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Abstract. We show that if P is quadratic polynomial with a

fixed Cremer point and Julia set J , then for any monotone map

ϕ : J → A from J onto a locally connected continuum A, A is a

single point.

1. Introduction

Let P : C → C be a complex polynomial of degree d and let JP be

its Julia set. The topological structure of connected Julia sets J = JP

and the dynamics of P |J has been studied in a number of papers. The

best case, from the topological point of view, is the case when J is

locally connected. Then J is homeomorphic to the quotient space of

the unit circle S1/ ∼= J∼ with respect to a specific equivalence relation

∼, called an invariant lamination. In this case the map σ : S1 → S1,

defined by σ(z) = zd on the unit circle in the complex plane C, induces

a map f∼ : J∼ → J∼ which is conjugate to the restriction P |J . Spaces

like J∼ are called below topological Julia sets while the induced maps

f∼ on them are called topological polynomials. Thus, in the locally

connected case, topological polynomials acting on topological (locally
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connected) Julia sets are good (one-to-one) models for true complex

polynomials acting on their Julia sets.

Even if J is not locally connected this approach works in many cases.

Given a polynomial P , call its irrational neutral periodic points CS-

points ; a CS-point p is said to be a Cremer point if the power of the

map which fixes p is not linearizable in a small neighborhood of p.

Suppose that P is a polynomial with connected Julia set and no CS-

points. In his fundamental paper [Kiw04] Jan Kiwi obtained for such P

an invariant lamination ∼P on S1 such that P |JP
is semi-conjugate to

the induced map f∼P
: J∼P

→ J∼P
by a monotone map m : JP → J∼P

(by monotone we mean a continuous map whose point preimages are

connected). In addition Kiwi proved in [Kiw04] that for any P -periodic

point p ∈ JP the set JP is locally connected at p and m−1◦m(p) = {p}.
Thus, Kiwi’s approach allows one to describe the dynamics of these

polynomials restricted to their Julia sets by means of a certain monotone

map onto a locally connected continuum; this dynamically motivated

monotone map is a semiconjugacy between the polynomial and the cor-

responding induced map (in this case the induced map is a topological

polynomial). The aim of this paper is to show that in some cases the

entire approach which uses modeling of the Julia set by means of a

monotone map onto a locally connected continuum breaks down for

topological reasons. By a basic Cremer polynomial we mean a qua-

dratic polynomial P with a fixed Cremer point. Our main result is

Theorem 2.2.

Theorem 2.2. If P is a basic Cremer polynomial and ϕ : JP → A

is a monotone map onto a locally connected continuum A, then A is a

single point.
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Let K be a continuum such that if ϕ : K → A is a monotone map

onto a locally connected continuum A then A is a single point. We

call such continua incompressible and show in Theorem 2.2 that if P

is a basic Cremer polynomial then its Julia set JP is an incompressible

continuum. Thus, in the case of a basic Cremer polynomial, studying

the Julia set by means of a monotone map onto a locally connected

continuum is impossible, and one needs a different approach (see, e.g.,

[BO06]).

2. Main Theorem

An unshielded continuum K ⊂ C is a continuum which coincides

with the boundary of the infinite complementary component to K.

Given an unshielded continuum K we denote by Rα the external (con-

formal) ray corresponding to the external angle α and by Πα = Rα\Rα

the corresponding principal set (usually, the continuum is fixed in the

beginning of the argument, so we can omit K from the notation; if we

do not want to specify the angle we will omit α too). A crosscut C of

K is an open arc in C\K whose closure meets K in two distinct points.

Given an external ray R, a crosscut C is said to be R-transversal if C

intersects R (topologically transversely) only once; if t ∈ R then by Ct

we always denote an R-transversal crosscut such that Ct ∩ R = {t}.
The shadow of C, denoted by Sh(C), is the bounded component of

C \ C ∪K. Given an external ray R we define the (induced) order on

R so that x <R y (x, y ∈ R) if and only if the point x is “closer to K

on the ray R than y”.

Our main aim is to prove Theorem 2.2. However in order to do so

we first prove a geometric Lemma 2.1 which could be of independent

interest. Given a ray R we call a family of R-transversal crosscuts Ct,
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t ∈ R an R-defining family of crosscuts if for each t ∈ R there exists

a R-transversal crosscut Ct such that diam(Ct) → 0 as t → K and

Sh(Ct) ⊂ Sh(Cs) if t <R s.

Lemma 2.1. Let K be an unshielded continuum and R be an external

ray to K. Then there exists an R-defining family of R-transversal

crosscuts Ct, t ∈ R.

Proof. Given a point t ∈ R, any R-transversal crosscut Ct consists of

two semi-open arcs connecting t to K. On the uniformization plane one

of them will “grow” from the point corresponding to t in the positive

(counterclockwise) direction with respect to the ray; such semi-open

arcs will be called positive arcs at t. Similarly we define negative arcs

at t. The infimum of the diameters of all positive arcs at t is denoted

by p(t); similarly we define n(t) for negative arcs at t.

By way of contradiction and without loss of generality we may as-

sume that there exists γ > 0 and a sequence ti → K in R such that

n(ti) > γ, i = 1, 2, . . . . By [Mil00] we can choose a sequence of pair-

wise disjoint transversal crosscuts Chi
, hi → K so that the area of their

shadows Sh(Chi
) and the diameters diam(Chi

) converge to 0. Hence we

can find a crosscut Chj
= Cj so that the area of Sh(Cj) is less than

γ2/99 and diam(Cj) ≤ γ/99. Then the negative “half” of Cj, the part

of the ray R contained in Sh(Cj), and the set K enclose an open simply

connected domain U on the plane, the “negative half” of Sh(Cj).

Choose t = ti <R hj. Then the arc length of the subarc [t, hj]

in R is more than 2γ/3. Choose a point x ∈ U so that there is a

straight segment from t to x inside U of length less than γ/9 (since

R is a smooth curve such segment exists). Consider all closed balls B

contained in U such that x ∈ B. By compactness this family contains
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a ball B = B(y, ε) of maximal radius. Set ∂B = S and show that the

set A = S ∩ ∂U has more than one point. Clearly, A is non-empty

(otherwise a ball with the same center and slightly bigger radius will

contain x and will be contained in U , a contradiction). Suppose that

A = {z} is a single point. A tiny shift of y away from z along the line

zy creates a new point y′. We are about to construct a ball centered at

y′ of bigger than ε radius contained in U and containing x which will

contradict the assumptions about B. Consider two cases.

(1) The angle ∠xyz is obtuse. Consider the ball B
′
= B(y′, ε). If y′

is sufficiently close to y, then x ∈ B
′
. Moreover, the boundary S ′ of

B
′
consists of two arcs, L′ and L′′, where L′ is outside B and L′′ ⊂ B.

Then L′ is disjoint from ∂U because it is very close to the half-circle of

S which is cut off S by the diameter of B perpendicular to yz and hence

positively distant from ∂U . On the other hand, L′′ is disjoint from ∂U

because L′′ ⊂ B. Hence B
′ ⊂ U and a slightly bigger ball with the

same center will contain x and will be contained in U , a contradiction.

(2) The angle ∠xyz is not obtuse. Let H be the line segment through

x and perpendicular to the segment yz. Then the component L of

S \H not containing z is positively distant from ∂U . Let p ∈ S ∩H.

Since the angle of the triangle 4y′zp at p is greater than the angle of

this triangle at z, we see that d(y′, z) > d(y′, p) ≥ d(y′, x). On the

other hand, since ∠xyz is not obtuse then ∠pyy′ is not acute, and so

d(p, y′) = ε′ > d(p, y) = ε ≥ d(x, y). Set B′ = B(y′, ε′). As before, the

boundary S ′ of B
′
consists of two arcs, L′ and L′′, where L′ is outside

B and L′′ ⊂ B. Then L′ is disjoint from ∂U because it is very close

to L and L′′ is disjoint from ∂U because L′′ ⊂ B, a contradiction since

ε′ > ε.
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Thus, B must intersect ∂U at at least two points. Since the area

of Sh(Cj) is less than γ2/99 then ε < γ/17. If there is a point a ∈
Cj ∩ S then there is a negative arc at t - the concatenation of the

straight segment from t to x, the segment inside B from x to a, and the

appropriate part of Cj - of diameter less than γ/9+2γ/17+ γ/99 < γ,

a contradiction. If there is a point b ∈ K ∩ S then there is a negative

arc at t - the concatenation of the straight segment from t to x and the

segment inside B from x to b - of diameter less than γ/9+2γ/17 < γ, a

contradiction. Hence M = B ∩ ∂U = S ∩ ∂U ⊂ R. On the other hand,

by a theorem of Jørgensen (see [Jør56] and [Pom92]) M is connected.

Hence M is a non-degenerate subarc of S. Since d(S, K) > 0, we

can construct another ball B
′
which intersects M only at its endpoints

such that B
′ ∩K = ∅. Then B

′ ∩R cannot be connected since B
′ ∩R

misses the entire arc M (except for its endpoints) which contradicts

the theorem of Jørgensen. Hence n(t) → 0, p(t) → 0 as t → K which

shows that there is a family of R-transversal crosscuts Ct, t ∈ R, such

that diam(Ct) → 0 as t → K.

This family can be modified to satisfy the second condition of the

lemma so that Sh(Ct) ⊂ Sh(Cs) if t <R s. Observe that Ct is the union

of a negative and a positive arc at t. We modify negative arcs and

positive arcs separately to satisfy the second condition of the lemma,

and since it does not matter which side we consider we denote the one-

sided arcs we deal with by St. Choose Ct so that for all s ≤R t we have

diam(Cs) ≤ ε for a small ε, follow the ray beyond t towards K, and

denote the segment of the ray from t to a point s ∈ R with s <R t by

Q(t, s). Let Π be the principal set of R and consider two cases.

(1) Suppose that for every s, s <R t we have d(s, t) ≤ 3ε. By defini-

tion St is positively distant from Π; let δ = dist(St, Π) > 0 and choose
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u <R t so that for all s ≤R u we have diam(Ss) < min(ε/9, δ/99) and

dist(u, Π) < min(ε/9, δ/99). Then Su is disjoint from St by the choice

of δ. Since the ray is smooth, it is easy to see that we can create a

family of short pairwise disjoint arcs Av from points v ∈ Q(t, u) to St

of diameter less than 4ε where each connector ends at a point ev ∈ St;

moreover, these arcs can be chosen disjoint from Su and each other

and such that Av ∩ R = {v}. Denote the union of Av and the piece of

St from ev to K by S ′v. Then the family S ′v, v ∈ Q(t, u) together with

St = S ′t and Su = S ′u satisfies the second condition of the lemma and

diam(S ′v) < 5ε.

(2) Suppose that there is the first point u ∈ R, s <R t such that

dist(t, u) = 3ε. Then Su is disjoint from St, and we can proceed the

same way as before. That is, we get a family of negative arcs S ′v, v ∈
Q(t, u) which together with St = S ′t and Su = S ′u satisfies the second

condition of the lemma and diam(S ′v) < 5ε.

Let us proceed with this construction. If case (1) takes place then

on the next step we replace ε by ε/9. If the case (2) takes place we

may need to make several steps until we finally get u such that for all

s ≤R u we have diam(Ss) < ε/9. From this time on we proceed with

ε replaced by ε/9. Clearly, this way we complete the construction and

thus the proof of the lemma. ¤

Given an external ray Rα and an Rα-defining family of crosscuts Ct

one can define the impression by Imp(α) = ∩t∈RαSh(Ct). It can be

easily shown that this definition is equivalent to the standard one and

that Imp(α) is independent of the choice of the Rα-defining family of

crosscuts [Pom92].

Let us now state a few facts about basic Cremer polynomials P (see,

e.g., [GMO99]). The notation introduced here will be used from now
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on. For convenience, parameterize quadratic polynomials P as z2 + v.

Denote the Cremer fixed point of P by p and the critical point of P

by c (c = 0, however we will still denote the critical point of P by

c). Also, denote by σ the angle doubling map of the circle. It is

well-known that if P ′(p) = e2πiρ then there exists a special rotational

Cantor set F ⊂ S1 such that σ restricted on F is semiconjugate to

the irrational rotation by the angle 2πρ [BS94]; the semiconjugacy ψ

is not one-to-one only on the endpoints of countably many intervals

complementary to F in S1 (ψ maps the endpoints of each such interval

into one point). Of the complementary intervals the most important

one is the critical leaf (diameter) with the endpoints denoted below by

α and β = α + 1/2 (for definiteness we assume that 0 < α < 1/2).

The limit set F = ω(α) is exactly the set of points whose entire orbits

are contained in [α, β] where the arc is taken counterclockwise from α

to β. By Theorem 4.3 of [GMO99] we have that p ∈ Imp(γ) for every

γ ∈ F , and {p, c,−p} ⊂ Imp(α) ∩ Imp(β) = K.

Theorem 2.2. If P is a basic Cremer polynomial and ϕ : JP → A

is a monotone map onto a locally connected continuum A, then A is a

single point.

Proof. Set J = JP . By way of contradiction suppose that ϕ : J → A is

a monotone map onto a locally connected non-degenerate continuum

A. Since J (and hence all its subcontinua) is non-separating then by

the Moore Theorem [Moo25] the map Φ, defined on the entire com-

plex plane C, and identifying precisely fibers (point-preimages) of ϕ

has C as its range. This implies that Φ(J) = ϕ(J) = A is a den-

drite (locally connected continuum containing no simple closed curve).
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External (conformal) rays Rα in the J-plane are then mapped into con-

tinuous pairwise disjoint curves ϕ(Rα) in the A-plane; below we call the

curves ϕ(Rα) A-rays even though the construction is purely topologi-

cal. Clearly, if Rα = R lands then so does ϕ(R) (i.e., ϕ(R) converges

to a point). Let us show that in fact ϕ(R) lands even if R does not

(and, hence, the principal set Π of R is not a singleton). By Lemma 2.1

there exists an R-defining family of crosscuts Ct. Since ϕ is continuous

then diam(ϕ(Ct)) → 0 as t → K. Suppose that there is a sequence

tn → K such that ϕ(Ctn) is an arc for all tn ∈ R (and hence a crosscut

of A) and these crosscuts are all pairwise disjoint. Since A is locally

connected then by Carathéodory theory ϕ(Ctn) converges to a unique

point x ∈ A which implies that in fact ϕ(Ct) → x as t → K and ϕ(R)

lands. Otherwise denote by Nt the “negative half” of Ct. Without loss

of generality we may assume that there exists t ∈ R such that for all

s <R t in R, all ϕ(Ns) have the same point, say, z, in common, which

immediately implies that ϕ(R) lands at z.

The union U of P -preimages of the points p and c is countable, and

so is the set ϕ(U). By Theorem 10.23 of [Nad92] A has countably many

branch points. Hence A contains uncountably many cutpoints of order

2 which do not belong to ϕ(U), i.e. points x 6∈ ϕ(U) such that A \ {x}
consists of exactly 2 components. Choose such a cutpoint x ∈ A and

denote the two components of A \ {x} by B and C. Let us show that

there are at least two A-rays landing at x and cutting the entire plane

into two half-planes each of which contains a component of A \ {x}.
Indeed, consider A-rays ϕ(Rα′) and ϕ(Rβ′) landing in B. Then there

are two arcs into which α′, β′ divide the circle, and exactly one of them

contains only angles whose A-rays land in B. Hence the entire set of

angles whose A-rays land in B is contained in an open arc, say, QB.
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Similarly, the set of angles whose A-rays land in C is contained in an

open arc QC . Clearly, S1 \ (QB ∪ QC) is the union of two closed arcs

or points, and two angles - one from each of the components - would

give rise to the desired two rays. Denote these angles by α′′ and β′′.

It follows that the fiber Z = ϕ−1(x) contains both principal sets Πα′′

and Πβ′′ . Also, Z cuts J into two connected sets (ϕ-preimages of B

and C). Finally, no forward P -image of Z contains c or p. Let us

now study the P -trajectory of Z. First we show that there exists no

n such that σn(α′′) = σn(β′′)± 1/2. Indeed, otherwise P n(Z) contains

Πσn(α′′) and Πσn(β′′) = −Πσn(α′′). Since c = 0 6∈ P n(Z) (by the choice

of x) then there exists y ∈ P n(Z), y 6= 0 such that −y ∈ P n(Z) too.

Then P |P n(Z) is not a homeomorphism. By a theorem of Heath (see

[Hea96]) it follows that then P n(Z) must contain a critical point, a

contradiction.

Now, given two angles θ, θ′ we define d(θ, θ′) as the length of the

shortest arc between θ and θ′ (we normalize the circle so that its

length is equal to 1). It is easy to see that d(σ(θ), σ(θ′)) = T (d(θ, θ′))

where T : [0, 1/2] → [0, 1/2] is the appropriate scaling of the full tent

map. The dynamics of T shows then that there exists m such that

d(σm(α′′), σm(β′′)) ≥ 1/3 and by the previous paragraph we may also

assume that d(σm(α′′), σm(β′′)) < 1/2. Since the longest complemen-

tary arcs to the union of two Cantor sets F ∪ F + 1/2 are of length

1/4 we see that the shorter open arc complementary to σm(α′′), σm(β′′)

contains points of the set F (or F +1/2) and then since its length is less

than 1/2 the other arc contains points of the same set too. However

the closed connected set Pm(Rα′′ ∪ Z ∪ Rβ′′) does not contain p (or,

respectively, −p). Choose an angle of F (resp. F +1/2) which belongs

to the arc of the circle at infinity corresponding to the part of the plane
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not containing p (resp. −p). Then its impression does not contain p

(resp. −p), a contradiction. ¤

References

[BO06] A. Blokh and L. Oversteegen, The Julia sets of quadratic Cremer poly-

nomials, Topology and its Applications (to appear).

[BS94] S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots,

and the devill’s staircase, Math. Proc. Camb. Phil. Soc. 115 (1994),

pp. 451–481.

[GMO99] J. Grispolakis, J. Mayer, and L Oversteegen, Building Blocks for Julia

sets, Trans. Amer. Math. Soc. 351 (1999), 1203–1225.

[Hea96] J. Heath, Each locally one-to-one map from a continuum onto a tree-like

continuum is a homeomoprhism, Proc. Amer. Math. Soc., 124 (1996),

2571–2573.

[Kiw04] J. Kiwi, Real laminations and the topological dynamics of complex poly-

nomials, Advances in Math. 184 (2004), no. 2, pp. 207–267.

[Jør56] V. Jørgensen, On an inequlality for the hyperbolic measure and its appli-

cation in the theory of functions, Math. Scand. 4 (1956), pp. 113–124.

[Mil00] J. Milnor, Dynamics in one complex variable, 2nd edition, Vieweg,

Wiesbaden (2000).

[Moo25] R. L. Moore, Concerning upper semi-continuous collections of continua,

Trans. Amer. Math. Soc., 27 (1925), no. 4, 416–428.

[Nad92] S. Nadler, Jr, Continuum theory. An introduction. Monographs and

Textbooks in Pure and Applied Mathematics 158, Marcel Dekker, Inc.,

New York (1992).

[Pom92] Ch. Pommerenke, Boundary behavior of conformal maps, Springer-

Verlag, Berlin Heidelberg (1992).

(Alexander Blokh and Lex Oversteegen) Department of Mathematics, Uni-

versity of Alabama at Birmingham, Birmingham, AL 35294-1170

E-mail address, Alexander Blokh: ablokh@math.uab.edu

E-mail address, Lex Oversteegen: overstee@math.uab.edu


