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Abstract: We show that a smooth interval map satisfying the Collet-Eckmann condition
at some critical point is not structurally stable inCr topology for anyr.

1. Introduction

We want to address an old problem of structural stability of smooth interval maps. The
reader can find a good account of this problem in [MS]. Basically, one expects that
the only way an interval map can be structurally stable is that the trajectories of all
critical points are attracted to attracting periodic points. However, this is known only for
C1-stability ([J]).

It is widely believed that this problem resembles the Closing Lemma, that is, a
perturbation necessary to change the topological type of a map has to be global (or at least
a proof is possible only for global perturbations). Here we show that some maps admit
the proof of instability in anyCr topology with local perturbations. These maps are the
ones satisfying the Collet-Eckmann condition at some critical point. Positive Lyapunov
exponent at a critical point causes “sensitivity” at this point, so a local perturbation has
global effects.

There is a slight difficulty when we speak of structural stability of interval maps. Let
us illustrate it with an example. Letf : [0, 1] → [0, 1] be a convexC∞ unimodal map
with f (0) = 0 anda = supx∈[0,1] f (x) < 1. Setgε(x) = f (x) + ε for 0 < ε ≤ 1 − a.
The mapsgε converge tof in C∞ topology asε → 0. None ofgε is conjugate tof ,
since for each of them 0 is not a fixed point while forf it is. Yet this is not the kind of
instability off we want. Basically, the change of behavior of the map was achieved by
the change of the interval on which it was defined (and rescaling back). In our example
the map may have really changed its topological type, but to establish that is much more
difficult than to prove the “instability” as above.
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To avoid problems like this, let us define theessential intervalfor a continuous
interval mapf as the smallest interval containing trajectories of all interior local extrema
of f . Clearly, this interval is invariant forf . Now, continuous interval maps are said to
beessentially conjugateif they are conjugate when restricted to their essential intervals.
Finally, we say that an interval mapf of classCr isCr-structurally stableif there exists
a neighborhood off in Cr topology such that every map from this neighborhood is
essentially conjugate withf .

Note that we can also speak ofCr-structural stability off even iff is not of class
Cr. Namely, we require that there is aCr-neighborhood of the 0 function such that for
everyh from this neighborhoodf + h is essentially conjugate withf . This may be not
too interesting for all mapsf , but it makes sense for instance iff is piecewiseCr.

Sometimes we are interested in changing the topological type of a map by introducing
a small local perturbation. To describe this phenomenon, we introduce the notion of
structural sensitivity at a point. Namely, we say that a mapf is Cr-structural sensitive
at x if for everyCr-neighborhoodV of the function 0 and for every neighborhoodU of
x there existsh ∈ V which is 0 outsideU and such thatf +h is not essentially conjugate
to f .

We will use the following terminology. Letf be a continuous interval map. A point
x is called aperiodic sink(from one side) if there existsn > 0 and a (one-sided)
neighborhoodU of x such thatfn(x) = x, fn(U ) ⊂ U and the diameter offk(U ) tends
to 0 ask → ∞. Thebasin of attractionof x is then the set

⋃∞
k=0 f−k(U ). Note that iffn

has a (one-sided) derivative atx, its absolute value is less than or equal to 1. It is well
known that any point from the boundary of the basin of attraction of a periodic sink is
either periodic or preperiodic.

An intervalJ will be called awandervalif fn|J is a homeomorphism for everyn,
the images ofJ are pairwise disjoint, and the orbit ofJ does not converge to the orbit of
a periodic (even one-sided) sink (we can talk about convergence of the orbit ofJ since
by the second condition all points ofJ have the sameω-limit set). It is easy to see that
this is equivalent tofn|J being homeomorphism for everyn and the existence of a point
x ∈ J whoseω-limit set is not a periodic orbit. Indeed, if the first set of conditions is
satisfied then the absence offlat spots(i.e. intervals on whichf is a constant) implies
that the orbit of no pointx ∈ J converges to a periodic orbit. Suppose now that the
second set of conditions holds. In that case if some images ofJ intersect each other then
the union of all images ofJ is an invariant union of finitely many intervals such that
the restriction off on this union is monotone on every component; this implies that all
points ofJ have periodic orbits as theirω-limit sets.

The non-existence of wandervals for smooth interval maps was proven in a series of
papers with the most general result obtained in [MMS]. The question of their existence in
a piecewise-smooth setting remains unsolved in general, however under the assumption
of the exponential growth of the derivative at a point we prove that this point is not
contained in a wanderval.

2. Main Theorem

We look at the class of all continuous mapsf : [0, 1] → [0, 1] for which there exist
points 0 =a0 < a1 < . . . < as = 1 such thatf is of classC1 on each of the intervals
[ai, ai+1], with non-zero derivative on each (ai, ai+1). We will refer to these maps as
piecewise smooth maps. The pointsa0, a1, . . . , as will be calledsingular points. Points
at whichf has local extrema (except 0 and 1) will be calledturning points.
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We will say that a piecewise smooth mapf satisfies the Collet-Eckmann condition
at a turning pointc of f if

|(fn)′(f (c))| ≥ αλn (2.1)

for all n, whereα > 0 andλ > 1 (in other words, if the lower Lyapunov exponent at
f (c) is positive). If only one-sided derivatives offn atf (c) exist, we mean (2.1) for both
of them.

We introduce a functionr : [0, 1]2 → R ∪ {∞} as follows:

r(x, y) =
|f (x) − f (y)|
|x − y| |f ′(x)|

if x 6= y, andr(x, x)=1 (if only one-sided derivatives atx exist, we take asf ′(x) the
derivative from the side wherey is). We will call this functionrelative stretching, since
it measures how the interval is being stretched relative to the derivative at one of its
endpoints. In fact, this makes sense only ifx andy belong to the same lap off (by alap
we mean a maximal interval on whichf is monotone; there may be singular points in the
interior of a lap). We will call the infimum ofr(x, y) over the pairs of pointsx, y from
the same lap theshrinkabilityof f . Note that if a pointx is critical (i.e. the derivative of
f atx vanishes) thenr(x, y) = ∞ for all y 6= x.

If a, b are two consecutive singular points, let us look atr restricted to [a, b]2. Clearly,
r is continuous off the diagonal. Ifx 6= y andf ′(x) 6= 0 thenr(x, y) = f ′(z)/f ′(x) for
somez ∈ (x; y) (by (x; y) we mean (x, y) if x < y and (y, x) if y < x). Hence, since
f is of classC1 on [a, b] and f ′(x) 6= 0 for all x ∈ (a, b) we conclude thatr is also
continuous on the diagonal, at all points (x, x) such thatf ′(x) 6= 0.

Let f be a piecewise smooth map and letc be a turning point off . For a givenε > 0
and a neighborhoodU of c we denote byB(f, ε, U, c) the set of mapsg : [0, 1] → [0, 1]
such that|g(x)−f (x)| ≤ ε for everyx ∈ U , g(x) = f (x) for everyx /∈ U , |g(c)−f (c)| =
ε, andc is a local extremum ofg.

For every pointx ∈ [0, 1] its itinerary (for f ) is the sequence (in(x))∞n=0, where
in(x) is the pointfn(x) if this is a turning point and the lap off to whichfn(x) belongs
otherwise.

Main Theorem. Letf be a piecewise smooth map with non-zero shrinkability, satisfy-
ing the Collet-Eckmann condition at a turning pointc. Then there is a neighborhoodU
of c such that for everyε > 0 if g ∈ B(f, ε, U, c) then eitherg has more local extrema
thanf , or theg-trajectory ofc is attracted to the orbit of a periodic (at least one-sided)
sink, or the itineraries ofc for f andg are different.

Proof. We may assume from the very beginning that we are considering only those
g ∈ B(f, ε, U, c) which havec as their only local extremum inU . Indeed, we may
chooseU such thatf has only one local extremum in it. Then, ifg has more than one
local extremum inU , it has more local extrema thanf in the whole interval, and we are
done.

Since we will often consider behavior off separately at each side of some pointx,
we will speak about right and left halves ofx. The point 0 has only right half, and the
point 1 only left one. Now every half-point has the derivative off well defined at it.
Moreover, we can tell to which half off (x) a given half ofx is mapped byf .

Let λ andα be constants from (2.1). We chooseη andµ such that

η < 1 < µ < ηλ. (2.2)
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Let p be the number of singular half-points that are not periodic. We choose an
integerN > p such that

αµN ≥ 1 (2.3)

and (
µ

ηλ

)N

<

(
K

η

)p

, (2.4)

whereK is the shrinkability off .
For every non-periodic singular half-point we choose its neighborhood (one-sided,

of course) such that every piece of trajectory of lengthN passes through it at most
once. LetV be the union of these neighborhoods. Thus, every piece of a trajectory of
lengthN visits V at mostp times. For every periodic singular half-point that is a sink
we choose its neighborhood (again one-sided) contained in the basin of attraction. Let
W be the union of these neighborhoods. Sincef satisfies the Collet-Eckmann condition
at c, the trajectory off (c) does not visitW at all. Then we chooseδ > 0 such that if
x /∈ V ∪W , |x−y| < δ andx, y do not lie on opposite sides of a periodic singular point
thenr(x, y) ≥ η. To see that this is possible, notice that for a smallδ, if x, y are as above
then they belong to some closed intervalJ on whichf ′ is continuous and non-zero. The
functionr is continuous onJ2 and it is equal to 1 on the diagonal, hence it is larger than
η in some neighborhood of the diagonal.

We are now ready to chooseU required in the theorem. The choice depends on the
trajectory ofc, so we will consider several cases. In what follows we denotef i(c) by ci.

Case 1.The pointc is periodic. Then clearly for anyg ∈ B(f, ε, U, c) with sufficiently
smallε andU the pointc will not be periodic of the same period. Therefore the itineraries
of c for f andg will be different. Remember that this case is possible, since we allow
non-zero one-sided derivatives at the turning points.

Case 2.The pointc is preperiodic (but not periodic). Thenck is a periodic repelling point
for somek > 0. Let us work with the halves ofck and their neighborhoods (i.e. one-sided
neighborhoods in the usual sense). Then there are the following two possibilities for the
behavior off .

Case 2a. There are no inverse images of turning points in some closed one-sided
neighborhood ofck. Then there is an interval (ck; a) invariant for some iterate off , and
a is a periodic sink from the appropriate side. For sufficiently smallε andU and for
anyg ∈ B(f, ε, U, c) with g(c) on the appropriate side ofc1 theg-trajectory ofc will be
attracted by the orbit ofa which remains a periodic sink from the appropriate side forg.

Case 2b.There are inverse images of at least one turning point off in an arbitrary small
one-sided neighborhood ofck. We can choose one of these inverse images sufficiently
close tock, and then we can choose next inverse images by following the periodic
orbit of ck backwards. In this way we get inverse images of a turning point arbitrarily
close toc with an additional property that their trajectories before hitting a turning
point miss some fixed (small) neighborhoodU of c. Let us take a sufficiently small
ε > 0 andg ∈ B(f, ε, U, c) with g(c) on the appropriate side ofc1. Then there is a
point a ∈ (gk(c); ck) such thatfm(a) is a turning point andf i(a) /∈ U for i < m.
Suppose that the itineraries ofc for f andg are the same. Then by induction we see
thatf i(a) ∈ (gk+i(c); ck+i) for i ≤ m (even ifgk+i(c) ∈ U , the induction step works).
Sinceck+m andgk+m(c) are on the opposite sides of the turning pointfk(a), we get a
contradiction.
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We have shown that ifc is a periodic or preperiodic point then choosing a neigh-
borhoodU of c according to Cases 1, 2a or 2b we can guarantee that for everyε > 0
if g ∈ B(f, ε, U, c) andc is the only local extremum ofg in U then the itineraries ofc
under the mapsg andf are different, orc is attracted to an orbit of a periodic sink.

Case 3.The pointc is neither periodic nor preperiodic. Let us show that there are inverse
images of turning points arbitrary close toc1 on both sides ofc1. Indeed, suppose that
this is not the case. Then there is an intervalJ containingc1 such that all iterates off are
monotone onJ . The discussion following the definition of a wanderval implies now that
if ω(c) is not a periodic orbit thenJ is a wanderval. However, because of (2.1),c cannot
be attracted to a periodic (even one-sided) sink. It cannot be also on the boundary of a
basin of attraction of a periodic sink (because then it would be periodic or preperiodic).
Piecewise-smoothness off implies that these are the only two ways the setω(c) can be
a periodic orbit. Hence,ω(c) is not a periodic orbit and thus there exists a pointa1 in a
small neighborhood ofc1 such that (c1; a1) is a wanderval. We denotef i−1(a1) by ai.
We have

|cn+1 − an+1|
|c1 − a1| |(fn)′(c1)| =

n∏
k=1

r(ck, ak).

The numbersr(ck, ak) are usually greater than or equal toη. There are several cases
when they may be smaller thanη, and then they are larger than or equal toK. The first
case is whenck ∈ V ∪W . This can happen at mostp times during each ofN consecutive
steps. The second case is when|ck − ak| ≥ δ. However, the images of a wanderval are
pairwise disjoint, so this can happen at most 1/δ times no matter how bign is. The third
case would be whenck andak lie on the opposite sides of a periodic singular point. Then
this periodic point would belong to a wanderval, so this case is impossible. Therefore
(we use (2.4))

lim inf
n→∞

( |cn+1 − an+1|
|c1 − a1| |(fn)′(c1)|

)1/n

≥ (ηN−pKp)1/N >
µ

λ
.

Together with (2.1) this proves that|cn+1 − an+1| grows exponentially (at least as a
constant timesµn), a contradiction.

Therefore there are inverse images of turning points off arbitrary close toc1 on
both sides ofc1. Clearly the same holds for the pointc. If the orbit of such an inverse
imagex comes closer toc (if coming from the other side, we look at the first image to
decide whether it is closer), we replacex by this point of the orbit ofx. In such a way
we see that there are arbitrarily small neighborhoods (a, b) of c such thatf (a) = f (b),
some image ofa is a turning pointd of f , and the orbit ofa before getting tod does not
pass through (a, b). We will refer to such neighborhoods asvery nice.

By (2.4), we have

ηλ

µ

(
K

η

)p/N

> 1.

Therefore we can choose an integerM ≥ N so large that(
ηλ

µ

(
K

η

)p/N
)M

≥ 2
( η

K

)2+1/δ

. (2.5)
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Next we choose a very nice neighborhoodU of c, such thatfk(U ) ∩ U = ∅ for k =
1, 2, . . . , M − 1. Moreover we chooseU so that orbits of periodic singular points are
disjoint fromU .

Take someε > 0 andg ∈ B(f, ε, U, c). Recall that due to the arguments from the
beginning of the proof we may assume thatc is the only local extremum ofg in U . Set

bn = gn(c), αn = |(fn)′(c1)| and γn =
|cn+1 − bn+1|

εαn
.

Suppose that the itineraries ofc for f andg are the same. Thencn+1 andbn+1 are in the
same lap off (the laps ofg are the same as forf ) and ifa is an endpoint ofU andx ∈ U
thenf (x) andg(x) lie on the same side off (a) (otherwiseg would have extra turning
points).

We claim that for a givenn > 0 either bothbn andcn are inU or both are outsideU .
First observe that theg-orbit of a and thef -orbit of a are the same. Let us now show by
induction that if an endpointa of U belongs to [cn; bn], thenf i(a) = gi(a) ∈ [cn+i; bn+i]
for i = 0, 1, . . . , m, wherem is the smallest integer such thatfm(a) is a turning point.
Indeed, iff i(a) = gi(a) ∈ [cn+i; bn+i] then applyingf andg to this we getf i+1(a) =
gi+1(a) ∈ f [cn+i; bn+i] ∩ g[cn+i; bn+i]. Sincef andg are either both increasing or both
decreasing on [cn+i; bn+i], we getf i+1(a) = gi+1(a) ∈ [cn+i+1; bn+i+1], which completes
the induction step. Thus,fm(a) = gm(a) ∈ [cn+m; bn+m]. This is a contradiction, since
by our assumptions there is no turning point in [cn+m; bn+m]. This proves the claim.

Consider again two cases depending on the behavior of the trajectory ofc.

Case 3a.The pointc is non-recurrent. ChooseU so small that nocn is in U for n > 0.
Let us show that thisU satisfies the requirements of the theorem. Indeed,cn /∈ U for
all n, thusbn /∈ U for all n. Hence, thef -orbit and theg-orbit of b1 are the same.
Therefore if the itineraries ofc1 andb1 for f andg respectively are the same then there
are no inverse images of turning points off in a one-sided neighborhood [c1; b1) of c1,
a contradiction.

Case 3b.The pointc is recurrent. LetU be the set chosen after formula (2.5). We are
going to look at howγn behaves whenn grows. More precisely, we calln special if
cn ∈ U (this includesn = 0) and prove by induction that ifn is special thenγn ≥ (µ/λ)n.
This is clearly true forn = 0. Now we show how to make an induction step. Note that
the situation is very similar to what we encountered when we were proving thatc1 is not
an endpoint of a wanderval.

Assume thatn is special andn + m is the next special number. By the definition of
U we havem ≥ M . Our goal is to estimateγn+m from below; to this end we estimate
from below quotientsγn+1+k/γn+k for k = 0, 1, 2, . . . , m − 2. We have

γn+1+k/γn+k =
|cn+2+k − bn+2+k|

εαn+1+k
· εαn+k

|cn+1+k − bn+1+k| ,

on the other hand we havebn+1+k = fk(bn+1), and thusbn+2+j = f (bn+1+j), so

γn+1+k/γn+k =
|f (cn+1+k) − f (bn+1+k)|

|cn+1+k − bn+1+k||f ′(cn+1+k)| = r(cn+1+k, bn+1+k) .

Thus we can estimateγn+k+1/γn+k from below byη or K. As before, we normally use
η, but we have to useK in some cases. The first case is whencn+1+k ∈ V ∪ W . This
can happen at mostp times during each ofN consecutive steps. The second case is
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when|cn+1+k − bn+1+k| ≥ δ. This can happen at most 1/δ times. The reason is that the
intervals (cj ; bj) for j = n + 1, . . . , n +m− 1 are pairwise disjoint. Indeed, suppose that
they are not. Then one of them intersects the interval (cn+m; bn+m) (because the images
of non-disjoint intervals are non-disjoint). The latter interval is contained inU , while
the one intersecting it is disjoint fromU , a contradiction.

The third case would be whencn+1+k and bn+1+k lie on the opposite sides of a
periodic singular point. We claim that this is impossible. Call this periodic pointx. By
the choice ofU the trajectory ofx is disjoint fromU . On the other hand, we assumed
that the itineraries ofc1 andb1 for f andg respectively coincide. This together with the
fact thatf andg coincide outsideU implies thatfm−k−1(x) ∈ [cn+m; bn+m] ⊂ U , a
contradiction.

Hence, the estimate ofγn+1+k/γn+k from below byK will be used at most 1+mp/N
times when the first case occurs, and at most 1/δ times when the second case occurs.

Forγn+m/γn+m−1 we have to modify slightly the estimate, since perhapsbn+m+1 is
different fromf (bn+m). Since|bn+m+1 − f (bn+m)| ≤ ε, we get

γn+m ≥ |f (cn+m) − f (bn+m)| − ε

εαn+m−1|f ′(cn+m)| ≥ γnηm−jKj − 1
αn+m

,

wherej = mp/N + 1/δ + 2. Using (2.5) and (2.1), and sincem ≥ M , we get

γn+m ≥ γn · 2
(µ

λ

)m

− 1
αλn+m

.

Since (µ

λ

)n

· 2
(µ

λ

)m

− 1
αλn+m

≥
(µ

λ

)n+m

(because of (2.3) and sincen+m ≥ M ≥ N ), we getγn+m ≥ (µ/λ)n+m. This completes
the induction step.

For every specialn we get

|cn+1 − bn+1| ≥ γnεαn ≥ εαµn,

a contradiction sinceµ > 1. This completes the proof. �
Let us make an observation that leads to a result which seems to be of some interest

by itself. Namely, in the beginning of the whole proof and in the beginning of Case 3
we did not use the assumption that the pointc is a turning point. We used only the fact
that the lower Lyapunov exponent atf (c) was positive. We concluded that this point did
not belong to a wanderval. Hence, we get the following result.

Proposition 2.1. Letf be a piecewise smooth map with non-zero shrinkability. Then at
every point contained in a wanderval the lower Lyapunov exponent is non-positive.

Some time ago one of the authors (AB) got interested in the question of existence of
wandervals under the assumptions less restrictive than those from [MMS]. In particular
it would be nice to find out whether a piecewise smooth map with some singular points at
which the order of degeneracy is different to the left and to the right may have wandervals
(in the unimodal case this question is quoted in [MS], where it is noted that the proof
from [MMS] breaks down under new milder assumptions). We would like to point out
that Proposition 2.1 answers the question in a rather specific situation. It also shows that
it may make sense to consider a question of whether points with specific properties may
be contained in a wanderval (one could call this a “pointwise” approach to the problem
of existence of wandervals). Note also that we only needC1-smoothness while a higher
smoothness is necessary for all previous results (see, e.g., [MMS]).
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3. Discussion of Assumptions

We made three assumptions in Main Theorem: piecewise smoothness, non-zero shrink-
ability and the Collet-Eckmann condition at a turning pointc. Now we will discuss
them.

Our definition of piecewise smoothness is as unrestrictive as possible. In particular,
it does not prevent existence of wandervals, even ones that do not come close to the
turning points. An example of such a map can be easily derived from Denjoy’s example
of a circle diffeomorphism with wandervals (see [CN]).

We compensate by assuming that a turning pointc satisfies the Collet-Eckmann
condition. Then the trajectory of this point has nothing to do with wandervals (see
Proposition 2.1).

The assumption on non-zero shrinkability is in fact a condition on the behavior of
the map close to singular points. Leta be a singular half-point. We will say thatf is
non-flatata if eitherf ′(a) 6= 0 or there exists a neighborhoodW (one-sided) ofa and a
constantL > 0 such that for everyt ∈ W \ {a},

L ≤ |f (t) − f (a)|
|t − a| |f ′(t)| ≤ 1. (3.1)

Lemma 3.1. If a is the only singular point inW = [a; b) and(3.1)holds for allt ∈ (a; b),
thenr(x, y) ≥ L for everyx, y ∈ W .

Proof. The sign off ′ on W is constant; we may assume it is positive. We may also
assume thata is the left endpoint ofW . The proof in the remaining three cases is
similar. We have by (3.1),(

f (t) − f (a)
t − a

)′
=

f ′(t)(t − a) − (f (t) − f (a))
(t − a)2

≥ 0,

so the function (f (t) − f (a))/(t − a) is non-decreasing. Hence, ifa < x < y < b, then
(f (y) − f (a))/(y − a) ≥ (f (x) − f (a))/(x − a). Therefore

f (y) − f (x)
y − x

− f (y) − f (a)
y − a

=

(
f (y) − f (a)

y − a
− f (x) − f (a)

x − a

)
x − a

y − x
≥ 0,

so we get
f (y) − f (x)

y − x
≥ f (y) − f (a)

y − a
≥ f (x) − f (a)

x − a
.

Hence, by (3.1) we getr(x, y) ≥ L andr(y, x) ≥ L. This completes the proof. �

Corollary 3.2. If f is smooth on[a, b], non-flat ata andb, andf ′ is non-zero on(a, b)
thenf has non-zero shrinkability on[a, b].

To justify our use of the term “non-flat”, we prove the following lemma.

Lemma 3.3. Let l > 1 be an integer and letf be a function of classCl−1 defined in a
(one-sided) neighborhood of a pointa. Assume thatf (i)(a) = 0 for i = 1, . . . , l − 1, and
thatf (l)(a) exists and is non-zero. Thenf is non-flat ata.

In particular, if a is a non-degenerate critical point off (that is, f ′(a) = 0 but
f ′′(a) 6= 0) thenf is non-flat ata.
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Proof. By the definition of the derivative, we have

lim
t→a

f (l−1)(t)
t − a

= f (l)(a).

Thus, by l’Hôpital’s rule,

lim
t→a

f ′(t)
(t − a)l−1

=
f (l)(a)
(l − 1)!

and lim
t→a

f (t)
(t − a)l

=
f (l)(a)

l !
.

Therefore

lim
t→a

f (t)
(t − a)f ′(t)

=
1
l

,

so (3.1) holds in a neighborhood ofa with L = 1/(2l). Thus,f is non-flat ata. �

On the other hand, assume that (3.1) holds. Ift > a andf ′(t) > 0 (the other three
cases are similar) we get from the first inequality of (3.1),

[ln(f (t) − f (a))]′ ≤ 1
L(t − a)

.

Integrating fromt (close toa) to someb > a we get

ln(f (b) − f (a)) − ln(f (t) − f (a)) ≤ 1
L

[ln(b − a) − ln(t − a)].

Therefore
f (t) − f (a) ≥ const.(t − a)1/L.

This means thatf really cannot be flat (in the common sense) ata.
The assumption on non-zero shrinkability restricts severely possible behaviors near

singular points that are not turning points. It is easy to check that if the singularities from
both sides of such a point have the same order, shrinkability stays positive. However, if
they are of different orders, shrinkability is zero.

Thus, our assumptions on the behavior on both sides of a singular point are quite
different than the assumptions in [MS]. We don’t care if the orders of the singularities
are different if the point is a turning point, but it is important that they are the same if
the point is not a turning point. In [MS] this is just the opposite.

The third assumption we are making is the Collet-Eckmann condition at one of the
turning points. One can ask whether we can replace it by a subexponential expansion.
We cannot do it when using our techniques. The trajectory of the turning point may
be coming back toU with some fixed frequency, and we have to guarantee sufficient
expansion between each two consecutive returns.

4. Corollaries

Main Theorem is stated in a rather technical way. However, it has important conse-
quences, that can be stated in more general terms. In order to do it, we need a couple of
lemmas. They are very simple, so we state them without proof.

Lemma 4.1. If g satisfies one of the conditions from the conclusion of Main Theorem
then it is not essentially conjugate tof .
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Lemma 4.2. Letf be a piecewise smooth map and letU be a neighborhood of a turning
point c of f . Leth : [0, 1] → [0, 1] be a function of classC∞ that is0 outsideU and1
in some neighborhood ofc. Then the mapεh tends to0 in theC∞ topology asε → 0.
Moreover,f + h ∈ B(f, ε, U, c) if (f + h)([0, 1]) ⊂ [0, 1].

Thus, we can always make perturbations of the type described in the Main Theorem.
Now, our corollaries are the following.

Corollary 4.3. Letf be a piecewise smooth map with non-zero shrinkability, satisfying
Collet-Eckmann condition at some turning point. Thenf is notCr-structurally stable
for anyr ≤ ∞.

Corollary 4.4. Letf be a piecewise smooth map with non-zero shrinkability, satisfying
the Collet-Eckmann condition at a turning pointc. Thenf is Cr-structurally sensitive
at c for everyr ≤ ∞.

Readers for which the term “non-zero shrinkability” is too special, can use the
results of the previous section and change the assumptions in the above corollaries
from “a piecewise smooth map with non-zero shrinkability” to “a smooth map with
non-degenerate critical points”.

For unimodal maps the situation is somehow simpler. If a critical pointc has different
itineraries forf andg, then there ist ∈ (0, 1) such thatc is periodic fortf + (1 − t)g.
Therefore, in view of Lemma 3.3, we can state another corollary as follows.

Corollary 4.5. For any1 ≤ r ≤ ∞, in the space ofCr unimodal interval maps with
nondegenerate critical points, the set of Collet-Eckmann maps is nowhere dense and
every such map can be approximated by maps with the critical point belonging to a
superattracting periodic orbit.
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