj

∣∣∣∣ ≤ n∑
j=1

|erj | |uj | ≤
n∑
j=1

|erj |

The theorem is proved. �

Theorem 15.26 says that every eigenvalue λ of A belongs to one of the Gersh-
gorin disks. A common misconception is that every Gershgorin disk must contain
an eigenvalue of A. This is not always true. (Example: A = [0 4

1 0].)
If the Gershgorin disks are disjoint, i.e., Di ∩ Dj = ∅ for i 6= j, then indeed

each Di contains exactly one eigenvalue of A. However if the disks overlap, the
eigenvalues may “travel” from one disk to another, so that some disks contain two
or more eigenvalues while others contain none.

132

Re

Im

Re

Im

The second Gershgorin theorem describes the distribution of the eigenvalues

of A between the disks more precisely.

15.27 Second Gershgorin theorem
Suppose the union of some k Gershgorin disks Di1 , . . . ,Dik is disjoint from

the union of the other n− k Gershgorin disks, i.e.,(
∪i∈{i1,...,ik}Di

)
∩
(
∪i/∈{i1,...,ik}Di

)
= ∅.

Then there are exactly k eigenvalues of A (counting multiplicity) in the for-
mer union and n− k in the latter.

Re

Im

k = 2 n− k = 3

Proof. For brevity, denote for every i = 1, . . . , n

hi =

n∑
j=1

|eij |

and consider the matrix A(s) = D + sE for 0 ≤ s ≤ 1. We will use (without proof) the
following standard fact in complex analysis: the roots of a complex polynomial change
continuously with its coefficients. This fact implies that the eigenvalues of the matrix
A(s) depend continuously on s.

The Gershgorin disks Di(s) for the matrix A(s) have centers d1, . . . , dn (the same
for all 0 ≤ s ≤ 1) and radii sh1, . . . , shn that grow as s increases from 0 to 1. When
s = 0, each Gershgorin disk Di(0) is just a point, di, which is an eigenvalue of the matrix
A(0) = D. Thus the statement of the theorem is true for the matrix A(0). For 0 < s < 1,
each Gersgorin disk Di(s) of the matrix A(s) lies inside the corresponding disk Di = Di(1)
of the matrix A = A(1). Therefore(

∪i∈{i1,...,ik}Di(s)
)
∩
(
∪i/∈{i1,...,ik}Di(s)

)
= ∅.

for all 0 ≤ s ≤ 1. Due to the continuity, the eigenvalues of A(s) cannot “jump” from one

union to the other and vice versa. Therefore the statement of the theorem remains valid

for the matrix A(s) for all 0 ≤ s ≤ 1. Lastly recall that A(1) = A. �

133

Exercise 15.1. (JPE May, 1994). Let X−1AX = D, where D is a diagonal matrix.

(i) Show that the columns of X are right eigenvectors and the conjugate rows of X−1

are left eigenvectors of A.

(ii) Let λ1 . . . , λn be the eigenvalues of A. Show that there are right eigenvectors
x1, . . . , xn and left eigenvectors y1, . . . , yn such that

A =

n∑
i=1

λixiy
∗
i

Exercise 15.2. Let A ∈ Cn×n. Show that

(i) λ is an eigenvalue of A iff λ̄ is an eigenvalue of A∗.

(ii) if A is normal, then for each eigenvalue the left and right eigenspaces coincide;

(iii) if A is normal, then for any simple eigenvalue λ of A we have K(λ) = 1.

Exercise 15.3. Let A ∈ Cn×n and B = Q∗AQ, where Q is a unitary matrix. Show that if
the left and right eigenspaces of A are equal, then B enjoys the same property. After that
show that A is normal. Finally, prove that if A has all simple eigenvalues with K(λ) = 1,
then A is normal.

Exercise 15.4. Suppose λ is an eigenvalue of geometric multiplicity ≥ 2 for a matrix A.
Show that for each right eigenvector x there is a left eigenvector y such that y∗x = 0.

Exercise 15.5. Use the Gershgorin theorems to show that a symmetric, strictly row
diagonally dominant real matrix with positive diagonal elements is positive definite.

Exercise 15.6 (Bonus). Let A ∈ Cn×n be Hermitian with eigenvalues λ1 ≤ · · · ≤ λn.
Let µ1 ≤ · · · ≤ µn−1 be all the eigenvalues of the (n − 1)-st principal minor An−1 of A.
Use the Minimax theorem to prove the interlacing property

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn

134

Chapter 16

Computation of Eigenvalues: Power Method

We now turn to practical methods for computing eigenvalues of matrices.
This chapter presents simple and straightforward power method, and the next
(and last) chapter – a more complicated one, called QR algorithm.

16.1 Preface
Here is our basic task: given a matrix A ∈ Cn×n, compute its eigenvalues

(and eigenvectors). According to Chapter 15, there is no finite algorithm
(no closed formula) for solving this problem. All solutions are necessarily
iterative: we will just construct a sequence of numbers λ(k), where k =
1, 2, . . ., that would converge to an eigenvalue λ of A, i.e., limk→∞ λ

(k) = λ.
Also, our methods will not apply to all matrices, they will only work

under certain conditions. Fortunately, our methods apply to most matrices.
More precisely, our methods apply to typical, generic matrices; they only fail
in exceptional cases (where some “bad accident” or some coincidence occurs).
We will have to exclude such cases from our discussion.

First, we will always assume that the matrix A is diagonalizable4. This
assumption implies that there is a basis of eigenvectors. We will denote
by λ1, . . . , λn the eigenvalues of A and the corresponding eigenvectors by
x1, . . . , xn, which are chosen so that {x1, . . . , xn} makes a basis in Cn.

We always number the eigenvalues so that their absolute values decrease:

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

In other words, λ1 is the largest eigenvalue and λn is the smallest one.
Second, we assume that |λ1| > |λ2|. This excludes a possible coincidence

of |λ1| and |λ2| (this coincidence is another exceptional case that we rule out of the

discussion). We call λ1 the dominant eigenvalue. Our assumption implies that
λ1 is a simple eigenvalue and its eigenspace span{x1} is one-dimensional.

4Typical matrices are diagonalizable. In particular, matrices whose eigenvalues are
distinct are always diagonalizable. So we will only have to exclude some matrices whose
eigenvalues coincide (and coincidence can be regarded as an exceptional case).

135

16.2 Power method: a general scheme
Let q ∈ Cn be any vector. Since there is basis {x1, . . . , xn} of eigenvectors

of A, we can write
q = c1x1 + · · ·+ cnxn.

Note that

Aq = c1Ax1 + · · ·+ cnAxn

= c1λ1x1 + · · ·+ cnλnxn.

By induction, for any k ≥ 1 we have

Akq = c1λ
k
1x1 + · · ·+ cnλ

k
nxn.

Let us consider vector
q(k) = Akq/λk1 (16.1)

i.e.,
q(k) = c1x1 + c2(λ2/λ1)kx2 + · · ·+ cn(λn/λ1)kxn︸ ︷︷ ︸

∆k

. (16.2)

The first term c1x1 is fixed (it does not change with k), and the other terms
converge to zero, because |λi/λ1| < 1 for all i = 2, . . . , n. Therefore

lim
k→∞

q(k) = c1x1. (16.3)

Moreover, the “remainder” ∆k = q(k) − c1x1 satisfies

‖∆k‖ = ‖q(k) − c1x1‖ ≤ const · rk (16.4)

where
r = |λ2/λ1| < 1.

The number r characterizes the speed of convergence ‖∆k‖ → 0. More
precisely,

‖∆(k)‖/‖∆(k−1)‖ → r as k →∞

(assuming c2 6= 0); thus each “error” ‖∆(k)‖ is approximately r times the
previous “error” ‖∆(k−1)‖, i.e., the “errors” decrease as a geometric progres-
sion with ratio r. For this reason r is called the convergence ratio or the
contraction number. The smaller r, the faster the convergence in (16.3).

136

16.3 Linear, quadratic and cubic convergence
Let ak ∈ C be a sequence of complex numbers such that ak → a as

k →∞. We say that the convergence ak → a is linear if

|ak+1 − a| ≈ r|ak − a|

for some 0 < r < 1 and all sufficiently large k. This means that the distance
from the current value ak to the limit (“target”) value a decreases (shrinks)
by a factor of r, i.e., as a geometric progression. The convergence in (16.3)
is linear, with r = |λ2/λ1|. If

|ak+1 − a| ≈ C|ak − a|p

with some constant C > 0 and power p > 1, then the convergence is said to
be superlinear; it is faster than linear. For p = 2 the convergence is said to
be quadratic, and for p = 3 it is cubic.

16.4 Remarks on convergence
If the convergence is linear, then by induction we have

|ak − a| ≈ |a0 − a| rk.

We see that the “remainder” |ak−a| decreases as rk, i.e., exponentially fast, which is very
fast by calculus standards. But in numerical calculations standards are different, and such
a convergence is slow ; see below.

Suppose, for example, r = 0.5. Then

|ak − a|
|a0 − a|

≈ 1

2k
.

If ak denotes the computed approximation to an unknown number a, then its relative
error is ∼ 1/2k. This means that the first k binary digits in a and ak coincide, i.e., we
can trust k binary digits in ak. Therefore each iteration adds one accurate binary digits
(one bit) to the result. To compute a accurately in single precision, one would need about
22–23 iterations, and in double precision – about 52–53 iterations. This is too much for
practical applications. And we picked a fairly small ratio r = 0.5. Now imagine how long
the process might take if r = 0.9 or r = 0.99.

Now suppose the convergence is quadratic. Then, if the error at the current iteration
is 1

2m , it will be ∼ 1
22m at the next iteration. Hence if the current approximation carries

m accurate binary digits, the next one will carry 2m. Thus each iteration doubles (!) the
number of accurate digits. Starting with just one accurate binary digit, one gets 2, 4, 8,
16, 32 digits at the following iterations. So one needs 4–5 iterations in single precision and
only one more iteration in double precision. This is fast enough for practical applications.

Similarly, the cubic convergence means that each iteration triples (!!!) the number of

accurate digits. See Example 16.21 for an illustration.

137

16.5 Scaling problem in the power method
Back to the power method: note that the limit vector c1x1 in (16.3) is an

eigenvector of A corresponding to λ1 (unless c1 = 0). Thus we found a sequence
of vectors converging to an eigenvector of A.

However, the vector q(k) = Akq/λk1 cannot be computed in practice, because
we do not know λ1 in advance (in fact, computing λ1 is our ultimate goal). On the
other hand, we cannot just drop the factor 1/λk1 and use the sequence of vectors
Akq. Indeed, ‖Akq‖ → ∞ if |λ1| > 1 and ‖Akq‖ → 0 if |λ1| < 1, thus our vectors
would either grow too large or get too small. This would cause a breakdown
(overflow or underflow) in computations. We must somehow normalize, or scale,
the vector Akq. To this end we will define a new sequence of vectors recursively:
q0 = q and

qk = Aqk−1/σk (16.5)

for k ≥ 1, where σk is a properly chosen scaling factor; see below. We will also

define an approximation λ
(k)
1 to the eigenvalue λ1 by using the vector qk.

16.6 First choice for the scaling factor
There are two standard choices for σk. One is

σk = ‖Aqk−1‖2. (16.6)

This ensures ‖qk‖2 = 1, i.e., all our qk’s will be unit vectors. Thus they will
not grow too large or too small.

Now one can approximate the eigenvalue λ1 by the Rayleigh quotient

λ
(k)
1 = q∗kAqk. (16.7)

We will show that λ
(k)
1 indeed converges to λ1, as k → ∞, and the vectors qk

get closer and closer to the eigenspace span{x1} corresponding to λ1. However,

the sequence of vectors qk need not converge to any specific limit vector, as the

following example shows.

16.7 Example

Let A =

[
−1 0

0 0

]
. Let us choose q0 = [1, 1]T . It is easy to see that qk = [(−1)k, 0]T

and λ
(k)
1 = −1 for all k ≥ 1. Hence λ

(k)
1 coincides with the dominant eigenvalue λ1 = −1

of the matrix A, and qk is a corresponding eigenvector – a perfect result. However, qk does

not converge to a limit, it keeps oscillating (flipping back and forth between two opposite

vectors [1, 0]T and [−1, 0]T).

138

16.8 Example
Here is a more interesting example. Let

A =

[
−3 1

1 1

]
.

This matrix has eigenvalues5

λ1 = −1−
√

5 ≈ −3.2361

λ2 = −1 +
√

5 ≈ +1.2361

Note that λ1 is the dominant eigenvalue because |λ1| > |λ2|. The corresponding
eigenvector is x1 = [0.9732,−0.2298]T .

Let us pick q0 = [1, 0]T and use (16.6) for the scaling factor and (16.12) for
the approximation to λ1. Then Aq0 = [−3, 1]T , so q1 = [−0.9487, 0.3162]T and

λ
(1)
1 = −3.2.

At the next iteration, Aq1 = [3.1623,−0.6325]T , so q2 = [0.9806,−0.1961]T

and λ
(1)
1 = −3.2308. The table below summarizes the first five iterations.

Here λ
(k)
1 converges to the dominant eigenvalue λ1 and qk gets closer and closer

to the eigenspace span{x1}. But qk does not have a limit – it keeps oscillating

between two limit vectors: x1 and −x1.

qk−1 Aqk−1 σk qk = Aqk−1/σk λ
(k)
1

k = 1 [+1.0000,+0.0000] [−3.0000,+1.0000] 3.1623 [−0.9487,+0.3162] −3.2000
k = 2 [−0.9487,+0.3162] [+3.1623,−0.6325] 3.2249 [+0.9806,−0.1961] −3.2308
k = 3 [+0.9806,−0.1961] [−3.1379,+0.7845] 3.2344 [−0.9701,−0.2425] −3.2353
k = 4 [−0.9701,−0.2425] [+3.1530,−0.7276] 3.2358 [+0.9744,−0.2249] −3.2360
k = 5 [+0.9744,−0.2249] [−3.1480,+0.7495] 3.2360 [−0.9728,+0.2316] −3.2361

↓ ↓ ↓
Limit: no limit no limit −3.2361

(oscillates) (oscillates)

5We will provide approximate numerical values for all our constants with four digits
after the decimal point. The calculations were performed by MATLAB R©.

139

To estimate how close the unit vector qk is to the one-dimensional eigenspace
span{x1}, denote by pk the orthogonal projection of qk on span{x1} and by
dk = qk − pk the orthogonal component. Then ‖dk‖ measures the distance
from qk to span{x1}.

16.9 Theorem (convergence of the power method)
Assume the following:

(i) The matrix A is diagonalizable, as described in Section 16.1.

(ii) λ1 is the dominant eigenvalue, as described in Section 16.1.

(iii) q0 = c1x1 + · · ·+ cnxn is chosen so that c1 6= 0.

Then the distance from qk to the eigenspace span{x1} converges to zero and

λ
(k)
1 converges to λ1. Furthermore,

‖dk‖ ≤ const · rk (16.8)

and
|λ(k)

1 − λ1| ≤ const · rk (16.9)

where r = |λ2/λ1| < 1.

Proof. By induction, we have

qk =
Aqk−1

σk
=
A2qk−2

σk−1σk
= · · · = Akq0

σ1 · · ·σk

According to (16.1)–(16.2) we have

qk =
λk1

σ1 · · ·σk
q(k) =

λk1
σ1 · · ·σk

(c1x1 + ∆k)

i.e., qk is proportional to c1x1 + ∆k. Note that c1x1 is a fixed non-zero vector, ‖∆k‖ → 0
by (16.4). Also, ‖qk‖2 = 1 by construction, and ‖c1x1 + ∆k‖ ≈ ‖c1x1‖ > 0, so for all large

enough k we have 1
2 ‖c1x1‖ < ‖c1x1 + ∆k‖ < 2‖c1x1‖. Therefore the scalar

λk
1

σ1···σk
cannot

get too large or too small, i.e.,

c1 <

∣∣∣∣ λk1
σ1 · · ·σk

∣∣∣∣ < c2

for some positive constants 0 < c1 < c2 <∞. Now the claim (16.8) can be easily derived

from (16.4) (we leave this as an exercise). The last claim (16.9) follows from (16.8) and

(15.1). �

140

16.10 Second choice for the scaling factor
The other popular choice for σk is the largest (in absolute value) compo-

nent of the vector Aqk−1, i.e.,

σk = (Aqk−1)m so that |(Aqk−1)m| = max
i
|(Aqk−1)i|. (16.10)

According to (16.5), the largest (in absolute value) component of qk will be
now equal to one, i.e.,

(qk)m = 1 and max
i
|(qk)i| ≤ 1 (16.11)

This implies 1 ≤ ‖qk‖2 ≤
√
n, so again our vectors qk will not grow too large

or get too small. As in Section 16.6, one can approximate the eigenvalue λ1

by the Rayleigh quotient

λ
(k)
1 =

q∗kAqk
q∗kqk

. (16.12)

Theorem 16.9 applies to this new procedure word for word. Its proof only
needs one minor change: instead of ‖qk‖2 = 1 we now have 1 ≤ ‖qk‖2 ≤

√
n,

but this change does not affect the validity of the argument.
Since for large k the vector qk will be almost an eigenvector of A, we will

get Aqk ≈ λ1qk. Therefore the largest component of Aqk will be ≈ λ1. On
the other hand, the largest component of Aqk will be our σk+1, according to
(16.10). Thus the scaling factor itself can be used as an approximation to
λ1, i.e., we can set

λ̃
(k)
1 = σk. (16.13)

This approximation to λ1 works well in typical cases. More precisely, it works
if the eigenvector x1 has one component with the largest absolute value, i.e.,

∃m ∈ {1, . . . , n} : max
i 6=m
|(x1)i| < |(x1)m|. (16.14)

Then if k is large enough, qk will be almost proportional to x1, hence the
largest component of qk will be (qk)m, where m is the same as in (16.14), i.e.,

max
i 6=m
|(qk)i| < |(qk)m|.

Thus the index m in (16.10)–(16.11) will be the same for all large k, and

therefore (16.13) will give a good approximation to λ
(k)
1 ; see the next example.

141

16.11 Example

We continue Example 16.8. We work with the same matrix A =

[
−3 1

1 1

]
and pick

the same initial vector q0 = [1, 0]T . But now we use (16.10) for the scaling factor and
(16.13) for the approximation to λ1.

The table below summarizes the first nine iterations. Here λ̃
(k)
1 converges to the

dominant eigenvalue
λ1 = −1−

√
5 ≈ −3.2361

and qk converges to the dominant eigenvector

[1, 2−
√

5]T ≈ [1.0000,−0.2361]T .

qk−1 Aqk−1 σk = λ̃
(k)
1 qk = Aqk−1/σk

k = 1 [+1.0000,+0.0000] [−3.0000,+1.0000] −3.0000 [+1.0000,−0.3333]
k = 2 [+1.0000,−0.3333] [−3.3333,+0.6667] −3.3333 [+1.0000,−0.2000]
k = 3 [+1.0000,−0.2000] [−3.2000,+0.8000] −3.2000 [+1.0000,−0.2500]
k = 4 [+1.0000,−0.2500] [−3.2500,+0.7500] −3.2500 [+1.0000,−0.2308]
k = 5 [+1.0000,−0.2308] [−3.2308,+0.7692] −3.2308 [+1.0000,−0.2381]
k = 6 [+1.0000,−0.2381] [−3.2381,+0.7619] −3.2381 [+1.0000,−0.2353]
k = 7 [+1.0000,−0.2353] [−3.2353,+0.7647] −3.2353 [+1.0000,−0.2364]
k = 8 [+1.0000,−0.2364] [−3.2364,+0.7636] −3.2364 [+1.0000,−0.2360]
k = 9 [+1.0000,−0.2360] [−3.2360,+0.7640] −3.2360 [+1.0000,−0.2361]

↓ ↓ ↓
Limit: [+1.0000,−0.2361] −3.2361 [+1.0000,−0.2361]

The choice of the scaling factor (16.10) and the approximation (16.13)
have two attractive advantages:

(a) they are easier to compute than (16.6) and (16.12)

(b) the vector qk does converge to a limit, as k →∞ (unlike our Example 16.7).

Back to Example 16.7: if we use the scaling factor (16.10) and the ap-
proximation (16.13), instead of (16.6) and (16.12), then we will get the vector
qk = [1, 0] for all k ≥ 1, so there will be no oscillations.

The scaling factor (16.10) and the approximation (16.13) work well in
typical cases, where the dominant eigenvector x1 has one component with
the largest absolute value. However, if the eigenvector x1 has more than one
largest component, things can go wrong; see the next example. (Incidentally,

our example shows that the JPE problem #8 in Fall 2012 is stated incorrectly.)

142

16.12 Example

Let A =

[
1 −2
−2 1

]
. This is a symmetric matrix with eigenvalues λ1 = 3 and

λ2 = −1; the corresponding eigenvectors are x1 = [1,−1]T and x2 = [1, 1]T . Note that
the two components of x1 have equal absolute values. Let us choose q0 = [1, 0]T . Then
Aq0 = [1,−2]T , and our rules (16.10) and (16.13) give

λ̃
(1)
1 = σ1 = −2

At the next iteration we get

q1 = Aq0/σ1 = [−0.5, 1]T

and Aq1 = [−2.5, 2], hence

λ̃
(2)
1 = σ2 = −2.5

which even worse than λ̃
(1)
1 (it is farther away from λ1 = 3). At the following iteration

q2 = [1,−0.8]T and Aq2 = [2.6,−2.8]T , so that

λ̃
(3)
1 = σ3 = −2.8

which is still worse than λ̃
(2)
1 . In this example λ̃

(k)
1 converges to the wrong limit:

λ̃
(k)
1 → −3 as k →∞, while λ1 = 3.

The vectors qk get closer and closer to the eigenspace span{x1} corresponding to λ1, but

they do not converge to any specific limit, they oscillate between two limit points: [1,−1]T

and [−1, 1]T .

qk−1 Aqk−1 σk = λ̃
(k)
1 qk = Aqk−1/σk

k = 1 [+1.0000,+0.0000] [+1.0000,−2.0000] −2.0000 [−0.5000,+1.0000]
k = 2 [−0.5000,+1.0000] [−2.5000,+2.0000] −2.5000 [+1.0000,−0.8000]
k = 3 [+1.0000,−0.8000] [+2.6000,−2.8000] −2.8000 [−0.9286,+1.0000]
k = 4 [−0.9286,+1.0000] [−2.9286,+2.8571] −2.9286 [+1.0000,−0.9756]
k = 5 [+1.0000,−0.9756] [+2.9512,−2.9756] −2.9756 [−0.9918,+1.0000]

↓ ↓ ↓
Limit: no limit −3.0000 no limit

(oscillates) (wrong limit) (oscillates)

We should admit that the matrix A in the above example is somewhat
exceptional: in practice it rarely happens that the dominant eigenvector x1

has two or more equally large components.

143

16.13 Initial vector
The initial vector q0 only has to fulfill the requirement c1 6= 0. Unacceptable

vectors (those with c1 = 0) form a hyperplane in Cn defined by

Hbad = span {x2, . . . , xn}

A hyperplane is a “tiny” part of the space Cn, so if we pick a vector q0 “randomly”,
it will most likely be not in that bad hyperplane.

Even if we have a bad luck of choosing a vector q0 ∈ Hbad accidentally, some-
thing else may come to the rescue. All the vectors qk, k ≥ 1, must lie in Hbad,
theoretically, but due to round-off errors the numerically computed vectors qk will
very likely drift away from that hyperplane, and then they would approach the
dominant eigenspace span{x1}, as desired.

If that does not seem to be enough, we can apply the following strategy that

guarantees an absolute safety. We should choose not just one, but n different initial

vectors that make a basis in Cn (for instance, we can choose e1, . . . , en). Then we

carry out the power method starting with each of these initial vectors, i.e., carry

out the power method n times, each time with a different initial vector, and run

it until convergence. Since our initial vectors make a basis, one of them has to

be away from the hyperplane Hbad, so we are bound to converge to the dominant

eigenvalue λ1 at least once.

16.14 Aiming at the smallest eigenvalue

We spent so much effort on developing methods for computing the dominant
eigenvalue λ1. But what about the other eigenvalues, λ2, . . . , λn? Our next goal
is to compute the smallest eigenvalue λn. Again, we need certain assumptions on
the matrix A.

First, we keep our main assumption made in Section 16.1: the matrix A is
diagonalizable. We denote its eigenvalues by λ1, . . . , λn and order them so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

We still denote by x1, . . . , xn corresponding eigenvectors that make a basis in Cn.
In addition, we now make two new assumptions:

(i) The matrix A is invertible (this implies λn 6= 0).

(ii) The matrix A has one smallest eigenvalue, i.e., |λn| < |λn−1|.

Both new assumptions rule out certain exceptional matrices, so all typical matrices

A satisfy our assumptions. We also note that if assumption (i) fails, then λn = 0,

and we do not need an elaborate algorithm to compute it.

144

16.15 Inverse power method
The inverse matrix A−1 has eigenvalues λ−1

1 , . . . , λ−1
n and the same cor-

responding eigenvectors x1, . . . , xn. Note that |λ−1
1 | ≤ · · · ≤ |λ−1

n |. Our
assumption (ii) implies |λ−1

n | > |λ−1
n−1|, hence the matrix A has one dominant

eigenvalues, λ−1
n , with eigenvector xn.

Thus the matrix A−1 satisfies our assumptions made in Section 16.1, so
that one can apply the power method to A−1. This gives, of course, its dom-
inant eigenvalue, which is λ−1

n , and the corresponding eigenspace span{xn}.
The reciprocal of the former will be the smallest eigenvalue λn of A. This
trick is called inverse power method, because it consists of the power method
applied to the inverse matrix A−1.

According to Theorem 16.9, the inverse power method converges linearly,
with the ratio

r = |λ−1
n−1/λ

−1
n | = |λn/λn−1| < 1. (16.15)

16.16 Practical implementation
The inverse power method goes through the same steps as the power

method does, except A is replaced with A−1. In particular, the recurrent
formula (16.5) now takes form

qk = A−1qk−1/σk. (16.16)

In manual calculations (on paper), one just computes A−1 and uses it.
However, in numerical calculations done by computer, the construction of

the inverse matrix A−1 is too expensive and should be avoided. Fortunately,
it can be avoided in the present situation. All we need is to compute vectors
A−1q0, A−1q1, . . ., according to (16.16). In order to compute the product
A−1b for any given vector b ∈ Cn, one can just solve the system of linear
equations Ax = b, and its solution will be the desired vector x = A−1b.
The system Ax = b can be solved by the LU decomposition of the matrix
A, as described in Chapter 7. This trick is routinely used in the computer
implementation of the inverse power method.

Now we know how to compute the largest and the smallest eigenvalues of a given

matrix A. Now we turn to the task of computing any eigenvalue.

145

16.17 Aiming at any eigenvalue
Recall that for any eigenvalue λ of A with eigenvector x we have Ax = λx.

Thus for any scalar ρ ∈ C we have

(A− ρI)x = (λ− ρ)x

Therefore λ− ρ is an eigenvalue of the matrix A− ρI, with the same eigen-
vector x.

Recall that, in our notation, the given matrix A has eigenvalues λ1, . . . , λn
with eigenvectors x1, . . . , xn. Now the matrix A− ρI has eigenvalues

λ1 − ρ, λ2 − ρ, . . . , λn − ρ

with the same eigenvectors x1, x2, . . . , xn. We see that the whole spectrum
(the set of all eigenvalues) of A is shifted by subtracting a constant scalar ρ.

If we can compute an eigenvalue λ′ of the new matrix A′ = A− ρI, then
λ + ρ would be an eigenvalue of A. The corresponding eigenvector x′ of
A′ = A− ρI would be also an eigenvector of A.

Now suppose we want to compute an eigenvalue λi of the given matrix A,
which is neither the largest nor the smallest one. Then the power method or
the inverse power method would not be able to find λi. But it is possible that
for some scalar ρ ∈ C and for the new matrix A′ = A−ρI, the corresponding
eigenvalue λ′ = λi − ρ will be either the largest or the smallest one, i.e.,

|λi − ρ| = max
1≤j≤n

|λj − ρ| (16.17)

or
|λi − ρ| = min

1≤j≤n
|λj − ρ|. (16.18)

Then we can apply the power method, or the inverse power method, to A′,
compute λ′, and lastly determine λi = λ′ + ρ.

It remains to find a scalar ρ so that either (16.17) or (16.18) holds. A
moment’s thought reveals that it may be possible to ensure (16.17), but there
are examples where it is not possible. On the other hand, it is always possible
to ensure (16.18) – one just needs to choose a number ρ which is closer to
the desired eigenvalue λi than to any other eigenvalue λj.

In other words, we need just a rough approximation to the desired eigen-
value λi, just a number ρ that is closer to λi than to any other eigenvalue λj.
In most practical applications, this is not a difficult task.

146

16.18 Power method with shift
Assume that ρ is a rough approximation to an eigenvalue λi of A, i.e., ρ

is closer to λi than to any other eigenvalue λj of A:

|λi − ρ| < |λj − ρ| ∀j 6= i.

Then the matrix A′ = A − ρI will have the smallest eigenvalue λ′ = λi − ρ
with the eigenvector x′ = xi.

We can apply the inverse power method to A′ = A−ρI. It will give us the
smallest eigenvalue λ′ and a corresponding eigenvector x′ of the matrix A′.
Then we can determine λi = λ′ + ρ and xi = x′, i.e., the desired eigenvalue
and eigenvector of A. This trick is called the power method with shift, because
it is based on shifting the eigenvalues of A by a conveniently chosen scalar
ρ ∈ C. That scalar is called the shift.

According to Theorem 16.9 and (16.15), the power method with shift ρ
converges linearly, with the ratio

r =
|λi − ρ|

minj 6=i |λj − ρ|
< 1. (16.19)

16.19 Note on the speed of convergence
The speed of convergence of the power method depends on how big or

small the ratio r is; see Section 16.4. If r is small (close to zero), the con-
vergence is actually pretty fast6. So it is in our best interests to select the
scalar ρ so that r will be small. Fortunately, this is often possible.

The formula (16.19) suggests that if we keep changing ρ so that ρ→ λi,
then the numerator and denominator of (16.19) have the following limits:

|λi − ρ| → 0
minj 6=i |λj − ρ| → minj 6=i |λj − λi| > 0

}
=⇒ r → 0.

Thus, the better ρ approximates λi, the smaller r is, and the faster the
convergence will be. We will explore this idea in the next section.

6For example, if r = 0.1, then each iteration adds one accurate decimal digit; hence,
in single precision, 6–7 iterations might give us maximum accuracy. If r = 0.01, then
each iteration adds two accurate decimal digits, i.e., 6–7 iterations might suffice in double
precision.

147

16.20 Power method with Rayleigh quotient shift
As it turns out, we do not have to work hard to provide a good approx-

imation ρ to λi that would accelerate the convergence – the power method
itself can do this for us.

Recall that at each iteration we find a vector qk that gets closer and
closer to the eigenspace span{xi} corresponding to the eigenvalue λi of the

matrix A. Thus the corresponding Rayleigh quotient
q∗kAqk
q∗kqk

would get closer

and closer to λi. Why not to use this Rayleigh quotient as the best available
approximation to λi? In other words, at every iteration we can reset (update)
the shift ρ by using the Rayleigh quotient of the vector qk obtained at the
previous iteration.

This suggests the following scheme. First, one chooses an initial vector q0

and an initial shift ρ0 (which does not have to be a very good approximation
to λi). Then for each k ≥ 1 one computes

qk =
(A− ρk−1I)−1qk−1

σk
(16.20)

where σk is a convenient scaling factor, for example, σk = ‖(A−ρk−1I)−1qk−1‖,
and one updates the shift by

ρk =
q∗kAqk
q∗kqk

This brilliant scheme is known as power method with Rayleigh quotient shift.
Its convergence is, generally, quadratic (better than linear). If the matrix

A is Hermitian, the convergence is even faster – it is cubic!!!

16.21 Example
Consider the symmetric matrix

A =

 2 1 1
1 3 1
1 1 4

and let q0 = (1, 1, 1)T be the initial vector and q0 = 5 the initial shift. When power
method with Rayleigh quotient shift is applied to A, the following values ρk are computed
at the first two iterations:

ρ1 = 5.2131, ρ2 = 5.214319743184

The actual value is λ = 5.214319743377. After only two iterations, the method produces

10 accurate digits. The next iteration would bring about 30 accurate digits – more than

enough for double precision arithmetic.

148

16.22 Power method: pros and cons

(a) The power method is classic. Its logic is simple, and the method gen-
erally works well. The convergence is quadratic, and for Hermitian
matrices the convergence is cubic.

(b) The power method is still very slow for two reasons. The main one is
that each iteration is rather expensive. Indeed, according to (16.20)
we need to compute (A − ρk−1I)−1qk−1, i.e., solve a system of linear
equations (A−ρk−1I)x = qk−1. This can be done by LU decomposition
of the matrix A− ρk−1I, which keeps changing at every iteration (be-
cause of ρk−1). Hence the LU decomposition must be performed anew
at every iteration, and each LU decomposition takes ≈ 2n3/3 flops
(Section 7.10). Thus the cost of computing one eigenvalue is ≈ 2pn3/3,
where p is the number of iterations (typically, p is about 5 or 10).

The other reason is that each eigenvalue must be computed indepen-
dently – we need to choose an initial vector q0 and an initial shift ρ0, and
then run the inverse power method until its iterations converge. Thus,
if we want to compute all n eigenvalues of A, the total computational
cost will be 2pn4/3 flops. This is quite a big number.

(c) Lastly, if the matrix A is real (and this is the most common case in
practice), then in order to compute its non-real complex eigenvalues
λi /∈ R one has to use complex shifts ρk /∈ R. Thus one has to deal with
complex matrices (A− ρk−1I), which is inconvenient and expensive.

It would be nice to operate with real matrices only, for as long as
possible, and obtain pairs of complex conjugate eigenvalues only at the
very last step. The QR algorithm, to be discussed in the next chapter,
provides such a luxury.

Exercise 16.1. (JPE, May 2003) Let A be a symmetric matrix with eigenvalues such that
|λ1| > |λ2| ≥ · · · ≥ |λn−1| > |λn|. Suppose z ∈ Rn with zTx1 6= 0, where Ax1 = λ1x1.
Prove that, for some constant C,

lim
k→∞

Akz

λk1
= Cx1

and use this result to devise a reliable algorithm for computing λ1 and x1. Explain how
the calculation should be modified to obtain (a) λn and (b) the eigenvalue closest to 2.

149

Exercise 16.2. (JPE, September 1996) The matrix

A =

 2 0 0
0 1 2
0 2 1

has eigenpairs

(λ, x) =

2,

 1
0
0

 ,

−1,

 0
1
−1

 ,

3,

 0
1
1

 ,

Suppose the power method is applied with starting vector

z0 = [1, 1,−1]t/
√

3

(a) Determine whether or not the iteration will converge to an eigenpair of A, and if
so, which one. Assume exact arithmetic.

(b) Repeat (a), except now use the inverse iteration with the same starting vector z0

and the Rayleigh quotient of z0 as approximation for the eigenvalue.

(c) Now answer both (a) and (b) again, except this time use standard fixed precision
floating point arithmetic, i.e. computer arithmetic.

150

Chapter 17

Computation of Eigenvalues: QR Algorithm

In this last chapter of the course we present the QR algorithm for com-
puting eigenvalues of any matrix A ∈ Cn×n. The QR algorithm (not to be
confused with QR decomposition!) dates back to the early 1960s, and in
the recent decades it became the most widely used method for calculating
eigenvalues.

17.1 “Pure” QR algorithm
Let A ∈ Cn×n. The algorithm starts with A0 = A and generates a

sequence of matrices Ak defined as follows:

Ak−1 = QkRk (QR decomposition)

Ak = RkQk (reverse multiplication)

That is, a QR decomposition of the current matrix Ak−1 is computed first, and

then its factors are multiplied together in the reverse order to produce the next

matrix Ak. One iteration of the QR algorithm is called QR step. It consists of two

substeps: (i) QR decomposition and (ii) reverse multiplication.

17.2 Two basic facts

(i) All matrices Ak in the QR algorithm are unitary equivalent.

Proof. Indeed, Ak = RkQk = Q−1
k Ak−1Qk. �

As a result, all matrices Ak have the same eigenvalues. They also have the same

2-condition number, ensuring that the QR algorithm is numerically stable.

(ii) If A is a Hermitian matrix, then all Ak’s are Hermitian matrices as well.

Proof. This follows from (i) and Section 3.10. �

The fact (b) ensures that the important Hermitian property is not lost during the

QR procedure.

151

Note that ‖Rk‖F = ‖Ak‖F = ‖A‖F for all k ≥ 1 (Exercise 2.2). Thus all our
matrices Ak and Rk have the same mass (or energy); see Section 5.9. At the first
part of each QR step (the QR decomposition of the matrix Ak−1), the entire mass
is pulled up to the upper triangle. At the second step (the reverse multiplication
of Rk and Qk), the mass tends to stay on top of Ak, even though some of it
“leaks back” to the bottom. This is illustrated by the following example, where
for simplicity both Rk and Qk are filled with identical numbers:

2 2 2 2
0 2 2 2
0 0 2 2
0 0 0 2

×

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

 =

4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1

Rk × Qk = Ak

As k grows, successive repetitions of the QR step strengthen the effect of pulling

the mass upward. These considerations make the following theorem plausible

(though its formal proof is beyond the scope of the course):

17.3 Theorem (convergence of the QR algorithm)
Let λ1, . . . , λn be the eigenvalues of A satisfying

|λ1| > |λ2| > · · · > |λn| > 0

Under one technical condition7, the matrix Ak = (a
(k)
ij) is guaranteed to

converge to an upper triangular form, so that

(a) a
(k)
ij → 0 as k →∞ for all i > j.

(b) a
(k)
ii → λi as k →∞ for all i.

The convergence is linear, with the ratio

r = max
k
|λk+1/λk| < 1.

Note that a
(k)
ij for i < j need not converge to a limit, as k →∞ (see ex-

ample below). This is why we say that Ak converges to “an upper triangular
form”, but not necessarily to any particular upper triangular matrix.

7The technical condition is this: the matrix Y whose i-th row is a left eigenvector of
A corresponding to λi, for all 1 ≤ i ≤ n, must have an LU decomposition (i.e., all its
principal minors must be nonsingular; see Chapter 7).

152

17.4 Example

Here we apply the QR algorithm to the matrix A =

[
3 2
1 1

]
. The cal-

culations were performed with MATLAB R©, and the QR decomposition was
done by the standard MATLAB function qr.

Ak−1 Qk Rk Ak = RkQk

k = 1

[
+3.0000 +2.0000
+1.0000 +1.0000

] [
−0.9487 −0.3162
−0.3162 +0.9487

] [
−3.1623 −2.2136

0 +0.3162

] [
+3.7000 −1.1000
−0.1000 +0.3000

]

k = 2

[
+3.7000 −1.1000
−0.1000 +0.3000

] [
−0.9996 +0.0270
+0.0270 +0.9996

] [
−3.7014 +1.1077

0 +0.2702

] [
+3.7299 +1.0073
+0.0073 +0.2701

]

k = 3

[
+3.7299 +1.0073
+0.0073 +0.2701

] [
−1.0000 −0.0020
−0.0020 +1.0000

] [
−3.7299 −1.0078

0 +0.2681

] [
+3.7319 −1.0005
−0.0005 +0.2681

]

k = 4

[
+3.7319 −1.0005
−0.0005 +0.2681

] [
−1.0000 +0.0001
+0.0001 +1.0000

] [
−3.7319 +1.0006

0 +0.2680

] [
+3.7320 +1.0000
+0.0000 +0.2680

]

k = 5

[
+3.7320 +1.0000
+0.0000 +0.2680

] [
−1.0000 −0.0000
−0.0000 +1.0000

] [
−3.7320 −1.0000

0 +0.2679

] [
+3.7321 −1.0000
−0.0000 +0.2679

]

The matrix Ak converges to an upper triangular form: its diagonal com-
ponents converge to the eigenvalues of A:

λ1 = 2 +
√

3 ≈ 3.7321, λ2 = 2−
√

3 ≈ 0.2679,

its component below the diagonal converges to zero, and its component above
the diagonal oscillates between two limit points: +1 and −1.

17.5 Advantages of the QR algorithm

(a) The QR algorithm produces all eigenvalues of A in “one go”, by a single
sequence of iterations. By contrast, the power method (Chapter 16)
requires a separate sequence of iterations for each eigenvalue.

(b) The QR algorithm does not require an initialization – there is no need
for an arbitrary choice of an initial vector q0 or an initial shift ρ0 that
the power method relies upon.

(c) An important case is that of a Hermitian matrix A. We know that
all the Ak’s are Hermitian matrices, too. Since the lower triangle of
Ak converges to zero, so does its mirror image – the upper triangle.
Therefore Ak converges to a diagonal matrix, a very nice result.

153

Despite all the obvious advantages, the “pure” QR algorithm is still quite
expensive. Mainly, each iteration is very costly: the QR decomposition takes 2n3

flops (Sect. 9.8), and the multiplication of two n×n matrices Rk and Qk generally
takes 2n3 flops, as one can verify directly. We can take advantage of the triangular
structure of Rk and avoid multiplications by zeros, then the cost of multiplication
Rk ×Qk will be half of 2n3 flops, i.e., n3 flops. This makes it 3n3 flops total, for
each QR step. Thus if we make p QR steps, the total cost will be 3pn3.

This seems to be an improvement over 2pn4/3 flops needed by the power
method (Section 16.22), but in practice this cost is still too high. We also need to
remember that the convergence is slow (linear), thus the pure QR algorithm may
require many more iterations than the power method does (see Section 16.3).

Fortunately, the computational cost can be dramatically reduced with the help

of Hessenberg matrices, see below. The use of Hessenberg matrices will also allow

us to develop tricks that speed up the convergence, from linear to quadratic.

17.6 Hessenberg matrix
A ∈ Cn×n is called an (upper) Hessenberg matrix if aij = 0 for all i > j+1,

i.e., whenever A has the form

A =

× × · · · · · · ×

× ×
. . .

. . .
...

0 × ×
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 × ×

Thus, A may have non-zero components in its upper triangle and on its

subdiagonal. It is just “one step away” from being an upper triangular.
Recall that an upper triangular matrix has its eigenvalues on its diagonal,

i.e., its eigenvalues are “exposed”. The eigenvalues of a Hessenberg matrix are

not exposed, they are “hidden”, but if any subdiagonal component is zero, i.e.,

ai+1,i = 0 for some i, then the eigenvalue problem can be simplified:

17.7 Lucky reduction of the eigenvalue problem
Suppose A is Hessenberg and ai+1,i = 0 for some 1 ≤ i ≤ n− 1. Then A has a

block-diagonal structure

A =

[
A1 B
0 A2

]
where A1 ∈ Ci×i and A2 ∈ C(n−i)×(n−i). Now the eigenvalues of A consist of those

of A1 and A2. Thus it is enough to find the eigenvalues of the two smaller matrices

A1 and A2, while the matrix B can be completely ignored.

154

17.8 Theorem (Hessenberg decomposition)
Every matrix A ∈ Cn×n is unitary equivalent to a Hessenberg matrix, i.e.

A = Q∗HQ

where H is a Hessenberg matrix and Q is a unitary matrix. There is an exact
finite algorithm (Arnoldi algorithm) for computing H and Q.

Proof. The matrix equation A = Q∗HQ can be rewritten as AQ∗ = Q∗H. Denote by
qi, 1 ≤ i ≤ n, the columns of the unitary matrix Q∗ and by hij the entries of H. Equating
the columns of the matrices AQ∗ and Q∗H (and remembering that hij = 0 for i > j + 1)
we obtain the following system of equations

Aq1 = h11q1 + h21q2

Aq2 = h12q1 + h22q2 + h32q3

· · ·
Aqi = h1iq1 + · · ·+ hiiqi + hi+1,iqi+1

· · ·
Aqn = h1nq1 + · · ·+ hn−1,nqn−1 + hn,nqn

Note that the last equation is slightly different from the others, since it terminates on a
diagonal entry of H.

Now the Arnoldi algorithm goes along the lines similar to the classical Gram-Schmidt
orthogonalization. We pick an arbitrary unit vector q1, compute v1 = Aq1 and

w2 = v1 − 〈v1, q1〉 q1

It is easy to check that w2 will be orthogonal to q1. Then we set h11 = 〈v1, q1〉 and
h21 = ‖w2‖ and define q2 = w2/‖w2‖. This enforces the first equation in the above
system.

Then, for every i = 2, . . . , n− 1 we make four steps:

Step 1: compute vi = Aqi.

Step 2: for all j = 1, . . . , i compute hji = 〈vi, qj〉.
Step 3: compute wi = vi −

∑i
j=1 hjiqj .

(note: the vector wi is guaranteed to be orthogonal to q1, . . . , qi).

Step 4: compute hi+1,i = ‖wi‖ and qi+1 = wi/hi+1,i.

Finally, for i = n we execute steps 1 and 2 only.

An exception may occur at step 4 if it happens that hi+1,i = 0. In that case we simply

pick an arbitrary unit vector qi+1 orthogonal to q1, . . . , qi and continue the procedure “as

if nothing happened”. �

155

The exceptional case hi+1,i = 0 in Step 4 is sometimes referred to as the
breakdown of the Arnoldi algorithm. This term is quite misleading, however, since
the method does not really break down. In fact, the resulting Hessenberg matrix
H will then have a simpler structure leading to a lucky reduction of the eigenvalue
problem (Secion 17.7).

The matrices H and Q in Theorem 17.8 are far from being unique. The very

first step of the Arnoldi algorithm is based on an arbitrary choice of a unit vector

q1 (the first column of Q∗). Actually, by choosing a simple vector q1 (such as

q1 = e1), we can reduce the amount of computational work, see next.

17.9 Cost of Arnoldi algorithm
The cost of Step 1 is 2n2 flops, the cost of Step 2 is 2ni flops, the same for

Step 3, and lastly Step 4 takes 3n flops. The total cost is then

n∑
i=1

(2n2 + 4ni+ 3n) ∼ 4n3

(by choosing q1 = e1 one can save some work and compute H and Q in 10
3 n

3 flops;
see the textbook for more details). This cost is comparable to the cost of one QR
step for a generic (non-Hessenberg) matrix.

The Hessenberg decomposition can be regarded as a pre-processing of the ma-

trix A; it only needs to be done once, and then the QR algorithm can be applied to

the resulting Hessenberg matrix. It is important, obviously, that the Hessenberg

property is not lost during the QR iterations.

17.10 Preservation of Hessenberg structure
If an invertible matrix A0 is Hessenberg, then all the matrices Ak gener-

ated by the QR algorithm will be Hessenberg matrices as well.

Proof. By induction, let Ak−1 be Hessenberg. Then Ak−1 = QkRk and so Qk =

Ak−1R
−1
k . This is a product of a Hessenberg matrix Ak−1 and an upper triangular matrix

R−1
k . One can verify by direct inspection that such a product is always a Hessenberg

matrix. Now Ak = RkQk is also a product of an upper triangular matrix Rk and a

Hessenberg matrix Qk, so it is a Hessenberg matrix, too. �

For a noninvertible Hessenberg matrix A0, the above property remains valid,

but the proof is more complicated and we leave it out. Basically, one can show

that Qk constructed by Gram-Schmidt orthogonalization (Chapter 9) is also Hes-

senberg, thus Ak will again be a Hessenberg matrix.

156

17.11 Cost of a QR step for Hessenberg matrices
For Hessenberg matrices, the QR algorithm can be implemented with a sub-

stantial reduction of computational cost. First, the QR decomposition can be done

via Givens rotators, it will take 6n2 flops, according to Section 14.15. Second, Qk
is a product of n−1 rotators, and the multiplication of Rk by Qk can be organized

so that it will take ≤ 6n2 flops (we omit details). The total for one QR step is

then ≤ 12n2 flops, a dramatic drop from 3n3 flops required for a non-Hessenberg

matrix A (as we said after Section 17.5).

“Pure” QR:

QR with
Hessenberg:

A

A0

A0

A1

A1
10
3 n

3
12n2

3n3

A2

A2

12n2

3n3

A3

A3

12n2

3n3

A4

A4

12n2

3n3

A5

A5

12n2

3n3

17.12 The case of Hermitian matrices
An important case is that of Hermitian matrices. In that case A0 will be

both Hermitian (Section SAequiv) and Hessenberg. Hence A0 will be a tridiagonal
matrix (hij = 0 for all |i− j| > 1). Its construction by the Arnoldi algorithm takes
only 4

3n
3 flops (see the textbook for details).

The use of Hessenberg matrices greatly reduces the cost of each QR step.
Another standing issue is a slow (linear) convergence (Theorem 17.3), with ratio

r = max
k
|λk+1/λk| < 1. (17.1)

For example, if A has eigenvalues 1, 9, and 10, then the ratio is r = 0.9, and the

process would be crawling. Fortunately, we have improvement in this respect, too:

17.13 Theorem (without proof)
Assume that A0, and hence Ak for all k ≥ 1, are Hessenberg matrices.

Then the convergence a
(k)
i,i−1 → 0 as k → ∞ in Theorem 17.3 is linear with

ratio ri = |λi/λi−1|. In addition, the convergence a
(k)
nn → λn is linear with

ratio rn = |λn/λn−1|.
Now each subdiagonal entry a

(k)
i,i−1 has its own ratio of convergence ri, so some

may converge faster than others. The convergence is no longer governed by one

single ratio (17.1). For example, if A has eigenvalues 1, 9, and 10, then the last

(bottom) subdiagonal entry converges with ratio r = 1/9, which is very fast. This

new flexibility allows us to develop smart tricks accelerating the convergence of

some selected entries first, and then all the remaining entries.

157

17.14 QR algorithm with shift
One can modify the matrix A to decrease the ratio rn = |λn/λn−1| and

thus make the convergence

a
(k)
n,n−1 → 0 and a(k)

nn → λn

of the two bottom entries faster.
This can be done with the help of shifting, as in Section 16.18. Recall that

for any ρ ∈ C the matrix A− ρI has eigenvalues λ1− ρ, . . . , λn− ρ. The new
matrix A − ρI is still Hessenberg (or Hermitian) if A itself was Hessenberg
(resp., Hermitian), so we lose nothing by replacing A with A− ρI.

Now suppose ρ is a good approximation to the smallest eigenvalue λn. If
we apply the QR steps to the matrix A′ = A − ρI, then the convergence of
the two bottom entries of the new matrix will be linear with ratio

r′n = |λn − ρ|/|λn−1 − ρ|.

Now we can control the speed of convergence by choosing/adjusting the shift
ρ. Obviously, if ρ → λn, then r′n → 0. Thus the better ρ approximates λn
the faster the convergence of the two bottom entries will be.

17.15 QR algorithm with Rayleigh quotient shift
The approximation ρ can be updated at every iteration, as in Section 16.20,

by using the Rayleigh quotient

ρ = ρk = u∗kAkuk

where uk is an approximate unit eigenvector of the matrix Ak corresponding
to its smallest eigenvalue λn. In practice, a simple and convenient choice for
uk is uk = en, which gives ρk = a

(k)
nn . Then the QR algorithm with shift goes

as follows:

Ak−1 − ρk−1I = QkRk (QR decomposition of Ak−1 − ρk−1I)

RkQk + ρk−1I = Ak (computation of the next matrix Ak)

ρk = a(k)
nn (setting ρk to the trailing entry of Ak)

This is called the Rayleigh quotient shift. The convergence of the two bottom
entries of Ak is now quadratic, basically for the same reasons as it was in
Section 16.20.

158

The use of Rayleigh quotient shift allows us very quickly – say, in about five

iterations – to “kill” the bottom subdiagonal entry a
(k)
n,n−1 and find the smallest

eigenvalue λn of the matrix A. But the other subdiagonal entries, a
(k)
i+1,i, 1 ≤ i ≤

n − 2, will move to zero slowly – linearly, with variable ratios. For example if A
has eigenvalues 1, 9, and 10, then the smallest one will be found very fast, but
the other two may take 50–100 (or more) iterations, because the convergence will
proceed with a pretty bad ratio r = 0.9.

So we apply one more trick – the “lucky reduction” described in Section 17.7

– to “split off” the smallest eigenvalue λn and reduce the size of the matrix A:

17.16 QR algorithm with deflation
When a

(k)
n,n−1 becomes practically zero and a

(k)
nn becomes practically equal

to λn, the matrix Ak will have the following form:

Ak =

[
Âk bk
0 λn

]
where Âk is an (n−1)× (n−1) Hessenberg matrix. Its eigenvalues are those
of A, minus λn, i.e., they are λ1, . . . , λn−1. Now we can apply further steps of
the QR algorithm (with shift) to the matrix Âk, instead of Ak. This quickly
produces its smallest eigenvalue, λn−1, which can be split off in the same
manner. Then we reduce our matrix further, to the size (n − 2) × (n − 2),
and so on. This procedure is called the deflation of the matrix A:

“cutting lines” are in red

In practice, each eigenvalue of A requires just 3-5 iterations (QR steps),
on the average. For Hermitian matrices, it is even faster – just 2-3 iterations
per eigenvalue. Remember also that each QR step for Hessenberg matrices is
very cheap (just 12n2 flops). This is how the QR algorithm with Hessenberg
matrices, Rayleigh quotient shift, and deflation achieves a top speed.

The above procedure works well on generic matrices, but it fails occasionally

in certain exceptional cases. One such case is a matrix A with two equally large

eigenvalues, i.e., |λi| = |λj | for some i 6= j. Such a matrix does not meet the

requirements of Theorem 17.3, so the convergence is not guaranteed. In that case

the QR algorithm may “get stuck”, as illustrated by the following example.

159

17.17 Example

Let A =

[
0 1
1 0

]
. Note that A is already a Hessenberg matrix, thus the Hessenberg

decomposition is not needed here. Now the pure QR algorithm gives

A0 = Q1R1 =

[
0 1
1 0

] [
1 0
0 1

]
hence

A1 = R1Q1 =

[
1 0
0 1

] [
0 1
1 0

]
= A

and we are “back to square one”. The process goes nowhere. The Rayleigh quotient shift

ρ = a22 proposed in Section 17.15 has no effect either, since a22 = 0. The reason of this

failure is that the eigenvalues of A, which are +1 and −1, have equal absolute values –

this is a symmetry which confuses the QR algorithm, it “cannot decide” which eigenvalue

to approach. To break this symmetry, one needs to choose the shift ρ differently.

An alternative shift ρ can be used whenever the procedure “gets stuck”:

17.18 Wilkinson shift
At step k of the QR algorithm with shift, let Bk denote the trailing 2×2 block

at the bottom right corner of Ak:

Bk =

[
a

(k)
n−1,n−1 a

(k)
n−1,n

a
(k)
n,n−1 a

(k)
n,n

]
(17.2)

Now set ρk to the eigenvalue of Bk that is closer to a
(k)
n,n (in case of a tie, either

one can be taken). This is called Wilkinson shift.

The eigenvalues of a 2 × 2 matrix can be easily (and precisely) computed by

the quadratic formula, whether they are real or complex. If they are real, then the

Wilkinson shift will help break the symmetry like in Example 17.17.

17.19 Example 17.17 continued
The Wilkinson shift here is either ρ = 1 or ρ = −1. Let us choose ρ = −1. Then

A0 − ρI =

[
1 1
1 1

]
= Q1R1 =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [√
2
√

2
0 0

]
and then

A1 = R1Q1 + ρI =

[
2 0
0 0

]
+

[
−1 0

0 −1

]
=

[
1 0
0 −1

]
.

The matrix A1 is diagonal and its diagonal entries are the eigenvalues of A.

So the QR algorithm with the Wilkinson shift converges in just one step.

160

Lastly, we discuss an important case of real matrices with complex eigenvalues.
It was already mentioned in Section 16.22(c).

If the matrix A is real (which is the most common case in practice), then its
complex eigenvalues come in conjugate pairs a±ib. They have equal absolute values
|a+ bi| = |a− bi|, immediately violating the main assumption of Theorem 17.3.

Furthermore, the pure QR algorithm is bound to fail for the following simple
reason. If A is real, then all Qk, Rk and Ak will be real matrices as well, thus
we cannot even expect the real diagonal entries of Ak to converge to the complex
eigenvalues of A. In this case Ak may not converge to anything at all.

The QR algorithm with shift may be able to find complex eigenvalues of a

real matrix A, but it needs to use complex shifts ρ /∈ R and complex matrices

A − ρI, which is inconvenient and expensive. Fortunately, the QR algorithm can

be organized so that it operates with real matrices only, for as long as possible,

and obtains pairs of complex conjugate eigenvalues only at the very last step:

17.20 Wilkinson shifts for complex eigenvalues of real matrices
Suppose at the step k of the QR algorithm, the matrix Ak is still real, but

the eigenvalues of its 2 × 2 trailing block Bk in (17.2) are non-real complex
numbers. Let us denote them by ρk and ρ̄k (remember that they are complex
conjugate to each other). Then the Wilkinson shift ρk will be a complex
number, and the matrix Ak − ρkI will be complex, too. The QR step will
then produce a complex matrix Ak+1, which we do not really want.

In this case one can use the following trick to avoid further working with
complex matrices: at the very next QR step we set ρk+1 = ρ̄k, i.e., we choose
the shift ρk+1 to be the other complex eigenvalue of Bk. Then, remarkably,
the resulting matrix Ak+2 will be real again, for the reasons explained bellow.

Furthermore, the values ρk and ρ̄k will approximate two complex eigen-
values of the matrix A. Therefore, the QR algorithm with Wilkinson shift is
able to compute conjugate pairs of complex eigenvalues of a real matrix A,
and stay with real matrices for as long as possible.

Actually, there is no need to compute the complex matrix Ak+1 mentioned
above. One can just combine the two QR steps together and construct Ak+2

directly from Ak (bypassing Ak+1). This can be carried out entirely in real
arithmetic. The resulting all-real procedure is called the double-step QR
algorithm with Wilkinson shift.

In the following, all complex scalars and matrices are marked red. This includes matrix

A2, which will remain hypothetically complex until we prove that it is real.

161

17.21 Analysis of the double-step
Let A0 ∈ Rn×n be a real matrix. Let ρ and ρ̄ be two complex non-real

conjugate numbers that are not eigenvalues of A0. Let us apply two QR
steps with the shifts ρ and ρ̄:

A0 − ρI = Q1R1 R1Q1 + ρI = A1 (17.3)

A1 − ρ̄I = Q2R2 R2Q2 + ρ̄I = A2 (17.4)

Since the matrices A0 − ρI and A1 − ρ̄I are nonsingular, the above QR
decompositions may be constructed so that R1 and R2 have positive real
entries, cf. Section 9.7. Then, remarkably, A2 will be a real matrix.

Proof. It follows from (17.3) that R1 = Q−1
1 A0 − ρQ−1

1 , hence

A1 = (Q−1
1 A0 − ρQ−1

1)Q1 + ρI = Q−1
1 A0Q1

Similarly, it follows from (17.4) that R2 = Q−1
2 A1 − ρ̄ Q−1

2 , hence

A2 = (Q−1
2 A1 − ρ̄ Q−1

2)Q2 + ρ̄I = Q−1
2 A1Q2

Next we will compute the product (A0 − ρ̄I)(A0 − ρI) in two ways. First,

(A0 − ρ̄I)(A0 − ρI) = A2
0 − (ρ+ ρ̄)A0 + ρρ̄I

= A2
0 − 2(Re ρ)A0 + |ρ|2I.

Since (Re ρ) and |ρ| are real numbers, the matrix A = (A0 − ρ̄I)(A0 − ρI) is entirely real.
On the other hand, we have

A = (A0 − ρ̄I)(A0 − ρI)

= (A0 − ρ̄I)Q1R1

= Q1Q
−1
1 (A0 − ρ̄I)Q1R1

= Q1(Q−1
1 A0Q1 − ρ̄I)R1

= Q1(A1 − ρ̄I)R1

= Q1Q2R2R1.

This is actually a QR decomposition of the matrix A, with orthogonal matrix Q = Q1Q2

and upper triangular matrix R = R2R1. Since the matrices R1 and R2 have positive
diagonal entries, so does its product R. Therefore, according to Section 9.7, the above QR
decomposition is unique.

But every real matrix A has a real QR decomposition A = QR with positive diagonal
entries of R (by Sections 9.5 and 9.6), hence by its uniqueness both matrices Q = Q1Q2

and R = R2R1 must be real. Lastly,

A2 = Q−1
2 A1Q2 = (Q1Q2)−1A0(Q1Q2) = Q−1A0Q.

As a product of three real matrices, A2 must be a real matrix as well. �

162

Exercise 17.1. (JPE, September 2009) Let A ∈ Cn×n be nonsingular. Let A = Q1R1

be a QR decomposition of A, and for k ≥ 1 define inductively AQk = Qk+1Rk+1, a QR
decomposition of AQk.

(a) Prove that there exists an upper triangular matrix Uk such that Qk = AkUk and a
lower triangular matrix Lk such that Qk = (A∗)−kLk.

(b) Suppose limk→∞Rk = R∞ and limk→∞Qk = Q∞ exist. Determine the eigenvalues
of A in terms of R∞.

Exercise 17.2. (JPE, May 2006) Let A ∈ Cn×n be tri-diagonal and Hermitian, with all
its super-diagonal entries nonzero. Prove that the eigenvalues of A are distinct.

(Hint: show that for any scalar λ, the matrix A− λI has rank at least n− 1.)

163

