
ON CRITICAL RENORMALIZATION OF COMPLEX
POLYNOMIALS

ALEXANDER BLOKH, PETER HAÏSSINSKY, LEX OVERSTEEGEN,
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Abstract. Holomorphic renormalization plays an important role
in complex polynomial dynamics. We consider certain conditions
guaranteeing that a polynomial which does not admit a polynomial-
like connected Julia set still admits an invariant continuum on
which it is topologically conjugate to a lower degree polynomial.
This invariant continuum may contain extra critical points of the
original polynomial that are not visible in the dynamical plane of
the conjugate polynomial. Thus, we extend the notions of holo-
morphic renormalization and polynomial-like maps and describe a
setup where new generalized versions of these notions are applica-
ble and yield useful topological conjugacies.

1. Introduction

Throughout, let P : C → C be a polynomial of degree d > 1 with
connected filled Julia set KP . Clearly, P acts on the Riemann sphere
C = CP 1 so that P (∞) = ∞. In contrast to rational dynamics, the
point at infinity plays a special role in the dynamics of P . A classical
theorem of Böttcher states that P is conjugate to z 7→ zd near infinity.
Since KP is connected, the conjugacy can be defined on C \ KP as
follows. We will write D = {z ∈ C | |z| < 1} for the open unit disk in C
and D for its closure. Without loss of generality we may assume that
P is monic, i.e., the highest term of P is zd. Let ψP : D→ C\KP be a
conformal isomorphism normalized so that ψP (0) =∞ and ψ′P (0) > 0.
Then ψ−1

P ◦P ◦ψP is a degree d holomorphic self-covering of D. The only
option for such a holomorphic self-covering is z 7→ λzd with |λ| = 1.
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By the chosen normalization of P and ψP , the coefficient λ must be
equal to 1. Thus, P (ψP (z)) = ψP (zd) for any z ∈ C.

Thus, if we use the polar coordinates (θ, ρ) on D and identify D with
C \KP by P , then the action of P will look like (θ, ρ) 7→ (dθ, ρd). Here
θ is the angular coordinate; it takes values in R/Z (elements of R/Z are
called angles). The coordinate ρ, the radial coordinate, is the distance
to the origin. On D \ {0} (hence, after the transfer, on C \ KP ), it
takes values in (0, 1). External rays of P are defined as the ψP -images
of radial straight intervals in D. More details are given in Section 2.1;
the external ray of P with argument θ ∈ R/Z is denoted by RP (θ).

1.1. Generalized renormalization. If external rays R and L land at
the same point a, the union Γ = R∪L∪{a} is called a cut. The point
a is called the root point of Γ. The cut Γ is degenerate if R = L and
nondegenerate otherwise. A subarc of a degenerate cut that contains its
landing point is called a terminal segment of the cut. Nondegenerate
cuts separate KP . A wedge is a complementary component of a cut
in C; the root point of a wedge is the root point of the corresponding
cut. We assume that cuts are oriented from R to L so that every cut
Γ bounds a unique wedge W = WΓ where Γ is the oriented boundary
of W . If Γ is degenerate, then we set WΓ = ∅. For a finite collection
of cuts Z, set

⋃
WZ =

⋃
Γ∈ZWΓ.

Definition 1.1. A finite set Z of cuts is admissible if it is P -invariant,
and all Γ ∈ Z are in the same component of C\

⋃
WZ called the princi-

pal component (of C\
⋃
WZ). Let AP (Z) be the set of all x ∈ KP such

that fn(x) is in the principal component, for all n > 0. Equivalently,
x ∈ KP belongs to AP (Z) if fn(x) /∈

⋃
WZ for n > 0. The set AP (Z)

is called the avoiding set of Z.

By definition Γ ∩ KP ⊂ AP (Z) for every Γ ∈ Z. Formally, the
definition of AP (Z) is applicable to the case Z = ∅. In this case
we have AP (∅) = KP . Otherwise, AP (Z) is a proper subset of KP .
A root point a of a cut Γ ∈ Z is called outward parabolic if a is a
parabolic periodic point, and there is a Fatou component in KP \AP (Z)
containing an attracting petal of a. If a periodic root point a of a cut
Γ ∈ Z is not outward parabolic, then it is said to be outward repelling.
Observe that an outward repelling periodic root point a of a cut Γ ∈ Z
may be parabolic; in that case Fatou components containing attracting
petals of a are all contained in AP (Z). Define RtZ as the collection
of root points of all cuts from Z. Classical arguments yield Theorem
1.2. We write U b V if U ⊂ V . For polynomial-like maps and hybrid
equivalence [DH85] see Definitions 3.1 and 3.2.
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Theorem 1.2. Let Z be admissible, and suppose that AP (Z) is con-
nected. If there are no critical or outward parabolic points in RtZ , then
there exist Jordan domains U b V such that P : U → V is polynomial-
like, and AP (Z) is the filled Julia set of this polynomial-like map. In
particular, P |U is hybrid equivalent to a polynomial Q restricted to a
neighborhood of KQ. If Z 6= ∅, then deg(Q) < d.

We want to generalize Theorem 1.2. Indeed, it is useful to know if
P |AP (Z) is topologically conjugate to a polynomial on its connected filled
Julia set. Since this conclusion is weaker than that of Theorem 1.2, it
is natural to expect that it can be achieved with weaker assumptions
than those of Theorem 1.2. In this paper we meet these expectations
allowing for certain critical points in RtZ . For the notion of a quasi-
symmetric homeomorphism, see Definition 2.3.

Main Theorem. Consider an admissible collection of cuts Z. Sup-
pose that AP (Z) is connected, every critical point of RtZ is eventu-
ally mapped to a repelling periodic orbit, and no point of RtZ is out-
ward parabolic. Then either AP (Z) is a singleton, or P |AP (Z) is quasi-
symmetrically conjugate to Q|KQ

, where Q is a polynomial of degree
greater than one. If Z 6= ∅, then the degree of Q is less than d. More-
over, the conjugacy can be arranged to preserve the complex structure
almost everywhere on AP (Z).

If P |AP (Z) as in the Main Theorem is injective, then AP (Z) is a
singleton by Theorem 4.11. Note that a quasi-symmetric conjugacy is
in particular a topological conjugacy. A statement similar to the Main
Theorem first appeared in [Häı98, Prop. 1, Ch. 5]. It was made in
a more general context of polynomial figures ; it is straightforward to
verify that the assumptions on the germ of P near AP (Z) made in
[Häı98] are satisfied in our setting.

The next Corollary follows immediately from the Main Theorem and,
in the irrational neutral case, results by Perez-Marco [P-M97].

Corollary 1.3. Assuming the conditions of the Main Theorem, let ϕ
be a topological conjugacy between P |AP (Z) and Q|KQ

, and let C be a
periodic cycle in AP (Z). Then C is attracting (resp., repelling, neutral)
if and only if ϕ(C) is attracting (resp., repelling, neutral). Moreover,
if C is non-repelling, then it has the same multiplier as ϕ(C).

Figure 1 shows WZ and AP (Z) for a specific cubic polynomial P .

1.2. Analogs and extensions. Branner and Douady [BD88] consider
the space F+ of cubic polynomials Pa(z) = z(z− a)2 (in a different co-
ordinate) such that RPa(0) = 0. They suggested a surgery that relates
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Figure 1. The set AP (Z) for P (z) = z(z + 2)2 is
shown in dark grey. Here WZ consists of a single wedge
W (highlighted on the left) whose boundary is mapped
to RP (0). The boundary rays of W are RP (1/3) and
RP (2/3), and the root point a = −2 of W maps to the
fixed point 0. By the Main Theorem, the filled Julia set
KP consists of a copy of KQ, where Q(z) = −z+ z2, and
countably many decorations. The parabolic point 0 of Q
corresponds to the parabolic point −1 of P of the same
multiplier. The maps P |AP (Z) and Q|KQ

are topologically
conjugate, but AP (Z) is not a PL filled Julia set.

cubic polynomials from F+ to quadratic polynomials from the 1/2-
limb of the Mandelbrot set M2. There is a connection with our Main
Theorem in the special case considered in [BD88]. Given P ∈ F+ and
Z = {RP (1/3) ∪ RP (2/3) ∪ {a}}, we produce a quadratic polynomial

Q∗. In [BD88], the first return map to the side of RQ(1/3) ∪RQ(2/3)
containing RQ(0), where Q is a quadratic polynomial in the 1/2-limb of
M2, is modeled on the same P and Z. Our Q∗ is a renormalization of
Q that exists if AP (Z) is connected. Methods employed in the proof of
the Main Theorem generalize those of Branner and Douady. A recent
extension in a different direction is given in [DLS20].

If RtZ is allowed to include outward parabolic points, then the sit-
uation appears to be more involved. One cannot hope to extend the
Main Theorem in its present form, as the QS geometry of the pieces
of AP (Z) “squeezed” in cusps of parabolic domains is different from
the QS geometry of a polynomial filled Julia set near a repelling peri-
odic point. On the other hand, a topological rather than QS conjugacy
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may still exist. David maps can be used for a transition between par-
abolic and repelling periodic points (see [Häı98a, BF14]). Lomonaco
in [Lom15] introduced the theory of parabolic-like maps. The corre-
sponding straightening theorem is applicable to an admissible collection
Z = {Γ} of just one cut Γ with a fixed parabolic root point; it replaces
the complement of AP (Z) with a single parabolic domain. However,
the latter surgery does not change parabolic dynamics to repelling one.

1.3. Invariant continua similar to AP (Z). We now suggest a gen-
eralization of invariant continua AP (Z) not referring to a choice of Z.
Theorem 1.4 is proved in [BOPT16a].

Theorem 1.4 (Theorem B [BOPT16a]). Let P : C → C be a poly-
nomial, and Y ⊂ C be a non-separating P -invariant continuum. The
following assertions are equivalent:

(1) the set Y is the filled Julia set of some polynomial-like map
P : U → V of degree k,

(2) the set Y is a component of the set P−1(P (Y )) and, for every
attracting or parabolic point y of P in Y , the attracting basin
of y or the union of all parabolic domains at y is a subset of Y .

We will show that a slightly weaker consequence than (1) holds under
more general assumptions than (2).

Consider a polynomial P : C→ C and a full P -invariant continuum
Y ⊂ C. Say that P : Y → Y is a degree k branched covering if there is a
degree k branched covering P̃ : U → P̃ (U) where U is a neighborhood
of Y , the restriction of P̃ to Y is P |Y , and Y is a component of P̃−1(Y ).
Evidently, U can be chosen so tight that all points of Y but critical
values of P̃ have exactly k preimages in U .

Points of P−1(Y ) \ Y ∩ Y are called irregular points of Y . A point
y ∈ Y is irregular if arbitrarily close to y there are points y′ that do
not belong to Y but map into Y . Since P |Y is locally onto, for each
such y′ there is a point y′′ ∈ Y close to y′ and such that P (y′′) = P (y′).
It follows that y is critical. Thus, all irregular points of Y are critical;
the converse is not true in general.

Theorem 1.5. Let P : C → C be a polynomial. Consider a full P -
invariant continuum Y ⊂ C and an integer k > 1 such that:

(1) the map P : Y → Y is a degree k branched covering;
(2) all irregular points are eventually mapped to repelling periodic

points;
(3) the immediate basins of all attracting or parabolic points in Y

are subsets of Y .
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Under these assumptions, P : Y → Y is topologically conjugate to
Q|K(Q), where Q is a polynomial of degree k.

It is easy to see that if KP is connected, Y = AP (Z) is also connected
for some admissible Z, and P |AP (Z) is not injective, then Y satisfies
the assumptions of Theorem 1.5. Thus Theorem 1.5 generalizes the
Main Theorem. Moreover, the former applies to polynomials P with
disconnected Julia sets.

Theorem 1.5 applies to the planar fibers (the notion is due to Schle-
icher [Sch99] and was studied in other papers, e.g., in [BCLOS16]). Let
P be a polynomial with connected Julia set. Call a periodic repelling or
parabolic point, or a preimage thereof, a valuable point. If z is a valu-
able point at which more than one external ray lands, call the union
Cuz of z with all external rays landing at z the star cut (at z). The
set Cuz partitions C into finitely many open wedges. A planar fiber (of
P ) is a non-empty intersection of the closures of open wedges chosen
at every valuable point with a star cut. It follows that a planar fiber
is the union of a full subcontinuum of KP and various rays, and that
planar fibers map onto planar fibers. Theorem 1.5 implies Corollary
1.6 (applicable, e.g., if Y contains a periodic Cremer or Siegel point).

Corollary 1.6. Let Y be an m-periodic non-degenerate planar fiber of
P containing no parabolic points. Then Pm|Y is topologically conjugate
to a certain polynomial Q of degree greater than 1 restricted to KQ;
moreover, KQ has no valuable cutpoints (and, hence, a unique non-
repelling fixed point).

1.4. Plan of the paper. Section 2 provides some background from
complex polynomial dynamics and quasi-conformal geometry. We also
discuss the notion of transversality and its relationship with quasi-
symmetric maps. In Section 3 we reduce the Main Theorem to the case
when Z has specific properties (e.g., one may assume that all periodic
cuts in Z are degenerate); this is done with the help of classical theory
of polynomial-like maps of Douady and Hubbard. The proof of the
Main Theorem is given in Section 4, where P is replaced with a quasi-
regular map f such that P = f on KP , and f repels points off KP .
Straightening the map f using a result of [SW20] (a generalization of
the Douady–Hubbard straightening theorem) yields the Main Theorem.
Section 5 contains the proof of Theorem 1.5 and Corollary 1.6.

2. Straightening and transversality

2.1. Background in complex polynomial dynamics. Consider a
straight radial interval R(θ) = {e2πiθρ | ρ ∈ (0, 1)} from 0 to the point
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e2πiθ. Let P be a degree d > 1 polynomial with connected Julia set. The
external ray of P of argument θ ∈ R/Z is the set RP (θ) = ψP (R(θ)).
External rays are useful for studying the dynamics of P . In particular,
it is important to know when different rays land at the same point.

Definition 2.1 (Ray landing). A ray RP (θ) lands at a ∈ KP if a =
limρ→1− ψP (e2πiθρ) is the only accumulation point of RP (a) in C.

By the Douady–Hubbard–Sullivan landing theorem, if θ is rational,
then RP (θ) lands at a (pre)periodic point that is eventually mapped
to a repelling or parabolic periodic point. Conversely, any point that
eventually maps to a repelling or parabolic periodic point is the landing
point of at least one and at most finitely many external rays with
rational arguments.

An equipotential curve of P (or simply an equipotential) is the ψP -
image of a circle {z ∈ C | |z| = ρ} of radius ρ ∈ (0, 1) centered at 0.
External rays and equipotentials form a net that is the ψP -image of
the polar coordinate net.

2.2. Quasi-regular and quasi-symmetric maps. Let us recall the
definition of quasi-regular [Ric93] and quasi-conformal maps [Ahl66].

Definition 2.2 (Quasi-regular maps). Let U and V be open subsets
of C, and let κ > 1 be a real number. A map f : U → V is said to be
κ-quasi-regular if it has distributional partial derivatives in L2

loc, and
||df ||2 6 κ Jacf in L1

loc. Here df is the first differential of f , and Jacf
is the Jacobian determinant of f . Note that any holomorphic map is
κ-quasi-regular with κ = 1. We say that f is quasi-regular if it is κ-
quasi-regular for some κ > 1. A quasi-conformal map is by definition
a quasi-regular homeomorphism.

The inverse of a (κ-)quasi-conformal map is (κ-)quasi-conformal.
Quasi-conformal maps admit a number of analytic and geometric char-
acterizations. They can be characterized in terms of Beltrami differen-
tials and in terms of moduli of annuli or similar conformal invariants.
See 4.1.1 and 4.5.16 — 4.5.18 in [Hub06]. A metric characterization
of quasi-conformal maps is based on the following notion applicable to
general metric spaces, cf. [TV80].

Definition 2.3 (Quasi-symmetric maps). Let (X, dX) and (Y, dY ) be
metric spaces, and let η : [0,∞)→ [0,∞) be an increasing onto home-
omorphism. A continuous embedding f : X → Y is said to be quasi-
symmetric of modulus η (or η-quasi-symmetric) if

(1)
dY (f(x), f(y))

dY (f(x), f(z))
6 η

(
dX(x, y)

dX(x, z)

)
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for all x 6= y 6= z that are sufficiently close to each other. We will
sometimes abbreviate quasi-symmetric as QS. The inverse of a QS em-
bedding (defined on f(X)) is η′-QS, where η′(t) = 1/η−1(1/t). The
composition of QS embeddings is also QS. A continuous embedding
f : X → Y is κ-weakly QS for some κ > 0 if

dX(x, y) 6 dX(x, z) =⇒ dY (f(x), f(y)) 6 κ dY (f(x), f(z)).

Weakly QS embeddings are κ-weakly QS for some κ > 0. Clearly,
QS embeddings are weakly QS. The converse is not true in general,
however, by Theorem 10.19 of [Hei01], weakly QS embeddings are QS
in a lot of cases. In particular, a weakly QS embedding of a connected
subset of Rn to Rn is QS. Occasionally we will talk about “QS maps”
which will always mean “QS embeddings”.

The following theorem establishes a relationship between QS embed-
dings and quasi-conformal maps.

Theorem 2.4 (A special case of Theorems 2.3 and 2.4 of [Väi81]).
An η-QS embedding between domains in C is κ-quasi-conformal (κ > 1
is a constant depending only on η). Conversely, consider a κ-quasi-
conformal map f : U → V , where U , V ⊂ R2 are open. Then, for any
z ∈ U and ε > 0 such that the 2ε-neighborhood of z lies in U , the map
f is η-QS on the ε-neighborhood of z, where η depends only on κ.

Quasi-conformal images of circle arcs, circles, and disks can be de-
scribed explicitly.

Definition 2.5 (Quasi-arc, quasi-circle, quasi-disk). A simple arc in
C is a homeomorphic image of [0, 1] under a map ξ : [0, 1] → C. A
simple arc I is a quasi-arc if for any such ξ and any x 6 y 6 z we have

(2) |ξ(x)− ξ(z)| > C|ξ(x)− ξ(y)|,
where C > 0 is a constant independent of x, y, z and ξ. A quasi-circle
is a Jordan curve such that any arc of it is a quasi-arc with a uniform
constant C. For quasi-arcs and quasi-circles in the Riemann sphere
C = CP 1, we use the spherical distance between a and b instead of
|a− b|, etc. A quasi-disk is a Jordan disk bounded by a quasi-circle. A
quasi-conformal reflection in a Jordan curve is an orientation-reversing
quasi-conformal involution of the sphere which switches the inside and
the outside of the curve fixing points on the curve.

The following theorem is due to L. Ahlfors, see [Ahl66] or 4.9.8,
4.9.12, and 4.9.15 in [Hub06]:

Theorem 2.6. Properties (1)−(3) of a Jordan curve S are equivalent:
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(1) the curve S is a quasi-circle;
(2) there is a bi-Lipschitz reflection in S;
(3) there is a quasi-conformal map h : C→ C such that S = h(R).

Observe also that QS embeddings of quasi-arcs are quasi-arcs; more-
over, preimages of quasi-arcs under QS-embeddings are quasi-arcs too.

Quasi-symmetric maps between quasi-circles can be extended inside
the corresponding quasi-disks as quasi-conformal maps.

Theorem 2.7. If U and V are quasi-disks in C, and f : Bd(U) →
Bd(V ) is a quasi-symmetric map, then there is a continuous map F :
U → V such that F = f on Bd(U), and F is quasi-conformal in U .

Proof. By Theorem 2.6, there are quasi-conformal maps hU , hV : C→
C that take the upper half-plane H = {z ∈ C | Imz > 0} onto U , V ,
respectively. Then the map ϕ = h−1

V ◦f◦hU : R→ R is quasi-symmetric
as a composition of quasi-symmetric maps. Pre-composing hU and hV
with suitable real fractional linear maps, arrange that ϕ(∞) =∞. Let
η be a modulus of ϕ (so that ϕ is η-quasi-symmetric). Setting y = x+t
and z = x − t in the definition of an η-quasi-symmetric map, we see
that

M−1 6
ϕ(x+ t)− ϕ(x)

ϕ(x)− ϕ(x− t)
6M,

where M = η(1). Maps ϕ that satisfy the above condition for some
M > 0 are called R-quasi-symmetric in [Hub06]. The constant M is
called the modulus of an R-quasi-symmetric map. By a theorem of
Ahlfors and Beurling [AB56] (see also [Ahl66] and 4.9.3 and 4.9.5 of
[Hub06]), an R-quasi-symmetric map of modulus M admits a κ-quasi-
conformal extension in H, where κ depends only on M . More precisely,
there is a continuous map Φ : H→ H such that Φ = ϕ on R, and Φ|H is
κ-quasi-conformal. Then F = hV ◦Φ◦h−1

U has the desired property. �

2.3. Straightening. A quasiregular map f : C→ C is called a quasireg-
ular polynomial if f−1(∞) = {∞}, and f is holomorphic near infinity.
Let us state a partial case of [SW20, Theorem 5].

Theorem 2.8. Let f : C→ C be a quasi-regular polynomial of degree
d > 2 and let A ⊂ C be a Borel set such that ∂f = 0 a.e. outside A.
Assume that there is a positive integer T such that, for every z, the set
of nonnegative integers k with fk(z) ∈ A has cardinality 6 T . Then
there is a QC map Ψ : C→ C and a rational map F : C→ C of degree
d such that F ◦ Ψ = Ψ ◦ f . Moreover, ∂Ψ = 0 holds a.e. on the set
{z ∈ C | fn(z) /∈ A ∀n > 0}.
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This version is a rather straightforward extension of the Douady–
Hubbard straightening theorem (cf. Theorem 3.3) and is similar to
Shishikura’s Fundamental Lemma for qc-surgery (cf. [Shi87, Lemma
3.1]), however, the general version of [SW20, Theorem 5] is much more
powerful.

2.4. Transversality. Consider two simple arcs R, L ⊂ C sharing an
endpoint a and otherwise disjoint. The arcs R, L are transverse at a
if, for any sequences un ∈ R and vn ∈ L converging to a,

un − a
vn − a

6→ 1.

Transversality is related to the notion of a quasi-arc as the following
lemma explicates.

Lemma 2.9. Let simple arcs R, L share an endpoint a and be otherwise
disjoint. If R ∪ L = I is a quasi-arc, then R and L are transverse.

Proof. By way of contradiction, suppose that

un − a
vn − a

→ 1.

for some un ∈ R and vn ∈ L such that un, vn → a. It follows that

un − vn
vn − a

→ 0.

This contradicts the inequality |vn − un| > C|vn − a| with C > 0 from
the definition of a quasi-arc. �

Proposition 2.10. Consider a simple arc R such that the image R′ of
R under w 7→ wk with k > 1 is a simple arc. Moreover, assume that 0
is an endpoint of R, and λR′ ⊃ R′ for some λ ∈ C with |λ| > 1. Then
R is transverse to ζR at 0, for every k-th root of unity ζ 6= 1.

Proof. The map w 7→ wk is injective on the arc R. Indeed, by our
assumption, R′ is a simple arc; a locally injective continuous map from
an interval to an interval is injective. Thus, R and ζR share only the
endpoint 0. By way of contradiction, assume that vn/un → ζ, where un,
vn ∈ R and un, vn → 0. Passing to a subsequence and choosing positive
integers mn properly, we may assume that λmnukn → u 6= 0, where
u ∈ R′ is not an endpoint of R′. Then also λmnvkn → u. Let In be the
segment of R connecting un and vn. Then the corresponding segment
I ′n of R′ connects ukn with vkn. Consider the arc Tn = λmnI ′n ⊂ R′;
its endpoints λmnukn and λmnvkn converge to u but the arc itself has
diameter bounded away from 0 as it makes one or several loops around
0 (if Sn is the union of Tn and the straight segment connecting its
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endpoints then, since vn/un → ζ, the loop Sn has a nonzero winding
number with respect to 0). Since sets Tn are subarcs of R′, in the limit
they converge to a nondegenerate loop in R′, a contradiction. �

The following is a typical application of Proposition 2.10. Let P be
a polynomial; consider a repelling fixed point a of P and an invariant
ray RP (θ′) landing at a. Set λ = P ′(a), that is, λ is the multiplier of
the fixed point a. Then, in some local coordinate y near a, we have
y = 0 at a, and P coincides with y 7→ λy. On the other hand, suppose
that a ray RP (θ) maps to RP (θ′) under P . Write b for the landing
point of RP (θ), and assume that P has local degree k > 1 at b (thus,
b is critical). Then, in some local coordinate x near b combined with
the local coordinate y near a, the map P looks like y = xk, and b is the
point where x = 0. We can now define R as an arc of RP (θ) connecting
b with some point of RP (θ). Set R′ = P (R). Then Proposition 2.10
is applicable to arcs R, R′ and the chosen local coordinates. It claims
that R is transverse to all other P -pullbacks of R′ originating at b.

Lemma 2.11. Let arcs R, L have the same properties as the arc R
from Proposition 2.10, and let R′, L′ be their images under x 7→ xk. If
R′ ∩L′ = {0} and R′, L′ are transverse, then the restriction of x 7→ xk

to R ∪ L is QS.

If R′ ∪ L′ is a quasi-arc, then, by Lemma 2.11, the arc R ∪ L is also
a quasi-arc. This observation will be useful in what follows.

Proof. We will prove that x 7→ xk restricted to R ∪ L is weakly QS.
Assume, by way of contradiction, that there are three sequences un, vn,
wn ∈ R ∪ L such that, if we set vn = vn/un, wn = wn/un, we will have

∆n =
ukn − vkn
ukn − wkn

→∞, |un− vn| 6 |un−wn| (and so |1− vn| 6 |1−wn|).

Assume that un → u, vn → v and wn → w. If u 6= w, then ∆n

is bounded since x 7→ xk is injective on R ∪ L, a contradiction. Thus
u = w. If u 6= v, then |un−vn| > |un−wn| for large n, hence u = v = w.
It is enough to consider the case when u = 0. We may also assume
that δn = (un − vn)/(un − wn) = (1− vn)/(1− wn)→ δ with |δ| 6 1.

Assume that vn → v and wn → w, where v and w are complex
numbers or ∞. Observe that

∆n =
1− vkn
1− wkn

=
w−kn − (vn/wn)k

w−kn − 1
= δn

1 + vn + · · ·+ vk−1
n

1 + wn + · · ·+ wk−1
n

→∞

If v = w = 1, then ∆n → δ, a contradiction. If w =∞, then vn/wn → δ
and ∆n → δk, a contradiction. Since v =∞ implies w =∞ and w = 1
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implies v = 1 (because |1 − v| 6 |1 − w|), both v, w are finite, and
w 6= 1. Now δn → ∞ implies that w 6= 1 is a k-th root of unity. By
Proposition 2.10 and since wn/un → w, it is impossible that wn, un are
both in R or both in L for infinitely many values of n. Thus we may
assume that wn ∈ R and un ∈ L. However, in this case R′ and L′ are
not transverse, a contradiction. �

Consider two simple arcs R′, L′ with common endpoint at 0 and
disjoint otherwise. Suppose that λ is a complex number with |λ| > 1.
Furthermore, suppose that λR′ ⊃ R′ and λL′ ⊃ L′.

Theorem 2.12. If R′, L′ are as above, and R′ ∪ L′ is smooth except
possibly at 0, then R′ ∪ L′ is a quasi-arc.

Proof. Assume the contrary: there are three sequences xn, yn, zn ∈
R′ ∪ L′ such that

• the point yn is always between xn and zn in the arc R′ ∪ L′ (in
particular, the three points xn, yn, zn are always different);
• we have δn = |xn − zn|/|xn − yn| → 0 as n→∞.

It follows from the second assumption that |xn − zn| → 0 since the
denominator is bounded. We can now make a number of additional
assumptions on xn, yn, zn by passing to subsequences. Assume that
xn and zn converge to the same limit. If this limit is different from 0,
then straightforward geometric arguments yield a contradiction (it is
obvious that every closed subarc of R′ ∪L′ not containing 0 is a quasi-
arc). Thus we may assume that xn, zn → 0. Since yn is between xn
and zn, we also have yn → 0. From now on, we rely on the assumption
that all three sequences xn, yn, zn converge to 0.

Take r > 0 sufficiently small, and let A be the annulus {z ∈ C | r <
|z| < |λ|r}. Assume that xn 6= 0 for all n (otherwise, for a suitable
subsequence, zn 6= 0 for all n, and we may interchange xn and zn). For
every n, there exists a positive integer mn such that λmnxn ∈ A. Set x′n,
y′n, z′n to be λmnxn, λmnyn, λmnzn, respectively. We may assume that
x′n ∈ R′ rather than L′. (By the invariance property of R′∪L′, we must
have x′n ∈ R′∪L′.) Passing to a subsequence, arrange that x′n → x ∈ A
as n→∞. Since |x′n− z′n|/|x′n− y′n| = δn → 0, then z′n → x. Since the
intersections of R′ and L′ with an open neighborhood of A are smooth
open arcs, it follows that z′n ∈ R′ for large n, hence y′n → x and δn 6→ 0.
A contradiction. �

3. Reducing the admissible collection

Let P and Z be as in the Main Theorem. Let c be a critical point
of P . A cut Γ = R∪L∪{c} formed by c and two rays R, L landing at
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c such that P (R) = P (L), is a critical cut. A pullback of a critical cut
is a precritical cut.

3.1. Outline of the proof of the Main Theorem. The proof of
the Main Theorem, under the assumption that P |AP (Z) is not injective,
will go as follows.

Step 1: reduction. Take only the nondegenerate cuts from Z with
periodic root points that are outward repelling. These cuts define
a polynomial-like Julia set by Theorem 1.2. Replacing P with the
straightening of the corresponding polynomial-like map and using the
conditions of the Main Theorem, we may assume that every periodic
cut in Z is degenerate and all cuts from Z are either precritical cuts
that eventually map to degenerate cuts with repelling periodic root
points, and their images. Step 1 is made in this section.

Step 2: carrot modification. After the reduction step, we assume
that every periodic cut in Z is degenerate and has repelling root point.
Terminal segments of these degenerate cuts can be fattened to so called
carrots. Carrots are quasi-disks; they are almost the same as “sectors”
used in [BD88]. Moreover, if C is a carrot corresponding to a periodic
cut, then C ∩KP is only the root point of the cut. Carrots correspond-
ing to preperiodic cuts are defined differently and contain KP \AP (Z).
Finally, we modify P in carrots and near infinity and obtain a quasi-
regular polynomial f . Application of Theorem 2.8 to f concludes the
proof of the Main Theorem. Step 2 is made in the next section.

If P |AP (Z) is injective, then AP (Z) is a point, which is proved in
Theorem 4.11 by a different (but simpler) method.

3.2. Polynomial-like maps. Let U and V be Jordan disks such that
U b V . Recall the following classical definitions of Douady and Hub-
bard [DH85].

Definition 3.1 (Polynomial-like maps). Let f : U → V be a proper
holomorphic map. Then f is said to be polynomial-like (PL). The filled
Julia set K(f) of f is defined as the set of points in U , whose forward
f -orbits stay in U .

Similarly to polynomials, the set K(f) is connected if and only if all
critical points of f are in K(f).

Definition 3.2 (Hybrid equivalence). Let f1 : U1 → V1 and f2 : U2 →
V2 be two PL maps. Consider Jordan neighborhoods W1 of K(f1) and
W2 of K(f2). A quasiconformal homeomorphism φ : W1 → W2 is called
a hybrid equivalence between f1 and f2 if f2 ◦φ = φ◦ f1 whenever both
parts are defined, and ∂φ = 0 on K(f1).
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Recall the following classical theorem of Douady and Hubbard [DH85].

Theorem 3.3 (PL Straightening Theorem). A polynomial-like map
f : U → V is hybrid equivalent to a polynomial of the same degree
restricted on a Jordan neighborhood of its filled Julia set.

3.3. Eliminating some periodic cuts. Let Z be an admissible col-
lection of cuts. It is a union of a finite family of forward orbits of cuts.
Among them there might exist degenerate cuts whose backward orbit
in Z does not include nondegenerate cuts. These cuts make no impact
upon the avoiding set AP (Z) (recall that it was defined in Definition
1.1) and will be called fictitious.

Definition 3.4. An admissible family of cuts is legal if it is a union
of finite orbits of (pre)critical cuts each of which eventually maps to a
degenerate cut with repelling periodic root point.

Define Zpc ⊂ Z as the subset consisting of all periodic nondegenerate
cuts Γ ∈ Z. (Here “pc” is from “periodic cuts”.) An admissible family
of cuts is legal if has no fictitious cuts, Zpc = ∅, and all critical root
points eventually map to repelling periodic points.

Let VE be a Jordan neighborhood of KP bounded by an equipotential
curve. A standard thickening of VE \

⋃
Γ∈Zpc

W Γ yields a Jordan disk
V and a polynomial-like map P : U → V , where U is the component of
P−1(V ) containing AP (Z). By Theorem 3.3, the PL-map P : U → V is
hybrid equivalent (by a map ψ) to P̃ : Ũ → Ṽ , where P̃ is a polynomial
and Ũ is a neighborhood of its filled Julia set.

Lemma 3.5. There is a legal family Z̃ of cuts in the dynamical plane
of P̃ such that AP̃ (Z̃) = ψ(AP (Z)).

Lemma 3.5 is left to the reader. If the Main Theorem is proved for
P̃ and AP̃ (Z̃), then it would follow for AP (Z). This reduces the Main
Theorem to the case of legal families of cuts.

4. Carrots

From now on we assume that Z is a legal family of cuts.

Definition 4.1 (Prototype carrot). The prototype carrot, or simply
proto-carrot C(ρ0, θ0), with polar parameters (ρ0, θ0) is the “triangular”
region in D given by the inequalities ρ0 6 ρ 6 e−|θ−θ0| in the polar
coordinates (θ, ρ). Here θ is an angular coordinate so that θ − θ0 can
be either positive or negative, and ρ is the radial coordinate, i.e., the
distance to the origin. We assume that the parameter ρ0 < 1 is close
to 1. A proto-carrot is bounded by a circle arc and two symmetric
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Figure 2. A proto-carrot.

segments of logarithmic spirals, see Figure 2. All proto-carrots are
homeomorphic.

A part of the boundary of C(ρ0, θ0) near point e2πiθ0 is given by
ρ = e−|θ−θ0| and consists of two analytic curves meeting at e2πiθ0 and
invariant under the map z 7→ zd (regardless of d). Since rotation by θ0

composed with zd equals zd composed with the rotation by d · θ0, the
next proposition follows.

Proposition 4.2. Take any θ0 ∈ R/Z. The map z 7→ zd takes C(ρ0, θ0)
to C(ρd0, dθ0), provided that ρ0 is close to 1.

Let us recall the following concept.

Definition 4.3 (Stolz angle). A Stolz angle in D at a point u ∈ S1 is
by definition a convex cone with apex at u bisected by the radius and
with aperture strictly less than π.

The proto-carrot C(ρ, θ) approaches the unit circle within some Stolz
angle at e2πiθ (the Implicit Function Theorem shows that the aperture
of such Stolz angles can be made arbitrarily close to π/2). The fol-
lowing theorem proved in [CG92, Theorem 2.2] describes an important
property of Stolz angles.

Theorem 4.4. Consider a simply connected domain D ⊂ C that is
not the sphere minus a singleton, and let ψ : D → D be a conformal
isomorphism. Suppose that a point z0 ∈ Bd(D) is accessible from D.
Then there is a point u0 ∈ S1 with the following property: ψ(u) → z0

as u→ u0 inside any Stolz angle with apex at u0.

Let E(ρ) be the equipotential ψP ({z ∈ D | |z| = ρ}). Write U(ρ) for
the open Jordan domain bounded by E(ρ).



16 A. BLOKH, P. HAÏSSINSKY, L. OVERSTEEGEN, AND V. TIMORIN

Figure 3. Definition of a carrot CΓ(ρ), where z = zΓ is
critical. The carrot CP (Γ)(ρ) is the (dark) shaded sector
on the right and CΓ(ρ) is the (light) shaded sector on the
left. Here P (Γ) is degenerate, the local degree of P at z
is 4, and the set P−1(P (Γ)) \ Γ consists of two dashed
lines.

Definition 4.5 (Carrots). For a periodic (necessarily degenerate) cut
Γ ∈ Z with a repelling root point, define the carrot CΓ(ρ) as ψP (C(ρ, θΓ)).
This is the closed triangular region bounded by three arcs RΓ(ρ), LΓ(ρ),
and EΓ(ρ). Here RΓ(ρ) and LΓ(ρ) are simple topological arcs landing
at zΓ; the latter follows from Theorem 4.4. The arc EΓ(ρ) is a part of
the equipotential curve E(ρ).

It remains to define carrots for strictly preperiodic cuts in Z. Take
such a cut Γ ∈ Z; we may assume by induction that the carrot CP (Γ)(ρ

d)
is already defined. Let W be the wedge corresponding to Γ. There is
a pullback RΓ(ρ) of RP (Γ)(ρ

d) and a pullback LΓ(ρ) of LP (Γ)(ρ
d) with

the following properties:

(1) both RΓ(ρ) and LΓ(ρ) land at zΓ, the root point of Γ;
(2) the arc EΓ(ρ) of E(ρ) with endpoints RΓ(ρ)∩E(ρ) and LΓ(ρ)∩

E(ρ) is the component of E(ρ) \ P−1(RP (Γ)(ρ
d) ∪ LP (Γ)(ρ

d))
containing W ∩ E(ρ).

The set CΓ(ρ) is then defined as a triangular region bounded by three
arcs RΓ(ρ), LΓ(ρ) and EΓ(ρ).

Schematic Figure 3 illustrates the definition of a carrot in the case
when z is critical.



ON CRITICAL RENORMALIZATION OF COMPLEX POLYNOMIALS 17

4.1. Carrots are quasi-disks. We will need the following geometric
property of carrots.

Proposition 4.6. Let Γ ∈ Z have periodic repelling root point zΓ.
Then CΓ(ρ) is a quasi-disk, for every ρ sufficiently close to 1.

Proof. By our construction, it is enough to prove that RΓ(ρ)∪LΓ(ρ) is a
quasi-arc locally near zΓ. Observe that this property is independent of
ρ. Consider a local holomorphic coordinate u near zΓ such that u = 0
at zΓ, and Pm takes the form u 7→ λu. Here λ is the derivative of Pm

at zΓ, hence |λ| > 1. A local coordinate u with the properties stated
above exists by the classical Königs linearization theorem. Set R′, L′ to
be the images of RΓ(ρ), LΓ(ρ) in the u-plane and apply Theorem 2.12
to R′, L′. Since a holomorphic local coordinate change takes quasi-arcs
to quasi-arcs, we obtain the desired. �

Lemma 4.7. All carrots CΓ(ρ) with Γ ∈ Z and ρ ∈ (0, 1) sufficiently
close to 1 are quasi-disks. Moreover, the map P : RΓ(ρ) ∪ LΓ(ρ) →
RP (Γ)(ρ

d) ∪ LP (Γ)(ρ
d) is quasi-symmetric.

Proof. Take Γ ∈ Z with root point z = zΓ. If z is periodic, then it
is repelling, and the map P : Bd(CΓ(ρ)) → Bd(CP (Γ)(ρ

d)) is quasi-
symmetric (note that P is conformal on a neighborhood of the bound-
ary of CΓ(ρ)). In this case, CΓ(ρ) is a quasi-disk by Proposition 4.6.
Suppose now that z is strictly preperiodic. We may assume by in-
duction that CP (Γ)(ρ

d) is a quasi-disk. If z is not critical, then it
follows immediately that CΓ(ρ) is also a quasi-disk, as a pullback of
CP (Γ)(ρ

d) under a map that is one-to-one and conformal in a neigh-
borhood of Bd(CΓ(ρ)). It also follows that the map P : Bd(CΓ(ρ)) →
Bd(CP (Γ)(ρ

d)) is quasi-symmetric.
Finally, assume that z is critical. Let n be the smallest positive

integer with P n(z) periodic, and let m be the minimal period of P n(z).
It suffices to prove that

P n : RΓ(ρ) ∪ LΓ(ρ)→ RPn(Γ)(ρ
dn) ∪ LPn(Γ)(ρ

dn)

is QS. Indeed, we may choose local coordinates x near z and y near
P n(z) so that the map P n takes the form y = xk for some integer k > 1
(this integer is the local degree of P n at z). Moreover, the y coordinate
can be chosen so that Pm takes the form y 7→ λy. In these coordinates,
Lemma 2.11 applies and yields the desired. �

4.2. The carrot modification of P . Fix ρ ∈ (0, 1) close to 1. Then
the carrots CΓ(ρ) with Γ ∈ Z as defined above are disjoint. Recall that
U(ρ) is the bounded component of C \E(ρ). Then KP ⊂ U(ρ). In this
section, we modify P to form a new map P c : U(ρ)→ U(ρd). First, let
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us define P c so that P c = P outside of
⋃

Γ∈Zcr
CΓ(ρ), where Zcr is the

set of all critical cuts in Z, i.e., cuts with critical root points.
Suppose now that Γ ∈ Zcr. Set P c = P on RΓ(ρ)∪LΓ(ρ). Note that

EΓ(ρ) wraps around the entire E(ρd) under P . Define P c on EΓ(ρ) as
a QS isomorphism between EΓ(ρ) and EP (Γ)(ρ

d). Thus, by the remark
made above, P c is necessarily different from P on EΓ(ρ). Finally, let
P c : CΓ(ρ)→ CP (Γ)(ρ

d) be a QS map that extends the already defined
map P c : Bd(CΓ(ρ))→ Bd(CP (Γ)(ρ

d)). The existence of such extension

is guaranteed by Theorem 2.7. The map P c : U(ρ)→ U(ρd) is a carrot
modification of P . Clearly, P c : U(ρ) → U(ρd) is a proper map; let dc
be its topological degree. Observe that dc < d provided that Zcr 6= ∅.

Lemma 4.8. There is a quasi-regular degree dc polynomial f : C→ C
such that f = P c on U(ρ).

Proof. The map P c : U(ρ) → U(ρd) is glued of several (finitely many)
quasi-regular maps along quasi-arcs. Such map is itself quasi-regular,
as follows from the “QC removability” of quasi-arcs, cf. Proposition
4.9.9 of [Hub06].

Set D(ρ) = {z ∈ D | |z| < ρ}; this is the disk of radius ρ around
0. Clearly, there is a quasi-regular map g : D(ρ) → D(ρd) such that
g(z) = zdc in a neighborhood of 0, and g = ψ−1

P ◦ P c ◦ ψP on the
boundary of D(ρ). It suffices to define f as P c on U(ρ) and as ψP◦g◦ψ−1

P

on C \ U(ρ). �

Let A0 be a topological annulus such that the bounded complemen-
tary component of A0 lies in U(ρ), and ∂f = 0 in the unbounded com-
plementary component. We may assume that A0 is bounded by E(ρ)

from the inner side and by E(ρd
T0 ) from the outer side. Here T0 > 1

is some positive integer. Set A = A0 ∪Acr, where Acr =
⋃

Γ∈Zcr
CΓ(ρ).

Then by definition ∂f = 0 outside of A. In order to verify the assump-
tions of Theorem 2.8, it remains to prove the following lemma.

Lemma 4.9. Define Tcr as the cardinality of Zcr; set T = Tcr + T0.
The forward f -orbit of any point x ∈ C can visit Acr at most Tcr times.
Therefore, it can visit A at most T times.

Proof. It suffices to prove the first statement. Define the subset X ⊂ D
consisting of all points, whose polar coordinates (ρ, θ) satisfy

ρ 6 e−|θ−θΓ|

for at least one periodic Γ ∈ Z (then Γ is necessarily degenerate by
our assumption on Z). Clearly, X is forward invariant under the map
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(ρ, θ) 7→ (ρd, dθ). Moreover, ψP (X) includes all CΓ(ρ′) for all periodic
Γ ∈ Z and all ρ′ ∈ (0, 1).

Suppose now that ρ0 ∈ (0, 1) is sufficiently close to 1. A forward
P -orbit of a point x ∈ Acr may visit Acr at most Tcr times before it
first enters ψP (X) (that is, it may visit each CΓ(ρ0) with Γ ∈ Zcr at
most once). Thus it suffices to prove that no point of ψP (X) can map
to CΓ(ρ0) with Γ ∈ Zcr under an iterate of f . Since ψP (X) is forward
invariant, it suffices to choose ρ0 so that CΓ(ρ0) ∩ ψP (X) = ∅ for all
Γ ∈ Zcr.

Take any Γ ∈ Zcr. The set of all angles θ such that RP (θ) is separated
from AP (Z) by Γ is an arc IΓ of R/Z whose length is an integer multiple
of 1/d (indeed, the endpoints of this arc are mapped to the same point
under the d-tupling map). Define

C(ρ0, IΓ) = {(ρ, θ) | ∃θ0 ∈ IΓ ρ0 6 ρ 6 e−|θ−θ0|}.

Then all points in CΓ(ρ0) \ KP are necessarily in ψP (C(ρ0, IΓ)). It is
clear that no θΓ with periodic Γ can belong to IΓ. Therefore, C(ρ0, IΓ)
is disjoint from X for ρ0 sufficiently close to 1. It follows that CΓ(ρ0)∩
ψP (X) = ∅, as desired. �

The set AP (Z) is a fully invariant set for f . We have dc > 2 since
the map P : AP (Z) → AP (Z) is not injective by the assumptions of
the Main Theorem. Thus all assumptions of Theorem 2.8 are fulfilled.
Then there is a QC map Ψ : C→ C and a rational map Q : C→ C of
degree df such that Q◦Ψ = Ψ◦f . It can be arranged that Ψ(∞) =∞.
With this normalization, Q−1(∞) = {∞}, therefore, Q is a degree dc
polynomial.

Theorem 4.10. The set Ψ(AP (Z)) coincides with KQ.

Proof. Since AP (Z) is P -stable, Ψ(AP (Z)) ⊂ KQ. It remains to prove
that any point y = Ψ(x) with x /∈ AP (Z) escapes to infinity under the
iterations of Q. Equivalently, x escapes to infinity under the iterations
of f . Indeed, if the forward f -orbit of x is outside of KP and outside of
all carrots, then fn(x) = P n(x)→∞. If x is in KP but not in AP (Z),
then fk(x) ∈ CΓ(ρ) for some k > 0 and some Γ ∈ Z. Possibly replacing

ρ with ρd
l

with a suitable l and x with f l(x), we may assume that Γ
is periodic. However, in this case CΓ(ρ) is in the P -basin of infinity,
hence fn(x) = P n−k ◦ fk(x)→∞. �

Since deg(Q) = deg(f) = dc < deg(P ), the proof of the Main Theo-
rem is now complete.
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4.3. The case when P is injective on AP (Z). Theorem 4.11 com-
pletes the proof of the Main Theorem.

Theorem 4.11. Suppose that all assumptions of the Main Theorem
are fulfilled and P : AP (Z)→ AP (Z) is one-to-one. Then AP (Z) is a
single repelling point.

Proof. Replace P with a suitable iterate to arrange that all periodic
cuts in Z are fixed. Let Γ be such a fixed cut, and zΓ its root point.
Then P (zΓ) = zΓ. We claim that there are no critical points of P in
AP (Z) \ RtZ . Indeed, consider a critical point c ∈ AP (Z). A point
w ∈ AP (Z) near P (c) has at least two preimages z, z′ near c. If both
are in the principal component of C \

⋃
WZ , then both are in AP (Z),

a contradiction. Thus, say, z′ is not in the principal component; then
it must be separated from AP (Z) by a cut from Z. Since w can be
chosen arbitrarily close to P (c), the point c itself must belong to RtZ .

Suppose that AP (Z) is not a singleton. Then Theorem 7.4.7 of
[BFMOT13] is applicable to the P -invariant continuum AP (Z). This
theorem states that there is a rotational fixed point in AP (Z). That
is, either a non-repelling fixed point a or a repelling fixed point a such
that the external rays of P landing at a undergo a nontrivial combina-
torial rotation. If a is non-repelling, then there is a critical point c that
is not preperiodic and not separated from a by Z. In the attracting
and parabolic cases this follows from classical results of Fatou [Fat20].
Suppose that a is a Cremer of Siegel fixed point. This case was con-
sidered in Theorem 4.3 [BCLOS16] (the proof is based upon [BM05]
and classical results of Mañé [Man93]) that implies that then AP (Z)
must contain a recurrent critical point. By the previous paragraph this
leads to a contradiction. Thus a is repelling and rotational. However,
since P |AP (Z) is one-to-one, this implies that there are no other fixed
points in AP (Z). Therefore, a = zΓ; but the latter is non-rotational, a
contradiction. We conclude that AP (Z) is a singleton. �

5. Proof of Theorem 1.5

Consider a continuum Y ⊂ KP such that P : Y → Y is a degree k
branched covering. By definition, there are open neighborhoods U and
V of Y and a degree k branched covering P̃ : U → V such that P = P̃
on Y and P̃−1(Y ) = Y . For every y ∈ Y , the local multiplicity µY (y)
is defined as the multiplicity of y with respect to P̃ . For all z 6= P (y)
very close to P (y), exactly µY (y) points of P−1(z)∩ Y are near y. If y
is not critical then µY (y) = 1. On the other hand, some critical points
of P in Y may also have multiplicity 1 with respect to Y (that is, with
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respect to P̃ ). Irregular points of Y are precisely the points y ∈ Y with
µKP

(y) > µY (y).
The proof of Theorem 1.5 splits into several steps.

5.1. Reduction to the case when KP is connected. Let P and
Y be as above. Suppose first that KP is disconnected. Let KP (Y ) be
the component of KP containing Y . Clearly, KP (Y ) is a P -invariant
continuum. Choose a tight equipotential EV ∗ around KP (Y ) so that
the disk V ∗ bounded by EV ∗ does not contain escaping critical points
of P . Then P : U∗ → V ∗ is a PL map with filled Julia set KP (Y ),
where U∗ is the component of P−1(V ∗) containing Y . By Theorem 3.3,
the PL map P : U∗ → V ∗ is hybrid equivalent to a PL restriction of
a polynomial, say, P ∗. Let Y ∗ be the subset of KP ∗ corresponding to
Y ⊂ KP (Y ). Evidently, P ∗ and Y ∗ satisfy the assumptions of Theorem
1.5. Thus, we can consider only polynomials with connected Julia sets.

5.2. Defining an admissible collection of cuts. From now on, as-
sume that the Julia set of P is connected. Start by defining a collection
of cuts whose root points are irregular points of Y . Let a be an irregu-
lar point; it is necessarily a critical point of P . By the assumptions of
Theorem 1.5, the point a is eventually mapped to a repelling periodic
point. It follows from the Landing Theorem that there are preperiodic
external rays landing at a. Recall that a cut Γ = R∪L∪{a} formed by
a and two rays R, L landing at a such that P (R) = P (L) is a critical
cut. The corresponding wedge W is called a critical wedge at a. A
critical wedge W at a is Y -empty if W ∩ Y = ∅.

Lemma 5.1. Suppose that µY (a) < µKP
(a). Then there is at least one

Y -empty critical wedge W at a.

Proof. Consider all components of Y \ {P (a)}; let s be the number of
them. By [BOT21] and Theorem 6.6 of [McM94], every component of
Y \ {P (a)} is separated from the next one in the cyclic order by an
external ray landing at P (a). Denoting components of Y \ {P (a)} by
Y1, . . . , Ys and external rays landing at a and separating these compo-
nents by R1, . . . , Rs we may assume that

Y1 ≺ R1 ≺ Y2 ≺ R2 ≺ · · · ≺ Ys ≺ Rs

where ≺ indicates positive (counterclockwise) circular direction.
If we pull this picture back to a we will see that there are µKP

(a)
pullbacks of each ray Ri and µKP

(a) pullbacks of each set Yj from
the previous paragraph “growing” out of a. Since µY (a) < µKP

(a),
not all pullbacks of sets Yi are contained in Y , some of them are not
contained in Y . However, it follows from the definitions, in particular,
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from the fact that P |Y coincides with P̃ |Y , that the circular order of
the pullbacks of Yi contained in Y must follow that of the sets Y1,
. . . , Ys. Let us now choose a pullback of Y1 that is contained in Y ,
and move from it in the positive direction. We will be encountering
pullbacks of sets Yi and pullbacks of rays Rj in the same order of
increasing of their subscripts until we reach the next pullback of Y1.
However, µY (a) < µKP

(a). Hence at some moment in this process the
pullback Y ′i ⊂ Y of Yi and the following it pullback Y ′i+1 ⊂ Y of Yi+1

are not located in the adjacent pullbacks of the wedges between the
corresponding external rays. Rather, there will be a pullback R′i of Ri

and then the next (in the sense of positive circular order) pullback R′′i
of Ri such that there are no points of Y in between these rays. The
wedge between R′i and R′′i is the desired Y -empty critical wedge W at
a. �

Define Z irr (“irr” stands for “irregular”) as the set of boundary cuts
of all Y -empty critical wedges at all irregular points of Y . More pre-
cisely, for every irregular point a ∈ Y , mark specific s rays separating
s components of Y \ {P (a)}. Then choose all Y -empty critical wedges
at a bounded by pullbacks of the marked rays (cf. Lemma 5.1). The
family of cuts Z irr is clearly admissible.

5.3. Reducing to the case of no irregular points. We keep the no-
tation introduced above. By definition of Z irr, we have Y ⊂ AP (Z irr).
By the Main Theorem applied to P and Z irr, there is a polynomial
P ∗ such that P ∗ : KP ∗ → KP ∗ is topologically conjugate to P :
AP (Z irr) → AP (Z irr). Let Y ∗ be the P ∗-invariant continuum cor-
responding to Y under this conjugacy. We claim that Y ∗ contains no
irregular points.

If a ∈ Y ∗ is an irregular point, then µY ∗(a) < µKP∗ (a). By Lemma
5.1, there is a Y ∗-empty critical wedge at a. A corresponding Y -empty
critical wedge at a must be included into Z irr; a contradiction. Thus
all points of Y ∗ are regular.

Replacing P with P ∗ and Y with Y ∗, we may now assume that
P : Y → Y has no irregular points. However, then P : Y → Y satisfies
the assumptions of Theorem 1.4. (Observe that the absence of irregular
points is equivalent to the condition that Y is a component of P−1(Y ).)
The conclusion of Theorem 1.5 now follows from Theorem 1.4.

Proof of Corollary 1.6. Assume that Y is an invariant non-degenerate
fiber of P . We claim that P |Y is a degree k branched covering for some
k > 1. It is easy to see that planar fibers map onto (and locally onto)
planar fibers (see, e.g., [Sch99] or [BCLOS16]); in particular, P (Y ) =
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Y . Observe that if P |Y is 1-to-1 then all the arguments of Theorem
4.11 apply to Y and imply that Y is a singleton, a contradiction. Hence
there are points of Y with more than one preimage in Y .

Suppose that z ∈ Y is irregular. Then z is critical, and there are
pairs of points y′, y′′ arbitrarily close to z such that P (y′) = P (y′′) = y,
where y′ ∈ Y and y′′ /∈ Y . We claim that then z is preperiodic, and
there are several (rational) rays that land at z. Suppose otherwise.
Choose a rational cut Γ′′ that separates z and y′′; set Γ = P (Γ′′). By
the assumption, Γ′′ does not contain z. But then there exists another
cut Γ′ ⊂ P−1(Γ) that separates y′ from z, a contradiction. Hence z is
preperiodic and there are rational rays landing at z. This implies that
z maps to a repelling periodic point (recall that by the assumptions of
Corollary 1.6 there are no parabolic points in Y ) and fulfills one of the
assumptions of Theorem 1.5.

By definition of a fiber, there is a wedge Wz at z such that Bd(Wz) =
Γz is a critical cut, Y ⊂ W , and P−1(P (Γz)) ∩ Wz = ∅. Consider
the collection Z irr = {Γz}, where z runs through the set of all ir-
regular points of Y . Clearly, Z irr is admissible and satisfies the as-
sumptions of the Main Theorem. It follows that the corresponding
avoiding set A = AP (Z irr) ⊃ Y gives rise to a polynomial Q such that
Q : KQ → KQ is topologically conjugate to P : A→ A. Moreover, the
conjugacy extends as a positively oriented homeomorphism between
neighborhoods of KQ and A. (This extension is not a conjugacy, how-
ever.) Passing from P to Q, we may assume that Y has no irregular
points at all. In this case, P : U → V is a degree k covering for some
k > 1 and some neighborhoods U , V of Y . Moreover, Y = P−1(Y )∩U .
Thus, Y satisfies all assumptions of Theorem 1.5, and we are done. �
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eree who discovered a mistake in a previous version of this paper and
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