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Abstract: We show that a smooth interval map satisfying the Collet-Eckmann condition
at some critical point is not structurally stabledfi topology for anyr.

1. Introduction

We want to address an old problem of structural stability of smooth interval maps. The
reader can find a good account of this problem in [MS]. Basically, one expects that
the only way an interval map can be structurally stable is that the trajectories of all
critical points are attracted to attracting periodic points. However, this is known only for
C*-stability ([J]).

It is widely believed that this problem resembles the Closing Lemma, that is, a
perturbation necessary to change the topological type of a map has to be global (or at least
a proof is possible only for global perturbations). Here we show that some maps admit
the proof of instability in any”" topology with local perturbations. These maps are the
ones satisfying the Collet-Eckmann condition at some critical point. Positive Lyapunov
exponent at a critical point causes “sensitivity” at this point, so a local perturbation has
global effects.

There is a slight difficulty when we speak of structural stability of interval maps. Let
us illustrate it with an example. Lgt: [0,1] — [0, 1] be a convexC> unimodal map
with f(0) = 0 anda = sup,¢pq; /() < 1. Setg.(z) = f(z) +efor0<e <1-a.

The mapsgy. converge tof in C*° topology ass — 0. None ofg. is conjugate tof,

since for each of them 0 is not a fixed point while fbit is. Yet this is not the kind of
instability of f we want. Basically, the change of behavior of the map was achieved by
the change of the interval on which it was defined (and rescaling back). In our example
the map may have really changed its topological type, but to establish that is much more
difficult than to prove the “instability” as above.
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To avoid problems like this, let us define thesential intervafor a continuous
interval mapf as the smallest interval containing trajectories of all interior local extrema
of f. Clearly, this interval is invariant fof. Now, continuous interval maps are said to
beessentially conjugatiéthey are conjugate when restricted to their essential intervals.
Finally, we say that an interval magpof classC” is C"-structurally stabléf there exists
a neighborhood of in C" topology such that every map from this neighborhood is
essentially conjugate witlfi.

Note that we can also speak ©f -structural stability off even if f is not of class
C". Namely, we require that there i€4 -neighborhood of the 0 function such that for
everyh from this neighborhood + h is essentially conjugate witf. This may be not
too interesting for all mapg, but it makes sense for instancefifs piecewiseC".

Sometimes we are interested in changing the topological type of amap by introducing
a small local perturbation. To describe this phenomenon, we introduce the notion of
structural sensitivity at a point. Namely, we say that a rfiapC"-structural sensitive
at z if for every C"-neighborhood’ of the function 0 and for every neighborhobdof
x there existd € V which is 0 outsidé/ and such thaf + A is not essentially conjugate
to f.

We will use the following terminology. Lef be a continuous interval map. A point
x is called aperiodic sink(from one side) if there exists > 0 and a (one-sided)
neighborhood/ of z such thatf"(z) = z, f*(U) C U and the diameter of*(U) tends
to 0 ask — oo. Thebasin of attractiorof z is then the set), 2, f~F(U). Note that if ™
has a (one-sided) derivative atits absolute value is less than or equal to 1. It is well
known that any point from the boundary of the basin of attraction of a periodic sink is
either periodic or preperiodic.

An interval J will be called awandervalif ™| is a homeomorphism for every,
the images off are pairwise disjoint, and the orbit dfdoes not converge to the orbit of
a periodic (even one-sided) sink (we can talk about convergence of the orbginte
by the second condition all points dfhave the same-limit set). It is easy to see that
this is equivalenttg” | ; being homeomorphism for everyand the existence of a point
x € J whosew-limit set is not a periodic orbit. Indeed, if the first set of conditions is
satisfied then the absencefla#t spots(i.e. intervals on whicly is a constant) implies
that the orbit of no pointz € J converges to a periodic orbit. Suppose now that the
second set of conditions holds. In that case if some imagésérsect each other then
the union of all images of is an invariant union of finitely many intervals such that
the restriction off on this union is monotone on every component; this implies that all
points of J have periodic orbits as their-limit sets.

The non-existence of wandervals for smooth interval maps was proven in a series of
papers with the most general result obtained in [MMS]. The question of their existence in
a piecewise-smooth setting remains unsolved in general, however under the assumption
of the exponential growth of the derivative at a point we prove that this point is not
contained in a wanderval.

2. Main Theorem

We look at the class of all continuous maps [0, 1] — [0, 1] for which there exist
points 0 =ag < a1 < ... < a, = 1 such thatf is of classC* on each of the intervals
[a;, a;+1), with non-zero derivative on eacla( a;+1). We will refer to these maps as
piecewise smooth mapBhe pointsug, a1, . . ., as Will be calledsingular points Points
at which f has local extrema (except 0 and 1) will be calleching points
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We will say that a piecewise smooth m@satisfies the Collet-Eckmann condition
at a turning point of f if

(Y (FE)] = ar” (2.1)

for all n, wherea > 0 andX > 1 (in other words, if the lower Lyapunov exponent at
f(c) is positive). If only one-sided derivatives 6t at f(c) exist, we mean (2.1) for both
of them.

We introduce a function : [0, 1]> — R U {oo} as follows:

o = @)~ 1)
’ |z —y| [f(z)]

if x #Z y, andr(z, z)=1 (if only one-sided derivatives at exist, we take ag’(z) the
derivative from the side wherngis). We will call this functionrelative stretchingsince

it measures how the interval is being stretched relative to the derivative at one of its
endpoints. In fact, this makes sense only &ndy belong to the same lap gf(by alap

we mean a maximal interval on whighis monotone; there may be singular points in the
interior of a lap). We will call the infimum of(x, i) over the pairs of points, y from

the same lap thehrinkabilityof f. Note that if a point: is critical (i.e. the derivative of

f atx vanishes) then(x, y) = oo forall y # x.

If a, bare two consecutive singular points, let us look @stricted to§, b]°. Clearly,

r is continuous off the diagonal. if #Z y and f'(z) # 0 thenr(z,y) = f'(z)/f'(z) for
somez € (z;y) (by (z;y) we meang,y) if z < y and ¢, z) if y < ). Hence, since
f is of classC* on [a,b] and f/(x) # O for all z € (a,b) we conclude that is also
continuous on the diagonal, at all poinis §) such thatf’(x) # 0.

Let f be a piecewise smooth map anddéte a turning point of . For a givere > 0
and a neighborhood of ¢ we denote byB(f, ¢, U, c) the set of maps : [0,1] — [0, 1]
suchthatg(z)— f(z)| < eforeveryz € U, g(x) = f(x)foreveryz ¢ U, |g(c)— f(c)| =
g, andc is a local extremum of.

For every pointz € [0, 1] its itinerary (for f) is the sequence,((x))52, where
in(x) is the pointf™(x) if this is a turning point and the lap ¢gfto which /" (x) belongs
otherwise.

Main Theorem. Let f be a piecewise smooth map with non-zero shrinkability, satisfy-
ing the Collet-Eckmann condition at a turning poinfThen there is a neighborhodd

of ¢ such that for every > 0if g € B(f, ¢, U, ¢) then eitherg has more local extrema
than f, or theg-trajectory ofc is attracted to the orbit of a periodic (at least one-sided)
sink, or the itineraries o for f and g are different.

Proof. We may assume from the very beginning that we are considering only those
g € B(f,e,U,c) which havec as their only local extremum itV. Indeed, we may
choosel such thatf has only one local extremum in it. Thengithas more than one
local extremum irUU, it has more local extrema thghin the whole interval, and we are
done.

Since we will often consider behavior gfseparately at each side of some paint
we will speak about right and left halves f The point 0 has only right half, and the
point 1 only left one. Now every half-point has the derivativefofvell defined at it.
Moreover, we can tell to which half gf(x) a given half ofx is mapped byf.

Let A anda be constants from (2.1). We choagandy such that

n<l<p<ni (2.2)
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Let p be the number of singular half-points that are not periodic. We choose an
integerN > p such that

ap¥ > 1 (2.3)

N p
() <(3)- @0

whereK is the shrinkability off.

For every non-periodic singular half-point we choose its neighborhood (one-sided,
of course) such that every piece of trajectory of lenfjttpasses through it at most
once. LetV be the union of these neighborhoods. Thus, every piece of a trajectory of
length IV visits V' at mostp times. For every periodic singular half-point that is a sink
we choose its neighborhood (again one-sided) contained in the basin of attraction. Let
W be the union of these neighborhoods. Sificatisfies the Collet-Eckmann condition
at ¢, the trajectory off(c) does not visiti?’ at all. Then we choosé& > 0 such that if
x ¢ VUW, |z —y| < § andz,y do not lie on opposite sides of a periodic singular point
thenr(z,y) > 7. To see that this is possible, notice that for a smdfl x, y are as above
then they belong to some closed interyiadn which f’ is continuous and non-zero. The
functionr is continuous o2 and it is equal to 1 on the diagonal, hence it is larger than
7 in some neighborhood of the diagonal.

We are now ready to choogérequired in the theorem. The choice depends on the
trajectory ofc, so we will consider several cases. In what follows we derfiée by c;.

and

Case 1.The pointc is periodic. Then clearly for any € B(f, ¢, U, ¢) with sufficiently
smalle andU the pointc will not be periodic of the same period. Therefore the itineraries
of ¢ for f andg will be different. Remember that this case is possible, since we allow
non-zero one-sided derivatives at the turning points.

Case 2.The pointcis preperiodic (but not periodic). Thepis a periodic repelling point
forsomek > 0. Let us work with the halves ef, and their neighborhoods (i.e. one-sided
neighborhoods in the usual sense). Then there are the following two possibilities for the
behavior off.

Case 2a. There are no inverse images of turning points in some closed one-sided
neighborhood of;,. Then there is an intervat{; a) invariant for some iterate qf, and

a is a periodic sink from the appropriate side. For sufficiently smahd U and for

anyg € B(f,¢e,U, c¢) with g(c) on the appropriate side of the g-trajectory ofc will be
attracted by the orbit af which remains a periodic sink from the appropriate sideyfor

Case 2h.There are inverse images of at least one turning poifitiofan arbitrary small
one-sided neighborhood of. We can choose one of these inverse images sufficiently
close tocg, and then we can choose next inverse images by following the periodic
orbit of ¢;, backwards. In this way we get inverse images of a turning point arbitrarily
close toc with an additional property that their trajectories before hitting a turning
point miss some fixed (small) neighborhobdof c. Let us take a sufficiently small

e > 0andg € B(f,e,U,c) with g(c) on the appropriate side ef. Then there is a
pointa € (g%(c); cx) such thatf™(a) is a turning point andfi(a) ¢ U for i < m.
Suppose that the itineraries ofor f andg are the same. Then by induction we see
that fi(a) € (¢%**(c); cx+:) for i < m (even ifg**i(c) € U, the induction step works).
Sincecy+,, andg®*™(c) are on the opposite sides of the turning pgffita), we get a
contradiction.
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We have shown that if is a periodic or preperiodic point then choosing a neigh-
borhoodU of ¢ according to Cases 1, 2a or 2b we can guarantee that for ever
if g € B(f,e,U,c)andc is the only local extremum @f in U then the itineraries of
under the mapsg and f are different, ok is attracted to an orbit of a periodic sink.

Case 3.The pointcis neither periodic nor preperiodic. Let us show that there are inverse
images of turning points arbitrary closedpon both sides of;. Indeed, suppose that
this is not the case. Then there is an intedvabntaininge; such that all iterates gf are
monotone ory. The discussion following the definition of a wanderval implies now that

if w(c) is not a periodic orbit thed is a wanderval. However, because of (2clgannot

be attracted to a periodic (even one-sided) sink. It cannot be also on the boundary of a
basin of attraction of a periodic sink (because then it would be periodic or preperiodic).
Piecewise-smoothness fimplies that these are the only two ways thews@d can be

a periodic orbit. Hencey(c) is not a periodic orbit and thus there exists a peinin a

small neighborhood of; such that ¢;; a;) is a wanderval. We denotg—*(a;) by a;.

We have

n

et —anal T )
jer —aa [(FY(en)] 3 T

The numbers-(ck, ax) are usually greater than or equalioThere are several cases
when they may be smaller thanand then they are larger than or equakioThe first
caseiswhen, € VUW. This can happen at mgstimes during each oV consecutive
steps. The second case is when— ay| > 6. However, the images of a wanderval are
pairwise disjoint, so this can happen at mot fimes no matter how big is. The third

case would be wher, anday, lie on the opposite sides of a periodic singular point. Then
this periodic point would belong to a wanderval, so this case is impossible. Therefore
(we use (2.4))

. |Cn+1 — ana1l )l/n N— N _ M
liminf > PRPY/N 5 B
nﬂqu—mHﬁﬂml = (PR >

Together with (2.1) this proves that,.1 — a,+1| grows exponentially (at least as a
constant timeg), a contradiction.

Therefore there are inverse images of turning pointg afbitrary close ta:; on
both sides of:;. Clearly the same holds for the pointlf the orbit of such an inverse
imagex comes closer ta (if coming from the other side, we look at the first image to
decide whether it is closer), we replacdy this point of the orbit ofz. In such a way
we see that there are arbitrarily small neighborhoads)(of ¢ such thatf(a) = f(b),
some image of; is a turning pointl of f, and the orbit of, before getting tal does not
pass throughd(, b). We will refer to such neighborhoods asry nice

By (2.4), we have
A (KNP
s () > 1
o n
Therefore we can choose an integér> N so large that

T
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Next we choose a very nice neighborhd@dof ¢, such thatf*(U) N U = () for k =
1,2,...,M — 1. Moreover we choos¥E so that orbits of periodic singular points are
disjoint fromU..

Take some > 0 andg € B(f,¢,U, ¢). Recall that due to the arguments from the
beginning of the proof we may assume théd the only local extremum of in U. Set

b = 9u(0)s an = (7Y (c0)] and o, = Lori=bnetl

EQup,
Suppose that the itineraries ofor f andg are the same. Ther,+; andb,,+1 are in the
same lap off (the laps ofy are the same as fgi) and ifa is an endpoint o/ andz € U
then f(z) andg(z) lie on the same side of(a) (otherwiseg would have extra turning
points).

We claim that for a givem > 0 either bothb,, andc,, are inU or both are outsid&.
First observe that the-orbit of « and thef-orbit of a are the same. Let us how show by
induction that if an endpoint of U belongs to¢,,; b,.], thenfi(a) = g*(a) € [cr+i; bn+i]
fori =0,1,...,m, wherem is the smallest integer such thét'(a) is a turning point.
Indeed, if fi(a) = ¢°(a) € [cn+si; bn+i] then applyingf andg to this we getfi*i(a) =
g™*Y(a) € flensi; bu+il N glcnss; basi]. Since f andg are either both increasing or both
decreasing oncl,+;; b,+i], we getfi*l(a) = ¢g"*(a) € [cp+i+1; bu+i+1], Which completes
the induction step. Thug™(a) = ¢ (a) € [cn+m; bn+m]. This is a contradiction, since
by our assumptions there is no turning pointdap.l,,; b,+m]. This proves the claim.

Consider again two cases depending on the behavior of the trajectary of

Case 3a.The pointc is non-recurrent. Choodé so small that n@,, is in U for n > 0.

Let us show that thi§/ satisfies the requirements of the theorem. Indegd¢ U for

all n, thusb,, ¢ U for all n. Hence, thef-orbit and theg-orbit of b, are the same.
Therefore if the itineraries af; andb; for f andg respectively are the same then there
are no inverse images of turning pointsjfoin a one-sided neighborhood,[ b;) of ¢,

a contradiction.

Case 3b.The pointc is recurrent. LetU be the set chosen after formula (2.5). We are
going to look at howy,, behaves whem grows. More precisely, we catl specialif
¢n, € U (thisincludes: = 0) and prove by induction thatifis special thery,, > (u/A)™.
This is clearly true fon = 0. Now we show how to make an induction step. Note that
the situation is very similar to what we encountered when we were provingtfsatot
an endpoint of a wanderval.

Assume that is special andh + m is the next special number. By the definition of
U we havem > M. Our goal is to estimate,,+,, from below; to this end we estimate
from below quotientsy,,+1+k/vn+r for k =0,1,2, ..., m — 2. We have

Yn+1+k /'Yn+k =

|Cn+2+k - bn+2+k‘ EQn+k
b
EQn+1+k |Cn+1+k - bn+1+k:‘

on the other hand we ha¥g. 14, = f*(bn+1), and thu,so4; = f(bn+1+5), SO

_ |f(Cn+1+k) - f(bn+1+k)‘ _
’Yn+l+k/7n+k = 7 = T(Cn+1+k, bn+1+k) .
|Cn+1+k - bn+l+ka (Cn+1+k)|

Thus we can estimatg,x+1/v»+x from below byn or K. As before, we normally use
7, but we have to us& in some cases. The first case is whem. € V U W. This
can happen at mogttimes during each ofV consecutive steps. The second case is
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when|c,+146 — bu+1+1| > 0. This can happen at mostd times. The reason is that the
intervals ¢;; b;) for j =n+1,...,n+m— 1 are pairwise disjoint. Indeed, suppose that
they are not. Then one of them intersects the interyal (; b,+.) (because the images
of non-disjoint intervals are non-disjoint). The latter interval is contained imvhile
the one intersecting it is disjoint froii, a contradiction.

The third case would be whet),+1+r and b,,+14; lie on the opposite sides of a
periodic singular point. We claim that this is impossible. Call this periodic paiBty
the choice ofU the trajectory ofr is disjoint fromU. On the other hand, we assumed
that the itineraries of; andb, for f andg respectively coincide. This together with the
fact thatf andg coincide outsiddé/ implies thatf™*~1(z) € [cp+m;bn+m] C U, @
contradiction.

Hence, the estimate 6f,+1+ / v+« from below byK will be used at most 1wp/N
times when the first case occurs, and at mgsttimes when the second case occurs.

FOr vp4m /vn+m—1 We have to madify slightly the estimate, since perhaps,+1 is
different from f (b,,+1m). Since|bp+m+1 — f(bn+m)| < €, We get

Vv > |f(cn+m) - f(bn+m)| — & > %nmijj - 1 7
5an+mfl‘fl(cn+m)‘ Qp+m
wherej =mp/N +1/6 + 2. Using (2.5) and (2.1), and sinee > M, we get
p\™ 1
Yn+m Z Yn * 2 (X) - a)\n+m .

Since

(5)2(5)" - o = ()

(because of (2.3) and singgm > M > N),we gety,+m > (u/\)"™. This completes
the induction step.
For every speciah we get

|Cn+1 - bn+1| Z Yn€EQn Z Eaﬂna
a contradiction sincg > 1. This completes the proof. [

Let us make an observation that leads to a result which seems to be of some interest
by itself. Namely, in the beginning of the whole proof and in the beginning of Case 3
we did not use the assumption that the peiig a turning point. We used only the fact
that the lower Lyapunov exponent &ic) was positive. We concluded that this point did
not belong to a wanderval. Hence, we get the following result.

Proposition 2.1. Let f be a piecewise smooth map with non-zero shrinkability. Then at
every point contained in a wanderval the lower Lyapunov exponent is non-positive.

Some time ago one of the authors (AB) got interested in the question of existence of
wandervals under the assumptions less restrictive than those from [MMS]. In particular
it would be nice to find out whether a piecewise smooth map with some singular points at
which the order of degeneracy is different to the left and to the right may have wandervals
(in the unimodal case this question is quoted in [MS], where it is noted that the proof
from [MMS] breaks down under new milder assumptions). We would like to point out
that Proposition 2.1 answers the question in a rather specific situation. It also shows that
it may make sense to consider a question of whether points with specific properties may
be contained in a wanderval (one could call this a “pointwise” approach to the problem
of existence of wandervals). Note also that we only né&gmoothness while a higher
smoothness is necessary for all previous results (see, e.g., [MMS]).
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3. Discussion of Assumptions

We made three assumptions in Main Theorem: piecewise smoothness, non-zero shrink-
ability and the Collet-Eckmann condition at a turning painNow we will discuss
them.

Our definition of piecewise smoothness is as unrestrictive as possible. In particular,
it does not prevent existence of wandervals, even ones that do not come close to the
turning points. An example of such a map can be easily derived from Denjoy’s example
of a circle diffeomorphism with wandervals (see [CN]).

We compensate by assuming that a turning peisatisfies the Collet-Eckmann
condition. Then the trajectory of this point has nothing to do with wandervals (see
Proposition 2.1).

The assumption on non-zero shrinkability is in fact a condition on the behavior of
the map close to singular points. Letbe a singular half-point. We will say thdtis
non-flatata if either f’(a) # 0 or there exists a neighborho®d (one-sided) of: and a
constantZ > 0 such that for every € W'\ {a},

1f@) — f(a)]
L< ——— = <1 (3.1)
[t —al [f(D)]
Lemma 3.1. If aisthe only singular pointif” = [a; b) and(3.1)holds forallt € (a;b),
thenr(x,y) > L for everyx,y € W.

Proof. The sign off” on W is constant; we may assume it is positive. We may also
assume that is the left endpoint ofi¥’. The proof in the remaining three cases is
similar. We have by (3.1),

(f(f) - f(a)>/ _ SO —a) = (1) — f(a)) 0
t—a (t — a)? -

i

so the function f(¢t) — f(a))/(t — a) is non-decreasing. Hencedf< = < y < b, then

(f®) — f(a))/(y — a) = (f(z) — f(a))/(z — a). Therefore
f) - fl@) [y — fla) _ (f(y) —fl@)  f(=) —f(a)) T-a_ g,

y—T y—a y—a T—a y—zx

so we get
f@) — @) _ f) = fla)  f(2) ~ fla)

Yy—x - Yy—a - r—a

Hence, by (3.1) we get(z,y) > L andr(y,x) > L. This completes the proof. O

Corollary 3.2. If f is smooth oria, b], non-flat ata andb, and f’ is non-zero or{a, b)
then f has non-zero shrinkability ofx, b].

To justify our use of the term “non-flat”, we prove the following lemma.

Lemma 3.3. Let/ > 1 be an integer and lef be a function of clas€’'~* defined in a
(one-sided) neighborhood of a pointAssume thaf?(a) = 0fori =1,...,/—1, and
that f()(a) exists and is non-zero. Theris non-flat ata.

In particular, if a is a non-degenerate critical point of (that is, f'(a) = 0 but
f"(a) # 0) thenf is non-flat ata.
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Proof. By the definition of the derivative, we have

im T = 00
Thus, by I'Hopital’s rule,
. FHO O O _ )
M-t - 2 MMe=y =
Therefore
O

li =
o (= a) ) 1
s0 (3.1) holds in a neighborhood @fvith L = 1/(2). Thus, f is non-flat ata. O

On the other hand, assume that (3.1) holds.} a and f/(¢) > 0 (the other three
cases are similar) we get from the first inequality of (3.1),

1

[In(f(®) — f@)]' < o)

Integrating from¢ (close toa) to someb > a we get

In(f(0) = f(a)) = In(f(t) - f(a)) < %[ln(b —a)—In(t —a)].

Therefore
f(®) — f(a) > const.¢ — a)*/ .

This means thaf really cannot be flat (in the common sensej}.at

The assumption on non-zero shrinkability restricts severely possible behaviors near
singular points that are not turning points. It is easy to check that if the singularities from
both sides of such a point have the same order, shrinkability stays positive. However, if
they are of different orders, shrinkability is zero.

Thus, our assumptions on the behavior on both sides of a singular point are quite
different than the assumptions in [MS]. We don'’t care if the orders of the singularities
are different if the point is a turning point, but it is important that they are the same if
the point is not a turning point. In [MS] this is just the opposite.

The third assumption we are making is the Collet-Eckmann condition at one of the
turning points. One can ask whether we can replace it by a subexponential expansion.
We cannot do it when using our techniques. The trajectory of the turning point may
be coming back t@&/ with some fixed frequency, and we have to guarantee sufficient
expansion between each two consecutive returns.

4. Corollaries

Main Theorem is stated in a rather technical way. However, it has important conse-
guences, that can be stated in more general terms. In order to do it, we need a couple of
lemmas. They are very simple, so we state them without proof.

Lemma 4.1. If g satisfies one of the conditions from the conclusion of Main Theorem
then it is not essentially conjugate fo
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Lemma 4.2. Let f be a piecewise smooth map andlebe a neighborhood of a turning
pointc of f. Leth : [0, 1] — [0, 1] be a function of clas€'*° that isO outsideU/ and1
in some neighborhood ef Then the maph tends to0 in the C* topology as= — O.
Moreover,f + h € B(f,e,U, ) if (f +h)([0,1]) C [0, 1].

Thus, we can always make perturbations of the type described in the Main Theorem.
Now, our corollaries are the following.

Corollary 4.3. Let f be a piecewise smooth map with non-zero shrinkability, satisfying
Collet-Eckmann condition at some turning point. Theis notC"-structurally stable
for anyr < oc.

Corollary 4.4. Let f be a piecewise smooth map with non-zero shrinkability, satisfying
the Collet-Eckmann condition at a turning pointThenf is C"-structurally sensitive
at c for everyr < oo.

Readers for which the term “non-zero shrinkability” is too special, can use the
results of the previous section and change the assumptions in the above corollaries
from “a piecewise smooth map with non-zero shrinkability” to “a smooth map with
non-degenerate critical points”.

For unimodal maps the situation is somehow simpler. If a critical pdiat different
itineraries forf andg, then there ig € (0, 1) such that is periodic fortf + (1 — t)g.
Therefore, in view of Lemma 3.3, we can state another corollary as follows.

Corollary 4.5. Foranyl < r < oo, in the space o€ unimodal interval maps with
nondegenerate critical points, the set of Collet-Eckmann maps is nowhere dense and
every such map can be approximated by maps with the critical point belonging to a
superattracting periodic orbit.
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