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MODELS FOR SPACES OF DENDRITIC POLYNOMIALS

ALEXANDER BLOKH, LEX OVERSTEEGEN, ROSS PTACEK, AND VLADLEN TIMORIN

ABSTRACT. Complex 1-variable polynomials with connected Julia sets and
only repelling periodic points are called dendritic. By results of Kiwi, any
dendritic polynomial is semiconjugate to a topological polynomial whose topo-
logical Julia set is a dendrite. We construct a continuous map of the space
of all cubic dendritic polynomials onto a laminational model that is a quo-
tient space of a subset of the closed bidisk. This construction generalizes the
“pinched disk” model of the Mandelbrot set due to Douady and Thurston. It
can be viewed as a step towards constructing a model of the cubic connected-
ness locus.

1. INTRODUCTION

The Introduction assumes basic knowledge of complex dynamics and especially
its combinatorial part; some concepts are introduced informally and are formalized
later in the main body of the paper.

The parameter space of complex degree d polynomials is by definition the space
of affine conjugacy classes of these polynomials. Equivalently, one can talk about
the space of all monic centered polynomials of degree d, i.e., polynomials of the
form 2% 4+ ag_22%"2 4+ --- 4+ ag. Any polynomial is affinely conjugate to a monic
centered polynomial. An important set is the connectedness locus M, consisting
of classes of all degree d polynomials P, whose Julia sets J(P) (equivalently, whose
filled Julia sets K (P)) are connected. General properties of the connectedness locus
M have been studied for quite some time. For instance, it is known that M, is a
compact cellular set in the parameter space of complex degree d polynomials. This
was proven in [BrHu88] in the cubic case and in [Lav89] for higher degrees; see also
[Bra86]. By definition, following M. Brown [Bro60,Bro61], a subset of a Euclidean
space R™ is cellular if its complement in the sphere R™U{oo} is an open topological
cell.

For d = 2, a monic centered polynomial takes the form P.(z) = 2% + ¢, and
the parameter space of quadratic polynomials can be identified with the plane of
complex parameters c. Clearly, P.(z) has a unique critical point 0 and a unique
critical value ¢ in C. Thus, we can say that polynomials P.(z) are parameterized by
their critical values. The quadratic connectedness locus is the famous Mandelbrot
set Mo, identified with the set of complex numbers ¢ not escaping to infinity under
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iterations of the polynomial P.(z). The Mandelbrot set Mo has a complicated
self-similar structure.

1.1. A combinatorial model for Ms. The “pinched disk” model for M5 is due
to Douady and Thurston [Dou93l/[Thu85]. To describe their approach to the problem
of modeling Mo, we first describe laminational models of polynomial Julia sets (we
follow [BLO2]).

Let S be the unit circle in C consisting of all complex numbers of modulus one.
We write g : S — S for the restriction of the map z — 2z¢. We identify S with
R/Z by the mapping taking an angle # € R/Z to the point ¢**® ¢ S. Under
this identification, we have o4(f) = df. We will write D for the open unit disk
{zeC||z| < 1}.

Given a complex polynomial P, we let U (P) denote the set C\ K (P). This set
is called the basin of attraction of infinity of P. Clearly, Uy (P) = U (P)UJ(P). If
the Julia set J(P) is locally connected, then it is connected, and the Riemann map
U :C\D — Uy (P) can be continuously extended to a map ¥ : C\ D — Uy (P).
This gives rise to a map ¢ = U|s, which semiconjugates o4 : S — S with Plspy-
Define an equivalence relation ~p on S so that z ~p y if and only if ¥ (x) = ¥ (y).
Then S/~p and J(P) are homeomorphic, and the homeomorphism in question
conjugates the map f., induced on S/~p by o4, and P|;(py. It is not hard to see

that the convex hulls of ~p-classes are disjoint in D.

A productive idea is to consider equivalence relations ~ whose properties are
similar to those of ~p. These properties will be stated precisely later. Such equiv-
alence relations are called laminational equivalence relations of degree d. The maps
fut' S/ ~— 'S/ ~ induced by o4 are called topological polynomials of degree d. De-
gree two objects (laminational equivalence relations, topological polynomials, etc.)
are referred to as quadratic. Similarly, degree three objects are referred to as cubic.
The quotient space S/ ~ is denoted J. and is called the topological Julia set (of
f~). For brevity, in what follows, we will talk about “~-classes” instead of “classes
of equivalence of ~7.

An important geometric representation of a laminational equivalence relation
~ is as follows. For any ~-class g, take its convex hull CH(g). Consider the
edges of all such convex hulls; add all points of S to this collection of chords. The
obtained collection of (possibly, degenerate) chords in the unit disk is denoted by
L. and is called a geodesic lamination generated by ~. In general, a geodesic
lamination in D is a closed collection of chords in D that are disjoint in D; the
collection is assumed to include all degenerate chords. For brevity, in what follows,
we sometimes write “lamination” instead of “geodesic lamination”. Observe that
often hyperbolic geodesics are used instead of chords; we use chords for the sake of
brevity and simplicity.

Clearly, £ is a closed family of chords. Let ab denote the chord connecting
points a, b € S. We will never use this notation for pairs of points not in S. Recall
that points in S = R/Z are identified with their “angles”. Thus, 0% always means
the chord of S connecting the points with angles 0 and % For any chord ¢ = ab
in the closed unit disk D set o4(¢) = 04(a)oq(b). For any ~-class g and, more
generally, for any closed set g C S, we set 04(CH(g)) = CH(o4(g)).

Recall the construction of Douady and Thurston. Suppose that a quadratic
polynomial P, has locally connected Julia set. We will write G, for the convex hull
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of the ~p -class corresponding to the critical value ¢. A fundamental theorem of
Thurston [Thu85] is that G, # G implies that G, and G are disjoint in D (we
will later state a more general and precise version of Thurston’s result). Consider
the collection of all G, and take its closure. The collection of points, chords and
polygons thus obtained defines a geodesic lamination QML introduced by Thurston
in [Thu85] and called the quadratic minor lamination. The lamination QML corre-
sponds to an equivalence relation ~qmr, on S [Thu85]. The corresponding quotient
space M5 =S/ ~qQML is a combinatorial model for the boundary of Mj. It is
called the combinatorial Mandelbrot set. Conjecturally, the combinatorial Mandel-
brot set is homeomorphic to the boundary of Ms. This conjecture is equivalent to
the famous MLC conjecture: the Mandelbrot set is locally connected.

1.2. Dendritic polynomials. When defining the combinatorial Mandelbrot set,
we used a partial association between parameter values ¢ and laminational equiva-
lence relations ~p,. In order to talk about ~p_, we had to assume that J(P,) was
locally connected. Recall that a dendrite is a locally connected continuum that does
not contain Jordan curves. Recall also that a continuous map from a continuum
to a continuum is called monotone if, under this map, point-preimages (fibers) are
connected.

Definition 1.1. A complex polynomial P is said to be dendritic if it has connected
Julia set and all of its cycles are repelling. A topological polynomial is said to be
dendritic if its Julia set is a dendrite. In that case, the corresponding laminational
equivalence relation and the associated geodesic lamination are also said to be
dendritic.

There are dendritic polynomials with non-locally connected Julia sets. Neverthe-
less, by [Kiw04], for every dendritic polynomial P of degree d, there is a monotone
semiconjugacy mp between P : J(P) — J(P) and a certain topological polynomial
f~p such that the map mp is one-to-one on all periodic and preperiodic points of
P. Moreover, by [BCOL1I], the map mp is unique and can be defined in a purely
topological way. Call a monotone map ¢p of a connected polynomial Julia set
J(P) = J onto a locally connected continuum L the finest monotone map of J(P)
onto a locally connected continuum if, for any monotone v : J — J’ with J’ locally
connected, there is a monotone map h : L — J’ with ¢ = h o pp. It is proven in
[BCO11] that for any polynomial P with J(P) connected, the finest monotone map
of J(P) onto a locally-connected continuum semiconjugates P|;py to a topological
polynomial f., on its topological Julia set J.., generated by a laminational equiv-
alence relation possibly with infinite classes ~p and that in the dendritic case this
semiconjugacy identifies with the map mp constructed by Kiwi in [Kiw04]. Clearly,
this shows that mp is unique up to post-composition with a homeomorphism.

Thus, P gives rise to a corresponding laminational equivalence relation ~p even if
J(P) is not locally connected. If P.(z) = 22 +c is a quadratic dendritic polynomial,
then G, is defined and is either a finite-sided polygon inscribed into S, or a chord, or
a point. A parameter value c is said to be quadratic dendritic if P, is dendritic. The
fundamental results of Thurston [Thu85] imply, in particular, that G. and G are
either the same or disjoint for all pairs ¢, ¢’ of dendritic parameter values. Moreover,
the mapping ¢ — G, is upper semicontinuous (if a sequence of dendritic parameters
¢, converges to a dendritic parameter ¢, then the limit set of the corresponding
convex sets G, is a subset of G.). We call G. the tag associated to c.
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Now, consider the union of the tags of all quadratic dendritic polynomials. This
union is naturally partitioned into individual tags (distinct tags are pairwise dis-
joint!). Thus the space of tags can be equipped with the quotient space topology
induced from the union of tags. On the other hand, take the set of quadratic den-
dritic parameters. Each such parameter ¢ maps to the polygon G, i.e., to the tag
associated to c. Thus each quadratic dendritic parameter maps to the correspond-
ing point of the space of tags. This provides for a combinatorial (or laminational)
model for the set of quadratic dendritic polynomials (or their parameters).

In this paper, we extend these results to cubic dendritic polynomials.

1.3. Mixed tags of cubic polynomials. Recall that monic centered quadratic
polynomials are parameterized by their critical values. A combinatorial analog of
this parameterization is the association between topological polynomials and their
tags. Tags of quadratic topological dendritic polynomials are post-critical objects
of the corresponding laminational equivalences. Monic centered cubic polynomials
can be parameterized by a critical value and a co-critical point. Recall that the
co-critical point w* of a cubic polynomial P corresponding to a simple critical point
w of P is defined as a point different from w but having the same image under P as
w. If w is a multiple critical point of P, then we set w* = w. In any case we have
P(w*) = P(w). Let ¢ and d be the two critical points of P (if P has a multiple
critical point, then ¢ = d). Set a = ¢* and b = P(d). Assuming that P is monic
and central, we can parameterize P by a and b:

2(, _
P(z):z3+w+b.

For P in this form, we have ¢ = —3, d = 5. Similarly to parameterizing cubic
polynomials by pairs (a,b), we will use the so-called mized tags to parameterize
topological cubic dendritic polynomials.

Consider a cubic dendritic polynomial P. By the above, there exists a lamina-
tional equivalence relation ~p and a monotone semiconjugacy m, : J(P) = S/ ~p
of P;, with the topological polynomial f. .. Given a point z € J(P), we associate
with it the convex hull Gp . of the ~p-equivalence class represented by the point
mp(z) € S/ ~p. The set Gp, is a convex polygon with finitely many vertices, a
chord, or a point; it should be viewed as a combinatorial object corresponding to
z. For any points z # w € J(P), the sets Gp, and Gp,, either coincide or are
disjoint.

By definition, a (critically) marked (cf. [Mill2]) cubic polynomial is a triple
(P,c,d), where P is a cubic polynomial with critical points ¢ and d. If P has
only one (double) critical point, then ¢ = d; otherwise we require that ¢ # d. In
particular, if ¢ # d, then the triple (P, ¢, d) and the triple (P, d, ¢) are viewed as two
distinct critically marked cubic polynomials. We will sometimes write P instead of
(P,c,d). Critically marked polynomials do not have to be dendritic (in fact, the
notion is used by Milnor and Poirier [Mil12] for hyperbolic polynomials, i.e., in the
situation diametrically opposite to that of dendritic polynomials). Convergence in
the space of marked polynomials is understood as convergence of the coeflicients
and of the marked critical points.

Let MD3 be the space of all critically marked cubic dendritic polynomials. With
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every marked dendritic polynomial (P, ¢, d), we associate the corresponding mized
tag

Tag(P, c, d) = G X Gp(d) c D x D.
Here ¢* is the co-critical point corresponding to the critical point c.

A similar construction can be implemented for any cubic dendritic laminational
equivalence relation ~. Let C' and D denote the convex hulls of its critical classes,
i.e., classes on which the map o3 is not one-to-one. Then either C' = D is the unique
critical ~-class or C' # D are disjoint. The sets C' and D are called the critical
objects of ~. By a (critically) marked cubic laminational equivalence relation we
mean a triple (~,C, D). If C' # D, then we define C* = co(C') as the convex hull of
the unique ~-class that is distinct from the class C'N'S but has the same o3-image.
If C = D, then we set C* = C. The set C* is called the co-critical set of C'. For a
marked laminational equivalence relation (~,C, D), define its mized tag as

Tag,(~,C,D) = C* x 03(D) C D x D.

Let ¢(D) denote the set of all compact subsets of D. Clearly the range of the map
Tag, is a subset of €(D) x €(D).

The subscript ! in Tag; stands for “laminational”. We distinguish the map Tag;
from the map Tag, which acts on polynomials. These two maps are closely related
though: for any marked dendritic cubic polynomial (P,c,d) and the correspond-
ing marked laminational equivalence relation (~p,G.,Gq4), we have Tag(P, c,d) =
Tagl (NPa GCa Gd)

1.4. Statement of the main result. Consider the collection of the sets Tag(P)
over all P € MDj3. By [Kiw04,Kiw05|, for any dendritic laminational equivalence
relation ~, there exists a dendritic complex polynomial P with ~=~p. Thus,
equivalently, we can talk about the collection of mixed tags of all dendritic lami-
nations £.. In Theorem .T6] we show that the mixed tags Tag(P) are pairwise
disjoint or equal. Let us denote this collection of sets by CML(D) (for cubic mized
lamination of dendritic polynomials). Note that CML(D) can be viewed as (non-
closed) “lamination” in I x D whose elements are products of points, leaves, or
gaps. One can consider CML(D) as the higher-dimensional analog of Thurston’s
QML restricted to dendritic polynomials.

Theorem[4.16] in addition, establishes the fact that the collection of sets CML(D)
is upper semi-continuous. Let the union of all sets in CML(D) be denoted by
CML(D)" ¢ D x D. Tt follows that the quotient space of CML(D)™, obtained by
collapsing all elements of CML(D) to points, is a separable metric space, which
is denoted by MD5*™. Denote by 7 : CML(D)" — MD5™ the corresponding
quotient map.

Main Theorem. Mized tags of critically marked polynomials from MDs are either
disjoint or coincide. The map 7o Tag : MD3 — MDgomb is continuous.

Hence MD5™ is a combinatorial model for MDs. This theorem can be viewed
as a partial generalization of Thurston’s results [Thu85|] to cubic polynomials. In-
deed, Thurston establishes the existence of tags of laminational equivalence rela-
tions that are pairwise disjoint and form an upper-semicontinuous family of subsets
of the closed unit disk (this means that a sequence of set from the family can only
converge into a set from the family). We extend this to the cubic dendritic case by
suggesting a new method of tagging such polynomials that guarantees that if two
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tags are distinct, then they are actually disjoint. Choosing such tags and showing
that they have the just mentioned properties is, in our view, an important step
towards constructing a combinatorial model of the cubic connectedness locus.

1.5. Previous work and organization of the paper. Lavaurs [Lav89] proved
that Mg is not locally connected. Epstein and Yampolsky [EY99] proved that the
bifurcation locus in the space of real cubic polynomials is not locally connected
either. This makes the problem of defining a combinatorial model of M3 very
delicate. There is no hope that a combinatorial model would lead to a precise
topological model. Schleicher [Sch04] constructed a geodesic lamination modeling
the space of unicritical polynomials, that is, polynomials with a unique multiple
critical point. We have heard of an unpublished old work of D. Ahmadi and M.
Rees in which cubic geodesic laminations were studied; however, we have not seen
it. The present paper is based on the results obtained in [BOPT16]. These results
are applicable to invariant laminations of any degree. The results of the present
paper were announced in [BOPTI17].

The paper is organized as follows. In Section Bl we discuss basic properties of
geodesic laminations and laminational equivalence relations. In Section Bl we recall
the results of [BOPT16], adapting them to the cubic case. Finally, Section @ is
dedicated to the proof of the main result.

2. LAMINATIONS AND THEIR PROPERTIES

By a chord we mean a closed segment connecting two points of the unit circle.
If these two points coincide, then the chord is said to be degenerate.

Definition 2.1 (Geodesic laminations). A geodesic lamination is a collection £ of
chords called leaves that satisfy the following properties:

(1) distinct leaves do not intersect in D
(2) all degenerate chords (points of S) are leaves;
(3) the set L1 =J,, ¢ is compact.

Gaps of L are the closures of the components of D\ £+.

Given a compact metric space X, the space of all its compact subsets with the
Hausdorff metric is denoted by €(X). Any leaf of a geodesic lamination is an
element of €(D). Thus a lamination itself can be regarded as a compact subset of
¢(D), i.e., as an element of ¢(¢(D)). In what follows, convergence of laminations is
always understood in the sense of the Hausdorff distance on €(€(DD)).

In the Introduction, we discussed laminational equivalence relations. We now
give a precise definition.

Definition 2.2 (Laminational equivalence relations). An equivalence relation ~
on the unit circle S is said to be laminational if the following hold:

(E1) the graph of ~ is a closed subset of S x S;

(E2) the convex hulls of distinct equivalence classes are disjoint;

(E3) each equivalence class of ~ is finite.
Let d > 2 be an integer. A laminational equivalence relation ~ is called
(04-)invariant if:

(D1) it is forward invariant: for a ~-class g, the set o4(g) is a ~-class;
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(D2) for any ~-equivalence class g, the map og4|g : g = 04(g) extends to S as an
orientation-preserving covering map h such that g is the full preimage of
04(g) under the covering map h.

As in the introduction, we write L. for the lamination generated by ~. Recall
that it consists of edges of the convex hulls of all ~-classes. Equivalently, ab € L.
if @ ~ b, and the points a, b are not separated in S by elements of the same
equivalence class. A geodesic lamination is called a og-invariant g-lamination (q
from equivalence) if it has the form L., where ~ is a og4-invariant laminational
equivalence.

Definition 2.3. A og4-invariant limit lamination is defined as a limit of o4-invariant
g-laminations.

Below, we list the most important properties of og4-invariant g-laminations £
with references.

Forward leaf invariance: For every non-degenerate leaf ¢/ € L, we have
o4(f) € L. This property is straightforward from the definition. It is a part
of the original definition of an invariant lamination by Thurston [Thu85].

Backward leaf invariance: For every non-degenerate leaf ¢ € £, there is a
leaf ¢* € L such that 04(¢*) = ¢. This property is straightforward from the
definition. It is a part of the original definition of an invariant lamination
by Thurston [Thu85].

Forward gap invariance: If G is a gap of £, then H = 04(G) is a leaf
of L (possibly degenerate) or a gap of £. In the latter case, the map
o4 : GNS — HNS extends to a map of the boundary of G onto the boundary
of H so that the extended map is an orientation-preserving composition of a
monotone map and a covering map. This property is proved in [BMOV13].
It is a part of the original definition of an invariant lamination by Thurston

[Thu&5].
Sibling property: For every ¢ € L such that o4(¢) is a non-degenerate leaf,
there exist d pairwise disjoint leaves /1, ..., ¢; in L such that {; = ¢ and

oa(l;) = oq(f) for all 4§ = 2, ..., d. This property is proved in [BMOVT3].
It is a part of the notion of a sibling-invariant lamination. In fact, in
Theorem 3.21 [BMOV13|] we prove that the space of all sibling-invariant
laminations is compact.
Call a leaf £* such that o4(€*) = £ a pullback of £. A sibling of £ is defined as a leaf
0 # £ with 04(¢') = 04(f). The backward leaf invariance property stipulates the
existence of pullbacks of non-degenerate leaves. The sibling property is equivalent
to saying that every leaf ¢ with non-degenerate image has d — 1 siblings that are
disjoint from each other and from ¢. For d = 2, the sibling property means that,
for any ¢ € L, the chord obtained from ¢ by a half-turn around the center of the
disk D also belongs to £. Observe that, since leaves are closed segments, pairwise
disjoint siblings cannot intersect even on the unit circle.
For brevity we often talk about laminations meaning og4-invariant limit geodesic
laminations. Clearly, the limit of a sequence of og4-invariant limit laminations is
again a og-invariant limit lamination.

Definition 2.4 (Linked chords). Two distinct chords of D are linked if they
intersect in . We will also sometimes say that these chords cross each other.
Otherwise two chords are said to be unlinked.
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FIGURE 1. From left to right: a critical quadrilateral and its image
leaf, an all-critical triangle, a critical hexagon of degree 3 and its
image leaf (all critical sets are for o3).

A gap G is said to be infinite (finite, uncountable) if G N'S is infinite (finite,
uncountable). Uncountable gaps are also called Fatou gaps. For a closed convex
set H C C, straight segments in the boundary Bd(H) of H are called edges of H.

Definition 2.5 (Critical sets). A critical chord (leaf of L) ab is a chord (leaf of
L) such that o4(a) = o4(b). A gap is all-critical if all its edges are critical. An
all-critical gap or a critical leaf (of L) is called an all-critical set (of L£). A gap G of
L is said to be critical if it is an all-critical gap or there is a critical chord contained
in the interior of G except for its endpoints. A critical set of L is by definition a
critical leaf or a critical gap. We also define a critical object of L as a maximal by
inclusion critical set. See Figure [l for illustrations of various critical sets.

2.1. Dendritic laminations. We now consider dendritic laminations and corre-
sponding topological polynomials.

Definition 2.6. A ¢-lamination L. is called dendritic if all its gaps are finite.
Then the corresponding topological Julia set S/ ~ is a dendrite. The laminational
equivalence relation ~ and the topological polynomial f. are said to be dendritic
too.

Recall that, by [Kiw04], with every dendritic polynomial P one can associate a
dendritic topological polynomial f., so that P|; p is monotonically semiconjugate
to fuplss.,)- By [Kiw05], for every dendritic topological polynomial f, there
exists a polynomial P with f = f.,. Below, we list some well-known properties of
dendritic geodesic laminations. The following concept was introduced in Subsection
1.4 of [BOPTIA].

Definition 2.7 (Perfect parts of geodesic laminations [BOPT16]). Let £ be a
geodesic lamination considered as a subset of €(D). Then the maximal perfect
subset LP of L is called the perfect part of L. A geodesic lamination £ is called
perfect if L = LP. Equivalently, this means that all leaves of £ are non-isolated in
the Hausdorff metric.

Observe that £P must contain S.
Lemma 2.8. Dendritic geodesic laminations L are perfect.

Proof. Indeed, otherwise two gaps G, H of £ = L., meet along a common edge that
is an isolated leaf of £. However by definition they are convex hulls of classes of ~,
which means that the corresponding two classes are non-disjoint, a contradiction.

O
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We will need Corollary 3.16 of [BOPT16], which reads as follows.

Corollary 2.9 (Corollary 3.16 of [BOPT16]). Let L be a perfect limit lamination.
Then the critical objects of L are pairwise disjoint and are either all-critical sets,
or critical sets whose boundaries map exactly k-to-1, k > 1, onto their images.

By Lemma 2.8 Corollary applies to dendritic geodesic laminations. More-
over, by properties of dendritic geodesic laminations, all their critical objects are
finite.

3. LINKED QUADRATICALLY CRITICAL GEODESIC LAMINATIONS

Now we will review results of [BOPTT6] that are essential for this paper. Let
us emphasize that results of [BOPTIL6] hold for any degree. However, we will
adapt them here to degree three, omitting the general formulations. By quadratic
(respectively, cubic) laminations, we mean og-invariant (respectively, os-invariant)
limit laminations.

Consider a quadratic lamination £ with a critical quadrilateral ). Thurston
[Thu85] associates to £ its minor m = o5(Q). Then @ N'S is the full oo-preimage
of mN'S. Thurston proves that different minors obtained in this way never cross in
D. Observe that two minors cross if and only if the vertices of the corresponding
critical quadrilaterals alternate in S. It follows from Thurston’s results that, if two
quadratic g-laminations have critical quadrilaterals whose vertices strictly alternate,
then the two laminations are the same. This motivates Definition Bl In what
follows, given points z,y € S we denote by [z,y] the positively oriented circle arc
from x to y (similar notation is used for open and semi-open arcs). Moreover, if we
write z < y < z, then y € (x, z) (similar notation is used for non-strict inequalities).

Definition 3.1. Let A and B be two quadrilaterals with vertices in S. Say that A
and B are strongly linked if the vertices of A and B can be numbered so that

ap < by <ap <b <az < by <ag < bs < ayg,

where a;, 0 < 7 < 3, are vertices of A and b;, 0 < ¢ < 3, are vertices of B. The
inequalities refer to the circular order on S.

From now on we will restrict ourselves to oz-invariant (i.e., cubic) laminations.
By definition, a critical chord is a chord ab with a # b such that o3(a) = o3(b).

Definition 3.2. A (generalized) critical quadrilateral @ is a circularly ordered
quadruple [ag, a1, as, ag] of points ag < a1 < az < ag < ag in S, where apaz and araz
are critical chords called spikes; critical quadrilaterals [ag, a1, as, as], [a1, az, as, agl,
[az, a3, ag, a1], and [as, ag, a1, as] are viewed as equal.

We will often say “critical quadrilateral” when talking about the convex hull of
a critical quadrilateral. Clearly, if all vertices of a critical quadrilateral are distinct
or if its convex hull is a critical leaf, then the quadrilateral is uniquely defined
by its convex hull. However, if the convex hull is a triangle, this is no longer
true. For example, let CH(a,b,c) be an all-critical triangle. Then [a,a,b, ] is a
critical quadrilateral, but so are [a, b, b, ¢] and [a, b, ¢, c]. If all vertices of a critical
quadrilateral @) are distinct, then we call QQ non-degenerate. Otherwise @ is called
degenerate. Vertices ag and ay (a1 and ag) are called opposite.
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Lemma 3.3. [BOPTI16l Lemma 3.2] The family of all critical quadrilaterals is
closed in €(D). The family of all critical quadrilaterals that are critical sets of
cubic laminations is closed too.

Being strongly linked is a closed condition on two quadrilaterals: if two sequences
of critical quadrilaterals A;, B; are such that A; and B; are strongly linked and
A; = A, B; — B, then A and B are strongly linked critical quadrilaterals.

In [BOPTI6], quadratically critical portraits are defined for any degree d. Below,
we adapt this definition for cubic laminations. By the relative interior of a chord ab
we mean the set ab\ {a, b}; by the relative interior of a gap G we mean the interior
of G. Consider distinct critical quadrilaterals @', Q2 whose relative interiors are
disjoint. The pair (Q*, Q?) is called a quadratically critical portrait. If L is a cubic
lamination such that Q!, Q? are leaves or gaps of £, then we say that (Q', Q?) is
a quadratically critical portrait of L. Observe that not all cubic laminations admit
quadratically critical portraits. For example, if £ has a unique critical object that
is not all-critical (say, if this critical object is a hexagon that maps forward in the
three-to-one fashion), then £ has no quadratically critical portrait. If £ has two
disjoint critical objects, then it admits a quadratically critical portrait if and only
if both critical objects are (possibly degenerate) critical quadrilaterals.

Assume that £ has an all-critical triangle A. Then possible quadratically critical
portraits of L are:

(1) pairs of distinct edges of A and
(2) pairs consisting of A and an edge of it.

Now we define linked quadratically critical portraits.

Definition 3.4. Let (Q1,Q%) and (Q3,Q3%) be quadratically critical portraits.
These two portraits are said to be linked or essentially equal if one of the following
holds.

1) For every j = 1,2, the quadrilaterals J and Q) are either strongly linked
_ _ 1 2
or share a spike. If ] and QY share a spike for every j = 1,2, then the
two portraits are said to be essentially equal.
(2) We have that CH(Q1 U Q%) = CH(Q} U Q3) is an all-critical triangle. In
this case, the two portraits are also said to be essentially equal.

If (1) holds but (Q1, Q%) and (Q3, Q%) are not essentially equal, then the two por-
traits are said to be linked.

Critically marked polynomials, topological polynomials, and laminational equiv-
alence relations were defined in the Introduction. Let us now define critically
marked cubic laminations. Suppose that £ is a cubic lamination and an ordered
pair of critical sets (gaps or leaves) C, D of L is chosen so that on the boundary of
each component E of D\ (CUD) the map o3 is one-to-one (except for the endpoints
of possibly existing critical edges of such components). Then we call (£,C, D) a
critically marked lamination. For brevity, we often talk about marked (topological)
polynomials and laminations meaning critically marked ones. Let (£,C',C?) be a
marked cubic lamination. Then (C!,C?) is called a critical pattern of L. When
talking about critical patterns we mean critical patterns of some marked lamination
L and allow for £ to be unspecified.

Let £ be a dendritic lamination. If C' # D are its critical sets, then the only
two possible critical patterns that can be associated with £ are (C, D) or (D, C).
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If £ has a unique critical set X that is not an all-critical triangle, then the only
possible critical pattern of £ is (X, X). However, if £ has a unique critical set A
that is an all-critical triangle, then there are more possibilities for a critical pattern
of £. Namely, by definition, a critical pattern of £ can be either (A, A) or A and
an edge of A or an edge of A and A or an ordered pair of two edges of A.

A collapsing quadrilateral is a critical quadrilateral that maps to a non-degenerate
leaf.

Definition 3.5. Marked laminations (£1,C{,C?) and (L2, C3,C3) and their criti-
cal patterns are said to be linked (essentially equal) if there are linked (respectively,
essentially equal) quadratically critical portraits (Q1, Q%) and (Q3,Q3) such that
Q) c ¢ for all i,j = 1,2, and if Q’ is a collapsing quadrilateral, then it shares a
pair of opposite edges with Cf .

The following is a special case of one of the central results of [BOPT16]. Recall
that by a periodic set we mean a set that maps onto itself under a certain power
of the map.

Theorem 3.6. [BOPT16, Theorem 3.57] Let (£1,Ci,C?) and (£2702,02) be
marked laminations. Suppose that Ly is perfect and that sets Ca,C% are non-
periodic. If Ly, Lo are linked or essentially equal, then £, C Lo and C] D C]

for 5 = 1,2. In particular, if both laminations are perfect, then (111,01,02) =
(‘625 C2la 022)

Proof. By definition, we can choose linked (respectively, essentially equal) quadrat-
ically critical portraits (Q}, Q%) and (Q%, Q3) such that Q7 c €7 for all i,5 = 1,2,
and, if Qg is a collapsing quadrilateral, then it shares a pair of opposite edges with
C?. Then we can construct the pullback laminations for both quadratically critical
portraits pulling critical quadrilaterals back inside pullbacks of the corresponding
critical sets containing these quadrilaterals, and adding the thus-constructed leaves
to the already existing lamination (observe that by Definition images of critical
quadrilaterals are leaves of the corresponding lamination or points of the circle).
The construction of such pullback lamination is consistent exactly because the crit-
ical sets are non-periodic and finite. Indeed, the fact that they are non-periodic
implies that no set is repeated twice among their pullbacks (it is easy to see that
this claim applies, in particular, to critical sets C' that map into themselves un-
der a certain power of the map). Hence pulling back critical quadrilaterals inside
pullbacks of critical sets does not lead to any ambiguity or inconsistency.

Notice that while this construction is related to Thurston’s pullback construction
[Thu85] (which applies to critical portraits) or to its version developed in [BOPT16]
(which applies to quadratically critical portraits), it is significantly easier to imple-
ment because here we deal with the already existing lamination and pull sets of
quadratically critical portraits staying within the framework of this lamination,
which is in fact straightforward.

In the end we will get laminations El O L1 and 22 D L5. By [BOPTI16l Theorem
3.57], the perfect parts of El and 22 coincide. Evidently, the perfect part of 21
contains £ (because £, is perfect itself). On the other hand, the assumption that
critical gaps of Ly are non-periodic implies that EQ \ L2 consists of countably many
pullback leaves added to Lo with finitely many leaves added in each gap of L. This
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implies that the perfect part of L5 and the perfect part of Lo coincide. Thus, £; is
a subset of the perfect part of Lo and hence of L itself as desired. O

In particular, Theorem applies when £, is dendritic, as follows from Lemma
2.3

4. PROOF OF THE MAIN RESULT

In the rest of the paper, we define a visual parameterization of the family of all
marked cubic dendritic laminations.

4.1. Convergence of marked laminations. Let (£;, Z;) be a sequence of marked
cubic laminations with critical patterns Z; = (C}, C?). Assume that the sequence
L; converges to a limit lamination L,. Then the critical sets C}, C? converge to
gaps or leaves CL . C% of L,,. We say that the sequence (L;, Z;) converges to
(Cocy CLy C2,).

Lemma 4.1. Suppose that a sequence (L;, Z;) of marked cubic laminations with
finite critical sets converges to (Loo, CL,C2). Then sets CL ,C2 are critical and
non-periodic, and (Lo, CL ,C2) is a marked lamination.

Proof. Every vertex of CL, has a sibling vertex in CL . It follows that CL is critical.
If CL is periodic of period, say n, then, since it is critical, it is an infinite gap. Then
the fact that o (CL) = CL implies that any gap C} sufficiently close to CL will
have its o§-image also close to CL, and therefore coinciding with C}. Thus, C} is
o3-periodic, which is impossible because C} is finite and critical. Similarly, C2 is
critical and non-periodic.

Let us show that (Lo, CL,C%) is a marked lamination. To this end we need
to show that on the boundary of each component E of D\ (CL U C2) the map
o3 is one-to-one (except for the endpoints of possibly existing critical edges of such
components). This follows from definitions and the fact that the same claim holds
for all (£;, Z;). O

Any marked lamination similar to (Lo, CL, C%) from Lemma EJ will be called
a limit marked lamination. Thus, we have the following definition.

Definition 4.2. A marked lamination (L., CL,C2), which is the limit of a se-
quence of marked laminations with finite critical sets, is called a [limit marked
lamination.

In particular, a marked dendritic lamination is a limit marked lamination (con-
sider a constant sequence). By Lemma [T} Theorem applies to limit marked
laminations. In what follows we mostly consider limit marked laminations which are
limits of dendritic marked laminations (since critical sets of dendritic laminations
are finite, this is consistent with our definitions).

As was explained in the Introduction, a marked cubic dendritic polynomial
always defines a marked cubic lamination. Take a marked dendritic polynomial
(P, c',c?) and let (£,C*,C?) be the corresponding marked lamination. Define the
map I : MD3 — €(D) x ¢(D) by setting ['(P,c!,c?) = (C*,C?). Below we will
prove that I' is an upper-semicontinuous map; in general, if F' is a set-valued map
from a compact metric space X to the family of all closed subsets of a compact
metric space Y, then F' is upper-semicontinuous if and only if for any convergent
sequence x; — x of points of X we have that limit points of sequences of points
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z; = F(z;) must belong to F'(z). Consider a sequence of marked dendritic cubic
laminations (£;, C}, C?). If L; converge, then the limit L., is itself a cubic lam-
ination, and, by the above, the critical patterns (Cil, C’f) converge to the critical
pattern (CL,C2) of L. We are interested in the case when L., is in a sense
compatible with a dendritic lamination.

Lemma 4.3. [BOPTT16, Theorem 3.57] Let (Lo, CL,C2) be as above. If there
erists a dendritic cubic geodesic lamination L with a critical pattern (Ct,C?) such
that (£,C*,C?) and (Loo, C,C%) are linked or essentially equal then CI, C CY
forj=1,2and Lo D L.

Proof. By Lemma[£.]and Lemma 2.8 Theorem [3.6] applies to the laminations from
the lemma. In particular, by Theorem B.6] L., D £. This, in turn, implies that
CI, C ¢ for j = 1,2 as desired. O

Lemma 3] says that if critical patterns of dendritic cubic geodesic laminations
converge into a critical pattern of a dendritic cubic geodesic lamination £, then
the limit lamination contains £. Recall that convergence in the space of marked
polynomials is understood as convergence of the coefficients and of the marked
critical points.

Corollary 4.4. [BOPTI6, Corollary 3.30] Suppose that a sequence (Pi,c}, c2) of
marked cubic dendritic polynomials converges to a marked cubic dendritic polyno-
mial (P,ct,c?). Consider corresponding marked laminational equivalence relations
(~p,, CF,CF) and (~p,C',C?). If (L, ,C},CF) converges to (Loo, Cl, C%),
then we have Loy D L.,,CL C CY,C% C C?. In particular, the map T is upper
semi-continuous.

By Corollary [44] critical objects of dendritic cubic laminations £.., associated
with polynomials P € MDj5 cannot explode under perturbation of P (they may
implode though).

4.2. Mixed tags of geodesic laminations.

Definition 4.5 (Minor set). Let (£,C, D) be a marked lamination. Then o3(D)
is called the minor set of (L,C, D).

Note that in Definition the set X is not assumed to be critical. Also, given
a closed set Y C S, by a hole of Y we mean a component of S\ Y.

Definition 4.6 (Co-critical set). Let X be a (possibly degenerate) leaf or a gap of
a cubic lamination £. Assume that either X is the only critical object of £ or there
is exactly one hole of X of length > % If X is the only critical object of £, then we
set co(X) = X. Otherwise, let H be the unique hole of X of length > %, let A be
the set of all points in H with the images in o3(X), and set co(X) = CH(A). The
set co(X) is called the co-critical set of X. In particular, if X = {a} is a singleton,
then co({a}) = £ is a critical chord disjoint from a whose endpoints map to o3(a).

We now define tags of marked laminations.

Definition 4.7 (Mixed tag). Suppose that (£,C*t, C?) is a marked lamination.
Then we call the set Tag;(C1,C?) = co(C') x o3(C?) C D x D the mized tag of
(L,CY,C?) or of (C1,C?).
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Sets co(C') (and hence mixed tags) are well-defined. The mixed tag T of a
marked lamination is the product of two sets, each of which is a point, a leaf, or
a gap. One can think of 7 C D x D as a higher dimensional analog of a gap/leaf
of a geodesic lamination. We show that the union of tags of marked dendritic
laminations is a (non-closed) “geodesic lamination” in D x D. The main idea is to
relate the non-disjointness of mixed tags of marked dendritic laminations and their
limits with the fact that they have “tunings” that are linked or essentially equal.

In Definition €8], we mimic Milnor’s terminology for polynomials.

Definition 4.8 (Unicritical and bicritical laminations). A marked lamination (and
its critical pattern) is called wunicritical if its critical pattern is of the form (C,C)
for some critical set C' and is bicritical otherwise.

Clearly, a unicritical marked lamination has a unique critical object. However
a lamination £ with unique critical object may have a bicritical critical pattern.
By definition this is only possible if £ has an all-critical triangle A and the critical
pattern of £ consists of either two edges of A or of A and an edge of A.

The following lemma is a key combinatorial fact about tags.

Lemma 4.9. Suppose that two marked laminations have non-disjoint mized tags.
Suppose also that one of the two laminations is dendritic and the other lamination
is a limit marked lamination. Then the two marked laminations are linked or es-
sentially equal and the dendritic one is contained in the limit one. Moreover, if the
dendritic lamination has an all-critical triangle, then the laminations are equal.

The proof of Lemma [£.9 is partially non-dynamic and involves checking various
cases. We split the proof into propositions. Observe that mixed tags are determined
by critical patterns; we do not need laminations to define mixed tags. In Propo-
sitions E10] and 1Tl we assume that the critical patterns (C1,C%?) and (C3,C3)
of invariant laminations £q, Lo, respectively, are bicritical and have non-disjoint
mixed tags.

Proposition 4.10. Suppose that the critical patterns (C1,C?) and (C3,C3) are
bicritical and have non-disjoint mized tags. Moreover, suppose that some distinct
edges of co(C1) and co(C3) cross. Then the two critical patterns are linked or
essentially equal.

Proof. By the assumption, some distinct edges of the sets co(C1) and co(C3) cross.
Denote these linked edges by aib; and agby; see Figure 2l We may choose the
orientation so that (a1, b1), (a2, bs) are in the holes of C1, C3, and a; < as < by <
by. We claim that (aq,by) is of length at most % Indeed, if (aj,b;) had length
greater than %, then there would exist a sibling £ of a;1b; with endpoints in (a1, by).
Evidently, ¢ would be an edge of Cf, contradicting the choice of (aj,b1). Thus,
(a1, b1) is of length at most % and the restriction 03] (4, »,) is one-to-one. Similarly,
(az,bz) is of length at most & and the restriction o3|(q, ,) is one-to-one.
Let us show now that o3(C?) NS C [03(b1), 03(a1)]. Let

1 1 1 1
Clllzal—i-g,aézag—i—g,b/l:b1+§,b/2:b2+§

and
2 2 2 2
a’l':a1+§,a’2’:a2+§,b’1’:b1+§,b’2’:b2+§,

Licensed to Univ of Alabama at Birmingham. Prepared on Wed Oct 2 06:58:59 EDT 2019 for download from IP 138.26.76.192.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODELS FOR SPACES OF DENDRITIC POLYNOMIALS 4843

FIGURE 2. This figure illustrates Proposition .10l

Then /by C C}. Moreover, since C} is critical, vertices of C| partition the arc
(a’,b!) into open arcs on each of which the map is one-to-one. Hence C? must have
vertices in [b), a1] U [b1, a}]. Since each of these intervals maps onto [o3(b1), o5(a1)]
one-to-one, our claim follows. Similarly, o3(C3) NS C [o3(b2), 03(az2)].

We claim that by < a1+ % Indeed, otherwise [by, a; + %] C [a2, b2), which implies
that [03(b1),03(a1)] C [03(az),03(b2)). On the other hand, by the above we have
0'3(012) C [Ug(bl),ﬂg(al)], and 0'3(022) C [O’g(bg),()’g,(ag)]. Since 0'3(012) N 0'3(022) #
&, then o3(az) = o3(b1), and we have in fact by = ao, a contradiction with the
assumptions. Thus, the points a1, as, b1, bs belong to an arc of length at most %

We claim that then co(a1b1) = Q} and co(ashy) = Q3 are strongly linked col-
lapsing quadrilaterals. Indeed, we have that a; < as < by < be < af = a1 + % It
follows that

1 1 1 1 < 2 2 2 2 <
a1+§<a2+§<b1+§<b2+§\a1+§<a2+§<b1+§<b2+§\a1,
i.e., that

ay <ah <by <by<al <ay <by <by <a,

and therefore that, indeed, Q1 and co(azby) = Q3 are strongly linked collapsing
quadrilaterals. Moreover, since ajb; and agby are edges of co(C}) and co(C3)
it follows that the quadrilateral Q1 shares two edges with the set C}, and the
quadrilateral Q3 shares two edges with the set Cj.

Note that all vertices of C? and C3 are in [by, ab] U [b],az]. The restriction of
o3 to each of the arcs [ba, a}], [b5, a1] is injective. Therefore, a pair of linked edges
of 03(C?%) and o3(C3) gives rise to a pair of linked quadrilaterals Q3 and Q% in C?
and C2, respectively, so that these quadrilaterals share edges with containing them
critical sets. On the other hand, if o3(C?) and o3(C3) share a vertex, then C? and
C3 share a critical leaf. O

Now we simply assume that co(C}) and co(C3) intersect.
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Proposition 4.11. Suppose that the critical patterns (C1,C?) and (C3,C3) are
bicritical and have non-disjoint mived tags. If Ly is dendritic and (Lo, C3,C3) is a
limit marked lamination, then at least one of the following holds:

(1) the two critical patterns are linked or essentially equal, and L1 C La;
(2) Ly = Lo share an all-critical triangle A.

Proof. We will use the same notation as in the proof of Proposition IO If co(C1)
and co(C3) have distinct edges that cross in I, then Proposition .10 applies, and
by Lemma 3] £; C Lz. Assume now that co(C1) and co(C3) share a vertex a.
Clearly, there is a unique critical chord £ such that co(a) = ¢. Then C{ N C3 D ¢,
and we may set Q1 = Q3 = /.

Both sets C%,C2 have vertices in the closed arc A of length % bounded by the
endpoints of ¢. By our assumption, o3(C?)No3(C3) # @. If the sets a3(C%), 03(C3)
have a pair of linked edges or share a vertex z # o3(¢), then these edges or z can be
pulled back to CH(A) as a pair of linked critical quadrilaterals or a common critical
chord. Choosing these quadrilaterals (or this critical chord) as the sets Q3, Q3,
respectively, we complete the proof. Assume now that o3(C?) No3(C32) = {o3(¢)}.

Clearly, a € A. Set A = CH(a,¥f). We claim that A is a gap of £;. Indeed,
the set C? contains at least two vertices of A and, hence, is non-disjoint from C1.
Since the two critical sets of £ intersect and £ is dendritic, it follows that £; has
a unique critical gap F D A. If F # A, then by definition the critical pattern of
Ly is (E, E), a contradiction with the assumption that £; is bicritical. Thus, A is
a gap of £;. Note that a lamination whose critical set is a critical triangle can be
bicritical as explained in the remark following Definition L8]

We claim that A is a gap L£o. We prove first that there is another edge £* of
A, not equal to ¢, such that one of the sets Ci,C? contains ¢ while the other one
contains £*. This is obvious if C2 contains an edge ¢* # ¢ of A. Otherwise C3 D /.
Then ¢ must be an edge of C3 because otherwise the sets C3 and C3 will either
have non-disjoint interiors or one of them will be contained in the interior of the
other one, a contradiction. Similarly, £ is an edge of C3. It follows that one of the
sets O3, O3 is £ while the other one is a critical gap G with £ as an edge.

By the above, ¢ and £* are either leaves of Lo or are contained in gaps of L.
Moreover endpoints of £ and ¢* are not periodic since A is a gap of a dendritic
lamination £;. Hence ¢ and ¢* can be pulled back in a unique way, and these
pullbacks either will be contained in gaps of £, or will be leaves of £4. This yields
a new lamination EQ D L5 and a marked lamination (EQ,Z, ¢*). Counsider also the
marked lamination (L4, ¥, £*). Since these two marked laminations are essentially
equal, Theorem implies that £; C Eg. Hence A is a gap of 22 and, moreover,
leaves shared by £; and 22 approximate all edges of A from outside A (because a
dendritic lamination £; is perfect).

It follows that A is a subset of a gap G of L5. Let us show that G = A. By
Lemma[J] G is not periodic. Hence pullbacks of £ and £* do not re-enter G, and so,
if it existed, an edge of A contained in the interior of G (except for the endpoints)
would remain isolated in both Lo and Eg. However in the previous paragraph we
concluded that the edges of A are not isolated in 22, a contradiction. We conclude
that A is a gap of Ls.

Let us show that £1 = L£5. We can adjust the critical pattern of £ so that it
coincides with the critical pattern of £;. By Theorem B.6, we then have £o D L;.
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Moreover, no leaves of Lo are contained in the unique critical set A of £;. By
[Kiw02], the fact that £; is unicritical (its unique critical gap is A) implies that
any periodic gap of £; has a single cycle of edges. We conclude that no leaves of
L5 are contained in periodic or preperiodic gaps of £;. Finally, by [BL02| there are
no wandering gaps of £1. This implies that Lo = L1, as claimed.

It remains to notice that if (1) holds, then by Theorem Ly C Lo. O

This proves Lemma for two bicritical marked laminations. Consider unicrit-
ical marked laminations.

Lemma 4.12. Suppose that (L1,C1,C1) and (Lo, Co,Cy) are marked unicritical
laminations with non-disjoint mized tags. Then there exists a choice of quadratically
critical portraits (CF,C?) of L1 and (C},C3) of Ly (where C is either a quadri-
lateral or a critical chord contained in C;) such that (L1,Ct,C?) and (L2, Ca,C3)
are linked or essentially equal. Thus, if L1 is dendritic and Lo is a limit marked
lamination, then L1 C Lo.

Proof. Suppose that £; has an all-critical triangle A (and so C; = A). Since
the mixed tags intersect, o3(C1) € 03(C2) and hence C; C C3. Choosing two
edges of A as a quadratically critical portrait in C; and in C5, we see that by
definition (£1,C1,C?) and (L2, C3, C%) are essentially equal. Suppose that neither
Ly nor Lo has an all-critical triangle. If o3(C1) N o3(C2) contains a point x € S,
then the entire all-critical triangle CH (o3 *(x)) = A is contained in C; N Ca; we
can choose the same two edges of A as a quadratically critical portrait for both
laminations. Otherwise, we may assume that an edge ¢; of o3(Cy) crosses an edge
ly of o3(C3). This implies that the hexagons 051(61) Cc C7 and 051(62) c Cy
have alternating vertices. Evidently one can choose diagonals in either hexagon
that divide the hexagons into two quadrilaterals so that the resulting quadratically
critical portraits are linked. This proves the lemma in this case too. The last claim
of the lemma follows from Lemma O

Proof of Lemma L9, Denote laminations in question by £ and L. If both lam-
inations are bicritical, then the result follows from Proposition [£I1l If both lam-
inations are unicritical, then the result follows from Lemma It remains to
consider the case where the first critical pattern (Cp,Cy) is unicritical, and the
second one (C3,C3) is bicritical.

Consider first the case when Cy = CH(aq,as, a3) is all-critical. Since o3(C1) N
03(C2) # @, then C% contains an edge, say a1as, of C1. Then co(C}) either crosses
azaz and ajagz, or contains a; for some i. The former is impossible as then edges of
C3 cross @yaz C C3 while the latter is simple and left to the reader. Hence we may
assume that Cy is not all-critical.

Assume now that an edge E' of co(C3) crosses an edge of C; = co(C}), and
an edge E? of 03(C3) crosses an edge of 03(C1). Choose non-degenerate critical
quadrilaterals Q4 C C} with co(Qi) = E' and 03(Q3) = E?. Evidently, the
intersection Q3 N Q3 is empty, or coincides with a point of S, or coincides with their
common edge. Also, four vertices of Q3 belong to four distinct holes of Cy, and a
similar claim holds for Q3.

Without loss of generality, the vertices of Q3 and Q3 can be denoted and ordered
so that the following holds: (a) vertices of Q3 are v,u,v’,u’, (b) vertices of Q3 are
z,y, 2y, and () v <u <z <y<a <y <v <. The claims below that
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concern the location of various points on the circle are based upon the way the
vertices of Q3, Q3 are ordered on S.

Choose a hole (d, a) of C; such that « € (d,a). Then v ¢ (d, a), as otherwise the
edge v will be disjoint from Cj, a contradiction. Set d’ = d + 3 and @’ = a + %;
then CH(d, a,d’,a’) is a critical quadrilateral, contained in Cy, sharing two edges
with Cy (in particular, 2’ = z + 1 € (d,d/) and a’ € (2/,y') where y/ =y + 3),
and strongly linked with Q3. Now, choose a hole (p,q) of C; such that v € (p,q).
Moreover, set p' = p+ %, qd =q+ % Then CH(p, q,p’,¢’) is a critical quadrilateral,
contained in C1, sharing two edges with C1, and strongly linked with Q3. Moreover,
it follows that the two just constructed critical quadrilaterals CH(d, a,d’,a’) and
CH(p, q,p’,¢') cannot share more than a vertex (this happens only if ¢ = d which,
indeed, is possible). Thus, by definition, in this case £ and Ly are linked.

The cases when edges of co(C3) share vertices with Cj, or edges of 03(C3)
share vertices with o3(Cy), can be considered similarly and are left to the reader.
This shows that in any case £1 and Ly are linked or essentially equal. Then the
claim of the lemma concerning the containment between the dendritic lamination
and the limit one follows from Lemma 3l Suppose finally that the dendritic
lamination L g4, contalns an all-critical triangle. We claim that then it equals the
limit lamination £ from the lemma. Indeed by the above Lg4, C L. Suppose a
gap G of Lg4,- contains inside it a leaf of L. By [Kiw02] and because L44- has an
all-critical triangle, we may assume that G is periodic and, moreover, its vertices
belong to one periodic orbit. However, this implies that any chord inserted in G
will eventually cross itself. Hence Lgq, = L as desired. O

We are ready to prove Theorem T3

Theorem 4.13. If (L1,C},C%) and (L2, C3,C2) are marked laminations, L is
dendritic, and Lo is a limit marked lamination, then they have non-disjoint mized
tags if and only if (1) or (2) holds:
(1) L1 = Lo has an all-critical triangle A, it is not true that Ct and C} are
distinct edges of A, and either C{ D C3 or C3 > C{;
(2) there is o all-critical triangle in £y C Ly, and C] > C3 for j = 1,2 (in
particular, if Lo is dendritic, then L1 = L3).

Proof. If the mixed tags of (£1,Ct,C?) and (L2, C3,C3) are non-disjoint, then,
by Lemma [£9] either £; = L5 share an all-critical triangle A or these marked
laminations are linked or essentially equal, and £; C L£5. In the first case consider
several possibilities for the critical patterns. One can immediately see that the only
way the mixed tags are disjoint is when C{ and C} are distinct edges of A. Since
the mixed tags are known to be non-disjoint we see that this corresponds to case
(1) from the theorem. In the second case the fact that our marked laminations
are linked or essentially equal implies, by Theorem and Lemma [£.]] that case
(2) of the theorem holds. The opposite direction of Theorem EI3] follows from
definitions. O

4.3. Upper semi-continuous tags.

Definition 4.14. A collection & = {E,} of compact and disjoint subsets of a
metric space X is upper semi-continuous (USC) if, for every E, and every open
set U D E,, there exists an open set V' containing E, so that, for each Eg € &,
it EgNV # @, then Eg C U. A decomposition of a metric space is said to be
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upper semi-continuous (USC) if the corresponding collection of sets is upper semi-
continuous.

Upper semi-continuous decompositions are studied in [Dav80].

Theorem 4.15 ([Dav8@]). If £ is an upper semicontinuous decomposition of a
separable metric space X, then the quotient space X/E is also a separable metric
space.

Consider a marked cubic lamination (£, C1, Cs). Suppose that L. is generated
by a laminational equivalence relation ~. Observe that (~,C7,C3) does not have
to be a marked laminational equivalence relation. Indeed, if the critical object
of L. is an all-critical triangle A, then the only marked laminational equivalence
corresponding to ~ is (~, A, A). However, C1, Cs can be two distinct edges of A.
Despite this discrepancy, mixed tags of laminational equivalence relations coincide
with the mixed tags of the corresponding geodesic laminations. Thus our results
apply to mixed tags of laminational equivalence relations.

Recall that the map Tag; was defined in Definition L7l To a marked lamina-
tional equivalence relation (~, C, D), or to its critical pattern (C, D) the map Tag;
associates the corresponding mized tag Tag,(~,C, D) = co(C) x o3(D) C D x D.

Theorem 4.16. The family {Tag;(C',C?)} = CML(D) of mized tags of cubic
marked dendritic laminational equivalence relations forms an upper semi-continuous
decomposition of the union CML(D)+ of all these tags.

Proof. If (~1,C1,C?) and (~g,C3,C32) are cubic marked dendritic laminational
equivalence relations and Tag,(Ci,C?) and Tag,(Ci,C3) are non-disjoint, then,
by Theorem T3] applied to the marked geodesic laminations (£.,, Ci, C%) and
(L~,,C3,C3), we have that the corresponding marked laminational equivalence
relations are equal, i.e., (L.,,CL,C?) = (L~,,Cd,C3). Hence the family {Tag,(C?,
C?)} forms a decomposition of CML(D)*.

Suppose next that (~;, Z;) is a sequence of marked dendritic laminational equiv-
alence relations with Z; = (C},C?). Assume that there is a limit point of the
sequence of their tags co(C}) x o3(C?) that belongs to the tag of a marked den-
dritic laminational equivalence (~p, Zp) where Zp = (C},C%). Since the space
of all subcontinua of the unit disk is compact, we may assume that the sequence of
sets L1 converges to a continuum. By Theorem 3.21 of [BMOV13]| the limit contin-
uum coincides with the set £X of an invariant limit lamination £.,. Moreover, by
LemmalT] the sequence (£, Z;) converges to a marked lamination (L., CL ,C2)
with critical pattern Py, = (CL,C2). By the assumption, Tag,(Zp) N Tag(Puo) #
@. By Theorem I3, we have Lp C Lo and CI, C C% for j = 1,2. Hence,
Tagl(‘coov Poo) C Tagl(‘CD, ZD) U

Denote the quotient space of CML('D)JF, obtained by collapsing every element of
CML(D) to a point, by MDD (elements of CML(D) are mixed tags of critical pat-
terns of marked dendritic laminational equivalence relations). Let 7 : CML(D)" —
MDgomb be the quotient map. By Theorem the topological space MDgomb
is separable and metric. We show that MD5™ can be viewed as a combinatorial
model for MD3. Recall that the map I' : MD3 — €(D) x €(D) was defined right
before Lemma (3]
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Theorem 4.17. The composition o Tag, o' : MD3 — MDgomb is a continuous
surjective map.

Proof. By definition and Corollary £4], the map I" is upper semi-continuous and
surjective. Also, Tag; is continuous with respect to the Hausdorff distance and

preserves

inclusions. Finally, 7 is continuous by definition. Thus, 7 o Tag; oI :

MDs — ./\/ngomb is a continuous surjective map, as desired. O
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