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ABSTRACT. We construct a model of the cubic connectedness locus.

1. INTRODUCTION

The concepts of renormalization and tuning appear in the context of the
Mandelbrot set M2 = {c ∈ C | Qn

c (0) 6→ ∞}, where Qc(z) = z2 + c,
and serve to explain a self-similar structure ofM2. Self-similarity ofM2

means, in particular, that there are infinitely many homeomorphic copies
ofM2 inM2, the so-called baby Mandelbrot sets. Baby Mandelbrot sets
accumulate to any boundary point of M2. If c is in a baby Mandelbrot
set, then Qc is obtained from another quadratic polynomial by “tuning”, i.e.
consistently pinching closures of periodic Fatou components and their pull-
backs. A baby Mandelbrot set consists of all tunings of a given polynomial
different from z 7→ z2 and is contained in a unique maximal one.

If we collapse the closure of the main cardioid and all maximal baby
Mandelbrot sets, we will obtain a dendrite D(M2) that reveals the macro-
structure ofM2. A self-similar description ofM2 involves knowingD(M2)
together with a subset of marked points in D(M2), where each marked
point is a collapsed maximal baby Mandelbrot set.

In this paper, we use these ideas to give a model of the cubic connect-
edness locusM3. Basically, we consider, for every polynomial f , its chief
g, that is, a polynomial such that f is a tuning of g, and g is not a non-
trivial tuning of another polynomial. Our model forM3 relies upon study-
ing chiefs of cubic polynomials. For d = 2, the chiefs define maximal baby
Mandelbrot sets. Thus, our approach gives a macro-view ofM3, similar to
D(M2).

We are not aware of any other models ofM3.
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2. STATEMENT OF THE MAIN RESULTS

The parameter space of complex degree d polynomials P is the space
of affine conjugacy classes [P ] of these polynomials. The connectedness
locus Md consists of classes of all degree d polynomials P , whose Julia
sets JP are connected. The Mandelbrot set M2 has a complicated self-
similar structure understood through the “pinched disk” model [13, 14, 20].

In this paper, we find a combinatorially defined upper semi-continuous
(USC) partition of M3. A property of a polynomial is combinatorial if
it can be stated based only upon knowing which pairs of rational external
rays land at the same point and which pairs do not. A combinatorial USC
partition ofM3 yields a continuous map ofM3 to a quotient space of CrP,
the space of unordered cubic critical portraits. Let us describe our approach.

Let P be such that [P ] ∈M3. A point x is (P -)legal if it eventually maps
to a repelling periodic point. An unordered pair of rational angles {α, β} is
(P -)legal if the external rays with arguments α and β land at the same legal
point of P . Write ZP for the set of all P -legal pairs of angles; call ZP the
l-set of P . Such sets are closely related to rational and real laminations of
polynomials introduced by J. Kiwi [16, 18].

A cubic polynomial P ∈ M3 is visible if ZP 6= ∅ and invisible other-
wise. If P is visible, denote by CP the set of all critical portraits compatible
with ZP (i.e., no critical chord from a critical portrait in CP separates a P -
legal pair of angles). Clearly, CP is closed. The set CP is the combinatorial
counterpart of P .

In this paper we will define, for every [P ] ∈ M3, a closed subset AP of
CrP called an alliance. The main properties of alliances are:

(1) if P is visible, then CP ⊂ AP ;
(2) distinct alliances are disjoint;
(3) the alliances form an USC partition of CrP.

One special alliance is said to be prime. It contains CP for all visible
polynomials P with a non-repelling fixed point, some other combinatorial
counterparts, and is associated with all invisible polynomials P . The other
alliances are called regular; they are combinatorial counterparts of certain
visible polynomials, and there are uncountably many of them.

Main Theorem. All alliances form a USC partition {AP} of CrP. The
union of regular alliances is open and dense in CrP. The map P 7→ AP is
continuous and mapsM3 onto the quotient space CrP/{AP}.

Thurston [20] gave a detailed, conjecturally homeomorphic, model of
the quadratic connected locusM2. The situation with the cubic connected-
ness locusM3 is different. Indeed,M3 is complex 2-dimensional. Cubic
polynomials are richer dynamically than quadratic ones (critical points are
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essential for the dynamics of polynomials, and cubic polynomials generi-
cally have two critical points) which makes the cubic case highly intricate
combinatorially [7, 10]. This results into a breakdown of some crucial steps
of [20] (e.g., cubic invariant laminations admit wandering triangles [4, 5]).
Also,M3 is known to be non-locally connected [19] and to contain copies
of various non-locally connected quadratic Julia sets [12]. All this makes
the cubic case much harder and significantly complicates a complete de-
scription ofM3.

3. CRITICAL PORTRAITS AND LAMINATIONS

We assume familiarity with complex polynomial dynamics, including Ju-
lia sets, external rays, etc. All cubic polynomials in this paper are assumed
to be monic, i.e., of the form z3+ a quadratic polynomial, and to have con-
nected Julia sets. We can parameterize the external rays of a cubic poly-
nomial P by angles, i.e., elements of R/Z. The external ray of argument
θ ∈ R/Z is denoted by RP (θ). Clearly, P maps RP (θ) to RP (3θ).

For sets A, B, let A ∨ B be the set of all unordered pairs {a, b} with
a ∈ A, b ∈ B; thus, the l-set ZP of P consists of all pairs {α, β} ∈ (Q/Z)∨
(Q/Z) such that RP (α) and RP (β) land at the same legal point of P .

A chord ab is a closed segment connecting points a, b of the unit circle
S = {z ∈ C | |z| = 1}. If a = b, the chord is degenerate. Two distinct
chords of D cross if they intersect in D (alternatively, they are called linked).
Sets of chords are compatible if chords from distinct sets do not cross.

Write σd for the self-map of S that takes z to zd. A chord ab is (σd-)
critical if σd(a) = σd(b). Let CCh be the set of all σ3-critical chords with
the natural topology; CCh is homeomorphic to S. A critical portrait is a
pair {c, y} ∈ CCh ∨ CCh such that c and y do not cross. Let CrP be the
space of all critical portraits. It is homeomorphic to the Möbius band [21].

Motivated by studying l-sets of visible polynomials, Thurston [20] de-
fined invariant laminations as families of chords with certain dynamical
properties. We use a slightly different approach (see [3]).

Definition 3.1 (Laminations). A prelamination is a family L of chords
called leaves such that distinct leaves are unlinked and all points of S are
leaves. If, in addition, the set L+ =

⋃
`∈L ` is compact, then L is called a

lamination.

From now on L denotes a lamination (unless we specify that it is a pre-
lamination). Gaps of L are the closures of components of D \ L+. A gap G
is countable (finite, uncountable) if G ∩ S is countable and infinite (finite,
uncountable). Uncountable gaps are called Fatou gaps. For a closed convex
set H ⊂ C, maximal straight segments in Bd(H) are called edges of H .
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Convergence of prelaminations Li to a set of chords E is understood as
Hausdorff convergence of leaves of Li to chords from E . Evidently, E is a
lamination. A lamination L is nonempty if it contains nondegenerate leaves,
otherwise it is empty (denoted L∅). Say that L is countable if it has count-
ably many nondegenerate leaves and uncountable otherwise; L is perfect if
it has no isolated leaves (thus, Fatou gaps of perfect laminations have no
critical edges).

If G ⊂ D is the convex hull of G ∩ S, define σd(G) as the convex hull
of σd(G ∩ S). Sibling (σd)-invariant laminations modify Thurston’s [20]
invariant geodesic laminations. A sibling of a leaf ` is a leaf `′ 6= ` with
σd(`

′) = σd(`). Call a leaf `∗ such that σd(`∗) = ` a pullback of `. Note
that the map σd can be extended continuously overL+ by extending linearly
over all leaves of L. We also denote this extended map by σd.

Definition 3.2 ([3]). A (pre)lamination L is sibling (σd)-invariant if
(1) for each ` ∈ L, we have σd(`) ∈ L,
(2) for each ` ∈ L there exists `∗ ∈ L with σd(`∗) = `,
(3) for each ` ∈ L such that σd(`) is a nondegenerate leaf, there exist

d pairwise disjoint leaves `1, . . . , `d in L such that `1 = ` and
σd(`1) = · · · = σd(`d).

Collections of leaves from (3) above are full sibling collections. Their
leaves cannot intersect even on S. By cubic (resp., quadratic) laminations,
we always mean sibling σ3-(resp., σ2-) invariant laminations. When dealing
with cubic laminations, we write σ instead of σ3. From now on L (possibly
with sub- and superscripts) denotes a cubic sibling invariant (pre)lamination.

These are properties of cubic sibling invariant laminations [3]:
gap invariance: if G is a gap of L, then H = σ(G) is a leaf of L

(possibly degenerate), or a gap of L, and in the latter case, the map
σ|Bd(G) : Bd(G) → Bd(H) is an orientation preserving composi-
tion of a monotone map and a covering map (gap invariance is a part
of Thurston’s original definition [20]);

compactness: if a sequence of sibling invariant prelaminations con-
verges to a set of chordsA, thenA is a sibling invariant lamination.

A chord ` is inside a gap G if ` is, except for the endpoints, in the interior
of G. A gap G of L is critical if either all edges of G are critical, or there
is a critical chord inside G. A critical set of L is a critical leaf or a critical
gap. We also define a lap of L as either a finite gap of L or a nondegenerate
leaf of L not on the boundary of a finite gap.

The following facts are well-known (see, e.g., [2] or [11]). Fatou gaps of
σd-invariant laminations are (pre)periodic. IfU is a σd-periodic Fatou gap of
period n and the map σnd |Bd(U) is of degree k > 1, then there is a monotone
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map from Bd(U) to S collapsing edges of U and semiconjugating σnd |Bd(U)

with σk. Call Fatou gaps from the cycle of U periodic Fatou gaps of degree
k. If now σnd |Bd(U) is of degree 1, then the monotone map collapsing edges
of U can be chosen to semiconjugate σnd |Bd(U) and an irrational rotation of
S. In this case, U is a Siegel gap. In any cycle of Siegel gaps some will
have critical edges. In general, if ` is a critical edge of a Fatou gap, then `
is isolated.

Lemma 3.3. Suppose that Li → L are σd-invariant laminations, and let G
be a periodic lap of L. Then G is also a lap of Li for all sufficiently large i.

Proof. Let G be a lap and ` an edge of G; we write k for the minimal period
of `. Then Li, for large i, must have a lap Gi with Gi → G. Choose an edge
`i of Gi so that `i → `. Then `i does not cross ` for large i as otherwise the
leaves σkd(`i) and `i would cross. Moreover, `i is disjoint from the interior
of G for large i as otherwise σkd(`i) would intersect the interior of Gi (note
that `i maps farther away from ` under σkd). By way of contradiction assume
that Li do not contain G. Then Gi % G and `i 6= ` for at least one edge ` of
G. It follows that σkd(Gi) % Gi, a contradiction. �

Let us define laminational analogs of the sets CP .

Definition 3.4. For a given σd-invariant L, let C(L) be the family of all
critical portraits, compatible with L; if K ∈ C(L) we say that K is a critical
portrait of L.

A lamination L is clean if any pair of distinct non-disjoint leaves of L is
on the boundary of a finite gap. Clean laminations give rise to equivalence
relations: a ∼L b if either a = b or a, b are in the same lap of L. In that case
the quotient S/ ∼L= JL is called a topological Julia set and the map fL :
JL → JL, induced by σd, is called a topological polynomial. By Lemma
3.16 of [8], any clean lamination has the following property: if one endpoint
of a leaf is periodic, then the other endpoint is also periodic with the same
minimal period. Limits of clean σd-invariant laminations are called limit
laminations, cf. [9] (e.g., clean laminations are limit laminations).

Definition 3.5 (Perfect laminations [11]). The maximal perfect subset Lp
of L is called the perfect part of L; a lamination L is perfect if L = Lp.

Equivalently, one can define Lp as the set of all leaves ` ∈ L such that
arbitrarily close to ` there are uncountably many leaves of L. Evidently,
perfect laminations are clean and, hence, limit laminations.

Definition 3.6 (Chiefs). If L is nonempty, a chief of L is defined as a min-
imal, by inclusion, nonempty sublamination of L.

The next lemma follows from [11].
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Lemma 3.7. The set Lp is an invariant lamination. If L is uncountable,
then Lp ⊂ L is nonempty. A chief is perfect or countable.

Proof. By Lemma 3.12 of [11], the set Lp is an invariant lamination. If
L is uncountable, then by definition Lp ⊂ L is nonempty. If a chief L is
uncountable but not perfect, its perfect part Lp $ L is a nonempty sublam-
ination, a contradiction with the assumption that L is a chief. �

Given a chord ` = ab, let |`| denote the length of the smaller circle arc
with endpoints a and b (computed with respect to the Lebesgue measure on
S such that the total length of S is 1); call |`| the length of `.

Lemma 3.8. Any nonempty lamination contains leaves of length > 1
d+1

.

Proof. Indeed, for a nondegenerate leaf ` so that |`| < 1
d+1

, either |σd(`)| =
d|`| or |σd(`)| > 1

d+1
. �

Lemma 3.9. If L is nonempty, then L contains a chief.

Proof. Let Lα be a nested family of laminations. Definition 3.2 implies that
then

⋂
Lα is a sibling invariant lamination too. If all Lα are nonempty, then

by Lemma 3.8 each of them has a leaf of length at least 1
d+1

and so
⋂
Lα is

nonempty. Now the desired statement follows from the Zorn lemma. �

The next lemma follows from the definitions and the compactness prop-
erty of invariant laminations.

Lemma 3.10. Let L be a chief. If ` ∈ L is a nondegenerate leaf, then the
iterated pullbacks of the nondegenerate iterated images of ` are dense in L.

4. INVARIANT GAPS AND PRIME PORTRAITS

An invariant gap is an invariant gap of a cubic lamination L, not neces-
sarily specifying L. An infinite invariant gap is quadratic if it has degree 2.
By Section 3 of [8], any quadratic invariant gap can be obtained as follows.
A critical chord c gives rise to the complementary circle arc L(c) of length
2/3 with the same endpoints as c. The set Π(c) of all points with orbits in
L(c) is nonempty, closed and forward invariant. Let Π′(c) be the maximal
perfect subset of Π(c). The convex hulls G(c) of Π(c) and G′(c) of Π′(c)
are invariant quadratic gaps, and any invariant quadratic gap is of one of
these forms. For any invariant gap G, finite or infinite, a major of G is an
edge M = ab of G, for which there is a critical chord ax or by disjoint from
the interior of G. By Section 4.3 of [8], a degree 1 invariant gap has one or
two majors; every edge of G eventually maps to a major and if G is infinite
and of degree 1, at least one of its majors is critical. An invariant gap G is
rotational if σ = σ3 acts on its vertices (i.e., on G ∩ S) as a combinatorial
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rotation. For brevity say that a chord is compatible with a finite collection
of gaps if it does not cross edges of these gaps.

For a critical chord `, let I(`) be the complement of L(`). LetK = {c, y}
be a critical portrait. Call K weak if the forward orbit of c is disjoint from
I(y), or the forward orbit of y is disjoint from I(c); otherwise callK strong.

Lemma 4.1. The set of strong critical portraits is open and dense in CrP
while the set of weak critical portraits is closed and nowhere dense in CrP.

The proof of Lemma 4.1 is left to the reader.

Lemma 4.2. If U is a degree one periodic infinite gap of σd for some d > 2,
then some image of U has critical edges.

Proof. It is well-known that every edge of U eventually maps to a critical
or a periodic leaf. If gaps from the orbit of U have no critical edges, it must
have some periodic edges. Let `1, . . . , `k be a maximal chain of concate-
nated edges of U such that σnd (`i) = `i, 1 6 i 6 k. Then σnd restricted to
a small arc I ⊂ Bd(U) adjacent to L =

⋃k
i=1 `i repels points away from

the appropriate endpoint of L. Since σd|Bd)U) is of degree 1, then points of
I are attracted to a σn3 -fixed point x ∈ Bd(U). Since σ3 is expanding on
S, this implies that a subarc of Bd(U) must collapse to a point under σnd .
Hence some image of U has critical edges. �

Together with results of [8], Lemma 4.2 implies Lemma 4.3.

Lemma 4.3. A critical portrait {c, y} is compatible with an invariant qua-
dratic gap if and only if it is weak. Similarly, {c, y} is compatible with an
infinite invariant gap if and only if it is weak.

Proof. Suppose that K is weak and forward orbit T of y is disjoint from
I(c); then T ⊂ Π(c), and {c, y} is compatible with G(c). Assume now that
{c, y} is compatible with an infinite invariant gap U . If U is quadratic, the
claim follows from the above given description. Let U be of degree one and
let ` be a critical edge of U . Then either ` coincides with, say, y, or y, c, and
` form a triangle. Thus, we may assume that, say, y is non-disjoint from U
and T ⊂ Bd(U). Since the degree of U is one, c is disjoint from the interior
of U . Clearly, U ∩S cannot be contained in I(c) as then there is no room for
y there; hence U ∩ S ⊂ L(c), we have T ∩ I(c) = ∅, and K is weak. �

Some laminations must have compatible weak critical portraits.

Theorem 4.4. Suppose that a nonempty cubic L has an infinite periodic
gap U and either σ(U) = U or U shares an edge with a finite rotational lap
of L. Then there is a weak critical portrait compatible with L.
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Proof. By Lemma 4.3 we may assume that U shares an edge ` with a finite
rotational lap of L. Choose a critical chord c in a gap from the orbit of U
with an endpoint coinciding with an endpoint of the corresponding image
of `. Choose a critical chord y 6= c compatible with L and not crossing
c. Then {c, y} is compatible with a quadratic invariant gap and, by Lemma
4.3, {c, y} is weak. �

From now on, by a chief, we mean a chief of some limit lamination. A
gap G of a lamination is invariant if σ(G) = G (with “=” rather than “⊂”).

Lemma 4.5. Any chief has an invariant lap or an invariant infinite gap.

Proof. By Lemma 3.7 of [15], any clean lamination has a lap or an infinite
gap G such that σ(G) = G. Passing to the limit, we conclude that any limit
lamination has the same property (even though the limit of finite invariant
gaps may be infinite). A chief of a limit lamination must then also have the
above mentioned property. �

Definition 4.6 (Friends, prime critical portraits). Critical portraitsK1,K2 ∈
CrP are friends (through a lamination L) if K1,K2 ∈ C(L). A critical
portraitK is prime if a friend ofK has a weak friend. A lamination is prime
if it has a prime critical portrait.

The next lemma follows from definitions and compactness of the family
of all cubic sibling invariant laminations.

Lemma 4.7. IfK1,K2 are friends, then they are compatible with some chief
L (thus, K1,K2 ∈ C(L)). Friendship is a closed relation: if Ki → K and
K′i → K′ and Ki and K′i are friends for all i, then so are K and K′.

Proof. The former claim follows from definitions. To prove the latter claim,
choose laminations Li such that Ki,K′i ∈ C(Li). Passing to a subsequence,
arrange that Li → L. It follows that K, K′ ∈ C(L) and, hence, K and
K′ are friends. Observe that L is non-empty because by Lemma 3.8 each
lamination Li contains a leaf of length at least 1

d+1
. �

Given L and a nondegenerate leaf ` ∈ L, let G(`) be the set of iterated
pullbacks of the nondegenerate iterated images of `.

Lemma 4.8. Let L be a countable chief. Then:
(1) for any nondegenerate leaf ` ∈ L, the set of all nondegenerate

leaves in L coincides with G(`);
(2) all nondegenerate leaves of L are isolated;
(3) there is a weak critical portrait in C(L).

Proof. (1) Choose an isolated leaf `0 ∈ L. We claim that G(`0) is the set of
all nondegenerate leaves of L. Indeed, otherwise choose a nondegenerate
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leaf ` ∈ L \ G(`0); then leaves of G(`) cannot approximate `0 or coincide
with `0, a contradiction with Lemma 3.10. If now ` is a nondegenerate leaf
of L, then ` ∈ G(`0), and hence G(`) = G(`0) is the set of all nondegenerate
leaves of L, as desired.

(2) All non-isolated leaves in L form a forward invariant closed family of
leaves. If ` is non-isolated, choose leaves `i → `, choose their pullbacks qi,
and choose a converging subsequence of these pullbacks; in the end we will
find a non-isolated leaf q with σ(q) = `. Now, let ` be non-isolated and non-
critical. Choose a sequence `i → ` so that each `i is not on the boundary of
a critical polygon. Then the siblings `′i, `

′′
i of `i are well defined, and `′i → `′

while `′′i → `′′. Clearly, σ(`) = σ(`′) = σ(`′′). We claim that `, `′ and `′′ are
pairwise disjoint. Indeed, if, say, ` = ab and `′ = bc, where σ(c) = σ(a),
then `i and `′i have distinct endpoints close to b and mapping to the same
point; a contradiction. Hence by definition the set of all non-isolated leaves
of L is itself a sibling-invariant lamination, a contradiction with L being a
chief.

(3) By Lemma 4.5, we can find an invariant lap or infinite gap T of L. If
T is infinite, our claim follows from Theorem 4.4. Hence we may assume
that T is finite. Let ` be an edge of T ; it is isolated by (2). Let H be a gap of
L attached to T along `. If H is infinite, the desired statement follows from
Theorem 4.4. Assume thatH is finite. If n is the minimal period of edges of
T , then there are two cases: σn(H) = H and σn(H) = `. The former case
contradicts (1), hence σn(H) = `, and we may assume that σ(H) = σ(`).
Choose a critical chord y ⊂ H that shares an endpoint with `, and a critical
chord c in a critical gap or leaf of L disjoint from H . (If H has degree 3,
then simply take a critical portrait {c, y} in H .) The critical portrait {c, y}
is compatible with G(c), hence weak by Lemma 4.3, as desired. �

The next definition complements Definition 4.6.

Definition 4.9 (Regular critical portraits, laminations, and chiefs). A chief
is regular if all its critical portraits have only strong friends. A lamina-
tion is regular if it has a regular chief. A critical portrait is regular if it is
compatible with a regular chief.

Regular chiefs have nice properties.

Lemma 4.10. Suppose that L is a regular chief. Then L is perfect. Also,
C(L) is disjoint from any set C(L′) where L′ 6= L is a regular chief.

Proof. By Lemma 4.8, the lamination L is uncountable; hence by Lemma
3.7 it is perfect. Let K = {c, y} be a critical portrait compatible with L and
a chief L′ 6= L. Since K is strong and has only strong friends, by Lemma
4.3 invariant sets of L and L′ are finite, and L′ is perfect by Lemma 4.8.
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Let G and G′ be invariant laps of L and L′, resp., located in the same
component of D \

⋃
K. No leaves of L intersect the interior of G′ since

otherwise uncountably many leaves of L would intersect edges of G′ con-
tradicting the fact that K is compatible with L and L′, and [11, Lemma
3.53]. Therefore, G′ ⊂ G. Similarly, G ⊂ G′, hence G = G′.

If iterated images of c and y avoid G, then iterated L-pullbacks of G and
iterated L′-pullbacks of G′ are the same. Hence L = L′ since the iterated
pullbacks of G are dense in both L and L′ by Lemma 3.10. Let for some
minimal n > 0 the point σn3 (c) be a vertex ofG. LetC,C ′ be the critical sets
of L, resp., L′ containing c. Since infinite gaps of L and L′ are disjoint from
G by Theorem 4.4, the sets C, C ′ are laps. Since L and L′ are compatible
and perfect, C = C ′ by [11, Theorem 3.57]. Similarly, we see that either
y never maps to G or the critical sets of L, L′ containing y coincide. Thus,
pullbacks of G in L are the same as pullbacks of G in L′, and L = L′. �

Let us establish a few useful facts concerning regular chiefs.

Lemma 4.11. Suppose that L is a regular chief. Then L has infinitely many
periodic laps. Moreover, for any periodic leaf ` of L the family of its pull-
backs is dense in L.

Proof. Since L is perfect, there are uncountably many grand orbits of non-
degenerate leaves of L none of which contains a leaf from a critical set of
L. Choose a leaf ` from one of these grand orbits. Since L is perfect, it
is clean. Consider the associated topological polynomial fL : JL → JL to
which σ3|S semiconjugate by a map, say, ϕ; then ϕ(`) = x is a cutpoint
of JL such that all points of the f∼-orbit of x are cutpoints of JL. Such
dynamics was studied in [6] where, in Theorem 3.8, it was proven that then
fL has infinitely many periodic cutpoints. Taking their ϕ-preimages, we
see that L has infinitely many periodic laps. Now, take a periodic leaf ` of
L, consider its grand orbit and then its closure. By the compactness of the
family of laminations, this grand orbit is dense in L as desired. �

Corollary 4.12 follows from definitions and Lemma 4.10.

Corollary 4.12. A friend of a regular critical portrait is regular. All critical
portraits of a regular chief L form a closed subset C(L) of CrP consisting
of friends, and no other critical portrait can be their friend. A regular
lamination has a unique chief that is regular too.

One can define regular critical portraits through the concept of a friend.

Lemma 4.13. A critical portrait K is regular if and only if all friends of
friends of K are strong (i.e., if K is not prime).
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Proof. Let K be a regular critical portrait. Then there is a unique regular
chief L compatible with K. All critical portraits of L are strong and have
only strong friends; by Lemma 4.10, none of them is compatible with a
chief L′ 6= L. Hence all friends ofK are compatible with L, i.e. are regular.
Repeating this, we see that friends of friends of K are compatible with L
and, hence, strong. On the other hand, suppose that all friends of friends
of a critical portrait K are strong. Take a chief L compatible with K. Then
all its critical portraits have only strong friends. By definition L is regular
which implies that K is regular as desired. �

The terminology is partially self-evident and partially explained by the
fact that if L is a dendritic regular chief then JL is a dendrite.

Lemma 4.14. A limit of prime critical portraits is prime.

Proof. If Ki are prime and Ki → K, then, by definition, some friends K′i
of Ki have weak friends K′′i . Passing to a subsequence we can arrange that
K′i → K′ andK′′i → K′′. By Lemma 4.7, the portraitK′ is a friend ofK, and
K′′ is a friend of K′. By Lemma 4.1, the portrait K′′ is weak. By definition,
K is prime. �

Let us define alliances.

Definition 4.15. The prime alliance A0 is the set of all prime critical por-
traits. A regular alliance is the set C(L) where L is a regular chief.

We are ready to prove a part of the Main Theorem that can be viewed as
its combinatorial analog.

Lemma 4.16. Alliances form a USC-partition of the set CrP. The union of
regular alliances is open and dense in CrP.

Proof. That alliances form a partition of CrP follows from definitions and
Lemma 4.10. Hence if two critical portraits are friends, then they belong
to the same alliance. Suppose that Ki → K and K′i → K′ where Ki,K′i
are friends. We may assume that either all Ki,K′i are prime, or all Ki,K′i
are strong. In the former case Lemma 4.14 implies that both K and K′ are
prime, and we are done. In the latter case, K and K′ are friends by Lemma
4.7, and we are done too. This proves the first claim.

To prove the second claim, observe that the union of all regular alliances
is open. Let K = {c, y} be a critical portrait such that the orbits of σ(c) and
σ(y) are dense in S. Such portraits are dense in CrP. We prove that K is
regular by proving that, for any friendK′ = {c′, y′} of K, the orbits of σ(c′)
and σ(y′) are dense in S.

Let L be a chief compatible with K and K′. Let C be the leaf c if c ∈ L
or the critical gap of L containing c otherwise. Define Y similarly. Arrange
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that c′ ⊂ C and y′ ⊂ Y , possibly renaming c′ and y′. We claim that the
orbit of σ(c′) is dense in S. Otherwise consider the nondegenerate chord
q = xx′, where x = σ(c) and x′ = σ(c′). There is ε > 0 and an arc I ⊂ S
such that σn(x′) is never ε-close to I . On the other hand, iterated images of
x are dense in I; the corresponding images of q have length> ε. Therefore,
all leaves of L originating in I have length ε or more.

Note that C and Y are not periodic, therefore, no σ-periodic point of S is
an eventual image of x or x′. There is a positive integer N with σN(I) = S.
Since any σ-periodic point a of S has a σN -preimage in I , we have ab ∈ L
for some b 6= a. Since L is perfect and hence clean, endpoints of periodic
leaves must have the same period. Thus, the horizontal diameter Di con-
necting the two σ-fixed points of S is a leaf of L. Consider a nondegenerate
chord ` with endpoint i = e2πi(1/4). Then σn(`) crosses c or y for some
n > 0. Thus ` /∈ L, a contradiction. We conclude that the orbit of σ(c′) is
dense. Similarly, the orbit of σ(y′) is dense. �

5. THE MODEL

Let P be a polynomial with [P ] ∈ M3. Let ∼P be the equivalence
relation on S defined by e2πiα ∼P e2πiβ if {α, β} ∈ ZP or α = β. Let Z lamP
(from “lamination”) be the set of all edges of the convex hulls in D of all
∼P -classes. Define LrP as the set of all edges of the convex hulls of all ∼P -
classes and the limits of these edges. By the compactness of laminations
(see Section 3), LrP is a clean cubic lamination (cf. [3]).

The lamination LrP is associated with an equivalence relation∼LrP so that
all laps of LrP are convex hulls of ∼LrP -classes (see discussion in Section 3
right after Definition 3.4). It is easy to see that ∼LrP is the closure of ∼P , so
in what follows we simply denote it by ∼P .

Suppose that P has no neutral periodic points. Then Z lamP coincides
with the rational lamination [16] of P while LrP coincides with the real
lamination [18] of P . The next lemma summarizes some results of [16, 18].

Lemma 5.1. Suppose that P has no neutral cycles. Then the restriction
P |JP is monotonically semiconjugate to the topological polynomial f∼P

:
J∼P
→ J∼P

on its topological Julia set so that fibers of this semiconjugacy
are trivial at all (pre)periodic points of J∼P

(thus, for a periodic lap G of
LrP , external rays corresponding to vertices of G land at the same legal
point). Also, any clean lamination without infinite periodic degree 1 gaps
has the form LrP for some P .

If LrP is regular, then by Corollary 4.12 it has a unique regular chief de-
noted by LcP ; set AP = C(LcP ) (observe that then AP is a regular alliance).
Equivalently, AP can be defined as the set of all friends of critical portraits
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from CP . However, if LrP is prime (e.g., if P is invisible and, hence, LrP
is empty) set AP = A0 to be the prime alliance. The prime alliance is
special as it serves all invisible polynomials, however diverse they are. It
also serves all polynomials with non-repelling fixed points and some other
polynomials. By Section 4, the prime alliance is closed topologically and
under friendship. This defines AP for any polynomial P with [P ] ∈M3.

Lemma 5.2. A regular alliance AP has the form CP0 for some visible poly-
nomial P0, possibly different from P .

Proof. LetL be a chief ofLrP . Then it has no infinite periodic gaps of degree
1. Indeed, otherwise by Lemma 4.2 it has an infinite gap with a critical
edge. By properties of laminations this edge is isolated, a contradiction
with L being perfect by Lemma 4.10. By Lemma 5.1, there is a polynomial
P0 without neutral periodic points such that LrP0

= L. Then by Lemma 4.10
AP = C(L) = CP0 as desired. �

A regular alliance is closed topologically (because CP0 is closed) and
under friendship (by Corollary 4.12).

Lemma 5.3. For any visible P we have CP ⊂ AP .

Proof. If LrP is regular, CP ⊂ AP by definition. If LrP is prime, then AP =
A0 is prime, and CP ⊂ AP = A0 since A0 is closed under friendship. �

To prove the Main Theorem we need a couple of new concepts. Let P
be such that [P ] ∈ M3. A point x is (P -)stable if its forward orbit is finite
and contains no critical or non-repelling periodic points. The next lemma
shows how stable points can be applied.

Lemma 5.4 ([14], cf. Lemma B.1 [15]). Let g be a polynomial, and z be a
stable point of g. If an external ray Rg(θ) with rational argument θ lands at
z, then, for every polynomial g̃ sufficiently close to g, the ray Rg̃(θ) lands
at a stable point z̃ close to z. Moreover, z̃ depends holomorphically on g̃.

An unordered pair of rational angles {α, β} is (P -)stable if the external
rays with arguments α and β land at the same stable point of P . Write SP
for the set of all P -stable pairs of angles; call SP the s-set of P . Denote by
S lamP the set of chords connecting e2πiα with e2πiβ , where the pair {α, β} ∈
SP is not separated in R/Z by any other P -stable pair of angles. Evidently,
SP ⊂ ZP and S lamP ⊂ Z lamP ; these sets do not have to coincide as some
legal points may be non-stable because their orbits pass through critical
points before they map to repelling periodic points.

If SP 6= ∅, let CsP be the set of all critical portraits compatible with SP
(i.e., no critical chord from a critical portrait in CsP crosses a leaf from S lamP ).
It follows that CP ⊂ CsP .
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Proposition 5.5. The dependence P 7→ CsP is upper semi-continuous.

Proof. We prove that if Pi → P and we choose Ki ∈ CsPi
with Ki → K,

then K ∈ CsP . Assume the contrary: K = {c, y}, where c crosses some
` = ab ∈ S lamP . By Lemma 5.4, a ∼Pi

b for large i, and Ki contains a
critical chord ci close to c, a contradiction, since then ci also crosses `. �

The next lemma relates CsP and the alliance AP .

Lemma 5.6. Take [P ] ∈M3. If LrP is regular, then CsP ⊂ AP .

Proof. LetL be the chief ofLrP . By Lemma 4.10, it is perfect. Now, letK be
a critical portrait from CsP (i.e., compatible with SP ). We claim that then K
is compatible with L. Indeed, otherwise a critical leaf c ∈ K crosses a leaf
` ∈ L. By Lemma 4.11, arbitrarily Hausdorff-close to `, there are iterated
preimages of a periodic lap of L that is not an eventual image of a critical
lap of L; it follows that edges of these preimages are leaves from S lamP , a
contradiction with the assumption that K ⊂ CsP . Thus, CsP ⊂ AP . �

We are ready to prove Theorem 5.7 which implies the Main Theorem.

Theorem 5.7. The map P 7→ AP from M3 to the quotient space of CrP
generated by alliances is continuous.

For a critical portrait K, consider the corresponding Thurston pullback
lamination T (K) (see [20]).

Lemma 5.8. Let G be a periodic lap of some invariant lamination, whose
iterated images are disjoint from

⋃
K. Then leaves of T (K) cannot cross

edges of G.

This is a straightforward corollary of [20].

Proof of Theorem 5.7. Consider a sequence Pi → P of polynomials, and
set Ai = APi

. We need to show that sets Ai converge into AP . To this end
it suffices to consider critical portraits Ki → K, where Ki ∈ Ai, and show
that K ∈ AP . We may assume that either all Ki are prime, or all Ki are
regular. If Ki are prime, then K is prime by Lemma 4.14. Assume that all
Ki are regular. By Proposition 5.5, we have K ∈ CsP . If LrP is regular, then
by Lemma 5.6 K ∈ AP , and we are done.

Assume that LrP is prime. We need to show that K is prime. Assume that
K is regular. ThenK is compatible with a regular chief L◦. By Lemma 4.11
there are infinitely many periodic laps of L◦ whose first return is onto. Let
G be one of them, of period n, so that σn(G) = G. We may assume that
the (finite) orbit of G is disjoint from the chords in K. Then the orbit of G
is disjoint from the chords in Ki with large i.
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Set Li = T (Ki). By Lemma 5.8, the lap G is contained in a lap Gi of Li.
Since G is periodic, so is Gi. The first return map of Bd(Gi) has degree 1
as any iterated image of Gi is contained in a complementary component of⋃
K. Hence all periodic vertices of Gi are of the same period. In particular,

it implies that if G′ and G′′ are periodic laps of L◦ such that periods of their
vertices are distinct, then the gap G′i cannot contain G′′i , and vice versa.

It is easy to see that an infinite periodic gap of degree 1 must have at
least one (pre-)critical edge, each critical edge serving at most two such
gaps. Thus, there may exist at most six cycles of infinite periodic degree
1 gaps of a cubic lamination. Choose a periodic lap G of L◦. Passing to
a subsequence, we may assume that all Gi are finite, or all are infinite. In
the latter case, we reject G and replace it with another lap G′ whose vertex
period is greater than that of G. By the above, there will be at most six
rejected cycles of periodic gaps. Refine our sequence of polynomials and
choose a sequence of finite periodic laps G1, . . . , Gj , . . . of L◦ such that
periods of their vertices grow and Gj

i are finite for all i and j. If L◦ has
Fatou gaps, we may assume that all Gj

i are disjoint from them.
SetG = Gj . SinceKi is compatible withLrPi

, the laminationLrPi
consists

of leaves that do not cross leaves of Li. Indeed, if a leaf `′ ∈ LrPi
crosses a

leaf ` ∈ Li, then we may assume that ` is a pullback of a leaf of Ki. Then,
as above with G, the crossing of the two leaves is kept until ` maps to a leaf
of Ki which forces the corresponding image of `′ to cross the same leaf of
Ki, a contradiction. Hence leaves of LrPi

do not cross leaves of Li.
All Gi have the same period n. By Kiwi [17], vertices (edges) of gaps

from the orbit of any finite periodic gap of a cubic lamination form one or
two orbits. Hence either G = Gi, or G $ Gi in which case Gi has two
orbits of edges. Since edges of Gi do not cross leaves of LrPi

then there are
at most finitely many leaves of LrPi

intersecting the interior of G; all these
leaves are diagonals of Gi. It follows that here are two cases listed below.

(1) A finite period n lap Hi of LrPi
is non-disjoint from the interior of

G. Then Hi is contained in Gi (indeed, by construction the edges of Gi are
approximated by distinct pullbacks of leaves of Ki which are disjoint from
leaves of LrPi

).
(2) An infinite period 6 n gap Ui of LrPi

contains Gi ⊃ G.
Accordingly, consider two cases.
(a) There are infinitely many gaps Gj for which case (1) above holds.

We can find any number of distinct periodic laps which are shared by all
laminations LrPi

. Let H be one of them chosen so that all P -external rays
whose arguments are vertices of H land at repelling periodic points. We
claim that in fact all P -external rays whose arguments are vertices ofH land
at the same point. Indeed, suppose otherwise. Then by Lemma 5.4 there are
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Pi-external rays with vertices of H as arguments that land at distinct points,
a contradiction. Thus, H is (non-strictly) contained in a finite lap H ′ of LrP .
We conclude that LrP has infinitely many finite periodic laps.

Thus, LrP 6= ∅, and we can always choose a periodic lap H ′ of LrP so
that H ′ corresponds to a point z′ which is not an eventual image of a critical
point of P . It follows that the entire P -grand orbit of z′ consists of stable
points. Consider the closure L′ of the grand orbit of H ′. Evidently, L′ is a
lamination, and L′ ⊂ LrP . If L′ is incompatible withK, an iterated pullback
` of an edge of H ′ crosses a chord in K. By Lemma 5.4, there are leaves of
LrPi

that converge to ` as i → ∞. Since Ki → K, for large i some leaves
of LrPi

cross chords in Ki, a contradiction. Hence L′ is compatible with K.
However, since K is regular, it implies that L′ and LrP ⊃ L′ are regular, a
contradiction.

(b) For all but finitely many gaps Gj and all but finitely many i case
(2) above holds and a periodic Fatou gap U j

i ⊃ Gj of period at most nj
exists. Moreover, since there are infinitely many gaps Gj , Fatou gaps in
question will contain infinitely many gaps Gj . A priori, as i → ∞, these
gaps may change. We may assume that LrPi

→ L′′. Since Ki → K and Ki’s
are compatible with LrPi

’s, it follows that L′′ is compatible with K. Hence
L◦ ⊂ L′′. In particular, the limit U j of the gaps U j

i must be contained in a
Fatou gap of L◦ while containing Gj . However no gap Gj can be contained
in a Fatou gap of L◦, a contradiction. �
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tions Mathématiques d’Orsay 84-02 (1984), 85-04 (1985).

[15] L. Goldberg, J. Milnor, Fixed points of polynomial maps. Part II. Fixed point por-
traits, Annales scientifiques de l’ENS (4) 26 (1993), 51–98.

[16] J. Kiwi, Rational laminations of complex polynomials, In: Laminations and foliations
in dynamics, geometry and topology (Stony Brook, NY, 1998) Contemp. Math. 269
(2001), Amer. Math. Soc., Providence, RI, 111-154.

[17] J. Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc. 354 (2002), 1473–1485.
[18] J. Kiwi, Real laminations and the topological dynamics of complex polynomials,

Advances in Mathematics, 184 (2004), 207–267.
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